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Abstract
Contact discovery is a crucial component of social applications,

facilitating interactions between registered contacts. This work

introduces Arke, a novel contact discovery scheme that addresses

the limitations of existing solutions in terms of privacy, scalability,

and reliance on trusted third parties. Arke ensures the unlinkability

of user interactions, mitigates enumeration attacks, and operates

without single points of failure or trust. Notably, Arke is the first

contact discovery system whose performance is independent of the

total number of users and the first that can operate in a Byzantine

setting. It achieves its privacy goals through an unlinkable hand-

shake mechanism built on top of an identity-based non-interactive

key exchange. By leveraging a custom distributed architecture,

Arke forgoes the expense of consensus to achieve scalability while

maintaining consistency in an adversarial environment. Perfor-

mance evaluations demonstrate that Arke provides a throughput

of over 1,500 user requests per second at a latency of less than

0.5 seconds in a large geo-distributed setting which would allow

privacy-preserving contact discovery for all of the popular messag-

ing applications in one system.

CCS Concepts
• Security and privacy→ Social network security and privacy;
Privacy-preserving protocols.
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1 Introduction
Contact discovery enables users of social applications, such as

messengers, payment systems, or media-sharing platforms, to find

and interact with their registered contacts [55]. Consider for

example Signal [72]: users sign up with their phone numbers, and

want to connect with any phone number of their address book that

is also registered on Signal. This process can be generalized to allow

users to sign up with any form of identity (a blockchain address,

private-public key pair) and be found using any convenient human-

readable identifier (email, phone number, social media handle).

Current solutions have significant shortcomings in meeting sev-

eral important expectations. Some fail to adequately protect users’

privacy, exposing their underlying social relations either by de-

sign [75] or when targeted by enumeration or crawling attacks [44].

These solutions often rely on centralized parties [26] or trusted

hardware for privacy protection [56]. Finally, all these solutions

express some form of dependency on the total number of users

(either in latency, computation or storage) and may not be suitable

for applications with billions of users
1
.

Arke
2
is a novel contact discovery scheme that addresses the

limitations found in existing systems. Arke ensures the unlinka-

bility of user interactions and effectively mitigates enumeration

attacks. It prioritizes user privacy by ensuring that no information

about users, their messages, or their communication partners is

revealed. Additionally, Arke enforces a bi-directional relationship

requirement, meaning that users can only discover each other if

they are mutually seeking contact. This approach prevents crawling

attacks, setting it apart from traditional contact discovery schemes.

Furthermore, Arke supports multiple applications sharing the same

1
WhatsApp, the most popular end-to-end encrypted messaging application, was re-

ported to have 2.7 billion unique active users in June 2023 [23].

2
In Greek mythology, Arke is the messenger of the Titans.
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contact discovery infrastructure while maintaining independent

security assumptions. Notably, Arke represents a significant ad-

vancement as the first privacy-preserving contact discovery system

whose performance is independent of the total number of users in

the system (often referred to as the database size). Moreover, Arke

stands out as the first contact discovery system designed without

any single points of failure or trust; Arke offers scalability in terms

of throughput and extremely low latency despite the presence of a

Byzantine adversary.

The Arke contact discovery protocol generalizes the construc-

tion of Chaum et al. [26], known as UDM (User Discovery with

Minimal information disclosure). Implicit to the UDM architecture

is the fact that a contact discovery scheme can be built by combin-

ing a key exchange and an unlinkable handshake [47]. First, users
run a key exchange to establish a shared secret. Then, using this

secret, the users run the handshake protocol to establish an end-to-

end encrypted channel, without revealing any connection details

to third parties. Finally, the channel is used to exchange any in-

formation that is needed to interact with each other on the new

social application. Chaum et al. [26] realize both of these subproto-

cols with the help of centralized parties (the Public-Key Manager
and Encrypted ID Manager respectively). Arke improves on these

requirements. The key exchange is instantiated with a variant of

the Sakai-Ohgishi-Kasahara identity-based non-interactive key ex-

change (ID-NIKE) [71]. By utilizing distributed key generation [41]

and blind threshold BLS signatures [15], we modify the original pro-

tocol to distribute the master secret key and enable oblivious and

verifiable key issuance. We then present a custom unlinkable hand-

shake protocol which only requires an untrusted (and potentially

distributed) public bulletin board. The design of this handshake

ensures that each system resource is mutated by at most a single

user, eliminating the need for an expensive consensus protocol

to maintain consistency in the distributed setting. Instead, Arke

relies on a simpler and more efficient primitive based on Consistent

Broadcast [20].

By construction, Arke supports applications beyond contact

discovery. Indeed, the protocol facilitates a rendezvous point and

allows the exchange of an arbitrarymessage in a privacy-preserving

manner. This message may include public keys, in view of a key

exchange for a forward-secure E2EE messenger, or transaction

authorizations. The latter allows users to pay contacts directly,

knowing only their non-cryptographic identifiers, even before the

contacts have generated a wallet or account in the relevant payment

system. This provides a convenient mechanism for user onboarding

or airdrops, for example.

We implement and evaluate a prototype of Arke written in Rust

on Amazon EC2 in a large geo-distributed wide-area network de-

ployment. We show that after a short one-time offline phase taking

only a couple of seconds, Arke supports over 1,500 user requests

per second with a latency of less than 0.5 seconds even when the

infrastructure is maintained by 50 authorities. Furthermore, Arke

can maintain this throughput with sub-second latency even when

up to a third of these authorities fail.

Contributions. This paper makes the following contributions:

• It presents Arke, a novel privacy-preserving contact-discovery

construction that is the first with performance independent of

the total number of users in the system, and the first designed to

operate in a Byzantine environment. It does so by generalizing

UDM [26] and by introducing a threshold and oblivious variant

of the Sakai-Ohgishi-Kasahara ID-NIKE [71], as well as a custom

unlinkable handshake.

• It proves the security and privacy guarantees of the system (left

as open question in Chaum et al. [26]).
• It shows how Arke maintains consistency of a distributed key-

value store without requiring consensus but instead using simpler

and more efficient broadcast-based primitives.

• It provides a full implementation of Arke and a performance

evaluation on a real geo-distributed environment under varying

system loads and fault scenarios.

• It shows how existing blockchains can leverage Arke to build a

privacy-preserving contact discovery service for their wallets,

and how messaging services such as Signal [72], Telegram [1],

and WhatsApp [79] can run Arke to allow users to privately

discover each other’s public keys.

2 System Overview
Arke enables Alice to discover a message msg𝐵 from a sender Bob

known only by his identifier id𝐵 through the establishment of a

shared cryptographic secret between them. An identifier is a public

human-readable string unique to a user, such as a phone number,

an email address, or a social media handle. Arke is efficient and

privacy-friendly by hiding the identifiers, messages, and relation-

ships between users.

2.1 Actors
Arke is composed of the following actors.

Users. A user, Alice, owns a human-readable identifier id𝐴 and

a message (or payload) msg𝐴 . She wishes to allow specific users

to discover her message on the conditions that (i) Alice knows the

other user’s identifier and (ii) the other user knows Alice’s identifier.

Users wish to hide their relationships with other users from any

observer.

Registration Authorities. A registration authority (RA) attests to

the binding between users and their identifiers. A registration au-

thority could be a social media service (e.g., X - formerly known as

Twitter) allowing the use of usernames as identifiers or a messaging

service verifying a phone number, or any third party running an

interactive protocol with the user to verify their identifiers (e.g.,

by sending them a text code, or running a protocol to authenticate

TLS data [24, 25, 54, 81, 83]). Identifiers always specify the registra-

tion authority that attested to them. As a result, multiple services

(e.g., Signal [72], Telegram [1], WhatsApp [79], or any third-party

service) can all use the user’s phone number as an identifier by

appending their unique RA domain, e.g., phone_number@domain.
A registration authority can be a single entity or a distributed set

of authorities. The concrete deployment structure is decided by the

respective service designers/operators. For simplicity of presenta-

tion, we assume henceforth that a registration authority is a single

entity.

Key-issuing Authorities. The key-issuing authorities (KAs) are a
committee of 𝑛 entities that share a threshold key (see Section 4).
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They are tasked with issuing private keys to users who present

a valid proof of registration. Arke assumes that at most 𝑡 < 𝑛/2
key-issuing authorities are Byzantine (see Section 2.4).

Storage Authorities. The Arke storage is operated by a set of

3𝑓 + 1 independent storage authorities out of which at most 𝑓 are

Byzantine (see Section 2.3). We present the storage authorities as

independent entities but they may coincide with the key-issuing

authorities (by setting 𝑡 = 𝑓 ) or coincide with the maintainers of

most existing blockchains (see Section 5.2). In the general setting,

storage authorities may enforce their own access control policy

and only accept write requests from users registered with RAs of

their choice.

2.2 Protocol Outline
Arke is divided into two phases: (i) a setup phase where users obtain
a long-term private key over their identifier, and (ii) a discovery
phase where users use their private keys to anonymously exchange

messages with their contacts over an untrusted public message

board. The setup phase is executed only once (or rarely) and the

discovery phase is executed every time a user wishes to make her

message discoverable or discover the message of a contact. Figure 1

provides an overview of Arke and the interactions between its

actors.

Setup phase. Alice convinces a registration authority that she

owns the identifier id𝐴 and receives a signed attestation in re-

turn (➊). She then blinds her identifier and attestation to submit

anonymous key-issuance requests to at least 𝑡+1 key-issuing author-
ities. Upon verifying a request, each key-issuing authority blindly

emits a share of Alice’s private key. Finally, Alice locally combines

the shares to obtain her long-term private key (➋).

Discovery phase. After running the setup phase, Alice wishes to

signal to Bob that she has registered and optionally sends him a

message. Using her long-term private key and Bob’s identifier, Alice

locally derives a shared secret with Bob (➌). From this shared secret,

Alice can derive a label and a symmetric key used for encryption.

