An Empirical Study of Consensus Protocols’ DoS Resilience

Giacomo Giuliari Alberto Sonnino Marec Frei
ETH Zurich Mysten Labs ETH Zurich
Mysten Labs University College London (UCL)

Fabio Streun Lefteris Kokoris-Kogias Adrian Perrig
Anapaya Systems Mysten Labs ETH Zurich
IST Austria

Abstract

With the proliferation of blockchain technology in high-value sec-
tors, consensus protocols are becoming critical infrastructures. The
rapid innovation cycle in Byzantine fault tolerant (BFT) consensus
protocols has culminated in HotStuff, which provides linear mes-
sage complexity in the partially synchronous setting. To achieve
this, HotStuff leverages a leader that collects, aggregates, and broad-
casts the messages of other validators. This paper analyzes the
security implications of such approaches in practice, from the per-
spective of liveness and availability.

By implementing attacks in a globally-distributed testbed, we
demonstrate that state-of-the-art leader-based protocols are vulner-
able to denial-of-service (DoS) attacks on the leader. Our attacks,
demonstrated on committees of up to 64 validators, manage to
disrupt liveness within seconds, using only a few tens of Mbps of
attack bandwidth per validator. Crucially, the cost and effective-
ness of the attacks are independent of the committee size. Based
on the outcome of these experiments, we then propose and test
effective mitigations. Our findings show that advancements in both
protocol design and network-layer defenses can greatly improve
the practical resilience of BFT consensus protocols.

CCS Concepts

«Security and privacy — Denial-of-service attacks; Distributed
systems security; - Computer systems organization — Depend-
able and fault-tolerant systems and networks.

Keywords
DDoS Attacks, Consensus Protocols, Blockchain

1 Introduction

For more than four decades, researchers have been studying Byzan-
tine fault tolerant (BFT) consensus protocols [16, 18, 27] in order
to facilitate the development of dependable distributed systems. As
blockchains have grown in popularity, there has been an increas-
ing interest in developing high-performance consensus systems,
with early studies proposing committee-based protocols to improve
over Bitcoin’s [54] throughput of 7 transactions per second. BFT
consensus protocols have since been shown to increase blockchain
throughput and reduce latency [9, 44], and they are rapidly becom-
ing the standard in proof-of-stake architectures [7, 25, 46]. These
efforts resulted in the creation of HotStuff [67] and its followup
works [1, 35], which have linear message complexity in the partially-
synchronous setting: They achieve this by electing a leader, selected

among the validators in the committee, that is responsible for col-
lecting, aggregating, and broadcasting the messages generated by
other validators.

Although this leader-centric strategy greatly reduces the overall
communication complexity—which ultimately results in improved
theoretical scalability—it also exposes the protocol to liveness at-
tacks. All that is required for a protocol round to be unsuccessful is
for the leader to lose synchronization with the rest of the system.
This challenge is compounded by the need for blockchain protocols
to offer censorship resistance, which is now addressed by several
proposals via the use of alternating leaders.

We show that this weakness can be exploited in practice by
launching denial-of-service (DoS) attacks on HotStuff. To this end,
we set up a large and globally-distributed testbed of validators run-
ning the reference HotStuff implementation, and perform hundreds
of experiments with multiple attack vectors, and covering a broad
range of threat models. Our results unambiguously show that a few
Mbps of attack traffic suffice to halt the consensus and compromise
liveness within seconds, even when the adversary is external to
the committee—i.e., there are no Byzantine validators. Most impor-
tantly, the presence of the leader makes the cost and effectiveness
of these attacks independent of the committee size, as the adversary
can easily track and target each subsequent leader.

Our attacks can be interpreted in several ways. One is that
HotStuff—and specifically the implementation we use in the experi-
ments—can be attacked. However, this is not the goal of this paper.
Instead, our intent is to investigate the practical resilience of con-
sensus protocols to DoS attacks, and to evaluate general solutions
to protect consensus protocols in adversarial environments—such
as a high-stakes blockchain deployed on the public Internet. Al-
though the space of possible mitigations is extremely large, there
are two immediate avenues for increasing the survivability of con-
sensus protocols: (i) to explore more resilient protocol designs,
and (ii) to integrate network-layer defenses to protect validator-to-
validator communication from DoS. Therefore, we first consider
fully-asynchronous consensus protocols, which aim to operate un-
der extremely unfavorable network conditions. Then, we turn to
the network security literature to identify DoS defenses that are
amenable to the decentralized consensus setting.

Asynchronous consensus protocols—albeit designed to have bet-
ter security and availability—have seen little attention by the dis-
tributed consensus community as they are often stigmatized as
unrealistic, slow, or hard to implement. Nevertheless, we ask the
question of whether they can withstand our attacks better than
leader-based protocols. We therefore execute another set of attacks
against Tusk [24], a recently proposed asynchronous consensus

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

protocol that promises speed and simplicity. We deploy the existing
Tusk codebase, which is considered for adoption in three blockchain
startups [14, 21, 47]. The results are encouraging, showing that
Tusk is more robust than HotStuff. Its progress cannot be trivially
paralyzed, thus indicating improved robustness of asynchronous
consensus protocols. However, the transaction throughput of the
protocol decreases under attack, and targeting more than f valida-
tors in a committee of 3f + 1 breaks the liveness threshold and, as
expected, the protocol halts.

To conclude our exploration on the practical resilience of state-
of-the-art consensus protocols, we investigate promising network-
based defenses to further protect validators. Unfortunately, we have
to discard most traditional approaches, such as Cloud-based DoS
filtering, which introduces too much centralization for a viable
blockchain network, or VPNs, which potentially introduce new
attack vectors [63]. We finally test the effectiveness of traffic au-
thentication and rate-limiting (ARL) as a DoS protection mechanism.
We implement an ARL prototype where source authentication is
based on symmetric-key message-authentication codes (MACs),
yielding a system with minimal computational requirements. Thus,
our prototype can be transparently deployed at the validators, does
not require changes to the consensus, and does not introduce any
consensus delay. When active, ARL blocks all our attacks, and con-
sensus proceeds unscathed.

With this paper, we then contribute to the study of the attack
resilience of consensus protocols in their integration within
real networks, and beyond their theoretical guarantees. We find
that leader-based consensus protocols such as HotStuff, although in
theory resilient to up to f failures, can fall prey to attacks on liveness
because of their reliance on a single leader. Leader-less asynchro-
nous consensus protocols such as Tusk, on the other hand, show
better resilience. Finally, we argue that full DoS resistance is only
achieved when considering further defenses at the network layer.
We thus hope to highlight how the different synchrony models—
under which the security properties of consensus protocols have
been proven—hardly match the reality of today’s Internet, where
traffic can be dropped, rerouted, or spoofed. Therefore, we suggest
that safe and available distributed consensus requires a holistic
approach, reconciling abstract models with real deployments.

2 Background

This paper focuses on quorum-based consensus protocols. These
protocols have a well-known set of participants—called commit-
tee—a subset of which (typically < %) can be faulty or adversarial,
also called Byzantine. In the protocols we consider, members of the
committee—the validators—authenticate each other using crypto-
graphic signatures.

Additionally, we focus on partially synchronous [29] and asyn-
chronous [16] protocols that can be deployed over an unreliable
network, such as the Internet. Partially synchronous protocols typ-
ically feature lower latency than asynchronous protocols when the
network is reliable, and work by optimistically electing a leader to
drive the protocol and rotating it regularly. Such protocols suffer
larger performance degradation during periods of asynchrony or
when the leader is Byzantine. On the other hand, asynchronous pro-
tocols do not rely on a leader to drive the protocol and are therefore

more resilient. However, they have higher latency than partially
synchronous protocols, as they need to introduce randomization in
the execution to withstand network asynchrony [34].

Specifically, we analyze two state-of-the-art consensus protocols:
(i) HotStuff [67] as an example of partially-synchronous consensus,
and (ii) Tusk [24] as an example of asynchronous consensus. We
chose these particular protocols for several reasons. First, both pro-
tocols feature open-source implementations with well-documented
benchmarking scripts to measure performance under a variety of
conditions. Second, their implementations are comparable: They
are both written in Rust, use similar libraries (network, storage, and
cryptography), and are built according to similar design choices,
thus allowing for a fair comparison. Finally, HotStuff is used at
the core of many open-source projects and companies, such as
Celo, Cypherium, Flow, Monad, and Diem.! This paper thus offers
insights on possible threats to deployed systems.

The following background on consensus protocols is needed to
understand the attacks presented in this paper.

2.1 HotStuff: Partially-Sync. Consensus

HotStuff [67] operates in a round-by-round manner, electing a
leader in each round among the committee to balance validator
participation.

The leader proposes an extension to the longest chain of requests
that it already knows;? the rest of the validators then vote for the
extension, unless the extension conflicts with a longer chain they
know. Validators finally send their votes to the next leader to help
them learn the longest safe chain. If 2f + 1 validators send votes
to the next leader in a timely manner, that leader can gather them
in a data structure called the quorum certificate (QC), and build a
new block (the next proposal). If there are three consecutive blocks
in the chain, By, By, Bi,o, which are proposed in consecutive
rounds, and each block has a QC, then the protocol has reached
consensus on block Bg; all honest validators eventually commit
By.. Additionally, validators maintain a timer to track progress and
preserve liveness despite faulty leaders. When the timer expires
and a validator has still not received a proposal, it broadcasts a
timeout vote. A validator gathering enough timeout votes can form
a timeout certificate (TC) and advance its round. Every time a round
fails, timeout periods are increased, allowing lagging validators to
catch up and enabling the protocol to commit eventually.

2.2 Tusk: Asynchronous Consensus

The Tusk [24] consensus protocol provides safety and liveness even
in asynchrony, and does not make direct use of a leader to drive
consensus. We, therefore, use Tusk as a baseline to experimen-
tally test the robustness of leader-less asynchronous consensus in
comparison to the leader-based, partially-synchronous HotStuft.

Tusk is split into two sub-protocols, (i) a data dissemination
system called Narwhal, which forms a directed acyclic graph (DAG)
of batches of transactions, and (ii) a decision rule on how to totally
order the vertices of the DAG and reach consensus.

