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ABSTRACT

Pilotfish is the first scale-out blockchain execution engine able

to harness any degree of parallelizability existing in its workload.

Pilotfish allows each validator to employ multiple machines, named

ExecutionWorkers, under its control to scale its execution layer.

Given a sufficiently parallelizable and compute-intensive load, the

number of transactions that the validator can execute increases

linearly with the number of ExecutionWorkers at its disposal.

In addition, Pilotfish maintains the consistency of the state, even

when many validators experience simultaneous machine failures.

This is possible due to the meticulous co-design of our crash-

recovery protocol which leverages the existing fault tolerance in

the blockchain’s consensus mechanism.

Finally, Pilotfish can also be seen as the first distributed deter-

ministic execution engine that provides support for dynamic reads,

as transactions are not required to provide a fully accurate read and

write set. This loosening of requirements would normally reduce

the parallelizability available by blocking write-after-write conflicts,

but our novel versioned-queues scheduling algorithm circumvents

this by exploiting the lazy recovery property of Pilotfish, which

only persists consistent state and re-executes any optimistic steps

taken before the crash.

In order to prove our claims we implemented the common path

of Pilotfish with support for the MoveVM and evaluated it against

the parallel execution MoveVM of Sui. Our results show that our

simpler scheduling algorithms outperforms Sui even with a single

execution worker, but more importantly provides linear scalability

up to 4 ExecutionWorkers even for simple asset-transfers and to

any number of ExecutionWorkers for more computationally heavy

workloads.
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1 INTRODUCTION

Lazy blockchains [1, 4, 5, 10, 14, 21, 23, 30, 31, 38] separate the

problems of data dissemination, consensus, and execution. A po-

tentially distributed external [1, 10, 30] or dedicated [5, 14, 31]

subsystem acts as data-dissemination layer to receive clients trans-

actions, persist them as batches of transactions, and disseminate

them to other validators. Each validator contains a single Primary

component running Byzantine agreement to sequence the digests

of these batches. As a result, transaction data may be scattered

across multiple machines (that we call SequencingWorkers) and con-

sensus is only achieved on metadata. This architecture allows lazy

blockchains to sequence transactions extremely efficiently [14] but

considers the retrieval of transactions from the SequencingWorkers

and their execution as open problems [14, 23].

To the best of our knowledge, there exists no execution engine

tackling these problemswithout crippling the system’s performance

and scalability. Existing blockchains’ execution engines are de-

signed to run on a single machine that is expected to hold all the

transaction data required for execution. Thus, when operating on

top of a lazy blockchain, they need to fetch all the data from the

remote SequencingWorkers to collocate them on the executor ma-

chine. This is an extremely expensive operation that defeats one of

the major selling points of lazy blockchains: the separation between

data dissemination and consensus. Furthermore, this execution ma-

chine needs to operate and persist the entire state of the system,

introducing (a) an I/O bottleneck at execution since the state does

not fit in the main memory and (b) a storage bottleneck since most

machines have a couple of drives mounted. As a result, existing

systems fail to handle high throughput in real workloads. They are

essentially monolithic wrappers loading all transactions data and

executing them by calling a virtual machine, such as the Ethereum

virtual machine (EVM) [20] or the Move VM [15]. The EVM is re-

ported to peak at only 20k transactions per second when executing

simple transactions (without JIT) and neglecting the retrieval of

transaction data [9, 35], which also matches our benchmarks of the

MoveVM. These numbers are significantly lower than the through-

put of the underlying blockchain, reaching over 100k even in large

geo-distributed deployments [4, 14, 21, 23].

Pilotfish is the first blockchain execution engine tackling both

the problems of remote data retrieval and distributed execution. It

is specifically designed for lazy blockchains and allows each val-

idator to harness multiple machines under its control to scale its

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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execution layer. These machines are potentially different from the

SequencingWorkers used by lazy blockchains to store and dissemi-

nate transaction data and are named ExecutionWorkers. Specifically,

given a sufficiently parallelizable load, the number of transactions

that the validator can execute with Pilotfish increases linearly with

the number of ExecutionWorkers. Pilotfish achieves this through

state sharding [2, 25, 36]. Each ExecutionWorker handles a subset of

the state, executes only a subset of the transactions, and contributes

its compute andmemory to the overall execution engine. As a result,

for a compute-heavy workload, Pilotfish can scale execution from

2.5k to 20k transactions per second while maintaining the latency

to 50ms by scaling the number of ExecutionWorkers from 1 to 8.

This approach, however, introduces multiple engineering and de-

sign challenges. First (i), Pilotfish requires amechanism to efficiently

fetch transactions from the SequencingWorkers and dispatch them

only to the appropriate ExecutionWorkers. Existing execution en-

gines do not tackle this problem and simply load all transactions

on a single executor machine, thus preventing scalability. Further-

more, since Pilotfish distributes the execution state across multiple

machines, it requires a mechanism to dynamically fetch the data

required for execution. Pilotfish solves these challenges through

a custom protocol that leverages the highly-available commit se-

quence as a ground truth for coordination. Pilotfish is designed to

be used in conjunction with a lazy blockchain, providing it with

the sequence of commits authenticating and dictating a total order

on transaction data.

Secondly (ii), Pilotfish requires an efficient memory-storage inter-

face that tolerates some SequencingWorkers and ExecutionWorkers

crashing and recovering. Existing systems leverage various caching

and MVCC techniques [7] that do not naturally generalize to the

setting in which Pilotfish operates. Pilotfish needs to handle partial

crash-recovery, where each SequencingWorker or ExecutionWorker

may crash and recover at a different pace than the others. Pilotfish

thus needs to maintain enough state among ExecutionWorker as

checkpoints to allow recovering machines to catch up with the rest.

An simple solution would be to resort to expensive internal repli-

cation techniques [28, 32], but Pilotfish goes without it by relying

on the globally available commit sequence that is generated by the

lazy blockchain.

Finally (iii), Pilotfish aims to support a simpler programming

model where the transactions partially specify the input read and

write set (e.g., as required for Move [27]). This, however, creates an

additional challenge for Pilotfish, as objects that might be accessed

dynamically can be located in different ExecutionWorkers, meaning

that we cannot overwrite them until all previous transactions have

finished, effectively reverting back to sequential execution. Thus, in

essence, enforcing write-after-write dependencies to be respected.

Fortunately, we can circumvent this issue by leveraging the fact

that in-memory execution can be lost in the event of crashes. Hence,

we design a novel versioned-queue scheduling algorithm that al-

lows for transactions with write-after-write conflicts to execute

concurrently. We couple this with our crash recovery mechanism,

which enforces only consistent states to persist. As a result, in the

case of a crash, Pilotfish simply needs to redo some computation,

but thanks to the deterministic nature of the blockchain this does

not pose any inconsistency risks.

We evaluate Pilotfish by studying its latency and throughput,

while varying the number of ExecutionWorkers, the computational

intensity, and the degree of contention of the workload. We find

that Pilotfish scales linearly to at least 8 ExecutionWorkers when

the workload is compute-bound, and to 4 ExecutionWorkers when

the workload is not compute-bound. We compare Pilotfish against

a non-scale-out Sui [8] baseline and find that Pilotfish matches or

exceeds the performance of the baseline even when running on a

single machine, and then continues to outperform the baseline by

up to 8× when running on 8 ExecutionWorkers.

Contributions.We make the following contributions:

• We present Pilotfish, the first blockchain execution engine allow-

ing a validator to harness multiple machines under its control to

horizontally scale execution.

• We extend Pilotfish to tolerate ExecutionWorker faults recover

efficiently.

• We show how Pilotfish supports dynamic reads and writes, thus

supporting programming models where the input read and write

set is only partially specified.

• We formally prove the serializability, linearizability, and liveness

of Pilotfish, even in the presence of faults.

• We provide a full implementation of Pilotfish and empirically

demonstrate its scalability through a rigorous evaluation under

varying system loads.

2 BACKGROUND AND DEFINITIONS

Figure 1 illustrates the main components of the Pilotfish execution

engine. Each component may run on a dedicated machine (e.g., rack

servers in a data center) or may be collocated on one or a handful

of machines. Each validator is composed of several Sequencing-

Workers that collect (and potentially persist) the transaction data,

given the commit sequence from the Primary. In a worker-based

lazy blockchain such as Tusk [14], Bullshark [23], Shoal [37] or

any Narwhal-based system [14], these would be the transaction

dissemination workers. Pilotfish innovates by distributing transac-

tion execution on several ExecutionWorkers. Each ExecutionWorker

stores a subset of the state, executes a subset of the transactions,

and contributes its memory and storage to the system.

Pilotfish is specifically designed for lazy blockchains. The Pri-

mary only manages metadata (agreement on a sequence of batch

digests) allowing it to scale to large volumes of batches and transac-

tions [14]. Actual batch storage is distributed amongst a potentially

large number of SequencingWorkers. The key insight regarding the

scaling properties of Pilotfish is that the execution of transactions

can be distributed amongst a large number of ExecutionWorkers.

Pilotfish thus naturally integrates with existing lazy blockchains to

scale horizontally. As the number of workers increases, so does the

capacity to store state and process transactions.

2.1 System Model

Objects and transactions. Pilotfish validators replicate the state

of the system represented as a set of objects. Transactions can read

and write (mutate, create, and delete) objects, and reference every

object by its unique identifier 𝑜𝑖𝑑 . A transaction is an authenticated
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Figure 1: Pilotfish validator’s components. Each validator is composed of

several SequencingWorkers to fetch and persist the client’s transaction, one

Primary to run byzantine agreement onmetadata, and several ExecutionWork-

ers to execute transactions. Each component may run on dedicated machines

or be collocated with other components. Dotted arrows indicate internal mes-

sages exchanged between the components of the validator (localhost or LAN)

and solid arrows indicate messages exchanged with the outside world (WAN).

command that references a set of objects (by their unique identifier

𝑜𝑖𝑑), and an entry function into a smart contract call identifying the

execution code. The transaction divides the objects it references into

two disjoint sets, (i) the read set R referencing input objects that

the transaction may only read, and (ii) the write setW referencing

objects that the transaction maymutate. In most cases, the identifier

𝑜𝑖𝑑 of each object of the read and write sets can be computed

using only the information provided by the transaction, without

the need to execute it or access any object’s data. In these cases,

Pilotfish has complete knowledge of the read and write sets of the

transaction. However, Pilotfish also supports dynamic reads and

writes (Section 5) where the read and write set of the transaction

is discovered only upon attempting to execute the transaction,

adopting the execution model of Sui [8].

Sharding strategy. Pilotfish uses its SequencingWorkers and its

ExecutionWorkers to operate two levels of sharding. (i) Pilotfish

shards transaction data amongst its SequencingWorkers. Transac-

tions batches (and thus clients’ transactions) are assigned to Se-

quencingWorkers deterministically based on their digest. Sequenc-

ingWorker can be seen as architecturally equivalent to the worker

machines used by lazy blockchains to decouple dissemination (per-

formed by workers) from ordering (performed by the Primary). All

transactions of a batch are persisted by the same SequencingWorker.

Each SequencingWorker maintains a key-value store

Batches[BatchId] → Batch

mapping the batch digests BatchId to each batch handled by the Se-

quencingWorker. (ii) Additionally, Pilotfish shards its state amongst

its ExecutionWorkers. Each ExecutionWorker is responsible for a

disjoint subset of the objects in the system (composing the state);

objects are assigned to ExecutionWorkers based on their collision-

resistant identifier 𝑜𝑖𝑑 . Every object in the system is handled by

exactly one (logical) ExecutionWorker.

Data dissemination and consensus.Most lazy blockchains [5, 10,

14, 23] separate the problem of data dissemination from consensus.

This technique allows the Primary to run Byzantine agreement

on very small messages (hashes of transaction batches instead of

the transactions themselves) while dedicated workers constantly

create and share batches in the background. As a result, the data-

dissemination layer scales by adding more workers; Narwhal [14]

discusses that there would need to be around 12,000 workers before

the Primary becomes the bottleneck.

Pilotfish is designed to be integratedwith existing lazy blockchains [1,

5, 10, 14, 19, 31]. Specifically, lazy blockchains accept incoming

transactions from clients, assemble them into batches, and dissem-

inate them to other validators using a variety of machines. Each

validator contains a Primary machine running a BFT consensus

protocol (treated as a black box) with the Primaries of the other

validators. After consensus, the primary of each correct validator

obtains the same sequence of batch digests along with the locations

storing each batch [5, 14, 30]. Furthermore, there exists a proof of

availability [13] for each sequenced batch ensuring that a quorum

of validators stores it and can be fetched by the SequencingWorkers

for execution. This proof of availability may rely on an external

system [3, 5] or can be handled by a dedicated subsystem of the

validator [14, 23]. Pilotfish builds on top of this architecture by

providing a scalable execution layer.

2.2 Threat Model

We assume a message-passing system with a set of validators run-

ning a consensus protocol to totally order clients’ transactions

(solid arrows on Figure 1). Each validator is internally composed

of several machines (connected by dotted arrows in Figure 1) and

each machine is responsible for a shard of the state.

For the first part of the paper we assume that machines cannot

crash-fail. Later in Section 4, we expand each logical shard to have a

set of 𝑛𝑒 = 2𝑓𝑒 + 1 replicas such that as long as for each shard there

are 𝑓𝑒 +1 replicas available the system remains live and safe
1
. In case

this threshold is breached the validator can still synchronize the

stalled shards with the rest of the validators of the lazy blockchain

through a standard recovery procedure [14] that is out of scope.

2.3 Core Properties

Pilotfish guarantees basic serializability, linearizability, and liveness

properties. Intuitively, serializability means that Pilotfish execution

produces the same result as a sequential execution. Linearizability

means that every correct validator receiving the same sequence of

transactions performs the same state transitions. Liveness means

that all correct validators receiving a sequence of transactions even-

tually execute it.

Definition 2.1 (Pilotfish Seriazability). A correct validator exe-

cuting the sequence of transactions [Tx1, . . . , Tx𝑛] holds the same

store Objects as if the transactions were executed sequentially, in

the given order.

1
Note that 𝑓𝑒 here refers to number of validator-internal per shard replicas that may

crash, and may be different from the number of validators in the blockchain that may

be Byzantine (usually denoted by 𝑓 ).
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Definition 2.2 (Pilotfish Linearizability). No two correct validators

that executed the same sequence of transactions [Tx1, . . . , Tx𝑛] have
different stores Objects.

Definition 2.3 (Pilotfish Liveness). All correct validators receiving

the sequence of transactions [Tx1, . . . , Tx𝑛] eventually execute all

the transactions Tx1, . . . , Tx𝑛 .