She encrypts her message and writes the ciphertext and label to

the distributed Arke store (➍). Bob can discover Alice’s message

by locally deriving the same shared secret (using his long-term

private key and Alice’s identifier) (➎) and reading the distributed

Arke store (➏). Arke divides time in a sequence of epochs (e.g.,

lasting about 1 or 2 weeks). After a fixed number of epochs, the

storage authorities delete the records of inactive users. This garbage-

collection mechanism is detailed in the extended version of the

paper
3
.

2.3 Design Goals
Arke guarantees several system security, privacy, and performance

properties.

System security properties. Arke maintains several systems se-

curity properties depending on which assumptions (Section 2.4)

hold.

• Validity: Alice can only update the Arke store by updating mes-

sages associated with her identifier id𝐴 .
3
The extended version of the paper is available at https://eprint.iacr.org/2023/1218

• Write consistency: No correct storage authorities hold conflict-

ing records.

• Read consistency: No two read operations over the same label

return a different ciphertext.

• Write termination: A correct user can eventually update the

store to make its message discoverable.

• Read termination: A correct user can eventually read the store

and learn the message associated with a user with a known

identifier.

Privacy properties. Arke upholds the following properties:

• Anonymity: The identities of active Arke users are kept hidden
from the key-issuing authorities, storage authorities, and any

third-party observer. Identities may also be hidden from the

relevant registration authority if their authentication mechanism

is anonymous. This mechanism is left at the discretion of each

registration authority and is out of our design scope.

• Confidentiality: Messages exchanged over Arke are encrypted

and recipient-anonymous.

• Unlinkability: None of the authorities or third-party observers

can determine whether Alice and Bob have exchanged messages

over Arke.

• Selective discovery: Users may choose whether or not to be dis-

coverable by other users on a per-user basis. The default behavior
is to remain hidden. This property contrasts with other contact

discovery schemes where users make themselves discoverable to

all, allowing crawling attacks as studied by Hagen et al. [44].

Performance properties. Arke also guarantees the following sys-

tem and performance properties. Section 6 demonstrates these

properties through a thorough implementation and evaluation of

Arke.

• High-throughput:Arke provides enough throughput to support
multiple applications with billions of users each; we estimate that

Arke can support the combined user base ofWhatsApp, Facebook

Messenger, Signal, and Telegram.

• Low-latency: Arke achieves sub-second latency even for large

geo-distributed deployments.

• Performance under (crash-)faults: The performance (through-

put and latency) of Arke is virtually unaffected by (crash-)faulty

authorities. Note that evaluating a BFT system while experienc-

ing Byzantine faults is an open problem [12].

• Bounded storage: Storage is not growing linearly over time.

Arke enables authorities to periodically purge their store entries.

This property is proven as part of consistency.

Additional properties. Furthermore, Arke guarantees the follow-

ing meta-properties:

• Censorship resistance: Correct users can always obtain pri-

vate keys from the key-issuing authorities. Furthermore, correct

users can write and read the Arke store despite the presence of

Byzantine authorities. This property is proved as part of write
termination and read termination.
• Authorities Non-Interactivity: Neither the Arke key-issuing
authorities nor the storage authorities need to communicate

with each other. This property allows for easier deployment and

is crucial to integrate Arke into the Sui blockchain [57] (see

Section 5.2).

https://eprint.iacr.org/2023/1218
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Figure 1:𝐴𝑟𝑘𝑒 overview. During the setup phase, users run an (anonymous) identification procedure with a registration authority
to obtain an attestation over their identifier (➊). They then use this attestation along with their blinded identifier to obtain a
long-term private key by interacting with the key-issuing authorities (➋). During the discovery phase, users locally derive a
shared secret with each contact (➌,➎) and use it to read and write the Arke distributed store and discover their messages (➍,➏).

2.4 Threat Model
We define the main assumptions under which Arke guarantees the

properties of Section 2.3.

Assumption 1: Correct registration authorities. Arke guaran-
tees the security properties of Section 2.3 for identifiers attested

by correct registration authorities. Indeed, a malicious RA could

falsely issue attestations and impersonate any user it desires. For-

tunately, recent work on authenticating web data has shown that

privacy-preserving, untrusted and correct RAs can be realized in

practice [24, 25, 54, 81, 83]. Some of these solutions are under active

development at the time of publication of this work [76]. Addition-

ally, Arke mitigates the threat of malicious RAs by confining each

RA to a unique domain (see Section 2.1 and Section 4.3).

Assumption 2: BFT authorities. Arke assumes a computationally

bounded adversary that controls the network and can corrupt at

most 𝑡 key-issuing authorities (out of 2𝑡 + 1) and up to 𝑓 (out of

3𝑓 + 1) storage authorities in every epoch. We say that authorities

corrupted by the adversary are Byzantine or faulty and the rest are

honest or correct. Byzantine authorities may act arbitrarily, while

correct ones follow the protocol.

Assumption 3: Cryptography. The cryptographic schemes used

in Arke assume the existence of a non-degenerate and efficiently

computable bilinear map 𝑒 : G1×G2 → G𝑇 for which the decisional

bilinear Diffie-Hellman (DBDH) assumption holds. Hash functions

are modeled as random oracles and block ciphers as ideal ciphers
4
.

We assume the existence of zero-knowledge non-interactive proofs

(or arguments) of knowledge for NP relations.

Assumption 4: Network model. To capture real-world networks
we assume that links between users and correct authorities are

reliable (the authorities do not communicate with each other). That

is, all messages among the correct authorities eventually arrive.

We assume a known Δ and say that execution of a protocol is

eventually synchronous if there is a global stabilization time (GST)

after which all messages sent among honest parties are delivered

4
Note that the random oracle model and ideal cipher model are equivalent [30].

within the network delay Δ time. An execution is synchronous

if GST occurs at time 0, and asynchronous if GST never occurs.

Arke assumes an partially-synchronous network. We assume that

messages between users and storage authorities are anonymous. In

practice, the unlinkable handshake requires that users query the

storage via an anonymity network such as Tor [77] or Nym [36]

(as discussed in [47]).

Assumption 5: Roughly synchronized clocks. Arke assumes

that users have roughly synchronized clocks with the correct stor-

age authorities. This is an assumption on the hardware run by users

and authorities. We assume they can properly measure time (with

some tolerance for precision) and use this ability as an out-of-band

mean for synchronization. We believe this assumption is practical

as many devices provide such hardware.

Definition 1 (Roughly Synchronized Clocks). While a user is
in epoch Epoch, correct authorities are either in epoch Epoch, Epoch−1,
or Epoch + 1. Also, users remain in the same epoch of each correct
authority for a duration of at least 3Δ (where Δ is the bound on
message propagation time during periods of synchrony introduced in
assumption 4).

3 Preliminaries
For a security parameter 𝜆, let G1, G2 and G𝑇 be groups of prime

order 𝑞 > 2
𝜆
such that there exists an efficiently computable and

non-degenerate bilinearmap 𝑒 : G1×G2 → G𝑇 .We denote by𝑔1,𝑔2,

and𝑔𝑇 the canonical generators ofG1,G2, andG𝑇 , respectively, and

by 𝐻 : {0, 1}∗ → {0, 1}𝑙 , 𝐻1 : {0, 1}∗ → G1, and 𝐻2 : {0, 1}∗ → G2

hash functions. We treat 𝐻 , 𝐻1, and 𝐻2 as random oracles.

3.1 Zero Knowledge Proofs
A zero-knowledge proof of knowledge (ZKPoK) is a tuple of algo-

rithms, or protocols, that prove that an instance 𝑥 and witness𝑤

are in a relation R. Importantly, a ZKPoK allows the prover to prove

that it knows the secret witness 𝑤 ; as opposed to simply proving

the existence of the witness.
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Wemake use of two types of ZKPoK. The first proves knowledge

of the discrete logarithm of some public value 𝑦 with respect to

the canonical generator 𝑔. The second is a zk-SNARK
5
for generic

NP relations. Note that although we could use the zk-SNARK to

prove the discrete logarithm relation, the resulting protocol would

be much more computationally expensive for the prover.

Schnorr DLOG. For a group G of prime order 𝑞, the Schnorr

DLOG ZKPoK is a Σ-protocol for the relation

RDLOG :=
{
((𝑥,𝑦), 𝛼) : 𝑦 = 𝑥𝛼

}
where 𝑥,𝑦 ∈ G and𝛼 ∈ Z𝑞 . It can be compiled into a non-interactive

zero-knowledge proof (NIZK) using the Fiat-Shamir transform. We

denote the resulting algorithms as:

• DLOG.Prove((𝑥,𝑦), 𝛼) → 𝜋 . Given an instance (𝑥,𝑦) and the

corresponding witness 𝛼 such that ((𝑥,𝑦), 𝛼) ∈ R, output a proof
𝜋 .

• DLOG.Verify((𝑥,𝑦), 𝜋) → {0, 1}. Given the instance (𝑥,𝑦) and
proof 𝜋 , return 1 if the proof is valid and 0 otherwise.

zk-SNARK for Hash Pre-images. A SNARK is defined as a quadru-

ple of algorithms ΠR :

• Setup(1𝜆) → (crs, td). The Setup algorithm produces a common
reference string crs and a trapdoor td.
• Prove(crs, 𝑥,𝑤) → 𝜋 . Given the common reference string and

an instance-witness pair (𝑥,𝑤) ∈ R, output a proof 𝜋 .
• Verify(crs, 𝑥, 𝜋) → {0, 1}. Given the common reference string,

instance, and proof, return 1 if the proof is valid and 0 otherwise.

• Simulate(crs, td, 𝑥) → 𝜋 . Using the common reference string

and the trapdoor, produce a proof for the instance 𝑥 without
knowledge of a corresponding witness.