!celo.org, cypherium.io, flow.com, monad.xyz, diem.com
2Usually, leaders collect batches of requests to propose, referred to as blocks.
Hence, the HotStuff protocol forms a chain of blocks (or a blockchain).

https://celo.org
https://cypherium.io
https://flow.com
https://www.monad.xyz/
https://diem.com

An Empirical Study of Consensus Protocols’ DoS Resilience

Narwhal: Building the DAG. Narwhal proceeds in rounds to
build a DAG on batch metadata. Data dissemination is symmetric
among validators, and therefore it does not have a single point of
failure, such as a leader. In each round, each validator prepares
and sends to all other validators—via consistent broadcast [17]—a
message with the batch metadata corresponding to a DAG vertex.
This metadata contains the batch digest and 2f + 1 references to
vertices from the previous round. Upon receiving such a message, a
validator replies with a signature iff (i) It has already stored the data
corresponding to the digests in the vertex (for data-availability);
and (ii) it has not replied to this validator in this round before (for
non-equivocation). The sender forms a quorum certificate from
2f + 1 such signatures and sends it back to the validators as part
of its vertex for this round. A validator advances to the next round
once it receives 2f + 1 vertices with valid certificates.

Tusk: Interpreting the DAG. Tusk takes the causally ordered
DAG constructed by Narwhal and totally orders its blocks. While
the details of Tusk’s operation are beyond the scope of this paper,
it is important to notice that Tusk achieves the total ordering of
transactions with zero extra communication and modest compu-
tation. That is, every validator determines this total block order
only based on its view of the DAG and some shared randomness—a
distributed perfect random coin [49]—derived from the blocks.

Consequently, DAG ordering is light-weight and has a reduced
attack surface compared to the Narwhal subsystem, which instead
requires exchanging and processing network messages, and verify-
ing the signatures contained within.

2.3 Denial of Service

Denial of service (DoS) is an umbrella term for a broad variety
of attacks against the availability of interconnected services. The
prevalent form of DoS attack today is the volumetric distributed-
denial-of-service (DDoS) attack, whereby an adversary—the bot-
master—directs the traffic of thousands to millions of compromised
Internet hosts—the bots—towards a target endpoint. The resulting
traffic flood, which can reach multiple Tbps, depletes the computa-
tion, memory, or bandwidth resources of the targets, forcing packet
drops and preventing legitimate traffic from reaching the service.
Attacks can target all layers in the network stack, e.g., by con-
gesting network links (network layer), by exhausting state with a
huge number of open connections (transport layer), or by drain-
ing compute power on the host with resource-intensive requests
(application layer). Some of the most recent, high-profile targets
include governments® and large organizations.*

In this paper, we study DoS attacks targeting validators running
a consensus protocol. In particular, we exploit the reliance of such
protocols on cryptographic signatures to authenticate all consen-
sus messages: We design and implement signature flooding attacks
where validators are forced to verify tens of thousands of signatures
per second. Since signature verification is a compute-intensive oper-
ation, a relatively low-rate attack—compared to purely volumetric
floods—can overwhelm a validator.

3E.g., the May 2021 attacks on the Belgian parliament [20].
4See Cloudflare’s list of famous Do$ attacks [22].

In §4, we provide a more formal discussion of the threat models
and attack vectors, while in §7, we discuss the challenges that the
distributed nature of consensus protocols poses to DoS defenses.

3 Methodology

We present a general framework to evaluate the resilience of con-
sensus protocols to practical DoS attacks. We first define the threat
model, then provide a stepwise experimentation procedure, and
finally describe novel metrics to evaluate DoS attack resilience in
consensus protocols.

3.1 Threat Model

Given a consensus protocol running on a wide-area network—
typically the Internet—our model considers two types of adversaries,
of increasing power.

The external adversary does not control compromised validators
in the consensus committee, and, therefore, cannot authenticate
protocol messages. However, such an adversary can impersonate
clients and submit transactions to the consensus, or send adversarial
traffic from other hosts in the network (the “botnet”).

The internal adversary controls up to f Byzantine validators
among the committee of 3f + 1 validators. In contrast to the ex-
ternal adversary, the internal adversary has access to valid key
material and can authenticate protocol messages. Crucially, this is
the most powerful adversary that does not breach the theoretical
requirements for the security of the consensus protocol.

In both cases, we consider the adversary to be in control of a
botnet, with a large number range of IP addresses from which it can
send traffic. Further, the adversary can observe the current state
of the protocol, and specifically the current round number. This
assumption is realistic, as most consensus protocols do not attempt
to hide their protocol messages since they can easily be guessed
by observing the blockchain, and are often needed by light clients
as proofs of commits. Therefore, any entity can obtain the round
number by (i) passively observing the traffic of validators; or (ii)
through publicly available information; or even (iii) by observing
traffic patterns—e.g., the leader is the validator that broadcast mes-
sages to all other validators. Internal adversaries have even more
insight into the state of the protocol as they are directly participat-
ing with a subset of Byzantine validators.

Finally, the adversary model of the BFT protocols under con-
sideration also assumes that the adversary has full control over
network communications. In particular, the adversary may spoof
the source IP address, either by using on-path bots, or by hijacking
the IP address of validators. This assumption is not required for
the attacks we present in the paper to succeed, but will aid in the
analysis of robust mitigations.

3.2 DoS-Resilience Evaluation Pipeline

We propose the following experimental procedure in three steps for
the practical evaluation of the DoS resilience of consensus protocols.

#1: Static-leader attacks. First, evaluate the resilience of a single
validator to DoS attacks to establish a baseline, and reveal imple-
mentation aspects that may facilitate attacks. The results also serve
as an indicator of the required resources for an attack on multiple

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

validators. In the context of leader-based consensus protocols, we
are mainly interested in the resilience of the leader to DoS attacks.

#2: Fixed-subset attacks. Second, test against an adversary tar-
geting a fixed set of validators at the same time. Even if only a small
set of validators are targeted, such attacks can significantly slow
down the protocol, potentially rendering it practically unusable.
This second step is also useful to gauge the relevance of the theoret-
ical guarantees the protocol offers. In principle, all BFT consensus
protocols should still be live with up to f validators under attack.

#3: Leader-tracking attacks. Consensus protocols typically
assume a synchronous, partially-synchronous, or asynchronous
network model, with up to f fixed Byzantine (or faulty) validators.
None of these models restricts the attack capabilities of clients or
external adversaries. In an Internet setting, then, it is reasonable
to assume that the adversary can rapidly change targets during an
attack. We therefore propose to study this case separately in our
methodology.

A leader-tracking attack concentrates the adversary’s resources
against the leader, trying to emulate the effects of a static-leader
attack in the more realistic dynamic setting. To succeed, the adver-
sary has to overcome the additional difficulty posed by the quick
rotation of leaders (e.g., ~ 5 rounds/s in HotStuff). In practice, the
adversary may not have enough time to crash the leader before a
new one is elected.

Finally, a number of recent works propose to increase the re-
silience of leader-based BFT consensus protocols by introducing
unpredictability in the leader selection procedure [11, 15, 28, 37, 51].
In these protocols, the committee elects each leader randomly at
the beginning of the round, e.g., by using an unpredictable shared
random coin, making targeting the leader harder, or even infeasible.
The evaluation of leader-tracking attacks needs to also consider
such upredictable leader election sequences.

3.3 Evaluation Metrics

We are interested in attacks which significantly degrade or com-
pletely disrupt a protocol’s performance with the least cost or effort
for an adversary. The effort is measured in terms of resources the
adversary must invest to succeed in the attacks, such as the amount
of attack traffic (bandwidth utilization) or the number of attack
machines (computational power).

To evaluate the effectiveness and the cost of attacks, we define
the following metrics, and illustrate them in Fig. 1 with an example
taken from the attacks on HotStuff.

Normalized Commit Rate under Attack. Attacks on liveness
congest the validators such that they take more time to commit
new blocks. A maximally effective attack sufficiently delays the
commit to reach a timeout and force a view change. In this case, no
blocks can be committed, and the consensus is effectively halted.
We capture this effect by measuring the commit rate—the number
of commits per second—after the attack start, and compare it to the
commit rate in steady-state operation. Figure 1 shows that before
the attack, HotStuff progresses with roughly 5 commits per second
(cmt/s), while after the attack starts the rate drops to zero. We
express this metric as the ratio of the commit rate after the attack
start to the commit rate without attacks. The smaller this number,
called normalized commit rate, the more effective the attack.

1000y Attack Last
start sequential
8007 commit
L 600 S~ No attack
E /—Under attack
8 400+
Temporary
200t reconnection
and commit
0+ ; ‘ ‘ ‘ ‘
0 50 100 150 200
Time (s)

Figure 1: Example HotStuff run with/without attacks. A com-
mittee of 64 validators is under attack from 8 adversary machines (no
Byzantine validators). The gray dotted line represents the unperturbed
progress of the protocol.

Time-to-Last-Commit. In case the attack is successful in com-
pletely halting consensus, the normalized commit rate is zero. This
metric therefore cannot capture the difference between distinct,
but successful, attacks. We then introduce the time-to-last-commit
(TLC) to discern the effectiveness of attacks in these cases. The
TLC measures the time elapsed from the instant the first adver-
sary machine starts attacking the consensus to the time of the last
commit. Since the protocol may temporarily re-synchronize and
commit a block, we compute the TLC as the time after which there
are no commits for 30 consecutive seconds (these events are nev-
ertheless extremely rare in our experiments). In Fig. 1, the TLC is
represented by the distance between the vertical bars of denoting
attack start and last sequential commit. More powerful attacks halt
the consensus faster, and therefore have lower TLCs.

Committee and Adversary Size. In principle, a larger commit-
tee should be able to resist more powerful adversaries, controlling
more computational and network resources. Therefore, we also
investigate the resilience of the committee relative to the size of
the adversary.

4 Attacking HotStuff

By applying the methodology described in §3, we show that at-
tacks on the liveness of leader-based consensus protocols—here
exemplified by HotStuff—are practical. Starting from an analysis
of the space of threat models and attack vectors, we devise a set of
proof-of-concept attacks and experimentally prove that they can
rapidly, inexpensively, and indefinitely prevent liveness.

4.1 Attack Vectors

The decentralized, trust-minimizing nature of the HotStuff consen-
sus protocols enables multiple avenues for adversaries trying to
delay or halt the protocol by flooding validators with packets. We
summarize the three categories.

Client Traffic. The adversary impersonates a large number of
clients, and overloads the validators with legitimate transaction
messages. This attack aims at exhausting the computational re-
sources of the validators, by forcing the processing of many trans-
actions. Previous work has shown that increasing the number of

An Empirical Study of Consensus Protocols’ DoS Resilience

client transaction requests can drastically increase consensus de-
lay [24, 67] up to the point of halting consensus [62]. Nevertheless,
a flood of client traffic is in general less problematic, as the focus of
protocols is typically consensus liveness. Rate-limiting the number
of requests from clients is a traditional defense that protects the
consensus core against this attack.