Section 6 proves that Pilotfish satisfies these properties. Finally,

Pilotfish is horizontally scalable, that is, the number of transac-

tions that a validator can execute increases with the number of

ExecutionWorkers it controls (given a sufficiently parallelizable

workload). We demonstrate this property empirically in Section 8.

3 THE PILOTFISH SYSTEM

We introduce Pilotfish, the first scale-out distributed execution

engine designed for lazy blockchains. Pilotfish is coupled with a

consensus protocol to execute the committed sequence of transac-

tions. Figure 2 illustrates the full transaction life cycle in Pilotfish,

from the moment it is sequenced to when it is executed. The part

of the validator that runs consensus (called the Primary) sends

the committed sequence to all its SequencingWorkers and Exe-

cutionWorkers (➊). This section presents the Pilotfish protocol

through the operations performed by the SequencingWorkers and

ExecutionWorkers at steps ➋, ➌, ➍, and ➎ of Figure 2. Appendix A

presents the full algorithms.

ExecutionWorkers handle their objects by maintaining the fol-

lowing key-value stores:

• Objects[𝑜𝑖𝑑] → 𝑜 making all the objects handled by the Execu-

tionWorker accessible by their unique identifier.

• Pending[𝑜𝑖𝑑] → [(𝑜𝑝, [Tx])] mapping each object to a list of

pending transactions [Tx] referencing 𝑜𝑖𝑑 in their read or write

set and that are awaiting execution. The operation 𝑜𝑝 indicates

whether the transaction may only Read (R) the object or whether
it may alsowrite (W) it. Thismap is used as a ‘locking’mechanism

to track dependencies and determine which transactions can be

executed in parallel. Entries relating to a transaction are removed

from this map after its execution.

• Missing[𝑜𝑖𝑑] → [Tx] mapping objects that are missing from

Objects to the transactions that reference them. It is used to

track transactions that cannot (yet) be executed because they

reference objects that are not yet available. It is cleaned after

execution.

Step ➋ of Figure 2: Dispatch transactions. At a high level, each

SequencingWorker 𝑖 observes the commit sequence and loads from

storage all the batches referenced by the committed sequence that

they hold in their Batches𝑖 store (and ignores the others). The

SequencingWorker then parses each transaction of the batch (in

the order specified by the batch) to determine which objects it

contains. At the end of this process, SequencingWorker 𝑖 composes

one ProposeMessage for each ExecutionWorker 𝑗 of the validator:

ProposeMessage𝑖, 𝑗 ← (BatchId,BatchIdx,𝑇 )
The message contains the batch digest BatchId, an index BatchIdx
uniquely identifying the batch in the global committed sequence

and a list of transactions 𝑇 referencing at least one object handled

by worker 𝑗 . If the batch does not contain any transactions with

objects handled by ExecutionWorker 𝑗 , the list is empty, but the

message must be sent anyway to inform all workers that they can

proceed to the next transaction and provide liveness in the face

of malformed transactions created by malicious clients. The full

algorithm describing how workers handle the committed sequence

is in Algorithm 2 in Appendix A.

Step ➌ of Figure 2: Schedule execution. Each ExecutionWorker

𝑗 waits for a ProposeMessage from each SequencingWorker 𝑖 . They

then parse every transaction Tx included in the message (in the

order specified by the message) and extract all the objects of its

read set R 𝑗 and write setW𝑗 handled by ExecutionWorker 𝑗 (and

ignore the other objects that it does not handle).

Figure 3 illustrates an example snapshot of the Pending𝑗 store

of a validator. ExecutionWorkers append every object of the write

setW𝑗 to their local Pending𝑗 indicating that Tx may mutate 𝑜𝑖𝑑

(Line 15 of Algorithm 3, see Appendix A):

Pending𝑗 [𝑜𝑖𝑑] ← Pending𝑗 [𝑜𝑖𝑑] ∪ (W, Tx)
The position of Tx in the Pending𝑗 indicates that Tx can only write

𝑜𝑖𝑑 after all transactions appended before in Pending𝑗 [𝑜𝑖𝑑] are exe-
cuted, essentially indicating a write-after-write (or write-after-read)

dependency. The full algorithm describing how ExecutionWork-

ers handle a ProposeMessage from the SequencingWorkers and

schedule transactions execution can be found in Algorithm 3 and

Algorithm 4 in Appendix A.

ExecutionWorkers additionally register reads performed by Tx
on an object id by looking at the latest entry in Pending𝑗 [𝑜𝑖𝑑].
If the entry is a write then they append a new entry (Line 18 of

Algorithm 3):

Pending𝑗 [𝑜𝑖𝑑] ← Pending𝑗 [𝑜𝑖𝑑] ∪ (R, Tx)
indicating a read-after-write dependency. However, if the entry is

a read then the transaction Tx may be executed in parallel with

any other transaction Tx′ also reading 𝑜𝑖𝑑 . ExecutionWorkers thus

modify the latest entry of the storage to reflect this possibility by

setting Tx and Tx′ at the same height in the Pending𝑗 store (Line 19

of Algorithm 3):

Pending𝑗 [𝑜𝑖𝑑] [−1] ← (R, [Tx′, Tx])
A transaction Tx is ready to be executed when it reaches the

head of the pending lists of all the objects it references (Line 5

of Algorithm 4). At this point, the ExecutionWorker loads from

its Objects𝑗 store all the objects data it handles (Line 15 of Algo-

rithm 4):

𝑂 𝑗 ← {Objects[𝑜𝑖𝑑] s.t. 𝑜𝑖𝑑 ∈ HandledObjects(Tx)}
It then composes a ReadyMessage for the dedicated Execution-

Worker that was selected to execute Tx:

ReadyMessage𝑗 ← (Tx,𝑂 𝑗 )
The message contains the transaction Tx to execute, and a list of

object data (𝑂 𝑗 ) referenced by the part of the read and write set of

Tx handled by ExecutionWorker 𝑗 .

If an object referenced by Tx is absent from the ExecutionWorker’s

local Objects𝑗 store, the ExecutionWorker waits until it all trans-

actions sequenced before Tx are executed (Line 28 of Algorithm 4,

see Appendix A) and then sends ⊥ instead of the objects data. This
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Figure 2: Pilotfish overview. Every validator runs with 5 machines: one machine running the Primary and 4 machines running workers. Each worker machine

collocates 1 SequencingWorker and 1 ExecutionWorker. The Primary runs a byzantine agreement protocol to sequence batch digests (➊). SequencingWorkers

receive the committed sequence and load the data of the corresponding transactions from their storage (➋). Each ExecutionWorkers receiving these transactions

assigns a lock to each object referenced by the transaction to schedule their execution (➌). A deterministically-elected ExecutionWorker eventually receives the

object’s data referenced by the execution and executes it (➍). Finally, the ExecutionWorker signals all SequencingWorkers to update their state with the results of

the transaction’s execution (➎).
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Figure 3: Example snapshot of the Pending queues of an ExecutionWorker.

Pilotfish schedules the execution of the sequence [Tx1, Tx2, Tx3, Tx4, Tx5 ]. The
ExecutionWorker stores Tx1 as (W, [Tx1 ] ) in the queue of 𝑜𝑖𝑑1 as it only

mutates 𝑜𝑖𝑑1. Tx2 then mutates 𝑜𝑖𝑑1 and writes 𝑜𝑖𝑑3; it is thus store in the

queue of 𝑜𝑖𝑑1 (implicitly taking Tx1 as dependency) and 𝑜𝑖𝑑3. Tx3 schedules a
read for both 𝑜𝑖𝑑1 and 𝑜𝑖𝑑2 and a write for 𝑜𝑖𝑑4. Tx4 reads 𝑜𝑖𝑑2 (it can thus read

𝑜𝑖𝑑2 in parallel with Tx3, registering (R, [Tx3, Tx4 ] ) in the queue of 𝑜𝑖𝑑2) and

𝑜𝑖𝑑3, and writes 𝑜𝑖𝑑4. Finally Tx5 reads 𝑜𝑖𝑑1 (it can thus read 𝑜𝑖𝑑1 in parallel

with Tx3), writes 𝑜𝑖𝑑2 and mutates 𝑜𝑖𝑑3.

signals that Tx is malformed and references non-existent objects

or objects that should have been created but the origin transaction

failed.

Step ➍ of Figure 2: Execute transactions. The ExecutionWorker

receives the first ReadyMessage message, it waits to receive one

ReadyMessage from all other ExecutionWorkers handling at least

one object referenced by Tx (Line 5 of Algorithm 5). At this point,

the set of ReadyMessage provides the ExecutionWorker with the

objects’ data behind all objects referenced by Tx, or ⊥ if an object

is (deterministically) considered unavailable. If all object data are

available (Line 8 of Algorithm 5), the ExecutionWorker simply

executes the transaction in its next available CPU core; otherwise

it aborts the execution of Tx. Executing a transaction produces a

set of objects to mutate or create 𝑂 and a set of object ids to delete

𝐼 (Line 9 of Algorithm 5):

(𝑂, 𝐼 ) ← exec(Tx,𝑂′)

The ExecutionWorker then prepares a ResultMessage for all Exe-
cutionWorkers. For the ExecutionWorkers whose objects are not

affected by Tx this serves as a heartbeat message whereas for those

whose objects are mutated, created or deleted by the transaction

execution it informs them to update their object store Objects ac-

cordingly. If the ExecutionWorker aborts the execution of Tx, it
simply sends a ResultMessage to with the transaction Tx and empty

sets 𝑂 and 𝐼 to all ExecutionWorkers (Line 7 of Algorithm 5). Algo-

rithm 5 in Appendix A describes how ExecutionWorkers handles a

ReadyMessage and execute scheduled transactions.

Step ➎ of Figure 2: Handle results. Finally, when an Execution-

Worker receives a ResultMessage, it performs the following opera-

tions. If the message includes some mutated objects it (i) persists

locally the fact that the transaction has been executed by advancing

a watermark of keeping track of all executed transactions (Line 3 of

Algorithm 6, see Appendix A); (ii) updates each object into its local

Objects store including deletions (Line 4 of Algorithm 6); and (iii)

removes all occurrences of the transaction from its Pending store

(Line 14 of Algorithm 6). It then tries to trigger the execution of

the next transactions in the queues (Line 15 of Algorithm 6). Algo-

rithm 6 of Appendix A describes how ExecutionWorkers handle a

ResultMessage from the ExecutionWorkers and modify their store

to reflect the effects of the transaction’s execution.

4 CRASH FAULT TOLERANCE

Section 3 presented the design of Pilotfish assuming all data struc-

tures are held inmemory. However, after long running times, critical

components of the validator inevitably wear out and fail. We thus

adapt Pilotfish to follow a simple replication architecture, allowing

the validator to dedicate multiple machines to each Execution-

Worker. This replication is internal to each validator and allows it

to continue its operation despite crash faults.

Pilotfish does not replicate the Primary as it only performs light-

weight operations (it does not heavily utilize its CPU, network,

or storage) and holds the critical validator’s signing key used for

consensus. Similarly, it does not replicate SequencingWorkers as
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Figure 4: Replication scheme for ExecutionWorkers. The object store is parti-

tioned into shards, and each shard is replicated 𝑛𝑒 -folds. Each row represents

a cluster, and ExecutionWorkers within a cluster coordinate to process trans-

actions. During normal operation, the only communication between clusters

is the sending of CheckpointedMessage, as shown by the dashed arrows.

their work is stateless (assuming a distributed data storage) and

idempotent; if one crashes, we can simply boot a new machine that

takes over from the latest persisted sequence number.

This section describes the general protocol and Appendix C

provides detailed algorithms and security proofs.

4.1 Internal Replication

Figure 4 illustrates the replication strategy of Pilotfish. Each Exe-

cutionWorker is replaced by 𝑛𝑒 ExecutionWorkers replicating its

operations. Pilotfish operates despite the crash faults of 𝑓𝑒 out of

𝑛𝑒 = 2𝑓𝑒 + 1 ExecutionWorkers. We logically arrange Execution-

Worker replicas in a grid, where each column contains replicas of

a shard. Each row in the grid, which contains exactly one other

worker from each shard, forms a cluster. Under normal operation, a

worker serves reads to and receives reads from its cluster peers to

process transactions, and each cluster holds a consistent view of

the object store.

The naive way to achieve such reliability would be to run a black-

box replication engine like Paxos [28] which is also the proposal of

the state-of-the-art [42]. Pilotfish however greatly simplifies this

process by leveraging (i) the Primary as a coordinator between the

workers’ replicas, (ii) external validators holding the blockchains

state and the commit sequence, and (iii) the fact that execution is

deterministic (given the commit sequence).

For the replication protocol, ExecutionWorkers maintains the fol-

lowing network connections: (i) a constant set of peers, containing
the identifier for every worker in its cluster. Workers in each cluster

have the same peers set; (ii) a dynamic set of read-to, containing

the additional identifiers with whom the worker is temporarily

serving reads to; and (iii) a dynamic set of read-from, containing

the additional identifiers with whom the worker is receiving reads

from. The protocol maintains that read-from and read-to relations

are symmetric — Worker 𝑎 is in worker 𝑏’s read-from set if and

only if worker 𝑏 is in 𝑎’s read-to set. Finally, we assume the use of

an eventually strong failure detector [11].

100 200 300 3700

transactions

checkpoint checkpoint checkpoint

not yet
checkpointed

buffered messages

Figure 5: Example of a snapshot of the local state at an ExecutionWorker. It

checkpoints its Objects store after every 100 transactions and keeps a buffer

of outgoing ReadyMessage.

4.2 Normal Operation

During normal operation, ExecutionWorkers within each cluster

run the same protocol as in the un-replicated case. They do not

communicate with workers in other clusters besides transmitting

some additional checkpoint information (detailed below).

ExecutionWorkers maintain the following additional state, allow-

ing two internal recovery flows (Section 4.3). First, they maintain

a buffer of outgoing ReadyMessage messages, which is a set of

ReadyMessage messages that the worker has served to its peers.

This tracks the reads served by this worker and allows a prompt

recovery in the case of lost messages or transient failures. Second,

they maintain a set of checkpoints, which are consistent snapshots

of the object store that the worker has persisted to disk. The worker

maintains a copy-on-write version of the object store, and check-

points are the only persistent state that the worker maintains.