The main security properties of a SNARK are perfect completeness
and knowledge soundness. Perfect completeness states that a prover

that knows a valid witness for the instance 𝑥 will always be able to

produce an accepting proof. Knowledge soundness states that if a

proof was accepted, then it holds with overwhelming probability

that the prover knew a valid witness. A SNARK is said to be zero-
knowledge if proofs produced by Prove and Simulate have (almost)

identical probability distributions. We use the acronym zk-SNARK
to specify that a SNARK upholds the zero-knowledge property. We

use a zk-SNARK to keep users’ identities private while still attesting

that hashed values are correct. Let id be an identifier and 𝛼 ∈ Z𝑞 a

blinding factor, we define the relation RID as:

RID :=

{(
îd, (id, 𝛼)

)
: îd =

(
𝐻1 (id)𝛼 , 𝐻2 (id)𝛼

)}
For our benchmarks, we instantiate the zk-SNARK for RID using

Groth16 [42].

3.2 Distributed Key Generation
A distributed key generation (DKG) protocol allows 𝑛 participants

to jointly compute shares of a master secret without needing to com-

pute, reconstruct or store this secret. The DKG can be parametrized

with respect to a threshold 𝑡 : any subset of at least 𝑡 + 1 participants
can perform actions that would normally require knowledge of the

secret key; on the other hand, any smaller subsets cannot. A DKG

can be used as a stand-in replacement for a classical key generation

5
Zero-knowledge succinct non-interactive argument of knowledge

algorithm if it upholds the correctness and secrecy properties of

Gennaro et al. [41].

3.3 Identity-Based Non-Interactive Key
Exchange

SOK ID-NIKE. We recall the definition of the Sakai-Ohgishi-

Kasahara ID-NIKE (SOK ID-NIKE) [71] in the asymmetric pairing

setting, as presented in [37].

Definition 2 (Sakai-Ohgishi-Kasahara ID-NIKE [37, 71]).

The Sakai-Ohgishi-Kasahara identity-based key exchange consists of
three efficiently computable algorithms Setup, Extract, and SharedKey:

• Setup(1𝜆): Choose a random msk
$←− Z𝑞 and output msk.

• Extract(msk, id): compute 𝑑𝑙 = 𝐻1 (id)msk and 𝑑𝑟 = 𝐻2 (id)msk.
Output 𝑠𝑘id = (𝑑𝑙 , 𝑑𝑟 ).
• SharedKey(𝑠𝑘id, id′): We assume that identifiers are lexicographi-
cally ordered. Parse 𝑠𝑘id as (𝑑𝑙 , 𝑑𝑟 ) and output 𝑘id,id′ :

𝑘id,id′ =

{
𝑒 (𝑑𝑙 , 𝐻2 (id′)), if id < id′

𝑒 (𝐻1 (id′), 𝑑𝑟 ), if id > id′

Note that SharedKey(𝑠𝑘id, id′) = SharedKey(𝑠𝑘′id, id) for all id ≠

id′ and pp generated by Setup.

The security notion for such schemes is that of “indistinguisha-

bility of shared keys” [37, 61]. In the IND-SK game, an adversary

is tasked with distinguishing between the shared key for a pair of

identities (id∗, id′∗) and a random element from the key space, in

this case, G𝑇 . The adversary may request identity keys and shared

keys from its oracles. The security game is formalized in Figure 2.

We say that an ID-NIKE scheme Σ is IND-SK secure if for any

probabilistic polynomial-time adversary A:

Pr

[
ExpIND−SKΣ,A (𝜆) = 1

]
≤ 1

2

+ negl(𝜆)

The ID-NIKE of Definition 2 is IND-SK secure in the random oracle

model, assuming that the decisional bilinear Diffie-Hellman (DBDH)

problem is hard [37, 61].

3.4 Authenticated Encryption with Associated
Data (AEAD)

Authenticated Encryption with Associated Data (AEAD) is a sym-

metric key primitive that encrypts and authenticates a message.

Senders may choose to associate context data to the ciphertext in a

cryptographically binding way. An AEAD scheme is defined by the

following algorithms:

• AEAD.Enc𝑘 (𝑚,𝑑) → (𝑐, tag). Given a key 𝑘 , message 𝑚, and

associated data 𝑑 , encrypt𝑚 to produce the ciphertext 𝑐 . Authen-

ticate the associated data and ciphertext to produce a tag tag.
Output (𝑐, tag).
• AEAD.Dec𝑘 (𝑐, tag) →𝑚′. Given a key 𝑘 , ciphertext 𝑐 , and asso-

ciated data tag, verify the authenticity of the associated data and

ciphertext. If the verification rejects, output𝑚′ ←⊥. Otherwise
decrypt 𝑐 and output𝑚′ ←𝑚.
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ExpIND−SK
Σ,A (𝜆)

1 : 𝑏
$←− {0, 1}

2 : 𝑄𝑒 ← ∅,𝑄𝑘 ← ∅

3 : msk← Setup(1𝜆 )
4 : 𝑂 ← {𝑂Extract,𝑂Reveal}

5 : (id∗, id′∗ ) ← A𝑂

6 : 𝛾 ← Test(id∗, id′∗ )

7 : 𝑏 ← A𝑂 (𝛾 )

8 : if (𝑏 = 𝑏 ) ∧ (id∗ ∉ 𝑄𝑒 )∧

(id′∗ ∉ 𝑄𝑒 ) ∧
(
(id∗, id′∗ ) ∉ 𝑄𝑘

)
9 : return 1

10 : return 0

𝑂Extract(id)
1 : 𝑠𝑘id ← Extract(msk, id)
2 : 𝑄𝑒 ← 𝑄𝑒 ∪ {id}
3 : return 𝑠𝑘id

𝑂Reveal(id, id′)
1 : 𝑠𝑘id ← Extract(msk, id)

2 : 𝑘id,id′ ← SharedKey(𝑠𝑘id, id′ )

3 : 𝑄𝑘 ← 𝑄𝑘 ∪ { (id, id′ ), (id′, id) }
4 : return 𝑘id,id′

Test(id∗, id′∗)
1 : if 𝑏 = 0

2 : 𝑠𝑘id∗ ← Extract(msk, id∗ )

3 : 𝛾0 ← SharedKey(𝑠𝑘id∗ , id
′
∗ )

4 : if 𝑏 = 1

5 : 𝛾1
$←− G𝑇

6 : return 𝛾𝑏

Figure 2: IND-SK security game for ID-NIKEs

4 The Arke Contact Discovery Protocol
The Arke contact discovery protocol combines an ID-NIKE scheme

with an unlinkable handshake. The ID-NIKE allows users to es-

tablish shared secrets amongst each other knowing only their (po-

tentially low-entropy) identifiers. Using this shared secret, they

can run the unlinkable handshake to exchange arbitrary messages

through an untrusted key-value store. We describe a private and

trust-minimized variant of the SOK ID-NIKE (Section 4.1), and

an unlinkable handshake protocol (Section 4.2), and show how to

combine both to build a contact discovery protocol (Section 4.3).

4.1 Threshold Oblivious ID-NIKE
The ID-NIKE of Sakai, Ohgishi and Kasahara [71] relies on a trusted

third party to issue private keys to users. We modify their proto-

col to meet our privacy desiderata by (i) allowing users to verify

the private keys they are issued, (ii) separating the key issuance

operation into a registration and an extraction phase and, (iii) dis-
tributing the master secret key. We achieve modifications (i) and
(iii) by applying techniques outlined by Boneh and Franklin [16];

we achieve modification (ii) by improving upon the result of Sui

et al. [73]. We refer to the resulting protocol as a threshold and

oblivious ID-NIKE.

Verifiable key issuance. One way to hold the trusted third party

accountable is to allow other parties in the system to verify the

issuance of private keys. To this effect, we modify the Setup algo-

rithm to output a master public keympk and introduce theVerifyPK
and VerifyExtract algorithms:

• Setup(1𝜆) → (msk,mpk): choose a randommsk
$←− Z𝑞 and com-

pute the corresponding public key mpk = (𝑔msk
1

, 𝑔msk
2
). Output

msk and mpk.
• VerifyPK(pk) → {0, 1}: parse pk as (pk𝑙 , pk𝑟 ). If 𝑒

(
pk𝑙 , 𝑔2

)
=

𝑒
(
𝑔1, pk𝑟

)
, output 1 (accept). Otherwise output 0 (reject).

• VerifyExtract(mpk, id, 𝜃 ) → {0, 1}: parse mpk as (mpk𝑙 ,mpk𝑟 )
and 𝜃 as (𝜃𝑙 , 𝜃𝑟 ) ∈ G1 × G2. If 𝑒 (𝜃𝑙 , 𝑔2) = 𝑒

(
𝐻1 (id),mpk𝑟

)
and

𝑒 (𝑔1, 𝜃𝑟 ) = 𝑒
(
mpk𝑙 , 𝐻2 (id)

)
, output 1 (accept). Otherwise, out-

put 0 (reject).

The VerifyPK algorithm enforces that the terms in the pk tuple

are equal to the generators 𝑔1 and 𝑔2 taken to the same power. The
VerifyExtract is analogous to the verification of a BLS signature [17]:
it returns 1 if and only if the input 𝜃 is equal to the expected private

key. We show that both of these algorithms behave as expected in

the extended version of the paper
6
.

Oblivious key issuance. In the SOK ID-NIKE, users must reveal

their identifier to a trusted third party to obtain their secret key.

We follow the approach of Sui et al. [73] and separate this trusted

party into two entities: a registration authority and a key-issuing

authority. We allow the registration authority to learn identifiers

but not to compute their private keys. Its role is to attest that a user

𝐴 owns the identifier id𝐴 . The key-issuing authority is however

able to produce private keys but does not learn which identities

have requested keys.