Our experiments confirm that this DoS effect is present in the
HotStuff implementation under test. However, since the counter-
measure is easily deployable, we do not exploit client traffic as an
attack vector in this paper.

Unauthenticated Protocol Traffic. In blockchain applications,
validators can leave and join frequently. Therefore, validators have
to process messages from possibly any Internet host. The validators’
identity is only tied to the knowledge of a public/private key-pair,
and thus all messages are authenticated with signatures. Then, even
external adversaries can initiate signature-flooding attacks, where
they target honest validators with protocol messages containing
bogus signatures. Even if the verification step fails—an external
adversary does not have a valid private key—the computational
overhead of verifying a flood of signatures may still overwhelm a
validator and cause it to drop legitimate consensus messages.

Authenticated Protocol Traffic. Internal adversaries can cre-
ate valid protocol messages and therefore, even if they cannot
compromise safety, they have many opportunities to create compu-
tation and memory overhead on other validators. Signature floods
are particularly threatening because the signatures will pass the
authentication checks, and the messages will proceed to create
additional overhead.

4.2 Evaluation Setup

HotStuff Implementation. In our attack experiments, we use
the reference HotStuff implementation in Rust [61]. This instantia-
tion uses the 2-chain version of the protocol [35] and implements
the DiemBFT pacemaker [10]. It is multi-threaded and uses tokio®
for asynchronous networking, ed25519-dalek® for elliptic curve
based signatures, and data-structures are persisted using RocksDB.”
It uses TCP to achieve reliable point-to-point channels, necessary
to correctly implement the distributed system abstractions. Every
message is authenticated with a signature over the message’s di-
gest, i.e., the 32-Byte output of a cryptographic hash function. We
set the target transaction rate relatively low (10 000 tx/s), to avoid
overloading the validators and thus facilitate the observation of the
results of our attacks.

Adversary Implementation. The adversary is also implemented
in Rust, using the tokio library, and reusing the message definitions
of the HotStuff implementation.

Committee and Adversary Deployment. For our experiments,
we deploy a network of HotStuff validators on a global wide-area
network composed of AWS virtual private servers (VPSes). These
VPSes (AWS m5d. 2x1arge) have 8 virtual cores, 32 GB of memory,
and up to 10 Gbps of available network bandwidth, providing a
good tradeoff between performance and cost. Depending on the
experiment, 8 to 64 validators are uniformly spread across 4 AWS

Shttps://tokio.rs

®https://github.com/dalek-cryptography/ed25519-dalek
"https://rocksdb.org

~80r

K Attack type y

E g0 — Intern. Static -

S —-—-« Extern. —-—-# Unpred. _.--7"

g 40 -

—_ K e e e e e ———— %

220l 42t

[} ¥

ool ‘ ‘ w
8 16 32 64

Committee size

Figure 2: Average TLC of leader-tracking attacks on HotStuff.
Showing leader-tracking attacks with internal —e and external = <%
adversaries; static-leader attacks ; and leader-tracking attacks
with an unpredictable leader-election schedule =-<. See Figs. 7 and 8
in Appendix A for further analysis.

data centers spanning the globe.® Our experiments thus run on
a validator network of realistic size and communication latency.
The adversary’s deployment is similar, in that it uses the same
number and type of VPSes, and data center distribution. We can
thus compare the computational power of the adversary and the
committee to obtain a coarse estimate of the required attack power
relative to the committee size.

Evaluation Orchestration. An orchestration script is responsi-
ble for automatically creating the VPSes on AWS, deploying and
building the code, initiating the consensus protocol and the attacks,
and collecting the run logs. In each run, after the committee is
started, we wait for it to synchronize and reach steady-state op-
eration. After 60 seconds have passed, we start the adversary’s
machines. The experimental pipeline comprising multiple attack
runs with different parameters, log parsing, and plotting, is imple-
mented with the Snakemake workflow-management tool [53].

5 HotStuff Attack Results
5.1 Static-Leader Attacks

We evaluate the static-leader attack on 16 different combinations
of committee sizes (in {8, 16, 32, 64}) and adversary sizes (similarly,
{8, 16,32, 64}). For each committee size and number of adversaries,
we run the attacks twice (32 attack runs in total) and for 180 seconds.
We modify the leader-election module of the HotStuff validators
to always elect the same leader—instead of proceeding in a round-
robin fashion—so that the adversary may easily target the leader.
The adversary is external to the committee, and targets the valida-
tors with a Vote signature flood, carried out as follows.

The Vote Signature Flood. The machines in the adversary’s bot-
net send as many Vote messages as possible to the validator. These
messages are crafted to force a signature check on the validator.
First, the author field is set to the public key of one of the commit-
tee members, impersonating its identity. Thus, the message passes
the initial check at the target, which ensures that all Vote messages
contain the identity (public key) of another known committee mem-
ber. Then, the round number for which the vote is valid, contained

8us-east-1, eu-north-1, us-west-1, ap-northeast-1

https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

1.0r e e e S e———
—— Vote 4 7 // i
0.8 ——- Block4 | / //
Vote 16 | i
w 06" _ _ Block 16 ¢ ;]
a oc *hH x +
O g4l —--- Vote 4 atk. Il !
.I /7
0.27] ;i
- S
0.0t ‘ <_.J
10 100 1000 6000

Processing time (us)

Figure 3: Vote and Block processing time distributions. The
values indicate the committee size. Vote processing time is almost
constant, taking 70 — 80yus in the median, independently of committee
size and attacks. Block processing is more expensive (500 — 1000ys),
and depends on the committee size.

in the round field, is set to a high value such that it will always
be greater than the actual round number during the protocol exe-
cution. The message then passes a second check that requires the
vote to be for the current or a future round. From the consensus
standpoint, allowing future votes to be processed is beneficial, as
it may help a lagging validator in forming the quorum for a view
change and move to the latest round®. However, accepting future
votes also lowers the synchronization requirements on the external
adversary, who does not need to precisely know the round number.
Finally, the digest—containing the hash of the block for which the
vote is—and the signature are filled with random bytes.

Results. Results are indicated by the “Static” line in Fig. 2
(and magnified in Fig. 7a in the Appendix). We find that attacks
against a static leader are highly effective, and consensus is halted
within 10-25 seconds—16 seconds in the median—independent of
the committee size and number of adversaries. A further break-
down of the TLC behavior depending on the number of adversaries
machine can be seen in Fig. 7a in the Appendix.

This experiment confirms that the processing overhead of the
Vote signatures forces the target machine to drop packets, among
which are the valid votes from the committee. Since the attack
targets the (static) leader of the committee, it is able to rapidly
compromise liveness. As a single Vote message requires around
80 ps in the median (Fig. 3) to authenticate and then discard, a
single core can at most process 12 500 votes per second. Once the
adversary is able to deliver votes at a rate above this threshold, the
validator starts to buffer votes, and eventually has to drop packets.
We monitor the number of drops on the network interface card
(NIC) with the nstat tool, and confirm that the number of dropped
packets sharply increases on the validator under attack.

5.2 Fixed-Subset Attacks

Having established the resistance of a single validator to attacks, we
then investigate fixed-subset attacks to test the consensus protocol’s
resilience to up to f failures. In principle, either the adversary is able

%A straw-man improvement to the protocol is requiring voters to attach a QC to
the vote message, proving that a quorum of validators reached the voted round. This,
however, forces the leader to check an extra QC per vote.

< 1001 %

X

g 80 —=e HS 5s

o ——-% HS 10s

= 60

£

o 40

[}

E 20 N

[e] N

= oL . \\z-—\v ” i
0.00 6.25 12.50 18.75 25.00 31.25 37.50

Under attack (%) (f) (f+1)

Figure 4: Fixed-subset attack. The adversary targets 0 to 6 valida-
tors in a 16-validator committee (f = 5). HotStuff (HS) is here set up
with two timeout settings (5s and 10s).

to crash more than f validators, or the consensus should be able
to make progress. In this experiment, ¢ validators in a committee
of 16 (f = 5) are targeted by an adversary, with ¢ in {1,...,6}.
The adversary is external to the committee, and employs the Vote
signature flood against target validators. We then measure the
normalized commit rate across different runs, which is expected to
be close to zero only for t = f +1 = 6. We further use two different
timeout settings (5 and 10 seconds), to test whether this parameter
improves the protocol’s resilience. The common expectation is
that with longer timeout duration the chance that valid messages
manage to reach the validators under attack increases, which in turn
should increase the chance to achieve a commit. For each number
of targets t, we run an attack twice for each timeout setting, for a
total of 24 experiments. Each experiment runs for 10 minutes, and
the adversary is started after 60 seconds of consensus warm-up
time. We thus measure the normalized commit rate for 9 minutes
to capture the long-term effects of the attack.

Results. The lines HS5s = and HS10s = =# in Figure 4 show the
result of the experiment runs. Somewhat surprisingly, we find that
the consensus is halted indefinitely with just ¢ = 3 validators out of
16 under attack (18.75 %).

The reason for this rapid decrease in the normalized commit rate
is that, for each leader under attack, the protocol is halted for a full
timeout of 5 or 10s. The effect is further worsened by a performance
optimization of the HotStuff protocol. In the implementation we
target, to commit the leader needs to perform three rounds of
broadcast communication to all other validators, and collect their
replies. Thus, these communication rounds can be pipelined and
executed in parallel by leaders of consecutive rounds, increasing the
transaction throughput of the consensus. The “2-chain” pipelining
still implies that to commit, two consecutive leaders must be live
and honest, which severely weakens the protocol. Disrupting a
single validator then causes not one but two consecutive rounds to
fail, and consequently f crashed validators cause 2f failed rounds,
reducing the commit rate even more. Therefore, assuming a base
commit rate of 5 cmt/s, if e.g., 3 leaders crash in a committee of
16, the protocol is blocked for 3 - 55 + 3 - 0.2s = 15.6s, versus the
10 - 0.2s = 2s in which it can make progress. Equivalently, without
an attack HotStuff would have committed almost 6x more blocks.

An Empirical Study of Consensus Protocols’ DoS Resilience

5.3 Leader-Tracking Attacks

In this attack scenario, the adversary tries to continuously DoS the
current leader to disrupt liveness. We present the results for both
external and internal adversaries.