Dealing with finite memory. The number of checkpoints and

buffered messages held by an ExecutionWorker cannot grow indef-

initely. Hence, we introduce a garbage collection mechanism that

deprecates old checkpoints. When an ExecutionWorker completes

a checkpoint, it broadcasts a message

CheckpointedMessage← (𝑠ℎ𝑎𝑟𝑑, TxIdx)

to every other ExecutionWorker in every shard, indicating that an

ExecutionWorker of shard 𝑠ℎ𝑎𝑟𝑑 successfully persisted a checkpoint

immediately after executing TxIdx.
An ExecutionWorker deems a checkpoint at TxIdx as stable after

receiving a quorum of 𝑓𝑒 + 1 CheckpointedMessage2 from each

shard. When a worker learns that a checkpoint is stable, it deletes

all checkpoints and buffered messages prior to that checkpoint.

This is detailed in Algorithm 1, and illustrated by Figure 6.

Bounding strategy. To avoid exhausting resources, each Execu-

tionWorker also holds a bounded number 𝑐 of checkpoints at any

time. This number dictates how far ExecutionWorkers are allowed

to diverge in terms of their rate of execution; the fastest cluster

2
Quorum sizes can be varied to optimize between normal case disk-usage and recover-

ability during failure, similar to Flexible Paxos [24].
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Figure 6: Example of a snapshot of the local state at an ExecutionWorker. It

has received a quorum of CheckpointedMessagemessages from each shard

for the transaction at checkpoint 1. Hence, checkpoint 1 is stable, and the

worker safely deletes checkpoints and buffers before it.

Algorithm 1 Process CheckpointedMessage

1: C← {} ⊲ Maps TxIdx to checkpoint blob

2: S← {} ⊲ Maps TxIdx to set of sent ReadyMessage
3: R← 0 ⊲ Counts the received CheckpointedMessage

4: procedure ProcessCheckpointed(CheckpointedMessage)
5: (𝑠ℎ𝑎𝑟𝑑, TxIdx) ← CheckpointedMessage
6: R[ (𝑠ℎ𝑎𝑟𝑑, TxIdx) ] ← R[ (𝑠ℎ𝑎𝑟𝑑, TxIdx) ] + 1
7: if R[ (𝑠ℎ𝑎𝑟𝑑, TxIdx) ] ≥ 𝑓𝑒 + 1 then
8: for 𝑖 ← 0; 𝑖 < TxIdx; 𝑖 ← 𝑖 + 1 do
9: Delete C[i]
10: Delete S[i]
11: Delete R[ (∗, TxIdx) ]

can be ahead of the slowest cluster in its quorum by up to 𝑐 − 1

checkpoints
3
.

A worker pauses processing when creating a new checkpoint,

which will exceed 𝑐 . This may be a symptom of failures in the

system, e.g., many slow or failed workers or network issues. Hence,

pausing provides backpressure to fast replicas in order for stragglers

to catch up. Figure 7 illustrates this mechanism in a system with

three clusters and 𝑐 = 2. Each worker of each cluster holds a stable

checkpoint at boundary 1. Clusters 1 and 2 are slow and have yet

to reach checkpoint boundary 2. Cluster 3 is fast and hence may

execute beyond checkpoint boundary 2, while maintaining a second

(non-stable) checkpoint at boundary 2. However, because workers

are limited to storing two checkpoints, workers in cluster 3 are

blocked from executing past boundary 3 before (i) their checkpoint

at boundary 2 is established as stable and (ii) their checkpoint 1 is

garbage-collected.

By default, we set 𝑐 = 2 as a good trade-off between performance

and storage/memory costs. With a limit of two checkpoints, a fast

cluster can execute past a second checkpoint without waiting for

a quorum. As such, different clusters are allowed to progress at

different speeds without blocking, as long as they stay within one

checkpoint. The system then progresses, most of the time, at the

speed of the fastest cluster.

3
Note that ExecutionWorkers within a cluster are always tightly coupled due to the

quorum definition, and can never be apart by 1 or more checkpoints

not yet
checkpointed

not yet
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not yet
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checkpoint
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checkpoint
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checkpoint
boundary 3

cluster 1
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cluster 3

Figure 7: Consider a system with three clusters, and with each Execution-

Worker allowed to hold up to 𝑐 = 2 checkpoints. This snapshot of the clusters’

progress shows that ExecutionWorkers in each cluster have a stable checkpoint

at boundary 1. Cluster 3 is fast and hence may execute beyond checkpoint

boundary 2 while maintaining a second (non-stable) checkpoint at boundary

2. However, it is not permitted to create a checkpoint at boundary 3 or execute

past it before it learns that boundary 2 is stable.

4.3 Failure Recovery

Pilotfish provides two recovery mechanisms: (i) reconfiguration,

which is a fast recovery mechanism that does not impact the sys-

tem’s throughput but only works when clusters are roughly syn-

chronized, and (ii) checkpoint synchronization, which is a slower

recovery mechanism that requires a synchronization protocol be-

tween clusters. If both recoveries fail, then the system can still

recover from other validators.

Recovery through reconfiguration. When an ExecutionWorker

fails, other workers in its cluster or read-to set may not be able to

execute transactions, as they may no longer be served the neces-

sary reads. To restore transaction processing, these workers trigger

the reconfiguration illustrated by Figure 8. In order to detect these

crashes, we assume the existence of a failure detector [11] with

strong completeness. Ideally, we would use an eventually perfect

failure detector, but an eventually strong one suffices for liveness

(but might cause worse load-balancing on some ExecutionWorkers).

The crux of recovery is as follows: When a worker detects a

failure, it tries to find another worker to get the reads previously

managed by the failed worker. In the normal case, this takes two

round trips: one trip to find an appropriate read-from member

and another to establish the relationship with that new member.

Meanwhile, all other clusters except the one with the failed worker

operate as normal. Hence, there is no loss of throughput when

failures are within the tolerated threshold. We defer the details of

the recovery algorithm to Appendix C.

Recovery through checkpoints synchronization. The recovery

through reconfiguration may fail when the recovering worker finds

itself slow after the first round trip. It then needs to perform a

checkpoint synchronization procedure before retrying recovery. This

synchronization is necessary as there may no longer be clusters

with sufficiently old buffers for the recovering worker to continue

execution through the normal recovery procedure.
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Figure 8: Failure recovery. Suppose EW𝑠,1 crashes. As a result, EW𝑡,1 cannot

receive reads of shard 𝑠 from EW𝑠,1. After EW𝑡,1 performs recovery, it estab-

lishes a new read relationship with another replica of shard 𝑠 , in this case

EW𝑠,2, as illustrated by the dashed arrow. EW𝑡,1 is now in EW𝑠,2’s read-to set,

and correspondingly, EW𝑠,2 is in EW𝑡,1’s read-from set. Otherwise, cluster 2

operates as usual, as represented by the solid arrow.

The gist of the synchronization procedure is as follows:. (i) The

worker instructs every peer to perform synchronization; (ii) any

node in the slow worker’s read-to set is instructed to itself perform

recovery; (iii) the worker then downloads the latest checkpoints

from another replica and waits for every peer to sync to the same

state; and (iv) the worker finds replacements for any missing mem-

bers in its cluster by running the reconfiguration again. We defer

the details of the synchronization algorithm to Appendix C.

The synchronization protocol’s pivotal aspect lies in its ability

to activate synchronization and recovery across all clusters that

transitively rely on a slow worker for reads. This occurs because the

clusters, which were dependent on the slow worker for their reads,

may exhibit lag as well. If the slow worker were to unilaterally

fast-forward its state, these clusters could potentially lose liveness.

Disaster recovery. In case of a disaster that affects all Execution-

Workers of a cluster and the threat model of Section 2.2 doesn’t

hold, the cluster can be recovered by booting a new cluster with

the same peers set. The new cluster will then be able to recover the

state of the cluster from the other validators of the blockchain. This

is possible because the system state is replicated across multiple

validators, of which at least half are honest. The new cluster can

then download the latest stable checkpoint from the other valida-

tors and use it to perform a recovery through checkpoints. This

recovery is slow as it requires WAN communications, but it is only

used in extreme circumstances, and its existence allows Pilotfish to

be reasonably configured with low replication factors (e.g., 𝑓𝑒 = 1).

5 DYNAMIC READS ANDWRITES

Within the majority of deterministic execution engines [17, 34, 40,

42], transactions explicitly define the complete set of data they read

from and write to. However, this constraint poses limitations on

developers and encourages the over-prediction of sets to ensure

successful execution. In distributed execution, the problem is exac-

erbated as we need to transmit the data between ExecutionWorkers.

This means that we might need to transmit large read-sets between

computers in order to access a single item (e.g., transfer a full array

to dynamically access one cell).

Within Pilotfish, we support dynamic reading and writing oper-

ations, but we limit them to the hierarchical relationship between

parent and child objects. A child object is an object that is owned

by another object, known as the parent object. In that case, the

child object may only be used if the root object (the initial one

in a hierarchy of potentially numerous parents) is included in the

transaction and the transaction is granted permission to access the

parent. A classic parent-child relationship is that of the parent being

the array object and the children being individual cells, dynamically

allocated as the array grows. Consequently, transactions in Pilotfish

are not prone to overpredictions since they can effectively manage

mispredictions by implementing a few fundamental algorithmic

modifications.

One of the required modifications is to retain the reads in the

queues until the transaction execution is completed. However, this

leads to a loss of parallelism since we are unable to write a new

version of an object until all transactions reading the previous ver-

sion have finished. We resolve this false sharing situation without

bloating memory usage in two ways. First, we treat every version of

an object as a new object; this means that the queues in Figure 3 are

per (𝑜𝑖𝑑,Version) instead of per 𝑜𝑖𝑑 . Therefore, each queue consists

of a single write as the initial transaction, followed by potentially

several reads. This resolves the false sharing as future versions of

an object initialize new queues and can proceed independently of

whether the previous version is still locked because of a dynamic

read operation. Unfortunately, this leads to objects potentially be-

ing written out of order, which could pollute our state and make

consistent recovery from crashes impossible. For this reason, our

second modification is buffering writes so that they are written

to disk in order by leveraging the crash-recover algorithm in Sec-

tion 4. Appendix D provides further details on how we handle child

objects, complete algorithms, and formal proofs.

Algorithm modifications. Pilotfish handles the state of child

objects like any other object. That is, child objects are assigned to

ExecutionWorkers that maintain a pending queue to schedule their

transactions’ execution.

The ExecutionWorkers schedule the execution of root objects as

usual after processing a ProposeMessage (Algorithm 3) by updating

the queues of all the objects that the transaction directly references.

This means that they update the queues of (potentially) root objects

as well as the queues of (potentially currently undefined) child ob-

jects. The security of this process is ensured by following the same

procedure as for object creation. Hence, the ExecutionWorker will

either create these objects or garbage-collect them. Finally, when

the transaction is ready for execution, either a previous transaction

would have transferred ownership of child objects to the parent or

the transaction would abort at execution.

Upon processing a ReadyMessage (Algorithm 5), the Execution-

Worker attempts to execute the transaction. Upon discovering the

need to access a child object in order to proceed with execution, it

halts. Subsequently, it generates an UpdateProposeExec message

containing an augmented transaction Tx+. An augmented transac-

tion includes the typical information found in a traditional trans-

action, but it also includes the specific identification of each child

object that the transaction is known to access, which is added to

its read and write sets. This UpdateProposeExec message is sent to
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shards handling one of the (newly discovered) child objects. This

is safe, as to access the child, the parent should already be locked

by the transaction. Therefore, there is an implicit lock on the child,

which is just unknown to the shard handling the child. Furthermore,

in the event that the transaction has not yet been completed, any

subsequent write on the parent will result in both versions being

stored in distinct queues, effectively implementing an on-demand

multi-versioned concurrency control system.

When the ExecutionWorker receives a UpdateProposeExecmes-

sage with Tx+, it substitutes any instance of Tx in its queues with

Tx+ (typically, there is only one instance of Tx+ in the queues). Addi-
tionally, it appends Tx+ to the queue of any child object referenced

by the transaction.

Once Tx+ reaches the front of the queues for all objects in its

write set, regardless of whether they are child objects or not, the

transaction is ready for another execution attempt. Eventually, the

protocol identifies every child object that the transaction dynami-

cally accesses, and Tx+ contains their explicit ids. At this point, the

transaction can finally be executed.

6 SECURITY ARUGMENTS

We provide an intuition that Pilotfish satisfies the properties of

Section 2.3. Appendices B, C.2 and D.2 provide formal proofs.

6.1 Security of the Base Pilotfish Protocol

We informally argue the security of the base Pilotfish protocol

presented in Section 3. The full proof can be found in Appendix B.

Serializability. Intuitively, this property states that Pilotfish ex-

ecutes transactions in a way that is equivalent to the sequential

execution of the transactions, as it comes from consensus (Defini-

tion B.1 of Appendix B). The proof leverages the following argu-

ments: (i) Pilotfish builds the pending queues Pending by satisfying

the transaction dependencies dictated by the consensus protocol

(i.e., the sequential schedule), (ii) Pilotfish accesses objects in the

same order as the sequential schedule, and (iii) Pilotfish executes

transactions in the same order as the sequential schedule.

Linearizability.We argue that Pilotfish satisfies the linearizability

property (Definition 2.2 of Section 2.3). Intuitively, this property

ensures that all correct validators have the same object state after

executing the same sequence of transactions. The proof follows

from the following arguments: (i) all correct Pilotfish validators

build the same dependency graph given the same input sequence of

transactions; (ii) individual transaction execution is a deterministic

process (Assumption 1); (iii) transactions explicitly reference their

entire read and write set (Assumption 2); and (iv) all validators

executing the same transactions obtain the same state.

Liveness. We argue that Pilotfish satisfies the liveness property

(Definition 2.3 of Section 2.1). Intuitively, this property guarantees

that valid transactions (Definition B.12) are eventually executed.

The proof argues that (i) all transactions are eventually processed

(Definition B.13, see Appendix B), and (ii) among those transactions,

valid ones are not aborted.

6.2 Modifications for Crash Recovery

We modify the above arguments to show that Pilotfish satisfies the

security properties defined in Section 3 despite the crash-failure of

𝑓𝑒 out of 2𝑓𝑒 + 1 ExecutionWorkers in all shards.

Serializability and Linearizability. Appendix C.2 argues both

the serializability and linearizability of the protocol by showing that

ExecutionWorkers process the same input transactions regardless

of crash faults. That is, no ExecutionWorker skips the process-

ing of an input transaction or processes a transaction twice. The

proof follows from the following observations: (i) ExecutionWork-

ers persist watermarks of the last transaction they successfully

executed (as specified by the serial schedule). These watermarks,

together with the knowledge of the commit sequence, prevent them

from re-executing old transactions upon recovery. (ii) Appendix C.2

shows that there always exists at least one correct ExecutionWorker

holding enough information to allow crash-recovering Execution-

Workers to synchronize. This information either takes the form of

checkpoints or buffered messages (see Section 4).