To this effect, we introduce a setup algorithm for the regis-

tration authority, Setup𝑅 , and replace the Extract algorithm by

five efficiently computable algorithms Register, Blind, VerifyID,
BlindExtract and Unblind:

• Setup𝑅 : Produces private and public parameters for a registration

authority.

• Register: Upon valid authentication, a registration authority pro-

duces a signature attesting that user 𝐴 owns the identifier id𝐴 .
• Blind: Produce a masked version of an identifier and its cor-

responding registration signature. The blinded identifier and

signature are accompanied by optional proof of their validity.

• VerifyID: Verify that a valid registration signature was issued for

a blinded identifier.

• BlindExtract: Given a blinded identifier, produce the correspond-

ing blinded secret key.

• Unblind: Recover an identifier’s secret key from a blinded secret

key.

We give a concrete construction of an oblivious ID-NIKE in the

extended version of the paper. Our construction can be seen as an

improvement over that of Sui et al. [73].

Distributed key issuance. In the oblivious setting described above,

the key-issuing authority is still all-powerful in that it is able to

extract the private key of any identifier. Tominimize the trust placed

in the key-issuing authority, we distribute it into 𝑛 entities that

each hold a share of the master secret key. Using a (𝑡, 𝑛)-threshold
DKG, we ensure that the ID-NIKE remains IND-SK secure when no

more than 𝑡 parties are malicious.

We distribute the key-issuing authority by replacing the Setup𝐸
algorithm with a secure DKG [41]. The extraction algorithm is

the same as BlindExtract but is renamed to BlindPartialExtract
to emphasize the fact that it outputs blinded partial secret keys.
Similarly, the verification of a partial private key is identical to

VerifyExtract but is renamed to VerifyPartialExtract. Finally, we
introduce the Combine algorithm to reconstruct a secret key from

a set of 𝑡 + 1 key shares.

6
The extended version of the paper is available at https://eprint.iacr.org/2023/1218
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Definition 3 (Threshold and Oblivious ID-NIKE). Let ΠID
be a knowledge sound zk-SNARK for the relation RID. We define the
(𝑡, 𝑛)-threshold variant of the oblivious SOK ID-NIKE as follows:

• SetupDKG𝑬 (1
𝝀 , 𝒕, 𝒏) → (msk1, . . . ,msk𝒏, pp). All 𝑛 partici-

pants 𝑃1, . . . , 𝑃𝑛 jointly execute a secure DKG to compute Shamir
secret shares msk1, . . . ,msk𝑛 of an (unknown) master secret key
msk. They jointly output a transcript, a set of partial public keys
{mpk𝑖 = (𝑔

msk𝑖
1

, 𝑔
msk𝑖
2
)}𝑛

𝑖=1
andmaster public keympk = (𝑔msk

1
, 𝑔msk

2
).

Output msk𝑖 to 𝑃𝑖 and pp← (transcript,mpk).
• Setup𝑹 (1

𝝀 , pp) → (rsk, pp). Choose a random registration se-

cret key rsk
$←− Z𝑞 and compute the registration public key rpk =

(𝑔rsk
1

, 𝑔rsk
2
). Output rsk and pp← pp| |rpk.

• VerifyPK(pk) → {0, 1}. Parse pk as (pk𝑙 , pk𝑟 ). If 𝑒
(
pk𝑙 , 𝑔2

)
=

𝑒
(
𝑔1, pk𝑟

)
, output 1 (accept). Otherwise output 0 (reject).

• Register(rsk, id) → 𝝉id. Compute 𝜏𝑙 = 𝐻1 (id)rsk and 𝜏𝑟 =

𝐻2 (id)rsk. Output the registration signature 𝜏id = (𝜏𝑙 , 𝜏𝑟 ).
• Blind(pp, id, 𝝉id) → (𝜶, ̂id, ̂𝝉id, 𝝅). Sample a random blinding

factor 𝛼
$←− Z𝑞 . Compute

îd =
(
𝐻1 (id)𝛼 , 𝐻2 (id)𝛼

)
𝜋 = ΠID .Prove(ppZK, îd, (id, 𝛼))

𝜏id = 𝜏id
𝛼

(1)

Output the blinding factor 𝛼 , blind identifier îd, blind registration
signature 𝜏id and the blinding proof 𝜋 .
• VerifyID(pp, ̂id, ̂𝝉id, 𝝅) → {0, 1}. Parse rpk as (𝑝𝑘𝑙 , 𝑝𝑘𝑟 ), îd as
( îd𝑙 , îd𝑟 ), and 𝜏id as (𝜏𝑙 , 𝜏𝑟 ). Check that the following equations
hold:

𝑒 (𝜏𝑙 , 𝑔2)
?

= 𝑒

(
îd𝑙 , 𝑝𝑘𝑟

)
𝑒 (𝑔1, 𝜏𝑟 )

?

= 𝑒

(
𝑝𝑘𝑙 , îd𝑟

)
ΠID .Verify(ppZK, ID, 𝜋ID)

?

= 1 (accept)

(2)

If all equations verify output 1, otherwise output 0.
• BlindPartialExtract(msk𝒊, ̂id) → E𝒔𝒌id,𝒊 . Compute and output

the blind secret key share �𝑠𝑘id,𝑖 = îd
msk𝑖 .

• Unblind(E𝒔𝒌id,𝒊, 𝜶 ) → 𝒔𝒌id,𝒊 . Compute and output the partial

key 𝑠𝑘id,𝑖 = �𝑠𝑘id,𝑖 1

𝛼 .
• VerifyPartialExtract(mpk𝒊, id, 𝜽 ). Parsempk𝑖 as (mpk𝑖,𝑙 ,mpk𝑖,𝑟 ) ∈
G1×G2 and𝜃 as (𝜃𝑙 , 𝜃𝑟 ) ∈ G1×G2. If 𝑒 (𝜃𝑙 , 𝑔2) = 𝑒

(
𝐻1 (id),mpk𝑖,𝑟

)
and 𝑒 (𝑔1, 𝜃𝑟 ) = 𝑒

(
mpk𝑖,𝑙 , 𝐻2 (id)

)
, output 1 (accept). Otherwise,

output 0 (reject).
• Combine(

{

𝒔𝒌id,𝒊
}𝒕+1
𝒊=1) → 𝒔𝒌id. Using a set of 𝑡 + 1 valid partial

keys, compute 𝑑𝑙 and 𝑑𝑟 using Lagrange interpolation “in the expo-
nent”. Let 𝐿𝑖 denote the Lagrange coefficient for the 𝑖-th share in
the given set, 𝑑𝑙 =

∏𝑡+1
𝑖=1 𝑑𝑙,𝑖

𝐿𝑖 and 𝑑𝑟 =
∏𝑡+1

𝑖=1 𝑑𝑟,𝑖
𝐿𝑖 . 7 Output the

user key 𝑠𝑘id = (𝑑𝑙 , 𝑑𝑟 ).

7
As required, 𝑑𝑙 =

∏𝑡+1
𝑖=1 𝑑𝑙,𝑖

𝐿𝑖 = 𝐻1 (id)
∑𝑡+1
𝑖=1

msk𝐸,𝑖𝐿𝑖 = 𝐻1 (id)msk𝐸 and analo-

gously for 𝑑𝑟 .

• SharedKey(𝒔𝒌id, id′) → 𝒌id,id′ . We assume that identifiers are
lexicographically ordered. Parse 𝑠𝑘id as (𝑑𝑙 , 𝑑𝑟 ) and output 𝑘id,id′ :

𝑘id,id′ =

{
𝑒 (𝑑𝑙 , 𝐻2 (id′)), if id < id′

𝑒 (𝐻1 (id′), 𝑑𝑟 ), if id > id′

For all id ≠ id′ and pp generated by SetupDKG𝐸 , it holds that
SharedKey(pp, 𝑠𝑘id, id′) = SharedKey(pp, 𝑠𝑘′id, id) .

IND-SK security. We show that the threshold and oblivious ID-

NIKE of Definition 3 is IND-SK secure under the DBDH assumption

in the random oracle model if ΠID is a knowledge sound SNARK

for RID.

Theorem 1. The threshold and oblivious ID-NIKE of Definition 3
is IND-SK under the DBDH assumption when modeling the functions
𝐻1, 𝐻2 as random oracles, and if ΠID is a knowledge sound SNARK
for RID.

Proof intuition. We provide intuition for the proof of Theorem 1;

a full proof is presented in the extended version of the paper
8
. The

proof first shows that the (centralized) oblivious variant of the

SOK ID-NIKE is IND-SK secure under the same assumptions as the

classic SOK ID-NIKE if ΠID is a knowledge sound SNARK for RID.
We can then apply the arguments of Boneh and Franklin [16] to

replace the key generation algorithm with a secure DKG.

We prove the former by showing a reduction from the classic

IND-SK security game to the oblivious IND-SK game. In a nutshell,

the adversary performing the reduction takes on the role of the

registration authority. It samples a registration key and can nat-

urally answer the inner adversary’s Register queries. To answer

BlindExtract oracle queries, the reduction must first “unblind” the

queried identifier. This is done by running the extractor for ΠID.

We show that this reduction strategy has an overwhelming success

probability if ΠID is a knowledge sound SNARK for RID.

Anonymity from the key-issuing authorities. Identifiers are kept
hidden from the key-issuing authorities if ΠID is a zero-knowledge

SNARK for RID. We prove this claim by showing the existence

of an algorithm SimulateID that does not know an identifier yet

produces tuples ( îdsim, 𝜏sim, 𝜋sim) which are statistically indistin-

guishable from tuples ( îd, 𝜏id, 𝜋) produced by an honest prover

running Blind [27].