Leader-Tracking Implementation. As discussed in §3.1, the
adversary has many ways to learn the round number, even if it
is external to the committee. We abstract away the details of the
concrete way in which the adversary obtains this information, and
simply add a subroutine on the validators that, upon view change,
broadcasts the current round number to the adversary machines.
How the adversary monitors the network in practice is orthogonal
to our attack.

Attack Mechanism and Parametrization. Knowing the latest
up-to-date round number, the adversary can identify the current
leader as well as the upcoming leaders in the sequence (we later
relax this assumption with the unpredictable leader experiments).
The botnet can thus target the current leader’s machine and a
number of validators that will become leaders in the following
rounds. In the following experiments, the total number of validators
under attack ¢ is chosen as t € {2,8}: t = 2 is always less than f +1
for committee sizes {8, 16,32,64}; t = 8 amounts to an > f + 1
attack when the committee size is either 8 or 16. In this way, we
can explore the effect of t in larger committees, while comparing it
to an f + 1 attack in smaller ones.

The external adversary uses the same Vote-flood attack vector
presented in the previous attacks. For the internal adversary, we
introduce the Block signature flood.

The Block Signature Flood. Similarly to the Vote signature
flood, the adversary sends a flood of Block protocol messages to the
target validators, inducing computation overhead and eventually
forcing dropped packets. The main difference between Vote and
Block floods is that an internal adversary can leverage a valid private
key to sign Block messages, and cause an even higher overhead.

The author field in the message is set to the identity of the val-
idator controlled by the internal adversary. To pass the preliminary
checks on the block’s validity, the round field is set to a round
number far in the future such that the validator is going to be the
legitimate leader for that round. A signature is performed on the
digest of the message.

Different to a Vote message, however, the Block message also
contains a QC field with the quorum certificate for the previous
block (see §2.1). The QC itself is an aggregate of the votes of at
least 2f + 1 validators for the previous block in the chain. After
authenticating the signature—which succeeds because the internal
adversary has a valid keypair—a validator processing the Block then
checks that the QC is valid by verifying all signatures contained
within. In this HotStuff implementation, the QC verification sub-
routine invokes a batched signature-verification function, which
is more efficient than authenticating all signatures sequentially.
However, this function only returns after the full batch has been
processed. The adversary can then insert one (bogus) signature for
each committee member, causing a higher overhead for each block
depending on the committee size (Fig. 3).

Results. The TLC of the internal —e and external - - adver-
saries are shown in Fig. 2. As expected, the internal adversary has

the lowest TLC across all experiments, confirming the effective-
ness of Block messages as attack vectors. The TLC for the external
attack is slightly higher: 21 vs 10 seconds in the median. Most im-
portantly, in both attacks the TLC is independent of the committee
size. Further breakdowns are in Fig. 7 and Fig. 8 in the Appendix.

Comparing the static-leader attack with the leader-tracking
attack = -, we can see that even if they use the same attack vector—
Vote flood by an external adversary—the latter has a slightly higher
TLC. This is due to several factors. First, in the static-leader ex-
periment the attack traffic is focused on a single machine; in the
leader-tracking attack, traffic is spread across t validators, reducing
the effect on any single validator. Second, the adversary can tem-
porarily get out of sync with the rounds of the consensus. Thus, it
may target validators that are not in the set of next leaders, yielding
a less efficient attack. As shown in Fig. 8 in the Appendix, targeting
more upcoming leaders produces a faster and more effective attack.
In both cases however, the attack effectiveness is still independent
of the committee size.

When is the adversary unsuccessful? Finally, we run an ex-
periment to see when an adversary may not have enough resources
be successful to establish the minimum requirement for the botnet.
To this end, we run the same external adversary as above against a
committee of 64 validators, but now with only {1, 2, 4, 8} adversary
machines. The results are shown in Fig. 5: We see that 1 and 2
adversary machines are unable to generate enough attack traffic to
completely disrupt consensus, although they still greatly reduce the
commit rate. Each experiment lasts 180 s, with the attack starting
after 60 s. Therefore, a TLC above 120 s—such as in the case of 1 and
2 adversary machines—indicates that the attack was not successful.
However, they can still affect the commit rate compared to the
non-adversarial case.

5.4 Unpredictable Leader-tracking Attacks

As shown above, the adversary can exploit the deterministic leader
election sequence to target upcoming leaders and increase the ef-
fectiveness of the attack. However, certain consensus protocols
(see §3.2) use an unpredictable leader election, where the committee
elects the leader randomly at the beginning of each round. There-
fore, leader-based attacks may become harder, or even infeasible.

We thus complete our exploration of attack scenarios by im-
plementing an adversary that does not know the leader election
sequence, and learns the identity of the current leader either by (i)
participating in the election with a compromised validator (internal
adversary); or by (ii) monitoring the network and observing which
validator sends Block proposals (external adversary).

Simulating Unpredictability. The HotStuff implementation
used in the experiments does not provide an unpredictable leader
election. Instead of implementing this functionality ourselves, we
keep the round-robin leader election of the original implementation
and instead simulate “unpredictability” on the adversary side.

To this end, we implement an adversary that only targets the
leader for the current round, thus representing an adversary not
knowing who the next leaders will be. The difference between
internal and external adversaries then lies in the time at which they
learn who the current leader is. Internal adversaries are part of the
committee that elects the leader, and therefore learn the identity of

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

=
N
(9]
1
L]
[)

®> No loss of liveness

=

o

o
T

~
(9]
T

u
o
T

N
(9]
T

.\

{]

0o 1 2 4 8
Attackers

Time to last commit (s)

o

(a) TLC in the number of adversary machines.

100 e
80+
60F
o—°

4071

20t

Norm. commit rate (%)

0o 1 2 4 8
Attackers

(b) Normalized commit rate in the number of adversary machines.

Figure 5: Minimum requirements for an attack.

the new leader as soon as a view change occurs. External adversaries
can only infer this iformation by observing the network traffic and
the contents of Block messages, and thus learn the identity of the
new leader only after the leader has proposed a Block.

Results. The TLC of the unpredictable leader-tracking attacks
=< is shown in Fig. 2. Each point in the plot is the average of
16 experiments ({8, 16, 32, 64 adversaries} X {internal, external} x
{2 reruns}). The key insights of this experiment are that (i) the
adversary can still paralyze the consensus by attacking the single
leader in a few tens of seconds, but (ii) the TLC now appears to
be linear in the committee size. This second observation can be
explained by the fact that the adversary is always behind in its
view of the consensus, and therefore cannot flood its targets before
the legitimate votes from other validators reach the leader, and
the consensus proceeds to the next round. However, even if the
adversary is too late to stop the current round, it can create overhead
on the validator such that a backlog accumulates over time, until the
validators start dropping packets: Each round is executed quickly,
and one validator may still be processing attack messages when
it becomes again the leader in the next iteration. Then, the more
validators, the more time it takes to build up the overhead backlog
across the whole committee.

Interestingly, there does not seem to be a difference between
internal and external adversaries, as shown in Fig. 9 in the Ap-
pendix. This is likely because the main factor of attack success
is not the immediate compromise of each successive leader—for
which the timely dissemination of information about the current

$ 1001 rz——tm=mmg——= =y ===
°~
% 80 S)
-‘é 60 0 Trees e
£ ——e HS+ARL Ext. S
g 40F —— .« HS+ARL Int. tight K,
. \‘
§ 20 HS+ARL Int. loose \\
S —-—-% Tusk N

o

0.00 625 12.50 18.75 25.00 31.25 37.50
Under attack (%) (f) (f+1)

Figure 6: Fixed-subset attack with defenses. Replicating the sce-
nario of Fig. 4 with defenses deployed. Tusk =-<& resists attacks better
than HotStuff (HS). Authentication and rate-limiting (ARL) almost
completely removes threats, except when the rate-limiting threshold
is poorly chosen (see Fig. 11). “Int.” and “Ext.” denote internal and
external adversaries.

leader is crucial—but rather the slower overwhelming of each of
the validators until the leaders start dropping packets.

6 Attacking Asynchronous Consensus Protocols

The experiments in the previous section highlight the susceptibility
of leader-based BFT partially-synchronous consensus protocols
such as HotStuff to liveness attacks. We now investigate whether
other protocol designs are more DoS resilient by attacking asyn-
chronous consensus protocols.

As introduced in §2.2, Tusk is one such asynchronous consensus
protocol that completely forgoes the use of a leader to drive consen-
sus. Previous work has shown that Tusk does not incur a significant
performance penalty compared to HotStuff, and can process thou-
sands of transactions per second with low delay. Therefore, Tusk
may be a practical and DoS-resilient alternative to leader-based
consensus protocols. We thus run signature flood attacks against
Tusk, similar to the ones we used to disrupt HotStuff.

6.1 Tusk Implementation

We use the reference Tusk implementation in Rust'® (also contain-

ing Narwhal, §2.2), which is comparable in design and performance
to the HotStuff implementation. Similarly to the HotStuff implemen-
tation, Tusk uses TCP to achieve reliable point-to-point channels,
necessary to correctly implement the distributed system abstrac-
tions. The VPSes, network, and adversary setup are identical to
the attacks against HotStuff (§4.2). To compare Tusk and HotStuff
with similar low-overhead workloads, we set the transaction rate
to 10 000 transactions per second.

This Tusk research implementation avoids the complexity of
using a shared random coin to select the certificate to be committed,
and instead proceeds in round-robin fashion. We do not exploit this
detail for attacks, as production-ready implementations of Tusk
would not introduce this attack vector.

Ohttps://github.com/asonnino/narwhal

https://github.com/asonnino/narwhal

An Empirical Study of Consensus Protocols’ DoS Resilience

6.2 Fixed-subset Attacks on Tusk

The Certificate Signature Flood. Tusk relies on the exchange
of Certificate messages across validators, which act both as votes
for previous proposals, as well as proposals for new blocks to be
committed. For each certificate, validators need to verify a signa-
ture to authenticate the message. Similarly to the Block attacks
on HotStuff, an internal adversary may further abuse the many
signatures in the Certificate to inflict an even higher overhead.

Results. We attack a fixed subset of Tusk validators of size ¢,
with t in {1,2,3,4,5, 6}, in a committee of 16 (f = 5). The adversary
also controls 16 machines. For each value of t we run the experi-
ment twice and compute an average of the results, leading to 12
experiments in total.