Livness. The liveness argument relies on the completeness of an

eventually strong failure detector [12]. Intuitively, a correct Ex-

ecutionWorker 𝑤 eventually detects the failure of a peer 𝑥 , and

performs the recovery procedure (Line 5 of Algorithm 7, see Ap-

pendix C.1) to find another correct ExecutionWorker of shard 𝑠

to replace 𝑥 .Appendix C.2 thus argues the liveness property by

showing that the recovery procedure presented at Line 5 of Algo-

rithm 7 eventually succeeds. The protocol then resumes normal

operation, and the liveness of the system follows from the liveness

of the normal operation protocol (Section 6.1).

6.3 Modifications to Support Dynamic Objects

We finally show that the algorithm modifications described in Sec-

tion 5 and appendix D.1 do not break the serializability, lineariz-

ability, and liveness properties defined in Section 2.3.

Serializability and linearizability. The main proof modifications

arise from the fact that Assumption 2 (Appendix B) is not guaran-

teed in the modified dynamic reads and writes algorithm. That is,

transactions do not always entirely specify their read and write

sets. Intuitively, Pilotfish prevents the processing of conflicting

transactions until all dynamic objects are discovered. This limits

concurrency further than the base algorithms presented in Ap-

pendix A but Appendix D.3 shows how to alleviate this issue by

indexing the queues Pending[·] with versioned objects, that is,

tuples of (𝑜𝑖𝑑, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛), rather than only object ids.

Liveness. Lemma B.18 of Appendix B assumes that all calls to

𝑒𝑥𝑒𝑐 (Tx, ·) are infallible. However, supporting dynamic objects re-

quires us to modify Algorithm 5 as indicated in Algorithm 11 and

make the call 𝑒𝑥𝑒𝑐 (Tx,𝑂) fallible. Appendix D.2 proves that this

change does not compromise liveness since all dynamically accessed

objects are eventually discovered, and thus all calls to 𝑒𝑥𝑒𝑐 (Tx, ·)
eventually succeed.
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7 IMPLEMENTATION

We implement a networked multi-core Pilotfish execution engine

in Rust on top of the Sui blockchain [26]. As a result, our imple-

mentation supports Sui-Move [27]. We made this choice because

Sui-Move is a simple and expressive language that is easy to reason

about, provides a well-documented transaction format explicitly

exposing the input read and write set, and supports dynamic reads

and writes. Our implementation uses tokio4 for asynchronous

networking across the Pilotfish workers, utilizing low-level TCP

sockets for communication without relying on any RPC frame-

works. While all network communications in our implementation

are asynchronous, the core logic of the execution worker runs syn-

chronously in a dedicated thread. This approach facilitates rigorous

testing, mitigates race conditions, and allows for targeted profiling

of this critical code path. In addition to regular unit tests, we created

a command-line utility (called orchestrator) designed to deploy real-

world clusters of Pilotfish with workers distributed across multiple

machines. The orchestrator has been instrumental in pinpointing

and addressing efficiency bottlenecks. We are open-sourcing our

Pilotfish implementation along with its orchestration utilities
5
.

8 EVALUATION

We evaluate the throughput and latency of Pilotfish through ex-

periments on Amazon Web Services (AWS) to show that given a

sufficiently parallelizable compute-bound load, the throughput of

Pilotfish linearly increases with the number of ExecutionWork-

ers without visibly impacting latency. In order to investigate the

spectrum of Pilotfish, we (a) run with transactions of increasing

computational load and (b) create a contented workload that is

not ideal for Pilotfish as it (i) increases the amount of communica-

tion among ExecutionWorkers and (ii) might increase the queuing

delays in order to unblock later transactions. We then show the

performance improvements of Pilotfish over the baseline execution

engine of Sui [26].

8.1 Experimental Setup

We deploy Pilotfish on AWS, using m5d.8xlarge within a single

datacenter (us-west-1). Each machine provides 10 Gbps of band-

width, 32 virtual CPUs (16 physical cores) on a 2.5GHz, Intel Xeon

Platinum 8175, 128GBmemory, and runs Linux Ubuntu server 22.04.

We select these machines because they provide decent performance,

and are in the price range of ‘commodity servers’.

In all graphs, each data point representsmedian latency/throughput

over a 5-minute run.We instantiate one benchmark client collocated

with each SequencingWorker submitting transactions at a fixed rate

for a duration of 5 minutes. We experimentally increase the load

of transactions sent to the systems, and record the throughput and

latency of executed transactions. As a result, all plots illustrate

the ‘steady state’ latency of all systems under low load, as well

as the maximal throughput they can serve, after which latency

grows quickly. We vary the types of transactions throughout the

benchmark to experiment with different contention patterns.

4
https://tokio.rs

5
https://github.com/mystenlabs/sui/tree/sharded-execution (commit cad6b94)
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Figure 9: Pilotfish latency vs. throughput with simple transfers.
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Figure 10: Pilotfish scalability with simple transfers.

When referring to latency, we mean the time elapsed from when

the client submits the transaction to when the transaction is ex-

ecuted. When referring to throughput, we mean the number of

executed transactions over the entire duration of the run.

8.2 Simple Transfer Workload

In this workload, each transaction is a simple transfer of coins from

one object to another. We generate the transactions such that no

two transactions conflict; each transaction operates on a different

set of objects from the other transactions. Thus, this workload is

completely parallelizable. Figure 9 shows latency vs throughput of

Pilotfish on this workload with 1, 2, 4 and 8 ExecutionWorkers, and

Figure 10 shows how Pilotfish’s maximum throughput scales when

varying the number of ExecutionWorkers. Figure 10 includes as

baseline the throughput of the Sui execution engine
6
.

We observe that in all but one case, Pilotfish maintains a 20ms

latency envelope for this workload. Note that latency exhibits a

linear increase as the workload grows for a single execution worker,

primarily because of the effects of transaction queuing. More specif-

ically, we see that a single machine does not have enough cores

to fully exploit the parallelism of the workload, so some transac-

tions have to wait to get scheduled. This effect no longer exists

for higher numbers of ExecutionWorkers, illustrating that adding

more hardware has a beneficial effect on service time.

6
We obtain the baseline by running Sui’s single node benchmark with the

with-tx-manager option.

https://tokio.rs
https://github.com/mystenlabs/sui/tree/sharded-execution
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Pilotfish scales up to around 45𝑘 transactions per second. In

contrast, the Sui baseline can only process around 20𝑘 tx/s as it

cannot take advantage of the additional hardware. Pilotfish thus

exhibits a 2× throughput improvement over the baseline.

Pilotfish’s scalability is linear until 4 ExecutionWorkers, but this

trend is not maintained for 8 ExecutionWorkers: this indicates that

at 4 ExecutionWorkers, the system is no longer compute-bound,

and thus adding more resources no longer improves performance

proportionally. Section 8.3 illustrates the advantages of increasing

the number of ExecutionWorkers further when the workload is

compute-bound.

8.3 Computationally-Heavy Workload

We study the scenario when the workload remains compute-bound

even at higher numbers of ExecutionWorkers. In this workload,

transactions are computationally heavy. To achieve this, each trans-

action merges two coins and then iteratively computes the 𝑋 th

Fibonacci number, where 𝑋 is a configurable parameter. We study

the behavior of Pilotfish for 𝑋 ∈ {2500, 5000, 10000}. This workload
is also perfectly parallel: transactions operate on disjoint sets of

coins and thus do not conflict. Figure 11 and Figure 12 show the re-

sults: latency vs throughput and throughput scalability of Pilotfish,

respectively. Figure 12 includes the behavior of Sui on the same

workloads, as a baseline.

As expected the performance of Pilotfish is on par with the Sui

baseline for all three computation intensities when running on a

single ExecutionWorker. However, when computing resources are

the bottleneck, Pilotfish scales linearly as more resources are added

to the system. As a result, Pilotfish can process 20k, 10k, and 5k

tx/s when setting 𝑋 = 2500, 𝑋 = 5000, and 𝑋 = 10000, respectively,

while maintaining the latency at around 50 ms. In contrast, the

throughput of the baseline execution engine of Sui remains set to

a maximum of 2,5k, 1k, and 500 tx/s (with respectively 𝑋 = 2500,

𝑋 = 5000, and 𝑋 = 10000) as it is unable to take advantage of the

additional hardware. As a result, Pilotfish can process about 10x

more transactions than the Sui baseline.

8.4 Contended Workload

In this workload, we study the behavior of Pilotfish when the work-

load is no longer perfectly parallelizable. To achieve this, we intro-

duce contention by making transactions operate on non-disjoint

sets of objects. More concretely, in this workload each transac-

tion increments a counter; for each counter, we generate a config-

urable number𝑌 of transactions that increment it. Thus, on average,

each transaction needs to wait behind 𝑌/2 other transactions in its

counter’s queue, before being able to execute. In our experiments,

𝑌 ∈ {10, 100, 1000}. The results are shown in Figure 13 and Fig-

ure 14. Pilotfish reaches a throughput of 35k, 30k, and 22k tx/s for

𝑌 = 10, 𝑌 = 100, and 𝑌 = 1000 when operating with 4 Execution-

Workers. For this workload, we do not include the Sui baseline,

because Sui’s single node benchmark does not allow generating

multiple transactions that operate on the same object.

As expected, we observe that as we increase the degree of con-

tention, latency increases due to the queueing effect (up to 500ms

for 𝑌 = 1000) and throughput decreases. Nonetheless, Pilotfish is

able to scale to 4 ExecutionWorkers of Similarly to the simple trans-

fer workload (Section 8.2), this workload is not compute-bound,

so adding more compute beyond 4 ExecutionWorkers no longer

improves performance proportionally.

9 RELATEDWORK

Blockchains executors. Parallel execution in blockchains is a

relatively new research area. The main proposal is that of Block-

STM [22], however, it is designed with shared memory focus, which

makes it hard to adjust for deployment in more than one machine

and hence unable to scale out. Nevertheless, one of the core ben-

efits of Block-STM is that it does not need to know the read and

write sets. Pilotfish only partially supports it through dynamically

accessed objects (Section 5). It remains an open question whether

a distributed deterministic execution engine without the need for

any hints is practical.

Deterministic databases. Pilotfish is similar to deterministic data-

base systems [41] that employ an order-then-execute approach.

This means that they have a sequencing layer that determines a

total order for incoming transactions and a scheduling layer that

ensures replicas or threads execute transactions in serial equiva-

lence to the total order. Most of these systems are designed for

a single-machine setting [17, 18] which means that they cannot

scale out. Additionally, all of them require a perfect prediction of

write sets to function safely. A small subset of literature has pro-

posed the use of multiple replicas [29, 43] but they only focus on the

main system and do not address the question of what happens when

some of the servers, especially as the system scales, inevitably crash.

Calvin [43] proposes the use of consensus to address crashes, which,

as we show, is overkill since the sequencing layer already provides

sufficient determinism to recover without strong coordination.

zkVMs and layers 2. Recently, layer-2 solutions [33] and especially

the use of zkVMs [6] have been suggested as a way to speed up the

execution of blockchains. ZkVMs reduce the problem of execution

to that of one prover replica and many verifier replicas that do not

re-execute but simply check the proofs. These solutions are not

comparable to Pilotfish as they are actually different ways to do

deterministic execution and, as a result, compatible with Pilotfish,

which could in principle deploy a zkVM instead of the MoveVM.

We opted to use these execution engines in our design because

zkVMs do not support parallelism due to the way in which proofs

are generated. If, in the future, parallel zkVMs become possible,

then Pilotfish could be adapted to help them scale out.

10 CONCLUSION

Pilotfish is the first blockchain execution engine allowing a blockchain

validator to harness multiple machines under its control to horizon-

tally scale execution. Pilotfish supports dynamic reads and writes,

thus supporting programming models where the input read and

write set is only partially specified by the transaction. Pilotfish also

tolerates crash-faults internal to the validator and is provably seri-

alizability, linearizability, and live of Pilotfish. Our implementation

of Pilotfish empirically demonstrates its scalability under varying
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Figure 11: Pilotfish latency vs. throughput for the heavy computation workloads.
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Figure 12: Pilotfish scalability with computationally heavy transactions. Fib-X
means that each transaction computes the 𝑋 -th Fibonacci number. The hori-

zontal lines show the single-machine throughput of the baseline on the same

workloads.

system loads, showing it outperforms the baseline Sui execution

engine by up to 10x under heavy CPU loads.
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Figure 13: Pilotfish latency vs throughput for the contended workloads. Please note the different 𝑦 axis ranges between the three cases.
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A ALGORITHMS

This section complements Section 3 by providing detailed algo-

rithms for the core components of Pilotfish.

A.1 Detailed Algorithms

The function Handle(𝑜𝑖𝑑) of Algorithm 2 returns the Execution-

Worker that handles the specified object identifier 𝑜𝑖𝑑 . The function

Index(Tx) in Algorithm 4 returns the index of the transaction Tx in
the global committed sequence. The function ID(𝑜) in Algorithm 6

returns the object id 𝑜𝑖𝑑 of the object 𝑜 .

A.2 Running in Constant Memory

The algorithms described above leverage several temporary in-

memory structures that need to be safely cleaned up to make the

protocol memory-bound. The maps Pending andMissing are re-

spectively cleaned up as part of normal protocol operations at

Line 34 (empty queues are deleted) and Line 10 of Algorithm 6.