• SimulateID(crs, td) → (̂idsim,̂𝝉sim, 𝝅sim). Sample 𝜏sim
$←−

G1 × G2 and compute:

îdsim = 𝜏sim ◦ rpk−1

𝜋sim = ΠID .Simulate(crs, td, îdsim)

By construction, the tuple ( îdsim, 𝜏sim, 𝜋sim) satisfies the checks

of VerifyID. Furthermore, since the blinding factors are sampled

uniformly from Z𝑞 , then ( îdsim, 𝜏sim) follow the same probability

distribution as ( îd, 𝜏id). Finally, by the zero-knowledge property of

ΠID, it holds that 𝜋sim is statistically indistinguishable from 𝜋 .

8
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Alternative construction. In the extended version of the paper, we

describe an alternative ID-NIKE construction which uses Pedersen’s

DKG [62] to setup the threshold committee. While the Pedersen-

DKG is simple and efficient, it does not uphold the correctness and
secrecy properties of Gennaro et al. [41] and may not always be used

as a stand-in replacement for a generic key generation procedure.

Instead, we prove the security of the resulting threshold ID-NIKE

using the notion of key-expressable DKGs from Gurkan et al. [43].

4.2 Unlinkable Handshake
Performing an identity-based key exchange only addresses half of

the contact discovery problem. Users must also exchange an initial

message (or flag) in a privacy-preserving way without prior knowl-

edge of each other’s network addresses. We present an unlinkable

handshake protocol over a public, untrusted message board [47].

We use the message board as a key-value store. In this section, we

treat the store as a black box; Section 5 shows how to efficiently

instantiate such storage with minimal trust assumptions and no

single point of failure.

Overview. Using their shared ID-NIKE key, Alice and Bob each

locally derive a “write tag”, a “read tag” and an AEAD encryption

key. They use the AEAD encryption key to encrypt their messages

and post the resulting ciphertexts on the message board at a unique

location derived from their “write tag”. We allow all users and

network observers to read from the store. However, only users that

know read tags destined for them and the corresponding encryption

key will be able to recover messages.

Definition 4. Let G be an abelian group of prime order 𝑝 with
canonical generator 𝑔. LetDLOG be a non-interactive instantiation of
the Schnorr proof of discrete logarithm compiled using the Fiat-Shamir
heuristic. We use a variant of the proof where an extra “context” nonce
is added to the transcript. This nonce will be used to bind a proof to a
specific session between the message board and a user, thus preventing
replay attacks. We denote 𝜋 (𝑟 )𝑥 as a proof of knowledge of the secret
exponent 𝑥 during session 𝑟 .

Let AEAD be an IND-CCA secure authenticated encryption with
associated data scheme. We denote K the set of accepted keys for this
scheme and C the set of ciphertexts.

The handshake is parametrized by two functions, a key derivation

function KDF : {0, 1}∗ → K and a tag derivation function TDF :

{0, 1}∗ × {0, 1} → Z𝑝 . Assuming that every pair of users 𝐴 and 𝐵

have derived a shared secret 𝑠𝐴𝐵 , the unlinkable handshake is defined
as:
• Write(𝒓 ) (𝒔𝑨𝑩, id𝑨, id𝑩, 𝒎) → (loc𝒘 , 𝝅

(𝒓 )
𝒘 , 𝒄). Compute a sym-

metric key 𝑘 = KDF(𝑠𝐴𝐵) and tag 𝑡𝑤 such that:

𝑡𝑤 =

{
TDF(𝑠𝐴𝐵, 0), if id𝐴 < id𝐵
TDF(𝑠𝐴𝐵, 1), if id𝐴 > id𝐵

Compute loc𝑤 = 𝑔𝑡𝑤 . Using the derived key and tag, compute the
ciphertext 𝑐 = AEAD.Enc𝑘 (𝑔𝑡𝑤 ,𝑚). Finally, for the current session
𝑟 , compute the proof 𝜋 (𝑟 )𝑡𝑤

= DLOG.Prove((𝑔, loc𝑤), 𝑡𝑤 , 𝑟 ). Output
(loc𝑤 , 𝜋 (𝑟 )𝑤 , 𝑐).
• VerifyWrite(𝒓 ) (loc𝒘 , 𝝅

(𝒓 )
𝒘 ) → {0, 1}. Compute and output 𝑏 =

DLOG.Verify(loc𝑤 , 𝜋 (𝑟 )𝑤 , 𝑟 ).

• Read(𝒔𝑨𝑩, id𝑨, id𝑩) → 𝒎. Compute a symmetric key𝑘 = KDF(𝑠𝐴𝐵)
and tag 𝑡𝑟 such that:

𝑡𝑟 =

{
TDF(𝑠𝐴𝐵, 1), if id𝐴 < id𝐵
TDF(𝑠𝐴𝐵, 0), if id𝐴 > id𝐵

Compute loc𝑟 = 𝑔𝑡𝑟 . Retrieve the value 𝑐′ associated with location
loc𝑟 in the store. Compute𝑚 = AEAD.Dec𝑘 (𝑐′, loc𝑟 ).

Importantly, 𝐴 and 𝐵 can derive the same AEAD symmetric key.
Furthermore, 𝐴’s read tag matches the definition of 𝐵’s write tag (and
conversely).

The handshake is said to be complete when a pair of users have
both performed the Write and Read operations. Let 𝑡𝐴, 𝑐𝐴 and 𝑡𝐵, 𝑐𝐵
be the write tags and ciphertexts derived by 𝐴 and 𝐵 respectively, we
define the transcript of a completed handshake as:

tr← (𝑟, 𝑟 ′, 𝑔𝑡𝐴 , 𝑔𝑡𝐵 , 𝜋 (𝑟 )𝑡𝐴
, 𝜋
(𝑟 ′ )
𝑡𝐵

, 𝑐𝐴, 𝑐𝐵)

Confidentiality. The handshake described above can be shown to

preserve the confidentiality of the underlying messages. Indeed if

KDF is a secure pseudorandom function, then the derived symmet-

ric key 𝑘𝐴𝐵 is indistinguishable from random. This in turn allows

us to uphold the IND-CCA property of the AEAD scheme.

Unlinkability. To meet our privacy goals, we need to ensure

that observing a transcript does not leak information about the

identities of the users that generated it. This property should still

hold even if the adversary controls all other identities identities and

is successful in completing handshakes with each of the target users.

Furthermore, we assume that each identity has a fixed message that

it tries to communicate.

We capture this security notion by defining an unlinkability
game (see Figure 3). An adversary A is tasked with distinguishing

between a transcript for the pair of identities id∗, id′∗ and a random

transcript. The adversary is allowed to query any shared secret or

valid transcripts, and may even complete valid handshakes with

both of the target identities.

We say that a handshake HS is unlinkable if for any probabilistic
polynomial-time adversary A:

Pr

[
ExpUnlinkabilityHS,A (𝜆) = 1

]
≤ 1

2

+ negl(𝜆)

Theorem 2. The handshake presented in Definition 4 is unlinkable
if shared secrets between users are established using an IND-SK secure
ID-NIKE.

Proof (Theorem 2). Let Σ denote a secure ID-NIKE. Assume

for the sake of contradiction that there exists an adversary A for

which Pr

[
ExpUnlinkabilityHS,A (𝜆) = 1

]
> 1

2
+ negl(𝜆).

We construct an adversaryB that runsA as a sub-routine against

the IND-SK game (Figure 2). Let 𝑇𝑀 be a table mapping identifiers

to messages. 𝑇𝑀 is initialized as the empty table. B simulates any

call to the function 𝑀 (line 3 of 𝑂Transcript and line 6 of Test)
by running the following SimMessage routine: if id ∈ 𝑇𝑀 , return

𝑇𝑀 [id]; else,𝑚
$←−M, write𝑇𝑀 [id] ←𝑚 and return𝑚.B simulates

A’s oracles as follows:

• 𝑂Secret: replace line 1 of the 𝑂Secret procedure by a call to

𝑂Reveal.
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ExpUnlinkabilityHS,A (𝜆)
1 : 𝑏

$←− {0, 1}
2 : 𝑄 ← ∅
3 : 𝑂 ← {𝑂Transcript,𝑂Secret}

4 : (id∗, id′∗ ) ← A𝑂

5 : tr∗ ← Test(id∗, id′∗ )

6 : 𝑏 ← A𝑂 (tr∗ )

7 : if (𝑏 = 𝑏 ) ∧ ( (id∗, id′∗ ) ∉ 𝑄 )
8 : return 1

9 : return 0

𝑂Secret(id, id′)
1 : 𝑠 ← 𝑆 (id, id′ )
2 : 𝑄 ← 𝑄 ∪ { (id, id′ ), (id′, id) }
3 : return 𝑠

𝑂Transcript(id1, id2)
1 : 𝑠 ← 𝑆 (id1, id2 )
2 : for 𝑖 = 1..2 do

3 : 𝑚𝑖 ← 𝑀 (id𝑖 )

4 : (loc𝑖 , 𝜋𝑖 , 𝑐𝑖 ) ←Write(𝑟𝑖 ) (𝑠, id1, id2,𝑚𝑖 )
5 : 𝑄 ← 𝑄 ∪ { (id1, id2 ), (id2, id1 ) }
6 : return (𝑟1, 𝑟2, loc1, loc2, 𝜋1, 𝜋2, 𝑐1, 𝑐2 )

Test(id1, id2)
1 : if 𝑏 = 0

2 : 𝑠 ← 𝑆 (id1, id2 )
3 : 𝑚1 ← 𝑀 (id1 ),𝑚2 ← 𝑀 (id2 )
4 : if 𝑏 = 1

5 : 𝑠
$←− S

6 : 𝑚1

$←− M,𝑚2

$←− M
7 : for 𝑖 = 1..2 do

8 : (loc𝑖 , 𝜋𝑖 , 𝑐𝑖 ) ←Write(𝑟𝑖 ) (𝑠, id1, id2,𝑚𝑖 )
9 : return (𝑟1, 𝑟2, loc1, loc2, 𝜋1, 𝜋2, 𝑐1, 𝑐2 )

Figure 3: Unlinkability game. HereM and S respectively denote the set of messages and shared secrets. Similarly,𝑀 : I →M
and 𝑆 : I × I → S denote the implicit maps from identities to messages and shared secrets. We assume that 𝑆 (𝑎, 𝑏) = 𝑆 (𝑏, 𝑎).