Figure 6 shows that Tusk’s normalized commit rate under at-
tack =-<¢ degrades more gently with the increasing number of
targets t compared to HotStuff. Only attacks on f + 1 validators
achieve a full loss of liveness. Even for attacks on t = f validators,
the commit rate is still above 40 % of the rate in normal operation.
This is as expected: Only if the validator that is selected to commit
was under attack the consensus loses a round of commits, while the
remaining rounds are unaffected. Moreover, the other Tusk valida-
tors continue to advance the DAG by propagating user transactions
asynchronously. The next successful leader will then commit its
entire sub-DAG, including the transactions that the leader under
attack did not manage to commit. As a result, the degradation in
throughput is only due to the reduced capacity of the Tusk valida-
tors under attack. Further, since Tusk is an asynchronous protocol,
it advances at network speed and does not suffer from the long
timeouts that lower HotStuff’s commit rate.

7 Network-Layer Defenses

Our comparison of HotStuff and Tusk under a DoS attacks shows the
advantage of running an asynchronous, leader-less consensus pro-
tocol in terms of throughput and liveness. However—even though
Tusk retains liveness for attacks on less than f + 1 validators—the
adversary is still able to significantly impair its throughput. More-
over, the adversary can target more than f validators with little
additional effort, completely halting progress.

The core issue is that consensus protocols rely on the assump-
tion of point-to-point authenticated and always-available links for
their liveness guarantees. Since this network abstraction is hard to
implement in practice, the adversary can disrupt communication
channels between the validators and no liveness guarantee can be
achieved. It is therefore clear that a comprehensive solution to DoS
attacks on consensus protocols must also consider network-level
defenses that can better implement this abstraction.

Thus, we explore the network security literature for effective
DoS mitigations. We start by considering traditional DoS defenses,
and explain why they may be insufficient for the protection of dis-
tributed consensus protocols. Then, we draw from recent works to
propose new defenses specifically tailored for consensus protocols.
We conclude with a set of experiments testing the effectiveness of
these mitigations.

7.1 Defense System Requirements

Blockchains feature unique communication requirements:

e High availability: This includes protection against naturally-
occurring failures and against routing and DoS attacks.

o Decentralized operation: Validators must be fully distributed, with-
out relying on any single entity. This must include validator host-
ing hardware and networks. Further, to avoid vendor lock-in, all
systems should be open source.

e Decentralized economics: Validator deployment must be afford-
able, to guarantee the widest possible deployment and incentivize
decentralization.

Because of these peculiar requirements, most of the existing DoS
defenses are ill-suited to protect distributed consensus.

7.2 Traditional Defenses Are Insufficient

We broadly survey the most common classes of DoS defenses, and
discuss why they violate the requirements above.

IP-based Filtering. Within our adversary model, IP-based traffic
filtering is ineffective. If an IP-blocklist is deployed, the adversary
can quickly rotate bots and send traffic from different IP addresses.
If, on the other hand, an allowlist is implemented, the adversary can
bypass it by spoofing source addresses, possibly framing a honest
validator for an attack.

Cloud-Based DoS Protection. Several commercial offerings [3,
23, 57], as well as research papers [31, 38, 50], offload the filtering
of adversarial traffic to the cloud. However, cloud-based protec-
tions are not applicable to the defense of consensus protocols. First,
these services are expensive, and are only offered by a handful
of providers, favoring centralization. Second, the cloud provider
needs to have specific filtering rules that separate adversarial traffic
from legitimate consensus traffic. With attack packets coming from
possibly thousands of hosts in a botnet, and without an established
way to source-authenticate traffic, the adversary’s traffic is hard
to distinguish from honest traffic. Finally, since our attacks are
relatively low-rate compared to standard volumetric DoS, and can
be spread across multiple sources, cloud filters cannot rely on the
traffic volume to detect whether an attack is underway.

Overprovisioning. Another usual avenue for DoS mitigation is
overprovisioning, where entities—validators in this case—provision
their compute, storage, and network to withstand the highest loads.
If the protocol can horizontally scale and make use of these addi-
tional resources, attacks become increasingly difficult. This solution,
however, requires massive resources, and thus favors centralization.
Blockchains are designed to financially incentivize validators, and
thus need to run on relatively cheap hardware.

TLS & VPNs. The committee could leverage the pre-shared con-
sensus keys to set up authenticated tunnels between validators.
These tunnels could be implemented, e.g., by long-lasting TLS con-
nections or virtual private network (VPN) connections. However,
these protocols rely on complex connection handshakes and keep
per-connection state, which have been repeatedly exploited for
DosS attacks in the past. Recent work has shown that many major
VPN solutions (including WireGuard and OpenVPN) suffer from
debilitating, low-rate DoS attacks that prevent new connections,
and even force established connections to be dropped [63]. Further,
the TCP connections over which TLS is customarily transported
have been recently shown to be susceptible to cross-layer hijacking
and connection reset attacks [32, 33].

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

Even if perfectly patched, and using pre-shared keys to avoid DoS
attacks on the handshake, these protocols alone are only sufficient
to discard attack traffic from external adversaries. Such a defense
would certainly be an improvement over current practices, but
internal adversaries could still bypass it by using legitimate keys.

Building on these observations, we propose a defense that combines
(i) lightweight symmetric-key authentication, to protect against
signature floods, together with (ii) per-key rate-limiting, to stop
internal adversaries from generating too much traffic. This system is
moreover implemented at the network layer, so that state exhaustion
attacks against the transport layer are also not possible.

7.3 Consensus-specific Defenses:
Source Authentication and Rate Limiting

We now outline a more principled, consensus-specific defense
against DoS attacks, that matches the requirements in §7.1.

During flooding-based DoS attacks, including the ones presented
in this work, an adversary overwhelms a service by sending a high
number of requests. By monitoring and limiting the number of
requests received by the validator, we can ensure that any received
request can be processed during a reasonable time frame. However,
rate-limiting is only effective if the limit is enforced on authenti-
cated traffic from validators—otherwise, an adversary may spoof the
addresses of legitimate validators, bypass the rate-limiting, or even
exhaust the rate limit for other legitimate clients causing their traf-
fic to be dropped. Therefore, deploying a source-authentication and
rate-limiting (ARL) system in front of each validator can prevent
the attacks presented in this paper, while respecting the decen-
tralization demands of consensus protocols. Given an ARL system,
validators can (i) drop packets from external adversaries before
they reach the consensus logic, and (ii) impose strict rate limits on
the consensus traffic coming from other validators, thus preventing
attacks from internal adversaries. Further, note that an ARL-based
defense system is is decentralized, as validators can run and manage
their instances independently.

To test the effectiveness of this measure, we deploy an ARL
system in front of each validator. Crucially, this subsystem should
not open new avenues for DoS attacks. Therefore, our prototype
implementation is based on symmetric-key cryptography, and can
thus authenticate packets and enforce rate limits with minimal
computational resources—effectively at line rate. The functionality
of this system is minimal by design, to further enhance efficiency
and reduce the attack surface.

We now provide an overview of the ARL’s operation, and then
test its effectiveness as DoS mitigation for validators.

The ARL Pipeline. The ARL is composed of two distinct com-
ponents: a packet authentication system and a rate limiter. The
packet authentication system unambiguously attributes each in-
coming packet to a source host or to a “best-effort” unauthenticated
category. Packets that pass authentication are then forwarded to
the rate limiter, which ensures that sources do not exceed their
pre-defined rates. The best-effort category is also throttled. Our
ARL prototype is not sophisticated enough to protect against re-
play attacks—whereby an adversary captures and sends replicas of
legitimate packets in large volumes. However, duplicate suppression

systems have been studied in the literature and could be directly
applied in ARL as a third stage in the pipeline [48].

Symmetric Key Estabilshment. To use the ARL, each pair of
consensus validators A and B must share a pair of symmetric keys
Ka—p and Kg_, 4, where the direction of the arrow denotes the
direction of communication.

Discussing the key exchange in depth is beyond the scope of this
paper. However, we note that validators must already share public
keys with each other to participate in the consensus protocol (most
importantly, to sign Votes, Blocks, and Certificates). Commonly, the
public keys of validators are shared by encoding them in transaction
blocks when a new committee is elected. The root of trust is then the
genesis block—the first block of transactions in the state machine—
which contains the keys for the initial committee. Validators can
therefore leverage these pre-shared consensus keys to authenticate
a standard key negotiation protocol—e.g., Diffie-Hellman [26]—and
derive symmetric keys for the ARL.

After the first exchange—which occurs, e.g, when a new valida-
tor joins the protocol—all subsequent re-keying can be protected
by ARL. The key exchanges can be performed before the expiry of
the previous key, so that the key requests can be rate-limited under
ARL: When the previous keys expire, the validators are already in
possession of a fresh pair and can continue using the ARL undis-
turbed. This simple re-keying strategy prevents flooding attacks on
the key exchange, drastically limiting the attack surface for DoS.

Finally, we need to consider the overhead of storing and retriev-
ing the symmetric keys at line rate. Since in every committee the
number of validators does not normally exceed the hundreds, keep-
ing the keys in cache is feasible and allows a fast and efficient
retrieval. However, in case the number of validators is too high to
store all keys in cache, a system such as PISKES [58] can be de-
ployed to decrease the overhead of fetching the keys from memory
at the destination.

Packet Authentication Details. For every packet sent from
validator A to B, ARL adds an additional header

HDR = (A, TS, lpkt),

where TS is a timestamp and I,y is the packet length. Then, ARL
computes a cryptographic authentication tag over the HDR and a

hash of the payload:

PH = H(payload), TAG = MACk, , , (HDR, PH).

Both TAG and PH are added to the packet, which is then forwarded
towards the destination. The destination B then uses HDR, PH, and
the pre-shared K4_,p to recompute the MAC, and matches against
the received TAG. If they are the same, the destination then recom-
putes H(payload) and compares it to PH to verify the integrity
of the payload. Informally, if the procedure succeeds, then valida-
tor A must have sent the packet, as only an entity with the right
K4, could have produced the correct MAC. Thus, ARL achieves
per-packet source authentication.

Notice that sending both P and [y to the destination also
improves the attack resilience of the protocol. Without this infor-
mation, the adversary could replace the existing payload with an
MTU-sized payload, which then the destination would have to com-
pute a hash of. Instead, the destination first checks that the length
of the received packet is equal to [y, mitigating this attack vector.

An Empirical Study of Consensus Protocols’ DoS Resilience

8 Attacking ARL-Protected Consensus

We experiment with attacks against HotStuff protected by the ARL,
and compare the resilience of this consensus-specific defense with
the unmodified HotStuff and Tusk protocols.