All indices 𝑖′ < i of the list B (Algorithm 3) can be cleaned after

Line 9 of Algorithm 3 as they are no longer needed. Similarly, any
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Algorithm 3 Process ProposeMessage (step ➌ of Figure 2)

1: i← 0 ⊲ All batch indices below this watermark are received

2: B← [ ] ⊲ Received batch indices

// Called by ExecutionWorkers upon receiving a ProposeMessage.
3: procedure ProcessPropose(ProposeMessage)
4: // Ensure we received one message per SequencingWorker

5: (BatchIdx,BatchId,𝑇 ) ← ProposeMessage
6: B[BatchIdx] ← B[BatchIdx] ∪ (BatchId,𝑇 )
7: while len(B[i] ) = |SequencingWorkers | do
8: (_,𝑇 ) ← B[i]
9: i← i + 1
10:

11: // Add the objects to their pending queues

12: for Tx ∈ 𝑇 do

13: for 𝑜𝑖𝑑 ∈ HandledObjects(Tx) do ⊲ Defined in Algorithm 4

14: if 𝑜𝑖𝑑 ∈ W(Tx) then
15: Pending[𝑜𝑖𝑑 ] ← Pending[𝑜𝑖𝑑 ] ∪ (𝑊, [Tx] )
16: else ⊲ 𝑜𝑖𝑑 ∈ R(Tx)
17: (𝑜𝑝,𝑇 ′ ) ← Pending[𝑜𝑖𝑑 ] [−1]
18: if 𝑜𝑝 =𝑊 then Pending[𝑜𝑖𝑑 ] ← Pending[𝑜𝑖𝑑 ]∪(𝑅, [Tx] )

19: else Pending[𝑜𝑖𝑑 ] [−1] ← (𝑅,𝑇 ′ ∪ Tx)
20:

21: // Try to execute the transaction

22: TryTriggerExecution(Tx) ⊲ Defined in Algorithm 4

transactions Tx with index Index(Tx) < j can be removed from

the set E (Algorithm 4) after Line 39 of Algorithm 4. Finally, any

transaction Tx can be removed from the map R (Algorithm 5) after

Line 5 of Algorithm 5.

B SECURITY PROOFS

We show that Pilotfish satisfies the properties of Section 2.3.

B.1 Serializability

We show that Pilotfish satisfies the serializability property (Defini-

tion 2.1 of Section 2.3). Intuitively, this property states that Pilotfish

executes transactions in a way that is equivalent to the sequential

execution of the transactions as it comes from consensus (Defi-

nition B.1). The argument leverages the following arguments: (i)

Pilotfish builds the pending queues Pending by respecting the

transactions dependencies dictated by the consensus protocol (i.e.,

the sequential schedule), (ii) Pilotfish accesses objects in the same

order as the sequential schedule, and (iii) Pilotfish executes trans-

actions in the same order as the sequential schedule.

Definition B.1 (Sequential Schedule). A sequential schedule is a

sequence of transactions [Tx1, . . . , Tx𝑛] where each transaction Tx𝑖
is executed after Tx𝑖−1.

Definition B.2 (Conflicting Transactions). Two transactions Tx𝑖
and Tx𝑗 conflict on some object 𝑜𝑖𝑑 if both Tx𝑖 and Tx𝑗 reference
𝑜𝑖𝑑 in their read or write set and at least one of Tx𝑖 or Tx𝑗 references
𝑜𝑖𝑑 in its write set.

Pending queues building.We start by arguing point (i), stating

that Algorithm 3 builds the pending queues Pending by respecting

the transaction dependencies dictated by the consensus protocol

(i.e., the sequential schedule).

Lemma B.3 (Seqential Batch Processing). Pilotfish processes

the batch with index Batch𝑗 after processing the batch with index

Batch𝑖 if 𝑗 > 𝑖 .

Algorithm 4 Core functions

1: j← 0 ⊲ All Tx indices below this watermark are executed

2: E← ∅ ⊲ Executed transaction indices

3: function TryTriggerExecution(Tx)
4: // Check if all dependencies are already executed

5: if HasDependencies(Tx) then return

6:

7: // Check if all objects are present

8: 𝑀 ← MissingObjects(Tx)
9: if 𝑀 ≠ ∅ then
10: for 𝑜𝑖𝑑 ∈ 𝑀 do Missing[𝑜𝑖𝑑 ] ← Missing[𝑜𝑖𝑑 ] ∪ Tx
11: return

12:

13: // Send object data to a deterministically-elected ExecutionWorker

14: 𝑤𝑜𝑟𝑘𝑒𝑟 ← Handler(Tx) ⊲ Worker handling the most objects of Tx
15: 𝑂 ← {Objects[𝑜𝑖𝑑 ] s.t. 𝑜𝑖𝑑 ∈ HandledObjects(Tx) } ⊲ May contain ⊥
16: ReadyMessage← (Tx,𝑂 )
17: Send(𝑤𝑜𝑟𝑘𝑒𝑟, ReadyMessage)
18:

19: // Remove read-locks from the pending queues

20: for 𝑜𝑖𝑑 ∈ R(Tx) do
21: 𝑇 ′ ← AdvanceLock(Tx, 𝑜𝑖𝑑 )
22: for Tx′ ∈ 𝑇 ′ do TryTriggerExecution(Tx′ )

23: function HasDependencies(Tx)
24: 𝐼 ← HandledObjects(Tx)
25: return ∃𝑜𝑖𝑑 ∈ 𝐼 s.t. Tx ∉ Pending[𝑜𝑖𝑑 ] [0]

26: functionMissingObjects(Tx)
27: 𝐼 ← HandledObjects(Tx)
28: return {𝑜𝑖𝑑 s.t. 𝑜𝑖𝑑 ∈ 𝐼 and Objects[𝑜𝑖𝑑 ] =⊥ and j < Index(Tx) − 1}

29: function HandledObjects(Tx)
30: return {𝑜𝑖𝑑 s.t. 𝑜𝑖𝑑 ∈ Tx and Handler(𝑜𝑖𝑑 ) = Self}

31: function AdvanceLock(Tx, 𝑜𝑖𝑑)
32: // Cleanup the pending queue

33: (𝑜𝑝,𝑇 ) ← Pending[𝑜𝑖𝑑 ] [0]
34: (𝑜𝑝,𝑇 ′ ) ← (𝑜𝑝, 𝑙 \ Tx)
35: Pending[𝑜𝑖𝑑 ] [0] ← (𝑜𝑝,𝑇 ′ )
36: return𝑇 ′

37: function TryAdvanceExecWatermark(Tx)
38: E← E ∪ Index(Tx)
39: while (j + 1) ∈ E do j← j + 1

Algorithm 5 Process ReadyMessage (step ➍ of Figure 2)

1: R← {} ⊲ Maps Tx to the object data it references (or ⊥ if unavailable)

// Called by the ExecutionWorkers upon receiving a ReadyMessage.
2: procedure ProcessReady(ReadyMessage)
3: (Tx,𝑂 ) ← ReadyMessage
4: R[Tx] ← R[Tx] ∪𝑂
5: if len(R[Tx] ) ≠ len(R (Tx) ) + len(W(Tx) ) then return

6:

7: ResultMessage← (Tx, ∅, ∅)
8: if !AbortExec(Tx) then
9: (𝑂, 𝐼 ) ← exec(Tx, ReceivedObj[Tx] ) ⊲𝑂 to mutate and 𝐼 to delete

10: for 𝑤 ∈ ExecutionWorkers do

11: 𝑂𝑤 ← {𝑜 ∈ 𝑂 s.t. Handler(𝑜 ) = 𝑤}
12: 𝐼𝑤 ← {𝑜𝑖𝑑 ∈ 𝐼 s.t. Handler(𝑜𝑖𝑑 ) = 𝑤}
13: ResultMessage← (Tx,𝑂𝑤 , 𝐼𝑤 )
14: Send(𝑤, ResultMessage)

// Check whether the execution should proceed.

15: function AbortExec(Tx)
16: return ∃𝑜 ∈ R[Tx] s.t. 𝑜 =⊥

Proof. Let’s assume by contradiction that Algorithm 3 processes

the ProposeMessage referencing transactions of the batch with
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Algorithm 6 Process ResultMessage (step ➎ of Figure 2)

// Called by the ExecutionWorkers upon receiving a ResultMessage.
1: procedure ProcessResult(ResultMessage)
2: (Tx,𝑂, 𝐼 ) ← ResultMessage
3: TryAdvanceExecWatermark(Tx) ⊲ Defined in Algorithm 4

4: UpdateStores(Tx,𝑂, 𝐼 )
5:

6: // Try execute transactions with missing objects

7: for 𝑜 ∈ 𝑂 do

8: 𝑜𝑖𝑑 ← Id(𝑜 )
9: for Tx← Missing[𝑜𝑖𝑑 ] do TryTriggerExecution(Tx)
10: Delete Missing[𝑜𝑖𝑑 ] ⊲ Prevent duplicate execution

11:

12: // Try executing the next transaction in the queues

13: for 𝑜𝑖𝑑 ∈ Tx do
14: 𝑇 ′ ← AdvanceLock(Tx, 𝑜𝑖𝑑 )
15: for Tx′ ∈ 𝑇 ′ do TryTriggerExecution(Tx′ )

16: function UpdateStores(Tx,𝑂, 𝐼 )

17: for 𝑜 ∈ 𝑂 do Objects[Id(𝑜 ) ] ← 𝑜

18: for 𝑜𝑖𝑑 ∈ 𝐼 do Delete Objects[𝑜𝑖𝑑 ]

index Batch𝑗 before processing the ProposeMessage referencing
transactions of the batch with index Batch𝑖 while 𝑗 > 𝑖 . This means

that Algorithm 3 processes Batch𝑗 at Line 12 before processing

Batch𝑖 at Line 12. However, the check of Algorithm 3 at Line 7

ensures that Batch𝑗 can only be processed after all the batches with

indices 𝑘 ∈ [0, . . . , 𝑗 [. Since 𝑗 > 𝑖 , it follows that 𝑖 ∈ [0, . . . , 𝑗 [, and
thus Batch𝑗 can only be processed after Batch𝑖 . Hence a contradic-
tion. □

Lemma B.4 (Transactions Order inQueues). Let’s assume two

transactions Tx𝑗 , Tx𝑖 such that 𝑗 > 𝑖 conflict on the same 𝑜𝑖𝑑 ; Tx𝑗 is
placed in the queue Pending[𝑜𝑖𝑑] after Tx𝑖 .

Proof. We first observe that if two transactions Tx𝑗 and Tx𝑖
are conflicting on object 𝑜𝑖𝑑 then they are placed in the same

queue Pending[𝑜𝑖𝑑]. Indeed, both Tx𝑖 and Tx𝑗 are embedded in a

ProposeMessage by Algorithm 2. They are then placed in the queue

Pending[𝑜𝑖𝑑] by Algorithm 3 at Line 15 (if they reference 𝑜𝑖𝑑 in

their write set) or Line 18 (if they reference 𝑜𝑖𝑑 in their read set).

We are thus left to prove that Tx𝑗 is placed in Pending[𝑜𝑖𝑑]
after Tx𝑖 . Since 𝑗 > 𝑖 we distinguish two cases: (i) both Tx𝑗 and
Tx𝑖 are part of the same batch with index BatchIdx and (ii) Tx𝑗 and
Tx𝑖 are part of different batches with indices Batch𝑗 and Batch𝑖
respectively. In the first case (i), Tx𝑗 and Tx𝑖 are referenced in the

same ProposeMessage by Algorithm 2 at Line 8 and Line 9 but

respecting the order 𝑗 > 𝑖 . As a result, Tx𝑗 is processed after Tx𝑖 by
the loop Line 12, and placed in the queue Pending[𝑜𝑖𝑑] (at Line 15
or Line 18) after Tx𝑖 . In the second case (ii), Tx𝑗 and Tx𝑖 are refer-
enced in different ProposeMessage by Algorithm 2 at Line 9 but

Lemma B.3 ensures that the ProposeMessage referencing transac-

tions of Batch𝑗 is processed after the ProposeMessage referenc-

ing transactions of Batch𝑖 . As a result, Tx𝑗 is placed in the queue

Pending[𝑜𝑖𝑑] after Tx𝑖 (at Line 15 or Line 18). □

Sequential objects access.We now argue point (ii), namely that

Algorithm 4 accesses objects in the same order as the sequential

schedule.

Lemma B.5 (Unlock after Access). If a transaction 𝑇 is placed

in a queue Pending[𝑜𝑖𝑑], it can only be removed from that queue

after accessing Objects[𝑜𝑖𝑑].

Proof. We argue this lemma by construction of the algorithms

of Pilotfish. Transaction 𝑇 accesses Objects[𝑜𝑖𝑑] only at Line 15

(Algorithm 4) and can only be removed from Pending[𝑜𝑖𝑑] follow-
ing a call to AdvanceLock(𝑇, 𝑜𝑖𝑑). This call can occur only in two

places. It can first occur (i) at Line 21 of Algorithm 4 which happens

after the access to Objects[𝑜𝑖𝑑] (Line 15 of the same algorithm).

It can then occur (ii) at Line 14 of Algorithm 6 which can only be

triggered upon receiving a ResultMessage referencing 𝑇 , which in

turn can only be created after creating a ReadyMessage embedding

𝑇 . However, creating the latter message only occurs at Line 17 of

Algorithm 4, thus after accessing Objects[𝑜𝑖𝑑] (Line 15 of that

same algorithm). □

Lemma B.6 (Seqential Object Access). If a transaction Tx𝑗
is placed in a queue Pending[𝑜𝑖𝑑] after a transaction Tx𝑖 , then Tx𝑗
accesses 𝑜𝑖𝑑 after Tx𝑖 .

Proof. Let’s assume that Tx𝑗 and Tx𝑖 are respectively placed

at positions 𝑗 ′ and 𝑖′ of the queue Pending[𝑜𝑖𝑑], with 𝑗 ′ > 𝑖′.
Let’s assume by contradiction that Tx𝑗 accesses 𝑜𝑖𝑑 before Tx𝑖 .
Access to 𝑜𝑖𝑑 is only performed by Algorithm 4 at Line 15 after

successfully passing the ‘dependencies’ check at Line 5. Lemma B.5

thus ensures that Tx𝑖 is still in Pending[𝑜𝑖𝑑] when the call to

HashDependecnies(Tx𝑗 ) at Line 5 returns False. This is how-

ever a direct contradiction of the check at Line 25 which ensures

that HasDependecnies(Tx𝑗 ) returns False only if Tx𝑗 is in the

Pending[𝑜𝑖𝑑] at position 𝑗 ′ = 0. However, since Tx𝑖 is still in

Pending[𝑜𝑖𝑑], it follows that 0 ≤ 𝑖′ < 𝑗 ′, thus a contradiction. □

Sequential transaction execution.We finally argue point (iii),

namely that Algorithm 5 executes transactions in the same order

as the sequential schedule.

Lemma B.7 (Execution after Object Access). If a transaction

𝑇 references 𝑜𝑖𝑑 in its read or write set, it can only be executed after

accessing Objects[𝑜𝑖𝑑].

Proof. We argue this lemma by construction of Algorithm 5.