• 𝑂Transcript: replace line 1 of the𝑂Transcript procedure by a call
to 𝑂Reveal. Replace line 3 with a call to SimMessage.
• Test:B returns the same identity pair id∗, id′∗ thatA outputs (line

4 of the game’s code) and receives the value 𝛾 . Call SimMessage
for each of the provided identities. Perform the loop of lines 7

and 8 of the test procedure replacing 𝑠 by 𝛾 .

Notice that after all ofA’s queries, it holds that the exclusion sets of

both games are equal. Indeed every update to𝑄 generated the same

update to 𝑄𝑘 and no queries were made to B’s 𝑂Extract oracle.
Therefore, 𝑄𝑒 = ∅. Furthermore, by definition of ExpIND−SK

Σ,B (𝜆), 𝑠
and 𝛾 follow the same distribution. Therefore:

Pr

[
ExpIND−SKΣ,B (𝜆) = 1

]
= Pr

[
ExpUnlinkabilityHS,A (𝜆) = 1

]
We have shown that B gains a non-negligible advantage in the

IND-SK game against the secure ID-NIKE Σ, therefore reaching a
contradiction. Thus, for a secure ID-NIKE scheme Σ there exists

no PPT adversary A such that Pr

[
ExpUnlinkabilityHS,A (𝜆) = 1

]
> 1

2
+

negl(𝜆). Therefore, HS is an unlinkable handshake. □

Note that the unlinkability game does not consider network

adversaries. In fact, read/write patterns to the bulletin board do

leak information about relations between users [47]. To prevent

such attacks, we require that each read to- and each write from the

bulletin board be performed through an anonymity network, using

a fresh identity (see Assumption 4).

Bilateral handshake. An important property of our handshake is

that it is bilateral: each user may choose to participate or withhold

from performing the handshake with a given user. In that sense,

the adversary in the unlinkability game is stronger than most real-

world adversaries. Indeed in the unlinkability game, the adversary

may coerce any user into performing the handshake with her. In

practice, the bilateral property of the handshake protects our system

from “crawling attacks” as studied by Hagen et al. [44].

Overwrite protection. If TDF is a collision-resistant hash function

(CRHF) then write and read tags may only be derived by users that

know the relevant shared seed (except for a very unlikely collision).

This in turn implies that only users that know a shared seed are

able to produce a valid ZKPoK for the relevant tag. Thus verifying

the ZKPoK in theWrite protocol enforces access control for a given
write location.

Bounded storage. Unfortunately, this access control is not enough
to prevent a malicious user from filling up the message board with

fake messages. This adversary can pick random tag values and

produce valid proofs for those. The mitigation strategy depends

on the nature of the store authorities. Protecting our custom-built

store authorities (Section 5) against those attacks requires the in-

troduction of a privacy-preserving rate-limiting mechanism such

as PrivacyPass [34] or the construction of Camenisch et al. [21]. If
the store authorities coincide with the maintainers of an existing

blockchain (Section 5.2), the native token required to pay for the

blockchains’ gas cost effectively acts as a rate-limiting mechanism.

As a result, Arke does not need to introduce any new access control

mechanism.

4.3 Contact Discovery
Let RdomID be a variant of RID where part of the hash functions’

input is public:

RdomID :=

{ (
( îd, dom), (id, 𝛼)

)
:

îd = (𝐻1 (id| |dom)𝛼 , 𝐻2 (id| |dom)𝛼 )

}
Let ID-NIKE designate the threshold and oblivious ID-NIKE of

Definition 3 where ΠID is replaced with a proof ΠdomID for RdomID,

and HS designate the unlinkable handshake of Definition 4.

We define the contact discovery protocol for a registration au-

thority RA, key-issuing committee (KA1, . . . ,KA𝑛), user U and

bulletin board BB as follows:

(1) U ↔ RA: U and RA engage in an authentication pro-

tocol (defined by RA) to prove that the identifier idU be-

longs to U. Upon successful completion, RA sends 𝜏U =

ID-NIKE.Register(rskRA, idU | |dom).
(2) U ↔ KA𝑖 , for up to 2𝑡 + 1 key-issuing authorities (and a

minimum of 𝑡 + 1 in the ideal case):U computes

(𝛼, îdU , 𝜏U , 𝜋) = ID-NIKE.Blind(pp, (idU | |dom), 𝜏U )
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and sends the blind key-issuance request ( îdU , 𝜏U , 𝜋). If
ID-NIKE.VerifyID(pp, ( îdU , dom), 𝜏U , 𝜋) = 1,KA𝑖 sends the
blind secret key share ID-NIKE.BlindPartialExtract(msk𝑖 , îdU ).

(3) U, one-time local operation: let 𝑠𝑘𝑖 and 𝛼𝑖 denote the 𝑖-th

blind share and the 𝑖-th blinding factor,U computes:

𝑠𝑘𝑖 = ID-NIKE.Unblind(𝑠𝑘𝑖 , 𝛼𝑖 )
𝑠𝑘 = ID-NIKE.Combine({𝑠𝑘𝑖 }𝑡+1𝑖=1)

(4) U, locally, for each contact identifier id𝐶 : compute a share

secret 𝑠U,𝐶 As

𝑠U,𝐶 = ID-NIKE.SharedKey(𝑠𝑘, id𝐶 )

(5) U ↔ BB, store write for each contact id𝐶 :U sends a write

request

(loc𝑤 , 𝜋 (𝑟 )𝑤 , 𝑐) = HS.Write(𝑟 ) (𝑠U,𝐶 , idU , id𝐶 ,𝑚)

If HS.VerifyWrite(𝑟 ) (loc𝑤 , 𝜋 (𝑟 )𝑤 ) = 1, BB writes 𝑐 in the lo-

cation loc𝑤 .
(6) U ↔ BB, store read for each contact id𝐶 :U and BB perform

HS.Read.

For clarity, this definition omits checking the correctness of the

key shares (performed by the user), that the public key of the reg-

istration authority maps to its recognized domain (performed by

the store authorities), and the validity of the rate-limiting tokens

(performed by the store authorities, see Section 4.2).

Discovery epochs. Taking advantage of the roughly synchronized
clocks (see Assumption 5), we can define discovery epochs of fixed

duration (e.g., one week or one month). At the end of each epoch,

store entries can be wiped. This allows the store to drop any values

that are left behind after a complete handshake. On the other hand,

handshakes that were only partially completed during such an

epoch are aborted and will require users to once again perform the

discovery phase.

Forward secrecy. Although we have shown that messages on the

store are securely encrypted, the Arke protocol does not provide

confidentiality if the system is compromised. Indeed, the AEAD

symmetric key is deterministically computed from the shared secret

derived using an ID-NIKE. As shown by Paterson and Srinivasan

[61], ID-NIKEs do not provide forward secrecy. To mitigate such

risks, we recommend that users only include “public” information

(public keys, wallet address, etc.) in their initial message, and use it

to establish an out-of-bound communication channel.

5 The Arke Key-Value Store
We present two types of distributed stores that fulfill the required

properties set in Section 2.3. Section 5.1 presents a custom store

designed to be run by large messaging companies such as What-

sApp, Signal, and Telegram across multiple data centers. Section 5.2

illustrates how to leverage existing (production-ready) blockchains

as Arke store without requiring any modification to their protocol.

5.1 Custom Arke Store
This store provides extremely low latency by forgoing consensus

and instead leveraging simpler and more efficient broadcast-based

primitives (based on Consistent Broadcast [20]). This store is de-

signed to sustain a Byzantine adversary (to withstand partially cor-

rupt store operators) but the extended version of the paper
9
shows a

straightforward conversion into a crash fault-tolerant store. The ex-

tended version additionally details the protocol messages and data

structures run by the store’s nodes, provides complete algorithms,

explains how to clean up storage, and how to scale the system

by maximizing parallel processing of transactions and leveraging

more hardware to increase its capacity. We also formally prove the

validity, consistency, and termination of this store protocol.

Figure 4 presents an overview of the protocol allowing user 𝐴

to respectively write and read the key-value pairs (loc𝐴𝐵, 𝑐𝐴𝐵) and
(loc𝐵𝐴, 𝑐𝐵𝐴) from the store.

Writing the store. Steps ➊-➌ of Figure 4 illustrate the high-level

interactions between user 𝐴 and the storage authorities to allow

the user to write the distributed store. User 𝐴 uses its writing

tag 𝑡𝐴𝐵 (Section 4.2) as a private signing key to create and sign

a write transaction. This transaction mutates (or creates) the key-

value pair (loc𝐵𝐴, 𝑐𝐵𝐴) = (𝑔𝑡𝐵𝐴
1

, 𝑐𝐵𝐴) of the Arke store (➊). The

user transaction is then sent to each Arke storage authority (➋).

The authorities check it for validity and lock the store entry to

mutate (➌). The write operation is completed as soon as 2𝑓 + 1
authorities successfully terminate this step. A detailed description

of how authorities process incoming write transactions is included

in the appendix of the extended paper.