ARL Attack Scenarios. We consider three attack scenarios,
obtained by varying (i) the adversary’s knowledge of the ARL
(aware/unaware of the defense); and (ii) the adversary’s relation to
the committee (internal/external):

o ARL-unaware external adversary: This adversary just targets a
fixed subset of validators with a Vote signature flood, without
considering the presence of ARL. Since there is no ARL header
in the attack packets, they will be discarded without performing
the authentication step.

e ARL-aware external adversary: This attack is similar to the pre-
vious, with the distinction that an (unauthentic) ARL header is
added to packets, forcing the ARL application on the validators
to perform (and fail) packet authentication.

o ARL-aware internal adversary: In this final and most powerful
attack, the adversary is internal to the committee and therefore
holds valid pre-shared symmetric keys with the validators. It
then performs a Vote signature flood (for comparison with the
attacks above), this time successfully authenticating the attack
packets. The rate limiter, however, caps the amount of attack
traffic that reaches the consensus logic at the validators.

ARL Deployment. ARL is implemented in C using the DPDK
high-speed packet processing framework!!, following the high-
level system design in §7.3, and based on an open-source project.!?
ARL is deployed on all honest and compromised validators, and
performs filtering and rate-limiting for all incoming packets, while
adding the ARL header to all outgoing packets. All packets that are
not authenticated or exceed the rate limit are immediately discarded.
Each validator rate-limits traffic from other validators to a fixed
maximum rate threshold in Mbps. We assume that an internal
adversary may have access to one of the ARL authentication keys.
Therefore, the aggregate traffic from all the adversary machines is
rate-limited to the same fixed threshold. Note that if the adversary
controls more Byzantine validators—up to f—it will trivially be
able to send at as much as f times the rate of the threshold. We
therefore experiment with the least powerful adversary (one key);
when provisioning to withstand an adversary with f keys, the rate-
limiting threshold must be chosen to be 1/f the threshold of the
single-key adversary to similarly limit the adversary’s attack power.

The Rate-Limiting Threshold. For the rate limits, ARL differ-
entiates between consensus protocol and mempool protocol packets.
This is because the mempool has much higher bandwidth require-
ments than the consensus. If consensus and mempool were to be
rate-limited together, the threshold would have to be set to tens
or hundreds of Mbps, and an internal adversary may then use this
wide bandwidth allowance to target the consensus. Choosing ap-
propriate rate-limits—in this case for the consensus port—is critical,
especially when considering internal adversaries: Too low, and the
honest validators cannot communicate; too high, and the adversary
may still be able to send enough traffic to overwhelm the validators.

Hhttps://www.dpdk.org/
2https://github.com/netsec-ethz/lightning-filter

To determine an appropriate value for the rate-limiting threshold,
we run an experiment with 8 validators and 1 internal adversary
controlling 8 attacking machines, and change the rate-limit thresh-
old in exponential increments. We look at the resulting normalized
commit rate to gauge the effectiveness of the attack. We see in
Fig. 11 in the Appendix that the adversary must be able to send at
least 8 Mbps to achieve an impact, while with 16 Mbps the adver-
sary is able to almost completely stall the consensus. We, therefore,
test the effects of choosing the wrong rate limit threshold, and run
two experiments with a “tight” threshold of 2 Mbps, and a “loose”
threshold of 10 Mbps that allows for enough attack traffic to reach
the consensus logic and create a moderate amount of disruption.

Results. As before, the consensus committee consists of 16 val-
idators, and the adversary controls 16 machines. Our results indi-
cate that ARL is very effective in preventing attacks against Hot-
Stuff. The attack traffic from external adversaries is immediately
discarded, as either packets do not include the ARL header (ARL-
unaware external adversary), or the authentication MAC is invalid
(ARL-aware external adversary). In Fig. 6 we only show the lat-
ter =—e, as in both cases the normalized commit rate is ~ 100%.

When considering internal adversaries—which possess valid ARL
keys and are therefore necessarily ARL-aware—we see that indeed
the choice of rate-limiting threshold makes a difference. With a
“tight” threshold of 2 Mbps =%, the adversary cannot influence
the consensus throughput. On the other hand, with the “loose”
threshold of 10 Mbps , the adversary can increase load on the
validators and lower the throughput. We can see two runs of the
consensus with different thresholds in Fig. 10 in the Appendix: after
some time, the constant stream of signatures accumulates and starts
forcing some dropped packets, delaying the consensus.

9 Discussion

Throughout the paper, we have verified the following hypotheses
on the resilience of consensus protocols to DoS attacks:

o In HotStuff, a leader-based consensus protocol, the round leader
represents a single point of failure, and this weakness can be
exploited by an adversary in practice. Most notably, the adversary
can disrupt consensus independently of the size of the committee,
violating the core availability tenet that the larger the committee,
the costlier an attack should be. This problem is exacerbated by
the reliance on timers: If the leader crashes, no progress can be
made until the timers expire and the leader is rotated.

o Tusk, an asynchronous consensus protocol, is more resistant
to DoS attacks because it does not rely on timers to advance
consensus. The consensus throughput may still decrease under
attack, but liveness is maintained as long as a quorum of honest
validators is active.

e The introduction of network-layer defenses, such as the authen-
tication and rate-limiting system (ARL), greatly increases the
survivability of HotStuff. Figure 6 clearly highlights that ARL
can improve the resilience of HotStuff validators to the point that
their throughput under attack is better than Tusk’s, despite the
weakness introduced by the single leader and the use of timers.

Future work is needed to evaluate the combination of asynchro-
nous consensus protocols with ARL, although preliminary results
indicate that ARL is a suitable protection in this case as well.

https://www.dpdk.org/
https://github.com/netsec-ethz/lightning-filter

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

Attack implementation relevance. In the experiments, we
use the reference Hotstuff and Tusk implementations developed at
Facebook/Meta for research purposes. It uses the same core consen-
sus logic as the latest production DiemBFT codebase (DiemBFTv4),
running the same persistent storage, crypto, and network stack.
Most importantly, there are no additional DoS protections in the
production DiemBFT codebase. We therefore believe that the re-
sults presented in the paper are representative of the most advanced
consensus engine implementations. Moreover, well-engineered pro-
totypes are much simpler in terms of functionality than a fully-
fledged blockchain, and therefore provide an improvement on the
attack resilience of a blockchain: The additional overhead of RPC
endpoints, transaction execution engines, etc., only increases the
DoS attack surface. Our attacks are then targeted against consensus
engines, rather than blockchains, and therefore provide an upper
bound of the resilience of BFT systems.

Generalizing the attacks. We focused our DoS attacks against
HotStuff and Tusk. This section discusses how those attacks gener-
alize to other consensus protocols.

Synchronous protocols such as Sync-HotStuff [1] are subject
to the same attacks described in this paper. Unlike their partially-
synchronous counterparts, synchronous protocols can tolerate up
to half faulty validators. Thus, attacking a fixed subset of valida-
tors (§5.2) requires more adversarial resources; leader-tracking at-
tacks (§5.3) remain identical. DoS attacks however are a greater
risk for synchronous protocols: while DoS attacks against partially-
synchronous protocols only halt consensus (liveness loss), the same
attacks against synchronous protocols may result in honest valida-
tors ending up with different commit sequences (safety violation).

Our results on Tusk will generalize to other asynchronous con-
sensus protocols [2, 12, 24, 42, 52]. In general, asynchronous proto-
cols do not directly depend on leaders to drive the protocol nor on
timeouts to make progress. As a result, these protocols do not suffer
from leader-tracking attacks (§5.3). Further, DoS attacks against a
fixed subset of validators are less effective (as demonstrated in §3),
as they are designed to operate under a stronger adversary model.

Finally, we note that our results partly apply to partially-syn-
chronous protocols that do not directly rely on a leader to drive
consensus. E.g., in Algorand [37], the leader is still detectable and
can be targeted, as it broadcasts block proposals. However, the
leader selection is unpredictable and the communication is based
on gossip messages, drastically lowering the overall dependence on
the leader. In Bullshark [39] (i) the leader cannot be distinguished
through traffic patterns, and (ii) the election sequence can be ran-
domized. Nonetheless, both these protocols still rely on timers for
their operation, which may still cause sharp drop in throughput
and loss of liveness under attack. We leave the evaluation of the
DoS resilience of these defense mechanisms to future work.

10 Related Work

In addition to the related work on BFT consensus protocols and
DoS attacks (§2), and traditional DoS defenses (§7.2), presented
in previous sections, we add here other related publications to
contextualize our contribution.

Attacks on Blockchains. To the best of our knowledge, Spiegel-
man and Rinberg [62] are the first and only to analyze the effects

of DoS attacks on HotStuff. While their work focuses on a protocol
that turns partially-synchronous protocols into fully asynchronous,
their evaluation shows that a flood of client requests targeted at
the leader may halt consensus in a small HotStuff deployment.
Outside DoS and quorum-based consensus, the blockchain space
presents many attack vectors that an adversary may use to attack
the safety or liveness of the protocols [9, 30, 36]. Proof-of-work
blockchains, such as Bitcoin [55] and Ethereum [66], are vulnerable
to protocol-level attacks that lower their security threshold below
51%. The most notable are selfish mining [59], stubborn mining [56],
Fork After Withholding (FAW) attack [45], and eclipse attack [41].
Further, these blockchains have been found to be vulnerable to BGP
hijacking attacks [6]. Proof-of-stake blockchains [13, 43] open up
new attacks compared to proof-of-work consensus [9]: the nothing-
at-stake attack; the grinding attack; and the long-range attack [8].

Other DoS Defenses. Zargar et al. [68] published a systemati-
zation of existing DoS defenses; given the wealth of work on the
topic, we review relevant recent proposals. A first example are
routing-based defenses [60], whereby autonomous systems under
attack redirect traffic through BGP announcements. However, the
effectiveness of these systems has been debated [65]. In the con-
text of Bitcoin, the SABRE system was proposed to mitigate BGP
hijacking attacks [5]; path-stable Internet architectures such as
SCION [19] are a solution to these attacks, as off-path entities can-
not influence the routing process. Finally, capability-based defenses,
which grant access to network resources based on cryptographic
tokens embedded inside packets [4, 40], could also be used to defend
consensus nodes, and even protect against more powerful attacks
such as Coremelt [64], where the adversary targets the network
infrastructure instead of the endpoint. These systems bear similari-
ties to our ARL implementation at the endpoints. However, they
require in-network support by forwarding elements, increasing
their deployment complexity. Therefore, studying the effectiveness
of capability-based defenses in protecting consensus protocols is
left as future work.