Transactions are executed only at Line 9 of Algorithm 5 and this

algorithm is only triggered upon receiving a ReadyMessage. How-
ever, creating the latter message only occurs at Line 17 of Algo-

rithm 4, thus after accessing Objects[𝑜𝑖𝑑] (Line 15 of that same

algorithm). □

Theorem B.8 (Serializability). If a correct validator executes

the sequence of transactions [Tx1, . . . , Tx𝑛], it holds the same object

state 𝑆 as if the transactions were executed sequentially.

Proof. Consider some execution 𝐸 and let𝐺 = (𝑉 , 𝐸) be 𝐸’s con-
flict graph. Each transaction is a vertex in𝑉 , and there is a directed

edge Tx𝑖 → Tx𝑗 if (1) Tx𝑖 and Tx𝑗 have a conflict on some object

𝑜𝑖𝑑 and (2) Tx𝑗 accesses 𝑜𝑖𝑑 after Tx𝑖 accesses 𝑜𝑖𝑑 . It is sufficient to

show that there are no schedules where Tx𝑗 is executed before Tx𝑖
to prove serializability. Let’s assume by contradiction that there is

a schedule where Tx𝑗 is executed before Tx𝑖 , where 𝑗 > 𝑖 . Since Tx𝑗
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and Tx𝑖 conflict on object 𝑜𝑖𝑑 , Lemma B.4 ensures that Tx𝑗 is placed
in the queue Pending[𝑜𝑖𝑑] after Tx𝑖 . Lemma B.6 then guarantees

that Tx𝑗 ’s access to 𝑜𝑖𝑑 occurs after Tx𝑖 ’s access on 𝑜𝑖𝑑 . However

Lemma B.7 ensures that Tx𝑗 ’s execution can only happen after ac-

cessing 𝑜𝑖𝑑 . It is then impossible to execute Tx𝑗 before Tx𝑖 , hence a
contradiction. Since 𝑜𝑖𝑑 was chosen arbitrarily, the same reasoning

applies to all objects on which Tx𝑖 and Tx𝑗 conflict. □

B.2 Linearizability

We show that Pilotfish satisfies the linearizability property (Defi-

nition 2.2 of Section 2.3). Intuitively, this property ensures that all

correct validators have the same object state after executing the

same sequence of transactions. The proof follows from the follow-

ing arguments: (i) all correct Pilotfish validators build the same

dependency graph given the same input sequence of transaction,

(ii) individual transaction execution is a deterministic process (As-

sumption 1), (iii) transactions explicitly reference their entire read

and write set (Assumption 2), and (iv) all validators executing the

same transactions obtain the same state.

Assumption 1 (Deterministic Individual Execution). Given

an input transaction Tx and objects𝑂 , all calls to exec(Tx,𝑂) (Line 9
of Algorithm 5) return the same output.

Assumption 2 (Explicit Read and Write Set). Each transac-

tion Tx explicitly references all the objects of its read and write set.

That is, the complete read and write set of Tx can be determined by

locally inspecting Tx without the need for external context.

Assumption 1 is fulfilled by most blockchain execution environ-

ments such as the EVM [20], the SVM [34], and both theMoveVM [15]

(used by the Aptos blockchain [39]) and the Sui MoveVM [27] (used

by the Sui blockchain [8]). All execution engines except the Sui

MoveVM also fulfill Assumption 2 (Section 5 and Appendix D re-

move this assumption to make Pilotfish compatible with Sui).

We rely on the following lemmas to prove linearizability in

Theorem B.11.

LemmaB.9. Given the same sequence of transactions [Tx1, . . . , Tx𝑛],
all correct validators build the same execution schedule (that is, they

build same queues Pending).

Proof. We argue this property by construction of Algorithm 2

and Algorithm 3. Since all validators receive the same input se-

quence [Tx1, . . . , Tx𝑛] and Algorithm 2 respects the order of trans-

actions (Line 8), all correct validators create the same sequence

of ProposeMessage. Lemma B.3 then ensures that Algorithm 3

processes each ProposeMessage respecting the transaction order.

Finally, Lemma B.4 ensures that all correct validators place the trans-

actions in the same order in the queues. Since this process is deter-

ministic, all correct validators build the same queues Pending. □

LemmaB.10. No two correct validators creating the sameResultMessage
(Line 13 of Algorithm 5) obtain a different object state Objects.

Proof. We argue this property by construction of Algorithm 6

and by assuming that the communication channel between all

ExecutionWorkers of each validator preserves the order of mes-

sages
7
. Once a validator creates a ResultMessage (Line 13 of Algo-

rithm 5), it is processed by Algorithm 6. This algorithm first calls

TryAdvanceExecWatermark(·) (Line 3) which does not alter the

object state Objects nor the data carried by the ResultMessage,
and then deterministically updates the object state Objects (Line 4)

based exclusively on the content of the ResultMessage. As a result,
all correct validators obtain the same object state □

Theorem B.11 (Pilotfish Linearizability). No two correct val-

idators that executed the same sequence of transactions [Tx1, . . . , Tx𝑛]
have different stores Objects.

Proof. We argue this property by induction. Assuming the se-

quence of conflicting transactions [Tx1, . . . , Tx𝑛−1] for which this

property holds, we consider transaction Tx𝑛 . Lemma B.9 ensures

that all correct validators build the same execution schedule and

thus all correct validators execute conflicting transactions in the

same order. After scheduling (Algorithm 3), all correct validators

create a ReadyMessage referencing Tx𝑛 and the set of objects 𝑂

(Line 17 of Algorithm 4). Since all validators have the same conflict

schedule and the application of the inductive argument ensures that

all settled dependencies of Tx𝑛 led to the same state Objects across

validators, all correct validators load the same set of objects 𝑂 and

thus create the same ReadyMessage. As a result, all correct valida-
tors run Algorithm 5 with the same input and thus execute the same

sequence of transactions. By construction of Algorithm 5 and As-

sumption 2, they all call calls to exec(Tx,𝑂) (Line 9 of Algorithm 5)

with the same inputs Tx and 𝑂 . Given that Assumption 1 ensures

that all calls to exec(Tx,𝑂) are deterministic, all correct validators

thus create the same ResultMessage (Line 13). Finally, Lemma B.10

ensures that all validators creating the same ResultMessage ob-

tain the same object state Objects. The inductive base is argued

by construction: all correct validators start with the same object

state Objects, and thus create the same ReadyMessage (Line 17
of Algorithm 4) and ResultMessage (Line 13 of Algorithm 5) upon

executing the first transaction Tx1, which leads to the same state

update across correct validators. □

B.3 Liveness

We show that Pilotfish satisfies the liveness property (Definition 2.3

of Section 2.1). Intuitively, this property guarantees that valid trans-

actions (Definition B.12) are eventually executed. The proof argues

that (i) all transactions are eventually processed (Definition B.13),

and (ii) among those transactions, valid ones are not aborted.

Definition B.12 (Valid Transaction). A transaction 𝑇 with index

𝑖𝑑𝑥 = Index(𝑇 ) is valid if all objects referenced by its read and

write set are created by a transaction 𝑇 ′ with index 𝑖𝑑𝑥 ′ < 𝑖𝑑𝑥 .

Definition B.13 (Processed Transaction). A transaction 𝑇 is said

processed when it is either executed or aborted and the object state

Objects is updated accordingly.

7
Our implementation (Section 7) satisfies this assumption by implementing all com-

munication through TCP.
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Eventual transaction processing. We start by arguing point (i),

that is all transactions are eventually processed. This argument

relies on several preliminary lemmas leading Lemma B.18.

Lemma B.14. The Pilotfish scheduling process is deadlock-free (no

circular dependencies).

Proof. Consider some execution 𝐸 and let 𝐺 = (𝑉 , 𝐸) be 𝐸’s

conflict graph. Each transaction is a vertex in 𝑉 , and there is a

directed edge Tx𝑖 → Tx𝑗 if (1) Tx𝑖 and Tx𝑗 have a conflict on some

object 𝑜𝑖𝑑 and (2) Tx𝑗 accesses 𝑜𝑖𝑑 after Tx𝑖 accesses 𝑜𝑖𝑑 . It is suffi-

cient to show that 𝐺 contains no cycles to prove liveness. That is,

it is sufficient to show that 𝐺 contains no edges Tx𝑗 → Tx𝑖 , where
𝑗 > 𝑖 . Let’s assume by contradiction that𝐺 has an edge Tx𝑗 → Tx𝑖 ,
where 𝑗 > 𝑖 . Then, by rule (1) of the construction of 𝐺 , Tx𝑗 and Tx𝑖
must conflict on some object 𝑜𝑖𝑑 . Lemma B.4 ensures that Tx𝑗 is
placed in the queue in Pending[𝑜𝑖𝑑] after Tx𝑖 . Lemma B.6 then

guarantees that Tx𝑗 ’s access to 𝑜𝑖𝑑 occurs after 𝑇𝑖’s access on 𝑜𝑖𝑑 .

It is then impossible for 𝐺 to contain an edge Tx𝑗 → Tx𝑖 as this
violates rule (2) of the construction of 𝐺 , hence a contradiction.

Since 𝑜𝑖𝑑 was chosen arbitrarily, the same reasoning applies to all

objects on which Tx𝑖 and Tx𝑗 conflict. □

Lemma B.15. If a transaction 𝑇 is processed (Definition B.13), it

is eventually removed from all queues Pending[𝑜𝑖𝑑] where 𝑜𝑖𝑑 is

referenced by the read or write set of 𝑇 .

Proof. We argue this lemma by construction of Algorithm 4 and

Algorithm 6. Transaction𝑇 is removed from all queues Pending[𝑜𝑖𝑑]
upon calling AdvanceLock(𝑇, 𝑜𝑖𝑑). This call can occur in two

places. (i) The first call occurs at Line 21 of Algorithm 4 to ef-

fectively release read locks. This call occurs right after creating

a ReadyMessage referencing 𝑇 (Line 17), a necessary step to trig-

ger Algorithm 5 and thus process 𝑇 . (ii) The second call occurs at

Line 14 of Algorithm 6 to effectively release write locks. This call

occurs right after updating Objects[𝑜𝑖𝑑] and thus terminating the

processing of 𝑇 . □

Lemma B.16. If the sequence of transactions [Tx1, . . . , Tx𝑛] is pro-
cessed (Definition B.13), the watermark j (Line 1 of Algorithm 4) is

advanced to 𝑛.

Proof. The processing of 𝑇 involves updating the object state

Objects (Line 4 of Algorithm 6). However, the watermark j is only

updated upon calling TryAdvanceExecWatermark(Tx𝑖 ) at Line 3
of this same algorithm. Thus, by construction, the buffer E con-

tains every processed transaction Tx𝑖 (Line 38 of Algorithm 4), and

once the sequence [Tx1, . . . , Tx𝑛] is processed, the watermark j is

advanced to j = max{Index(Tx1), . . . , Index(Tx𝑛)} = 𝑛 (Line 39 of

Algorithm 4). □

Lemma B.17. A transaction 𝑇 is eventually processed (Defini-

tion B.13) if it has neither missing dependencies nor missing objects

that could be created by earlier transactions. That is, 𝑇 is eventually

processed if Algorithm 4 creates a ReadyMessage referencing 𝑇 .

Proof. We argue this lemma by construction of Algorithm 5

and Algorithm 6. Algorithm 5 receives a ReadyMessage from all

ExecutionWorkers and the check Line 5 of Algorithm 5 passes.

Transaction 𝑇 is then either executed (if the check Line 16 passes)

or aborted (if the check Line 16 fails), and Algorithm 5 creates a

ResultMessage referencing 𝑇 (Line 13). Algorithm 6 then receives

this ResultMessage and accordingly updates its object Objects (af-

ter an infallible call to TryAdvanceExecWatermark(𝑇 ) Line 39).
□

Lemma B.18 (Eventual Transaction Processing). All correct

validators receiving the sequence of transactions [Tx1, . . . , Tx𝑛] even-
tually process (Definition B.13) all transactions Tx1, . . . , Tx𝑛 .

Proof. Lemma B.14 ensures that the transaction scheduling

process is deadlock-free (no circular dependencies) and Pilotfish

thus triggers their execution (Line 3 of Algorithm 4). We are then

left to prove that these scheduled transactions are processed (Def-

inition B.13). Since Theorem B.8 ensures the Pilotfish schedule

is equivalent to a sequential schedule, we prove liveness of the

sequential schedule. We argue the lemma’s statement by induc-

tion. Assuming the sequence of transactions [Tx1, . . . , Tx𝑛−1] for
which this statement holds, we consider transaction Tx𝑛 . Assum-

ing Tx𝑛−1 is processed and a sequential schedule, all transactions

Tx𝑖 with 𝑖 < 𝑛 − 1 are also processed. Lemma B.15 thus ensures

these transactions are removed from all queues Pending[·]. As a
result, when triggering the execution of Tx𝑛 (Line 3 of Algorithm 4),

the check HasDependencies(Tx𝑛) (Line 5 of Algorithm 4) returns

False (since ∀𝑜𝑖𝑑 ∈ R(Tx𝑛) ∪W(Tx𝑛) : Pending[𝑜𝑖𝑑] [0] = Tx𝑛).
Furthermore, since all transactions Tx𝑖 with 𝑖 ≤ 𝑛 − 1 are already
processed, Lemma B.16 ensures that the watermark 𝑗 = 𝑛 − 1

(Line 1 of Algorithm 4) and thus MissingObjects(Tx𝑛) returns
∅. Finally, Algorithm 4 creates a ReadyMessage referring Tx𝑛 and

thus Lemma B.17 ensures Tx𝑛 is eventually processed. We argue the

inductive base by observing that the first transaction Tx1 has no de-
pendency (by definition); thus both checksHasDependencies(Tx1)
andMissingObjects(Tx1) pass (respectively at Line 5 and Line 8

of Algorithm 4); and Lemma B.17 then ensures Tx1 is processed. □

Valid transaction execution. We now argue point (ii), that valid

transactions are not aborted. This argument relies on several pre-

liminary lemmas leading Lemma B.21.

Lemma B.19. If a transaction 𝑇 references an object 𝑜𝑖𝑑 in its

write set, it is only removed from the queue Pending[𝑜𝑖𝑑] after it is
processed (Definition B.13).

Proof. We argue this lemma by construction: Transaction 𝑇 is

removed from Pending[𝑜𝑖𝑑] only upon a call toAdvanceLock(𝑇, 𝑜𝑖𝑑).
However, since 𝑜𝑖𝑑 is referenced by the write set of 𝑇 (rather than

its read set), this function is called over 𝑜𝑖𝑑 only at Line 14 of Algo-

rithm 6. This call is thus after Algorithm 6 updates Objects[𝑜𝑖𝑑]
(at Line 4) and thus after the transaction is processed. □

Lemma B.20. If a transaction 𝑇 is valid, the call to Objects[𝑜𝑖𝑑]
(Line 15 of Line 39) never returns ⊥, for any 𝑜𝑖𝑑 referenced by the

read or write set of 𝑇 .