Synchronization. Steps ➍-➐ of Figure 4 illustrate the store syn-

chronization step. At this stage, user signature keys are not needed

anymore, and the synchronization process may be performed by

any user client or third-party synchronizer process. Storage author-

ities always provide idempotent replies to protocol messages: it is

safe to send multiple times the same message to an authority. After

processing a write transaction, each authority returns a vote to the

user or synchronizer process (➍). The user collects the votes from a

quorum of 2𝑓 +1 authorities to form a certificate (➎). The certificate

is then sent back to all validators (➏). The authorities check the

certificate and upon success mutate the specified store entry and

release the locks to allow future updates (➐). A detailed description

of this step is included in the appendix of the extended paper. The

write and synchronization mechanisms can be seen as the ‘Signed

Echo Broadcast’ implementation of a consistent broadcast on the

label (loc𝐵𝐴,Version) [20].

Reading the store. Steps ➑-➓ of Figure 4 illustrate the minimal

interactions between user𝐴 and the storage authorities to allow the

user to read the distributed store. The user creates a read transaction
to read the value 𝑐𝐵𝐴 associated with a specified store entry loc𝐵𝐴 =

𝑔
𝑡𝐵𝐴
1

(➑). Each authority replies with a read reply containing the

latest value they hold for that store entry or None if the entry is

not in their store (➒). Finally, user 𝐴 processes the replies performs

the synchronization protocol described above (in case it did not

terminate), and deduces the latest value associated with the queried

key (➓). A detailed description of how readers process incoming

read replies is included in the appendix of the extended paper.

9
The extended version of the paper is available at https://eprint.iacr.org/2023/1218

https://eprint.iacr.org/2023/1218


Arke: Scalable and Byzantine Fault Tolerant Privacy-Preserving Contact Discovery CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

authority 1

authority 2

authority 3

authority 4

client
1

3

4

5

6

7

WriteTX Vote Cert

8

9

10

ReadTX ReadReply

2

write sync read

Figure 4: Example of Arke write (➊-➌), sync (➍-➐), and read (➑-➓) protocol with 4 authorities.

5.2 Existing Blockchains as Arke Store
Section 5.1 illustrates a minimal Arke store; we now show howArke

can natively leverage most types of existing blockchains as a store.

User𝐴wishing to write the key-value pairs (loc𝐴𝐵, 𝑐𝐴𝐵) to the store
first format the key loc𝐴𝐵 = 𝑔

𝑡𝐴𝐵

1
into a blockchain address 𝑎𝑑𝑑𝑟𝐴𝐵 .

Virtually all existing blockchains format public keys into addresses

by hashing 𝑎𝑑𝑑𝑟𝐴𝐵 = 𝐻 (𝑔𝑡𝐴𝐵

1
| |𝑐𝑜𝑛𝑠𝑡), where 𝑐𝑜𝑛𝑠𝑡 is a public and

blockchain-specific constant. The next paragraphs illustrate how

to implement an Arke store over different types of blockchains.

Payment-only platforms. An Arke store can be any distributed

payment platformwhere the transaction format allows user-defined

metadata. For instance, Arke can easily use Bitcoin [58] as a store.

A user 𝐴 wishing to write the store makes a Bitcoin transaction

sending an arbitrary number of coins to the address 𝑎𝑑𝑑𝑟𝐴𝐵 (de-

terministically derived from loc𝐴𝐵 as mentioned above) and addi-

tionally, writes the OP_RETURN opcode. This opcode allows users to

specify up to 80 arbitrary bytes within the transaction (by setting

OP_RETURN_MAX_BYTES to 80); user𝐴writes the byte representation

of 𝑐𝐴𝐵 . User 𝐴 reads the blockchains by locally generating 𝑎𝑑𝑑𝑟𝐵𝐴;

it can then use any light client capable of parsing OP_RETURN, such
as Chain [2], to retrieve the content of 𝑎𝑑𝑑𝑟𝐵𝐴 and parse 𝑐𝐵𝐴 . Alter-

natively, Arke can leverage other platforms not allowing to augment

transactions with arbitrary metadata by encoding 𝑐𝐴𝐵 in the less

significant digits of the transfer amount.

Smart contract platform. An Arke store can also consist of any

traditional smart contract platforms [9, 80] or rollup [5, 60]. A

dedicated smart contract maintains a key-value map of the pairs

(loc𝐴𝐵, 𝑐𝐴𝐵) that users can easily read and write. To implement

good state hygiene, both user 𝐴 and 𝐵 can delete an entry of the

key-value map by proving knowledge of the secret key associated

with loc𝐴𝐵 (locally derived).

Leverage consensus-less operations. Recent blockchains such as

Sui [57] and Linera [3] allow users to program some types of trans-

actions to entirely forgo consensus. For instance, Sui [57] is a smart-

contract platform that forgoes consensus for single-writer opera-

tions and only relies on consensus for multi-writer operations, com-

bining the two modes securely. As a result, any operation that can

be expressed as a single-writer operation can leverage its consensus-

less path and benefit from sub-second latency and lower gas fees.

Arke can natively benefit from this feature. User 𝐴 writes the store

by creating a owned object [14] containing 𝑐𝐴𝐵 as the only field; it

then transfers ownership of that object to the address 𝑎𝑑𝑑𝑟𝐴𝐵 . User

𝐴 reads the blockchain by locally deriving 𝑎𝑑𝑑𝑟𝐵𝐴 and querying all

objects owned by that address. The extended version of the paper

also implements an Arke store on Sui using exclusively owned

objects in less than 10 lines-of-code.

6 Implementation and Evaluation
We implement Arke’s cryptographic operations in Rust, using the

arkworks ecosystem [6]. The ID-NIKE is instantiated over the

pairing group BLS12-377. The zkSNARK for RdomID is instanti-

ated by the Groth16 [42] proof system over the BW6-761 pairing

group, in order to efficiently prove statements about variables from

BLS12-377 [48]. The unlinkable handshake is implemented using

Blake2X [8] as a key-derivation function and AES-GCM [38] with

256 bits blocks as the AEAD scheme.

We additionally implement and evaluate our custom Arke store

described in Section 5.1. We open-source all our implementations
10

and measurement data to enable reproducible results
11
. In the fol-

lowing, we use m5d.8xlarge instances whenever experimenting

on Amazon Web Services (AWS). These instances provide 10 Gbps

of bandwidth, 32 virtual CPUs (16 physical cores) on a 2.5 GHz,

Intel Xeon Platinum 8175, 128 GB memory, and run Linux Ubuntu

server 22.04. We select this type of instance as it provides decent

performance and is in the price range of ‘commodity servers’.

6.1 Setup Phase
Table 1 shows the performance of all operations of the Arke setup

protocol described in Section 4 on a single CPU core. We perform

our benchmarks on both a m5d.8xlarge Amazon Web Services

(AWS) instance and a Macbook Pro equipped with an M1 processor.

The function Assemble private key is evaluated for a committee of

10 authorities. We compute the average time over 50 runs.

The table shows that user registration (performed by the regis-

tration authority) is cheap, taking respectively about 66 and 4 ms

on our AWS instance and our M1 Macbook Pro. Generating private

key requests is the most expensive operation; it takes about 23 sec-

onds on our AWS instance and 2 seconds on an M1 Macbook Pro;

this operation is however performed by the user (and only once)

and thus does not take resources away from the key authorities.

Issuing blind partial keys over a key request (performed by the key

authority) is also cheap; it takes about 350 ms on our AWS instance

and 20 ms on our M1 Macbook Pro, mostly spent verifying the

10
https://github.com/asonnino/arke

11
https://github.com/asonnino/arke/tree/main/code/arke/results/results-main

https://github.com/asonnino/arke
https://github.com/asonnino/arke/tree/main/code/arke/results/results-main
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Table 1: Microbenchmark of the Arke setup functions on
a m5d.8xlarge AWS instance and a Macbook Pro equipped
with an M1 CPU. Each data point represents the average
time (over 50 runs) in milliseconds required to evaluate the
function. The function Assemble private key is evaluated for
a committee of 10.

Function AWS MBP

(RA) User registration 66.12 ms 4.13 ms

(User) Private key request 23,402.37 ms 2,259.66 ms

(KA) Issue blind partial key 358.05 ms 20.78 ms

(User) Assemble private key 584.91 ms 41.85 ms

user’s key request. Assembling a quorum of blind partial keys into

a full private key (performed by the user) takes about 600 ms on our

AWS instance and 41 ms on our M1 Macbook Pro. We implement

this operation pessimistically requiring the user to verify each blind

partial key before aggregation.

6.2 The Arke Custom Store
We implement a networked multi-core Arke store authority as de-

scribed in Section 5.1. It uses tokio12 for asynchronous networking
and persists data structures using Rocksdb13. Our implementation

uses TCP to achieve reliable point-to-point channels, necessary

to correctly implement the distributed system abstractions. All

operations use sha-256 for hashing and a simple DL proof over

the curve BW6-761 to authenticate write requests as described in

Section 5. We persist signed write requests before sending them

(before step 4 of Figure 4) to ensure crash recovery. We store any

other data asynchronously and out of the critical path to ensure

that the sync protocol does not block on storage.

We particularly aim to demonstrate the performance claims of

Section 2.3, reformulated as follows. (C1) Arke scales well with
the committee size. (C2) Arke achieves low latency even under

high load, in the WAN, and with large committee sizes. (C3) Arke
achieves enough throughput to operate at planetary scale. (C4)
Arke is robust when some parts of the system inevitably crash-fail.

Note that evaluating BFT protocols in the presence of Byzantine

faults is still an open question [12].

Experimental setup. We deploy a Arke testbed on AWS, using

m5d.8xlarge instances across 10 different AWS regions: N. Virginia

(us-east-1), Oregon (us-west-2), Canada (ca-central-1), Frankfurt

(eu-central-1), Ireland (eu-west-1), London (eu-west-2), Mumbai (ap-

south-1), Singapore (ap-southeast-1), Tokyo (ap-northeast-1), and

Sydney (ap-southeast-2). All data are persisted on the NVMe drives

provided by the AWS instance (rather than the root partition).