11 Conclusion

As blockchains are maturing to be integrated into critical infrastruc-
ture, ensuring their high availability is paramount. In this paper,
we experimentally show the effectiveness of DoS attacks against
current state-of-the-art consensus protocols, and evaluate practical
defenses. In the case of leader-based and partially synchronous con-
sensus protocols—exemplified in our experiments by HotStuff—the
cost of an effective attack on liveness is independent of the commit-
tee size. The leader is a vulnerable single point of failure, which can
be exploited by an adversary to swiftly disrupt the consensus. We
then test whether modern fully-asynchronous consensus protocols,
represented by Tusk, are more resilient to the attacks. Indeed, we
empirically show the increased DoS resistance of these protocols—
which do not require an active leader to proceed—although their
throughput is still impacted by the attacks. Finally, we analyze the
effects of deploying lower-layer DoS defenses at validators. We
demonstrate that a combination of source authentication and rate-
limiting almost entirely mitigates our attacks, while respecting the
decentralization requirements of consensus.

An Empirical Study of Consensus Protocols’ DoS Resilience

The breadth and depth of the attack analysis presented in this
paper is, to the best of our knowledge, novel in the study of BFT
consensus protocols. Beyond the immediate relevance of our re-
sults, we hope this work will highlight the challenges of deploying
consensus protocols in real networks, and that the experimental
methodology defined herein will help guide future evaluations.
Ethical Considerations. We have carefully followed a responsible
disclosure process.

Acknowledgements

This work was mostly realized while Alberto Sonnino and Lefteris
Kokoris-Kogias were employed at Meta. We gratefully acknowledge
support for this project from ETH Zurich and Mysten Labs.

References

[1] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync hotstuff: Simple and practical synchronous state machine replication. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 106-118.

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
optimal validated asynchronous byzantine agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. 337-346.

[3] Amazon. 2022. Amazon AWS Shield. https://aws.amazon.com/shield/.

[4] Tom Anderson, Timothy Roscoe, and David Wetherall. 2004. Preventing Internet
denial-of-service with capabilities. ACM SIGCOMM Computer Communication
Review (CCR) 34, 1 (2004). https://doi.org/10.1145/972374.972382

[5] Maria Apostolaki, Gian Marti, Jan Miiller, and Laurent Vanbever. 2019. SABRE:
Protecting Bitcoin against Routing Attacks. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San Diego, California, USA, Feb-
ruary 24-27, 2019. The Internet Society. https://www.ndss-symposium.org/ndss-
paper/sabre-protecting-bitcoin-against-routing-attacks/

[6] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking bitcoin:
Routing attacks on cryptocurrencies. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 375-392.

[7] Aptos. 2022. Building the safest and most scalable Layer 1 blockchain. https:
//aptoslabs.com.

[8] Sarah Azouvi, George Danezis, and Valeria Nikolaenko. 2020. Winkle: foiling
long-range attacks in proof-of-stake systems. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies. 189-201.

[9] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-
Corry, Sarah Meiklejohn, and George Danezis. 2017. Consensus in the age of
blockchains. arXiv preprint arXiv:1711.03936 (2017).

[10] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Francois Garil-
lot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino.
2019. State machine replication in the Libra blockchain. The Libra Assn., Tech.
Rep (2019).

[11] Stephanie Bayer and Jens Groth. 2012. Efficient zero-knowledge argument for
correctness of a shuffle. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 263-280.

[12] Michael Ben-Or. 1983. Another advantage of free choice (extended abstract)
completely asynchronous agreement protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing. 27-30.

[13] Iddo Bentov, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure
Proofs of Stake. IACR Cryptol. ePrint Arch. 2016, 919 (2016).

[14] The Celo Blog. 2022. Celo Sets Sights On Becoming Fastest EVM Chain Through
Collaboration With Mysten Labs. https://medium.com/celoorg/celo-sets-sights-
on-becoming-fastest-evm-chain-through-collaboration-with-mysten-labs-
e88b426aeed3.

[15] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. 2020. Single
secret leader election. In Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies. 12-24.

[16] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130-143.

[17] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.

[18] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance
and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (nov 2002), 398-461.
https://doi.org/10.1145/571637.571640

[19] Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel Hitz,
Peter Miiller, and Adrian Perrig. 2022. The Complete Guide to SCION. From
Design Principles to Formal Verification. Springer International Publishing AG.
https://link.springer.com/book/10.1007/978-3-031-05288-0

[20

[21

[22]
(23]

[24]

@
=

[37

[39

[40]

[41

[43

[44

Catalin Cimpanu. 2021. Belgium’s government network goes down after massive
DDoS attack. https://archive.ph/vZ50e. [Archived: 2023-04-25].

Cision. 2022. Sommelier Partners with Mysten Labs to make the Cosmos
blockchain the fastest on the planet. https://www.prnewswire.com/news-
releases/sommelier-partners-with-mysten-labs-to-make-the-cosmos-
blockchain-the-fastest-on-the-planet-301381122.html.

CloudFlare. 2022. Comprehensive DDoS protection. https://www.cloudflare.
com/ddos/.

Cloudflare. 2022. Comprehensive DDoS protections. https://www.cloudflare.
com/en-gb/ddos/.

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT
consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems. 34-50.

Diem. 2021. Welcome to the Diem project. http://diem.com.

W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Transac-
tions on Information Theory 22, 6 (1976), 644-654. https://doi.org/10.1109/TIT.
1976.1055638

Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and H. Raymond
Strong. 1982. An efficient algorithm for byzantine agreement without authentica-
tion. Information and Control 52,3 (1982), 257-274. https://doi.org/10.1016/S0019-
9958(82)90776-8

Justin Drake. 2019. Low-overhead secret single-leader election. https://ethresear.
ch/t/low-overhead-secret-single-leader-election/5994.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288-323.
Ittay Eyal and Emin Giin Sirer. 2018. Majority is Not Enough: Bitcoin Mining is
Vulnerable. Commun. ACM 61, 7 (jun 2018), 95-102. https://doi.org/10.1145/
3212998

SK. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. 2015. Bohatei: Flexible and elastic
DDoS defense. USENIX Security Symposium (2015), 817-832.

Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path TCP
Exploits of the Mixed IPID Assignment. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA) (CCS
’20). Association for Computing Machinery, New York, NY, USA, 1323-1335.
https://doi.org/10.1145/3372297.3417884

Xuewei Feng, Qi Li, Kun Sun, Chuanpu Fu, and Ke Xu. 2022. Off-Path TCP Hijack-
ing Attacks via the Side Channel of Downgraded IPID. IEEE/ACM Transactions
on Networking 30, 1 (2022), 409-422. https://doi.org/10.1109/TNET.2021.3115517
Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of
Distributed Consensus with One Faulty Process. . ACM 32, 2 (1985), 374-382.
Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. 2021. Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. arXiv preprint arXiv:2106.10362 (2021).

Arthur Gervais, Ghassan O. Karame, Karl Wiist, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the Security and Performance of Proof
of Work Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 3-16. https://doi.org/10.1145/
2976749.2978341

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51-68.

Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Goberman. 2016. CDN-ondemand:
An affordable DDoS defense via untrusted clouds. Network and Distributed
System Security Symposium - NDSS (2016), 1-15.

Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Bullshark: Dag bft protocols made practical. arXiv preprint
arXiv:2201.05677 (2022).

Giacomo Giuliari, Dominik Roos, Marc Wyss, Juan Angel Garcia-Pardo, Markus
Legner, and Adrian Perrig. 2021. Colibri: A Cooperative Lightweight Inter-
domain Bandwidth-Reservation Infrastructure. In International Conference on
emerging Networking EXperiments and Technologies (CONEXT ’21). https://doi.
org/10.1145/3485983.3494871

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse
Attacks on Bitcoin’s Peer-to-Peer Network. In 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association, Washington, D.C., 129—
144. https://www.usenix.org/conference/usenixsecurity15/technical- sessions/
presentation/heilman

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
2021. All You Need is DAG. In Proceedings of the 2021 ACM Symposium on Princi-
ples of Distributed Computing (PODC’21). Association for Computing Machinery.
https://doi.org/10.1145/3465084.3467905

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
international cryptology conference. Springer, 357-388.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance

https://aws.amazon.com/shield/
https://doi.org/10.1145/972374.972382
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://aptoslabs.com
https://aptoslabs.com
https://medium.com/celoorg/celo-sets-sights-on-becoming-fastest-evm-chain-through-collaboration-with-mysten-labs-e88b426aee83
https://medium.com/celoorg/celo-sets-sights-on-becoming-fastest-evm-chain-through-collaboration-with-mysten-labs-e88b426aee83
https://medium.com/celoorg/celo-sets-sights-on-becoming-fastest-evm-chain-through-collaboration-with-mysten-labs-e88b426aee83
https://doi.org/10.1145/571637.571640
https://link.springer.com/book/10.1007/978-3-031-05288-0
https://archive.ph/vZ5Oe
https://www.prnewswire.com/news-releases/sommelier-partners-with-mysten-labs-to-make-the-cosmos-blockchain-the-fastest-on-the-planet-301381122.html
https://www.prnewswire.com/news-releases/sommelier-partners-with-mysten-labs-to-make-the-cosmos-blockchain-the-fastest-on-the-planet-301381122.html
https://www.prnewswire.com/news-releases/sommelier-partners-with-mysten-labs-to-make-the-cosmos-blockchain-the-fastest-on-the-planet-301381122.html
https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://www.cloudflare.com/en-gb/ddos/
https://www.cloudflare.com/en-gb/ddos/
http://diem.com
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/S0019-9958(82)90776-8
https://doi.org/10.1016/S0019-9958(82)90776-8
https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://ethresear.ch/t/low-overhead-secret-single-leader-election/5994
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3372297.3417884
https://doi.org/10.1109/TNET.2021.3115517
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/3485983.3494871
https://doi.org/10.1145/3485983.3494871
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1145/3465084.3467905

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

with Strong Consistency via Collective Signing. CoRR abs/1602.06997 (2016). 031413.00127
arXiv:1602.06997 http://arxiv.org/abs/1602.06997

[45] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Y. Vasserman, and Yongdae Kim.
2017. Be Selfish and Avoid Dilemmas: Fork After Withholding (FAW) Attacks
on Bitcoin. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).
ACM, 195-209. https://doi.org/10.1145/3133956.3134019

[46] Mysten Labs. 2022. Build without Boundaries. https://sui.io.