Proof. Let’s assume by contradiction that there exists a 𝑜𝑖𝑑

referenced by the read or write set of a valid transaction𝑇 where the

call to Objects[𝑜𝑖𝑑] (Line 15 of Line 39) returns ⊥. Since𝑇 is valid,

it means that the object 𝑜𝑖𝑑 is created by a conflicting transaction

𝑇 ′ with index 𝑖𝑑𝑥 ′ < Index(𝑇 ) that has not yet been processed
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(Definition B.13). In which case, Lemma B.6 states that both𝑇 and𝑇 ′

are placed in the same queue Pending[𝑜𝑖𝑑] and Lemma B.19 states

that𝑇 ′ is still present in the queue Pending[𝑜𝑖𝑑]. This is however a
direct contradiction of check HasDependencies(𝑇 ) ensuring that

𝑇 does not access Objects[𝑜𝑖𝑑] until it is at the head of the queue

Pending[𝑜𝑖𝑑] (Line 15 of Algorithm 4). □

Lemma B.21. A valid transaction 𝑇 it is never aborted; that is the

call AbortExec(𝑇 ) (Line 8 of Algorithm 5) returns False.

Proof. Let’s assume by contradiction that AbortExec(𝑇 ) re-
turns True while 𝑇 is valid. This means that the check at Line 16

of Algorithm 5 found at least one missing object (⊥) referenced in

the read or write set of 𝑇 , and thus that Algorithm 5 received at

least one ReadyMessage message referring ⊥ instead of an object

data. However, Lemma B.20 ensures that the call to Objects[𝑜𝑖𝑑]
(Line 15 of Algorithm 4) never returns ⊥ if 𝑜𝑖𝑑 is referenced by the

read or write set of a valid transaction, hence a contradiction. □

Livness proof. We finally combine Lemma B.18 and Lemma B.21

to prove liveness.

Theorem B.22 (Liveness). All correct validators receiving the

sequence of transactions [Tx1, . . . , Tx𝑛] eventually execute all the

valid transactions of the sequence.

Proof. LemmaB.18 ensures that all correct validators eventually

process (Definition B.13) all transactions Tx1, . . . , Tx𝑛 . Lemma B.21

ensures that valid transactions are never aborted and thus executed.

□

C DETAILED RECOVERY PROTOCOL

This section completes Section 4 by providing the algorithms al-

lowing ExecutionWorkers to recover from crash-faults and proving

the security of Pilotfish in this setting.

C.1 Recovery Algorithms

Recovery Protocol. Suppose ExecutionWorker 𝑥 crashes. Any

non-faulty worker 𝑒 detecting this failure deletes 𝑥 from its read-

from and read-to sets. If 𝑥 is 𝑒’s peer, or a member of its read-from

set, 𝑒 may no longer be served reads from 𝑥 ’s shard. In this case, 𝑒

calls Recover(𝑥 ), listed in Algorithm 7.

In the algorithm, first the execution worker, denoted as 𝑒 , initi-

ates the process by establishing a view on the current execution

status of workers in shard 𝑥 . This is achieved through a call to

(𝑤, TxIdx∗) ← GetStatus(𝑥 .shard), where𝑤 represents the most

up-to-date worker in a quorum of workers within 𝑥 .shard, having

executed up to at least TxIdx∗.
Subsequently, based on the obtained result, the execution worker

𝑒 takes one of two distinct actions. If 𝑒’s current execution state

is after TxIdx∗, it initiates the NewReader(𝑤, TxIdx∗) operation,
requesting 𝑤 to serve its reads that were previously handled by

𝑥 . Otherwise, if 𝑒’s current state is before TxIdx∗, it engages in
the synchronization procedure (Algorithm 9) before attempting

recovery. This synchronization step becomes crucial, as there might

no longer be clusters with sufficiently old buffers for the recovering

worker 𝑒 to proceed through the standard recovery process. In such

Algorithm 7 Recovery procedure

// Global states

1: read-to, read-from, peers

2: suspected ⊲ set of suspected workers, updated by failure detector

3: curr-txidx ⊲ highest txn that is locally executed and persisted

4: my-shard ⊲ identifier for the local shard

5: procedure Recover(𝑥 ) ⊲ 𝑥 ∈ peers ∪ read-from

6: 𝑠 ← 𝑥 .shard

7: (𝑤, TxIdx∗ ) ← GetStatus(s)

8: if TxIdx∗ ≤ curr-txidx then

9: success← NewReader(𝑤, TxIdx∗ )
10: if success then

11: read-from← read-from ∪ {𝑤}
12: return True ⊲ recovery is successful

13: else

14: return False ⊲ recovery failed, caller should retry

15: else

16: for 𝑝 ∈ peers do

17: Send(𝑝,NotifySync)
18: Syncrhonize()
19: return true ⊲ May run recovery for each crashed peer

20: procedure GetStatus(𝑠) ⊲ 𝑠 is a shard identifier

21: for 𝑤 ∈ shard 𝑠 do

22: Send(𝑤, Recover)
23: r← receive RecoverOk
24: replies← {𝑟 }
25: 𝑟ℎ ← 𝑟 ⊲ reply with highest txid

26: while |replies | < 𝑓 + 1 do
27: r← receive RecoverOk
28: 𝑟ℎ ← 𝑟 if 𝑟 .txid > 𝑟ℎ .txid else 𝑟ℎ
29: replies← replies ∪ {𝑟 }
30: return (𝑟ℎ .src, 𝑟ℎ .txid)

31: procedure NewReader(𝑤, TxIdx∗)
32: NewReader← (TxIdx∗ )
33: Send(𝑤, NewReader)
34: reply← receive reply from 𝑤

35: if reply = NewReaderOk then

36: return true ⊲ reconfiguration success

37: else

38: return false

instances, 𝑒 employs the synchronization procedure to load the

checkpointed state of another cluster, ensuring a seamless recovery

process in the distributed system.

Synchronization Protocol. Synchronize (Algorithm 9) is called

by source 𝑒 and brings 𝑒 and its peers up to date through loading

the checkpointed state of another set of workers. This process on a

high level works as follows.

Initially, 𝑒 communicates with its read-from and read-to nodes,

issuing NotifySync messages to prompt the removal of 𝑒 from their

respective communication sets. Additionally, 𝑒 notifies its peers to

cease normal operations and engage in synchronization through

the Synchronize procedure.

Afterwards, 𝑒 clears its own read-from and read-to sets and re-

quests the current status of the worker𝑤 in its shard by attempting

to download 𝑤 ’s checkpoint. A synchronization message is sent

to𝑤 , which responds based on whether the checkpoint at TxIdx∗

has been deleted or not. If deleted, 𝑒 retries the synchronization

protocol; otherwise,𝑤 sends its state snapshot, and 𝑒 loads it using

the LoadCheckpoint(𝑤) procedure.
Finally, 𝑒 brodcasts a synchronization completion messages to

all peers and awaits their responses. If an incoming SyncComplete
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Algorithm 8 Recovery procedure message handlers

// Global states

1: read-to, read-from, peers

2: stable-txid ⊲ txid of locally-stored stable checkpoint

3: buffer ⊲ local store of sent ReadyMessage
4: checkpoints ⊲ snapshots of local state

5: procedure ProcessRecover(Recover)
6: RecoverOk← (stable-txid)
7: Send(Recover.src, RecoverOk)

8: procedure ProcessNewReader(NewReader)
9: src← NewReader.src
10: TxIdx∗ ← NewReader.txid
11: if TxIdx∗ < stable-txid then

12: Send(src, Abort)
13: else

14: read-to← read-to ∪ {src}
15: Send(src, NewReaderOk)
16: for 𝑟 ∈ buffer do
17: if r.dst = src ∧ r.txid ≥ stable-txid then

18: Send(src, r) ⊲ forward all buffered messages since stable-txid

19: procedure ProcessNotifySync(NotifySync)
20: src←NotifySync.src
21: if src ∈peers then
22: perform Syncrhonize

23: if src ∈read-to then

24: read-to← read-to \ {src}
25: if src ∈read-from then

26: read-from← read-from \ {src}

27: procedure ProcessSync(Sync)
28: src← Sync.src
29: TxIdx∗ ← Sync.txid
30: if TxIdx∗ < stable-txid then

31: Send(src, Abort)
32: else

33: Send(src, checkpoints[TxIdx∗ ])

Algorithm 9 Synchronization procedure

1: procedure Synchronize

2: for 𝑤 ∈ read-to ∪ read-from do

3: Send(𝑤, NotifySync)
4: read-from← ∅
5: read-to← ∅
6: while true do

7: (𝑤, TxIdx∗ ) ← GetStatus(my-shard)

8: Sync← (TxIdx∗ )
9: Send(𝑤, Sync)
10: reply← receive reply from 𝑤

11: if reply ≠ Abort then
12: LoadCheckpoint(𝑤 ) ⊲ Load checkpoint from 𝑤

13: for 𝑝 ∈ peers do

14: SyncComplete← TxIdx∗

15: Send(𝑝, SyncComplete)
16: replies← {} ⊲ wait for SyncComplete responses
17: while �𝑟 .(𝑟 ∈ replies ∧ 𝑟 .txid > TxIdx∗ ) do
18: 𝑟 ← receive SyncComplete
19: if ∀𝑝 ∈ peers\suspected. ∃𝑟 .(𝑟 ∈ replies∧𝑟 .src = 𝑝∧𝑟 .txid =

TxIdx∗ ) then
20: return true

has a TxIdx greater than TxIdx∗, then 𝑒 retries the synchronization

protocol to ensure uniformity across the entire cluster. The proce-

dure concludes when 𝑒 receives SyncComplete containing TxIdx
from all non-suspected peers, allowing it to initiate recovery for

any remaining suspected peers.

C.2 Proofs Modifications

We show that Pilotfish satisfies the security properties defined in

Section 3 despite the crash-failure of 𝑓𝑒 out of 2𝑓𝑒 + 1 Execution-
Workers in all shards.

Assumptions. The security of the recovery protocol relies on the

following assumptions.

Assumption 3 (Correct Majority). At least 𝑓𝑒 + 1 out of 2𝑓𝑒 + 1
ExecutionWorkers of every shard are correct at all times.

Assumption 4 (Partial Synchrony). The network between Exe-

cutionWorkers is eventually synchronous [16].

Assumption 5 (Eventually Strong Failure Detector). There

exists an eventually perfect failure detector ♢S with the following

propertiy. Strong completeness: Every faulty process is eventually

permanently suspected by every non-faulty process.

Serializability and linearizability proof. We argue both the

serializability and linearizability of the protocol by showing that

ExecutionWorkers process the same input transactions regardless

of crash-faults. That is, no ExecutionWorker skips the process-

ing of an input transaction or processes a transaction twice. Both

serializability and linearizability then follow from the proofs of

Appendix B.

Lemma C.1. No ExecutionWorker skips the processing of an input

transaction.

Proof. Let’s assume by contradiction that a worker 𝑤 with

state Objects skips the processing of the input transaction Tx𝑗 .
This means that (i) 𝑤 included in its read-from set a worker 𝑤 ′

with state Objects
′
, where Objects

′
is the state Objects after the

processing of the list of transactions Tx𝑖 , . . . , Tx𝑗 ; and (ii) that 𝑤

processes a ResultMessage from 𝑤 ′ referencing transaction Tx𝑗 .
This is however a direct contradiction of check Line 8 of Algorithm 7

ensuring that𝑤 only includes𝑤 ′ in its read-from set after its latest

processed transaction curr-txidx is at least Tx𝑗 (that is, Tx𝑗 ≤
curr-txidx), hence a contradiction. □

Lemma C.2. No ExecutionWorker processes the same input trans-

action twice.

Proof. Let’s assume by contradiction that a worker𝑤 with state

Objects processes the same input transactions Tx𝑗 twice. This
means that (i) 𝑤 included in its read-from set a worker 𝑤 ′ with
state Objects

′
, where Objects

′
is the state Objects prior to the

processing of the list of transactions Tx𝑖 , . . . , Tx𝑗 ; and (ii) that𝑤 pro-

cesses a ResultMessage from𝑤 ′ referencing transaction Tx𝑗 . This
is however impossible as𝑤 could only include𝑤 ′ in its read-from

set after calling Line 9 (Algorithm 7), and thus after𝑤 ′ updates its
state toObjects by processing Tx𝑖 , . . . , Tx𝑗 at Line 18 (Algorithm 8).

As a result,𝑤 could not have processed a ResultMessage from𝑤 ′

referencing Tx𝑗 while its state is different from Objects. □

Lemma C.3. ExecutionWorkers process the same set of input trans-

actions regardless of crash-faults.
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Proof. This lemma follows from the observation that, despite

crash-faults, no ExecutionWorker skips any transaction (LemmaC.1)

nor processes any transaction twice (Lemma C.2). As a result, Exe-

cutionWorkers process the same set of input transactions regardless

of crash-faults. □

Liveness proof. Suppose a worker 𝑥 crashes. By the strong com-

pleteness property of the failure detector, a correct worker 𝑒 eventu-

ally detects this failure, and performs the recovery procedure (Line 5

of Algorithm 7) to find another correct ExecutionWorker of shard

𝑠 to replace 𝑥 .We thus argue the liveness property in Lemma C.7

by showing that the recovery procedure presented at Line 5 of

Algorithm 7 eventually succeeds; that is, it eventually exits at either

Line 12 or Line 19. The protocol then resumes normal operation,

and the liveness of the system follows from the liveness of the

normal operation protocol (Appendix B). As intermediary steps, we

show that the procedures GetStatus(·) (Line 20 of Algorithm 7),

NewReader(·) (Line 31 of Algorithm 7), and Synchronize (Algo-

rithm 9) eventually terminate.

Lemma C.4. Any call by a correct worker to GetStatus(·) (Line 20
of Algorithm 7) eventually terminates.

Proof. We argue this lemma by construction. Let’s assume an

ExecutionWorker𝑤 calls GetStatus(𝑠) on a shard 𝑠 . It this sends a

Recovermessage to all workers of shards 𝑠 (Line 22 of Algorithm 7).