In the following graphs, each data point in the latency graphs is

the average of the latency of all operations of the run, and the error

bars represent one standard deviation (error bars are sometimes

too small to be visible on the graph). We instantiate one bench-

mark client colocate with each authority submitting client requests

at a fixed rate for 3 minutes. We benchmark two operations; (i)

12
https://github.com/tokio-rs/tokio

13
https://rocksdb.org/
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Figure 5: Arke WAN latency-throughput with 10, 20, and 50
authorities (no faults); one shard per authority.

write and (ii) write followed by synchronize (see Section 5.1); we do

not benchmark read as it is a simple database query common to

many classic systems. When referring to latency, we mean the time

elapsed from when the client submits the write request to when it

assembles a certificate over the request (resp. when it is notified

that a quorum of authorities is synchronized).

We however note that clients wishing to retain unlinkability also

at the network level would need to use an overlay network such as

Tor [77], Nym [36], Apple Private Relay [4], or a distributed multi-

hop VPN to access the store. This would add a constant overhead

for generating new network identities and the latency of the chosen

overlay network to the latency of the store, typically ranging from

a few hundred milliseconds [78] to a couple of seconds [66, 67].

Benchmark in the common case. Figure 5 illustrates the latency-
throughput of Arke for varying numbers of authorities. Every au-

thority runs one shard (it thus runs on a singlemachine).We observe

virtually no performance difference between runs with 10, 20, or

even 50 authorities, thus validating our claim (C1). Arke can pro-

cess about 1,500 req/s with sub-second latency in all configurations.

As expected the difference between simple write requests and write
followed by synchronize is minimal. The latter displays a slightly

higher latency due to the extra round-trip required to synchronize

the authorities (about 100-200 ms) but throughput remains the same.

This observation validates our claim (C2). From the system usage

estimates for the large-scale end-to-end encrypted messaging ser-

vice WhatsApp (Section 1), we estimate the requirement to process

around 120 req/s. Thus Arke exceeds by over 10x the throughput

required to operate at this scale which validates claim (C3). Even
assuming that Facebook Messenger, Signal, and Telegram have sim-

ilar usage to WhatsApp, Arke can process the combined load of

these services and thus operate at a planetary scale.

Benchmark under faults. Figure 6 shows the performance of Arke

for a 10-authorities deployment when the system is experiencing

(crash-)faults; after running without faults for one minute, 0, 1, and

3 authorities permanently crash. Every authority runs a single shard

(each authority thus runs on a single machine). The figure shows

that there is no noticeable throughput drop under crash faults.

Arke can finalize around 1,500 req/s with a sub-second latency. The

latency slightly increases with the number of faulty authorities (by

at most 200 ms). Clients finalize operations as soon as the fastest

quorum of authorities replies (see Section 5.1); as authorities crash,

clients are thus left with fewer authority replies from which to

https://github.com/tokio-rs/tokio
https://rocksdb.org/
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Figure 6: Arke WAN latency-throughput with 10 validators
(0, 1, and 3 faults); one shard per authority

assemble certificates. This observation validates our claim (C4).
The performance of Arke shines compared to traditional consensus

systems [13, 18, 19, 22, 29, 82] that are known to suffer 10x or 20x

performance drop when experiencing leader failures [11, 18, 32, 45,

59, 68].

7 Related Work
In the following section we review related work and focus, in partic-

ular, on other contact discovery schemes. Additionally, we review

works related to Arke’s cryptographic primitives and Arke’s store

design in the extended version of the paper
14
.

Arke implements a private contact discovery scheme by com-

bining a key exchange with an unlinkable handshake [47]. This

architecture generalizes the construction of Chaum et al. [26]. Their
construction, known as UDM, implements both the key exchange

and handshake by relying on honest-but-curious centralized par-

ties. Furthermore, it requires to maintain a public mapping from

(hashed) identifiers to public keys. Such a mapping reveals a public

list of all registered users and requires storage that grows linearly

in the number of system users. Finally, Chaum et al.[26] do not give
proofs for the security and anonymity properties of their system.

Alternative architectures usually rely on Private Set Intersection

(PSI). These protocols are particularly suited for the case of mobile
contact discovery: when users’ identifiers and messages are both

their mobile phone numbers. Unfortunately, all PSI-based contact

discovery schemes are vulnerable to enumeration attacks [44, 46,

49]. Indeed, even in its ideal functionality, PSI does not impose

restrictions on what users present as being “their contacts” [31].

Therefore, a malicious client can enumerate the list of all other

users by engaging in the PSI protocol honestly. This attack is de-

scribed in the context of contact discovery by Hagen et al. [44],
who show that mitigation strategies such as rate-limiting are not

effective. Furthermore, PSI implies the existence of a centralized

party that knows the list of all users and may act as a single point

of failure. Whether this party can be distributed or thresholdized is

an open problem which, to the best of our knowledge, has not been

addressed to date. Arke mitigates both concerns by not requiring

the set of all users to exist in a single location, and enforcing only

bidirectional friendship relations.

Nonetheless, previous state-of-the-art mobile contact discovery

schemes rely on PSI. Kiss et al. [50] introduce the notion of unbal-

anced PSI with precomputation. These PSI protocols are specifically

14
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Table 2: Comparing communication cost of various PSI-based
contact discovery schemes using PIR-PSI (by Demmler et
al. [35]), unbalanced PSI (by Kales et al. [49]), and unbalanced
PSI with PIR (by Hetz et al. [46]) to Arke’s approach com-
bining (𝑡, 𝑛)-threshold oblivious ID-NIKE with an unlinkable
handshake. Here 𝑁 denotes the total number of users, 𝑐 the
number of a user’s contacts,𝑚 the number of partitions of
the user set, and 𝑡 and 𝑛 threshold cryptography parameters.

Technique Setup Online

Demmler et al. [35] — O(𝑐 · log(𝑁 /(𝑐 log𝑐 ) ) )
Kales et al. [49] O(𝑁 ) O (𝑐 )
Hetz et al. [46] O(𝑚

√︁
𝑁 /𝑚) O (𝑐 +

√︁
𝑐 ·𝑚 log𝑚 · log (𝑁 /𝑚) )

This work O(𝑡 ) O (𝑐 )

tailored to the setting where one input set (the list of all users) is

much larger than the other (a user’s contacts). The computational

and communication costs can also be split over three phases: the

base phase, independent of either input set; the setup phase, de-

pending only on the larger set; and the online phase, which can be

made sublinear in the size of the larger set. Thus, a server that holds

the list of all users can perform the base and setup phases once (for

a fixed list of users) and answers user queries by only running the

cheaper online phase. This approach is further refined by Kales et
al. [49], who improve some of the cryptographic building blocks,

and Hetz et al. [46], who introduce a private information retrieval

(PIR) scheme to strike a trade-off in the communication costs of the

setup and online phases. Demmler et al. [35] construct a contact
discovery scheme from PIR and (balanced) PSI, assuming at least

two non-colluding servers. Their approach does not allow for pre-

processing and therefore requires the server to perform work that

is linear in the number of users, for each query. We compare the

asymptotic communication costs of PSI-based contact discovery

schemes with those of Arke in Table 2.

Recently several state-of-the-art PSI protocols relying on obliv-

ious transfer extension (OTe) [52, 63, 65, 69], oblivious key-value

stores (OKVS) [64], or vector oblivious linear evaluation (VOLE) [40,

70] have been proposed but none of them have been used in the

mobile contact discovery setting to the best of our knowledge. More-

over, although these schemes are the fastest for balanced PSI, they

have not been studied under the lens of unbalanced PSI with pre-

computation. As a result, naively using these protocols in a contact

discovery scheme will likely yield communication costs in the on-

line phase that depend on the size of the set of users. Concurrent

works published as pre-prints propose new techniques for unbal-

anced PSI [53, 74]. We leave the evaluation of these protocols and

integration into contact discovery schemes as future work.

Signal [56] mimics the functionality of PSI using trusted hard-

ware (Intel Software Guard Extensions (SGX)) and hides memory

access patterns using Path ORAM [28]. This approach scales lin-

early in the number of users and suffers from the same privacy and

fault-tolerance issues as PSI-based contact discovery. Furthermore,

relying on Intel SGX requires trust in Intel [7, 33].

Pudding [51] (concurrent work) is an interactive protocol de-

sign to allow whistleblower to contact journalists in a privacy-

preservingway. It is specifically designed to integratewithNym [36]

https://eprint.iacr.org/2023/1218
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and thus provides network-level anonymity. Pudding specifies the

user registration protocol but relies on a set of pre-selected dis-

covery nodes that drive the protocol by learning the metadata

associated with all user queries. Arke can naturally interface with

the user registration protocol of Pudding and leverage it to pro-

vide network-level anonymity. Furthermore, Arke is a general-

purpose non-interactive bi-directional contact discovery system.

There are thus no discovery nodes learning metadata associated

with user queries. Finally, zkLogin [10] (concurrent work) is a

privacy-preserving authentication protocol that allows users to de-

rive a blockchain address from credentials derived from an OpenID

Connect provider [39]. zkLogin does not natively implement con-

tact discovery but can be leveraged to support generic openID

connect providers as registration authorities (Section 2.1). We leave

the exploration of combining Arke with zkLogin for future work.

8 Conclusion
Arke is the first Byzantine fault tolerant privacy-preserving contact

discovery system whose performance is independent of the total

number of users in the system (i.e., the database size). Our exper-
imental implementation shows that Arke can support 1,500 user

requests per second in a large geo-replicated environment, thus

largely surpassing the combined estimated needs of WhatsApp,

Facebook Messenger, Signal, and Telegram. Furthermore, Arke can

maintain this throughput while providing sub-second finality even

when a third of the infrastructure is Byzantine. Arke is based on

an unlinkable handshake mechanism built on an ID-NIKE protocol

and on a custom broadcast-based distributed architecture forgoing

the expense of consensus.
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