[47] Mysten Labs. 2022. The Sui Smart Contract Platform. https://github.com/
MystenLabs/sui/blob/main/doc/paper/sui.pdf.

[48] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-Chun Hu.
2017. The Case for In-Network Replay Suppression. In ACM Asia Conference
on Computer and Communications Security (ASIACCS). https://doi.org/10.1145/
3052973.3052988

[49] Benoit Libert, Marc Joye, and Moti Yung. 2016. Born and raised distributively:
Fully distributed non-interactive adaptively-secure threshold signatures with
short shares. Theoretical Computer Science 645 (2016), 1-24.

[50] Z.Liu, H. Jiny, Y.-C. Hu, and M. Bailey. 2016. Middlepolice: Toward enforcing

destination-defined policies in the middle of the internet. ACM Conference on

Computer and Communications Security 24-28-October-2016 (2016), 1268-1279.

https://doi.org/10.1145/2976749.2978306

Mary Maller. 2020. Provable Single Secret Leader Election. https://ethresear.ch/

t/provable-single-secret-leader-election/7971.

[52] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference

on computer and communications security. 31-42.

F Molder, KP Jablonski, B Letcher, MB Hall, CH Tomkins-Tinch, V Sochat, J

Forster, S Lee, SO Twardziok, A Kanitz, A Wilm, M Holtgrewe, S Rahmann, S

Nahnsen, and J Koster. 2021. Sustainable data analysis with Snakemake [version

1; peer review: 1 approved, 1 approved with reservations]. F1000Research 10, 33

(2021). https://doi.org/10.12688/f1000research.29032.1

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review (2008), 21260.

[55] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-

tralized Business Review (2008), 21260.

Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn

Mining: Generalizing Selfish Mining and Combining with an Eclipse Attack.

In 2016 IEEE European Symposium on Security and Privacy (EuroS&P). 305-320.

https://doi.org/10.1109/EuroSP.2016.32

[57] Radware. 2022. Radware’s DefensePro DDoS Protection. https://www.radware.
com/products/defensepro/.

[58] Benjamin Rothenberger, Dominik Roos, Markus Legner, and Adrian Perrig. 2020.
PISKES: Pragmatic Internet-Scale Key-Establishment System. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security (Taipei,
Taiwan) (ASIA CCS °20). Association for Computing Machinery, New York, NY,
USA, 73-86. https://doi.org/10.1145/3320269.3384743

[59] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2015. Optimal Selfish
Mining Strategies in Bitcoin. In Financial Cryptography.

[60] Jared M Smith and Max Schuchard. 2018. Routing Around Congestion: Defeating
DDoS Attacks and Adverse Network Conditions via Reactive BGP Routing. In
IEEE Symposium on Security and Privacy (S&P). https://doi.org/10.1109/sp.2018.
00032

[61] Alberto Sonnino. 2022. 2-Chain Variant of the HotStuff Consensus Protocol.
https://github.com/asonnino/hotstuff.

[62] Alexander Spiegelman, Arik Rinberg, and Dahlia Malkhi. 2021. ACE: Abstract
Consensus Encapsulation for Liveness Boosting of State Machine Replication. In
24th International Conference on Principles of Distributed Systems (OPODIS 2020).
https://doi.org/10.4230/LIPIcs.OPODIS.2020.9

[63] Fabio Streun, Joel Wanner, and Adrian Perrig. 2022. Evaluating Susceptibility of
VPN Implementations to DoS Attacks Using Adversarial Testing. In Proceedings
of the Symposium on Network and Distributed System Security (NDSS). https:
//doi.org/10.14722/ndss.2022.24043

[64] Ahren Studer and Adrian Perrig. 2009. The coremelt attack. In European Sympo-
sium on Research in Computer Security. Springer, 37-52.

[65] Muoi Tran, Min Suk Kang, Hsu-Chun Hsiao, Wei-Hsuan Chiang, Shu-Po Tung,
and Yu-Su Wang. 2019. On the Feasibility of Rerouting-based DDoS Defenses. In
IEEE Symposium on Security and Privacy (S&P). https://doi.org/10.1109/SP.2019.
00055

[66] Gavin Wood. 2022. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. https://ethereum.github.io/yellowpaper/paper.pdf.

[67] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347-356.

[68] S.T. Zargar, J. Joshi, and D. Tipper. 2013. A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Commu-
nications Surveys & Tutorials 15, 4 (2013). https://doi.org/10.1109/SURV.2013.

[51

[53

[54

[56

https://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://doi.org/10.1145/3133956.3134019
https://sui.io
https://github.com/MystenLabs/sui/blob/main/doc/paper/sui.pdf
https://github.com/MystenLabs/sui/blob/main/doc/paper/sui.pdf
https://doi.org/10.1145/3052973.3052988
https://doi.org/10.1145/3052973.3052988
https://doi.org/10.1145/2976749.2978306
https://ethresear.ch/t/provable-single-secret-leader-election/7971
https://ethresear.ch/t/provable-single-secret-leader-election/7971
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.1109/EuroSP.2016.32
https://www.radware.com/products/defensepro/
https://www.radware.com/products/defensepro/
https://doi.org/10.1145/3320269.3384743
https://doi.org/10.1109/sp.2018.00032
https://doi.org/10.1109/sp.2018.00032
https://github.com/asonnino/hotstuff
https://doi.org/10.4230/LIPIcs.OPODIS.2020.9
https://doi.org/10.14722/ndss.2022.24043
https://doi.org/10.14722/ndss.2022.24043
https://doi.org/10.1109/SP.2019.00055
https://doi.org/10.1109/SP.2019.00055
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127

An Empirical Study of Consensus Protocols’ DoS Resilience

~ 307

2

= 25

E % ———m———— T x

20 £\ ®. =

o . /o~

: 15 \\\. -~ :._X*

2 T .

o o

-8 10 I

1] L

£ 5

~ ol - . . ,
8 16 32 64

Committee size
(a) Static leader attack (external adversary).

—~ 407

)

2 2

E 30t e e m = m T T T

S | e e +

———pmemememe e

+ 207

®

8 10 L

o

E

[oL)) ,
8 16 32 64

Committee size

(b) Leader tracking attack (external adversary).

207

15}

10}

Time to last commit (s)

Committee size
(c) Leader tracking attack (internal adversary).

Attackers
— =% 16 32

—e 8

—-—+ 64

Figure 7: Breakdown of the leader-tracking attacks by num-
ber of adversaries.

A Additional Results

We provide here additional results to further help in understanding
the effects of the attacks presented in the paper.

HotStuff Leader-Tracking Attacks. Figure 7 shows the break-
down by adversary size for the static, external, and internal leader-
tracking attacks (---4, = -, and —e respectively in Fig. 2); similarly,
Fig. 8 shows the breakdown by number of targets.

~ 407

w ® ®

= 3

€ 30}

£

o X -

o Te—-—a =

i 20¢ /. T mmmm—m———a x

o e 7/

o /

; 10 ¥ Targets

E —e 2 -—-x8

~ ol . . ,
8 16 32 64

Committee size

(a) Leader tracking attack (external adversary).

~ 207

2 ° Targets

=

€15 / — 2 -—-—%38

E |

(% Do

+— r - ———— L]

g 10 - _ e

[©] X - -

) L -

p 5

£

= ol . . ,
8 16 32 64

Committee size

(b) Leader tracking attack (internal adversary).

Figure 8: Breakdown of the leader-tracking attacks by num-
ber of targets in the committee.

80t
Attacker type
—
60k Internal
— — % External

N
o
«
\
%

Time to last commit (s)
N
o

o

Committee size

Figure 9: Unpredictable leader-tracking attacks.

Types of Unpredictability. As described in §5.4, unpredictabil-
ity in the leader-election procedure can be a mitigation to leader-
tracking attacks. Figure 9 breaks down the results by type of unpre-
dictability.

Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig

3000

2000

Commits

1000

Of====f=ccscccccccnccacannaan

200 300 400 500 600 700
Time (s)

(a) “Tight” threshold (2 Mbps).

25007
2000
1500+

Commits

1000+

500+

P SR, N

200 300 400 500 600 700
Time (s)

(b) “Loose” threshold (10 Mbps)

Figure 10: Effects of the ARL rate-limiting threshold on Hot-
Stuff. With the “loose” rate limit, the internal adversary can induce
a slowdown in the commit rate. The vertical dashed lines represent
the start and end of the attack.

1001 weg

@ 80;

©

= L

E 60

g 40r 1S

E 20 \.

§ \. _
0" 1272 8 1012 16 32

Rate limit (Mbps)

Figure 11: Finding a good rate-limiting threshold. With 8 val-
idators and 8 attacking machines, the adversary needs more than
8 Mbps of aggregate attack traffic towards each target validator to
achieve a loss of liveness.

Rate-limiting Threshold Effects. Setting an incorrect rate-
limit for the ARL system may still allow adversaries to reduce the
consensus protocol’s throughput. This is shown in Fig. 10a. With
the higher (“loose” Fig. 10b) rate limit, the adversary can still force
packet drops and slow down the commit rate.

Finding a good rate-limiting threshold. ?? shows an experi-
ment to determine an appropriate value for the rate-limiting thresh-
old as described in §8.

	Abstract
	1 Introduction
	2 Background
	2.1 HotStuff: Partially-Sync. Consensus
	2.2 Tusk: Asynchronous Consensus
	2.3 Denial of Service

	3 Methodology
	3.1 Threat Model
	3.2 DoS-Resilience Evaluation Pipeline
	3.3 Evaluation Metrics

	4 Attacking HotStuff
	4.1 Attack Vectors
	4.2 Evaluation Setup

	5 HotStuff Attack Results
	5.1 Static-Leader Attacks
	5.2 Fixed-Subset Attacks
	5.3 Leader-Tracking Attacks
	5.4 Unpredictable Leader-tracking Attacks

	6 Attacking Asynchronous Consensus Protocols
	6.1 Tusk Implementation
	6.2 Fixed-subset Attacks on Tusk

	7 Network-Layer Defenses
	7.1 Defense System Requirements
	7.2 Traditional Defenses Are Insufficient
	7.3 Consensus-specific Defenses:Source Authentication and Rate Limiting

	8 Attacking ARL-Protected Consensus
	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Additional Results