By Assumption 4, each of these workers eventually receive the

messages, and correct ones reply with a RecoverOkmessage (Line 5

of Algorithm 8). By Assumption 3, there are at least 𝑓𝑒 + 1 correct
workers in shard 𝑠 . Worker𝑤 thus eventually receives at least 𝑓𝑒 +1
RecoverOk responses (Assumption 4). Check Line 26 of Algorithm 7

then succeeds and ensures that GetStatus(𝑠) returns. □

Lemma C.5. A call NewReader(𝑤, ·) (Line 31 of Algorithm 7) to a

correct worker𝑤 eventually successfully terminates; that is, it returns

True.

Proof. Suppose a correct worker calls NewReader(𝑤, TxIdx∗)
for a correct worker𝑤 . By construction, the values (𝑤, TxIdx∗) are
the result of the prior call to GetStatus(·) (Line 20 of Algorithm 7).

Then, given a period of synchrony where messages are delivered

much quicker than checkpoint intervals (Assumption 4), TxIdx∗ is
a valid checkpoint at𝑤 . As such𝑤 responds to the caller’s request

with NewReaderOk, and the caller successfully terminates. □

Lemma C.6. Any call to Synchronize (Algorithm 9) eventually

terminates.

Proof. We argue this lemma by construction of Algorithm 9.

Let𝑤 be a correct worker calling Synchronize. By Lemma C.4, the

call to GetStatus(my-shard) (Line 7 of Algorithm 9) eventually

returns. Then, 𝑤 eventually receives a non-Abort reply (𝑟𝑒𝑝𝑙𝑦 ≠

Abort) at Line 10 given sufficiently many executions of the loop

(Line 6) and a period of network synchrony where messages are

delivered much quicker than checkpoint intervals on other clusters

(Assumption 4). Worker𝑤 then loads a remote snapshot, and waits

for a set of SyncCompletemessages from peers \ suspected. If𝑤 re-

ceives a message with a larger TxIdx,𝑤 retries the synchronization

loop at line 6. By the strong completeness property of the failure

detector (Assumption 5),𝑤 eventually suspect all failed peers, and

hence receive all responses from the peers\suspected set. Moreover,

once messages are delivered quicker than the checkpoint intervals

within clusters (Assumption 4), all peers undergoing Synchronize

will synchronize to the same TxIdx∗ after sufficient retries. □

Lemma C.7. A call to Recover(·) (Line 5 of Line 5) eventually

successfully terminates. That is, it eventually exists at either Line 12

or Line 19

Proof. Consider an ExecutionWorker executing the procedure

Recover(𝑥) (Line 5 of Algorithm 7) with 𝑥 ∈ peers ∪ read-from.

The ExecutionWorker first callsGetStatus(𝑥 .𝑠ℎ𝑎𝑟𝑑) (Line 20) which
is guaranteed to terminate (Lemma C.4). We then have two cases: (i)

the call enters the if-branch (Algorithm 7 Line 8), and (ii) the call en-

ters the else-branch (Algorithm 7 Line 15). We prove that the recov-

ery procedure eventually successfully terminates in both cases. In

the first case (i), the ExecutionWorker callsNewReader(𝑤, TxIdx∗)
(Line 31) which is guaranteed to eventually successfully terminate

by Lemma C.5. The ExecutionWorker then adds𝑤 to its read-from

set and successfully terminates. In the second case (ii), Line 17 of

Algorithm 7 ensures that every correct peer eventually performs

the synchronization procedure. Lemma C.6 then guarantees that

the call to Synchronize (Line 18) eventually terminates. The Exe-

cutionWorker then successfully terminates. □

D DETAILED DYNAMIC OBJECTS PROTOCOL

This section completes Section 5 by providing the modifications to

the algorithms of Appendix A and proving the security of Pilotfish

while supporting dynamic reads and writes.

D.1 Algorithms Modifications

We specify the modifications to the algorithms of Appendix A to

support dynamic read and writes.

The main difference between Algorithm 10 and Algorithm 4 of

Appendix A is the removal of Line 22. Instead of immediately clear-

ing the read locks after accessing the read set’s objects, Algorithm 6

removes all read and write locks later.

The main change between Algorithm 11 and Algorithm 5 of

Appendix A is the rescheduling of Tx upon discovering a dynamic

object. The algorithm first calls UppdateRWSet(Tx𝑜𝑖𝑑′) Line 11 to
update the read or write set of Tx with the newly discovered object

𝑜𝑖𝑑′ and then calls RescheduleTx(Tx, 𝑜𝑖𝑑′) at Line 12 to notify all

concerned workers that the transaction needs to be re-scheduled

for execution.

Finally, Algorithm 12 updates the queue Pending[𝑜𝑖𝑑′] to trig-

ger re-execution of Tx once 𝑜𝑖𝑑′ is available.

D.2 Proofs Modifications

We specify the modifications to the proofs of Appendix B to prove

the serializability, linearizability, and liveness (Section 3) of the

dynamic reads and writes algorithm. The main modifications arise

from the fact that Assumption 2 (Appendix B) is not guaranteed

in the dynamic reads and writes algorithm. We instead rely on

Assumption 6 below.
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Algorithm 10 Core functions (dynamic objects)

1: function TryTriggerExecution(Tx)
2: // Check if all dependencies are already executed

3: if HasDependencies(Tx) then return

4:

5: // Check if all objects are present

6: 𝑀 ← MissingObjects(Tx)
7: if 𝑀 ≠ ∅ then
8: for 𝑜𝑖𝑑 ∈ 𝑀 doMissing[𝑜𝑖𝑑 ] ← Missing[𝑜𝑖𝑑 ] ∪ Tx
9: return

10:

11: // Send object data to a deterministically-elected ExecutionWorker

12: 𝑤𝑜𝑟𝑘𝑒𝑟 ← Handler(Tx) ⊲ Worker handling the most objects of Tx
13: 𝑂 ← {Objects[𝑜𝑖𝑑 ] s.t. 𝑜𝑖𝑑 ∈ HandledObjects(Tx) } ⊲ May contain ⊥
14: ReadyMessage← (Tx,𝑂 )
15: Send(𝑤𝑜𝑟𝑘𝑒𝑟, ReadyMessage)

Algorithm 11 Process ReadyMessage (dynamic objects)

1: R← {} ⊲ Maps Tx to the object data it refefrernces (or ⊥ if unavailable)

// Called by the ExecutionWorkers upon receiving a ReadyMessage.
2: procedure ProcessReady(ReadyMessage)
3: (Tx,𝑂 ) ← ReadyMessage
4: R[Tx] ← R[Tx] ∪𝑂
5: if len(R[Tx] ) ≠ len(R (Tx) ) + len(W(Tx) ) then return

6:

7: ResultMessage← (Tx, ∅, ∅)
8: if !AbortExec(Tx) then
9: 𝑟 ← exec(Tx, ReceivedObj[Tx] )
10: if 𝑟 = (⊥, 𝑜𝑖𝑑 ′ ) then
11: UpdateRWSet(Tx, 𝑜𝑖𝑑 ′ ) ⊲ Update R(Tx) orW(Tx) with 𝑜𝑖𝑑 ′
12: RescheduleTx(Tx, 𝑜𝑖𝑑 ′ ) ⊲ Reschedule Tx with discovered 𝑜𝑖𝑑 ′

13: return

14: (𝑂, 𝐼 ) ← 𝑟 ⊲𝑂 to mutate and 𝐼 to delete

15: for 𝑤 ∈ 𝑛𝑒 do

16: 𝑂𝑤 ← {𝑜 ∈ 𝑂 s.t. Handler(𝑜 ) = 𝑤}
17: 𝐼𝑤 ← {𝑜𝑖𝑑 ∈ 𝐼 s.t. Handler(𝑜𝑖𝑑 ) = 𝑤}
18: ResultMessage← (Tx,𝑂𝑤 , 𝐼𝑤 )
19: Send(𝑤, ResultMessage)

// Reschedule execution with discovered object.

20: function RescheduleTx(Tx, 𝑜𝑖𝑑 ′)
21: AugTx← (Tx, 𝑜𝑖𝑑 ′ )
22: for 𝑤 ∈ 𝑛𝑒 do

23: if ∃𝑜𝑖𝑑 ∈ Tx s.t. Handler(𝑜𝑖𝑑 ) = 𝑤 then

24: Send(𝑤,AugTx)

Algorithm 12 Process AugTx (dynamic objects)

1: procedure ProcessAugmentedTx(AugTx)
2: (Tx, 𝑜𝑖𝑑 ′ ) ← 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑𝑡𝑥

3: if 𝑜𝑖𝑑 ′ ∈ W(Tx) then
4: Pending[𝑜𝑖𝑑 ′ ] ← Pending[𝑜𝑖𝑑 ′ ] ∪ (𝑊, [Tx] )
5: else ⊲ 𝑜𝑖𝑑 ′ ∈ R(Tx)
6: (𝑜𝑝,𝑇 ′ ) ← Pending[𝑜𝑖𝑑 ′ ] [−1]
7: if 𝑜𝑝 =𝑊 then Pending[𝑜𝑖𝑑 ′ ] ← Pending[𝑜𝑖𝑑 ] ∪ (𝑅, [Tx] )
8: else Pending[𝑜𝑖𝑑 ′ ] [−1] ← (𝑅,𝑇 ′ ∪ Tx)
9:

10: // Try to execute the transaction

11: TryTriggerExecution(Tx) ⊲ Defined in Algorithm 4

Assumption 6 (Transaction References Root). If transaction

Tx dynamically accesses an object 𝑜𝑖𝑑′, it explicitly references its root

object 𝑜𝑖𝑑 .

The Sui MoveVM [27] (used in our implementation) satisfies this

assumption. As a result, this part of our design is specific to the

Sui MoveVM and cannot directly generalize to other deterministic

execution engines unless they implement it as well.

Serializability.We replace LemmaB.5 (Appendix B)with LemmaD.1

below. The rest of the proof remains unchanged. Intuitively, Pilot-

fish prevents the processing of conflicting transactions until all

dynamic objects are discovered. This limits concurrency further

than the base algorithms presented in Appendix A but Appen-

dix D.3 shows how to alleviate this issue by indexing the queues

Pending[·] with versioned objects, that is, tuples of (𝑜𝑖𝑑, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛),
rather than only object ids.

Lemma D.1 (Unlock after Processing). If a transaction Tx is
removed from the pending queue of an object 𝑜𝑖𝑑 then Tx has already
been processed (Definition B.13 of Appendix B).

Proof. We argue this lemma by construction of Algorithm 6.

By definition (Definition B.13), the processing of Tx terminates at

Algorithm 6 Line 4. However, the only way Tx can be removed from

Pending[𝑜𝑖𝑑] is by a call to AdvanceLock(Tx, 𝑜𝑖𝑑). This call only
occurs at one place, at Line 14 of that same algorithm, thus after

finishing the processing of 𝑡𝑥 . □

The following corollary is a direct consequence of Lemma D.1

and facilitates the proofs presented in the rest of the section.

Corollary D.2 (Simulateous Removal). A transaction Tx is

removed from all queues at Line 14 of Algorithm 6.

Proof. We observe that the proof of Lemma D.1 states that the

onlyway to remove Tx from a queue is by callingAdvanceLock(𝑇, 𝑜𝑖𝑑)
and that this call occurs only at one place, at Line 14 of Algo-

rithm 6. □

Linearizability. The call to 𝑒𝑥𝑒𝑐 (Tx,𝑂) at Line 9 of Algorithm 5

only completes when all objects dynamically accessed by Tx are pro-
vided by the set 𝑂 or are specified as ⊥. Since objects are uniquely
identified by id, we need to show that all honest validators discover

the same set of dynamically accessed objects.

Lemma D.3 (Consistent Dynamic Execution). If a correct val-

idator successfully calls 𝑒𝑥𝑒𝑐 (Tx,𝑂) with an dynamically accessed

object 𝑜′ ∈ 𝑂 s.t. 𝑜′ ≠⊥ then no correct validators calls 𝑒𝑥𝑒𝑐 (Tx,𝑂)
with 𝑜′ =⊥.

Proof. Let’s assume by contradiction that a correct validator 𝐴

calls 𝑒𝑥𝑒𝑐 (Tx𝑗 ,𝑂) (Line 9 of Algorithm 11) with 𝑜′ ∈ 𝑂 s.t. 𝑜′ ≠⊥
while another correct validator 𝐵 calls 𝑒𝑥𝑒𝑐 (Tx𝑗 ,𝑂) with 𝑜′ =⊥.
This means that validator 𝐴 called 𝑒𝑥𝑒𝑐 (Tx𝑗 ,𝑂) after processing
a previous transaction Tx𝑖 that created 𝑜′, and that validator 𝐵

called 𝑒𝑥𝑒𝑐 (Tx𝑗 ,𝑂) before processing Tx𝑖 . By Assumption 6 both

transactions Tx and Tx′ conflict on the root of 𝑜′, named 𝑜 , and

Lemma B.4 (Appendix B) ensures that they are both placed in the

same queue Pending[𝑜𝑖𝑑] (with 𝑜𝑖𝑑 = Id(𝑜)). Lemma B.9 (Appen-

dix B) ensures that both validator hold Tx𝑗 and Tx𝑖 in the same

order in Pending[𝑜𝑖𝑑], and since validator 𝐴 processed Tx𝑖 be-
fore Tx𝑗 , it means that both validators placed Tx𝑖 in the queue

Pending[𝑜𝑖𝑑] before Tx𝑗 . However Lemma D.1 ensures that Tx𝑖 is
not removed from Pending[𝑜𝑖𝑑] until processed and thus that val-

idator 𝐵 executed Tx𝑗 despite Tx𝑖 is still in Pending[𝑜𝑖𝑑]. However
check HasDependencies(Tx𝑗 ) (Line 3 of Algorithm 10) prevents

Tx𝑗 from accessing object 𝑜 (since it is not at the head of the queue

Pending[𝑜𝑖𝑑]). This is a contradiction of Lemma B.7 (Appendix B)
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stating that Tx𝑗 cannot be executed before accessing 𝑜 . Since 𝑜′

was chosen arbitrarily, the same reasoning applies to all objects

dynamically accessed by Tx𝑗 . □

Lemma D.3 replaces the reliance on Assumption 2 in the proof

of Theorem B.11 (Appendix B).

Liveness. Lemma B.18 of Appendix B assumes that all calls to

𝑒𝑥𝑒𝑐 (Tx, ·) are infallible. However, supporting dynamic objects re-

quires us to modify Algorithm 5 as indicated in Algorithm 11 and

make 𝑒𝑥𝑒𝑐 (Tx,𝑂) fallible. The final Lemma D.6 in this paragraph

proves that this change does not compromise liveness, since all

dynamically accessed objects are eventually discovered, and thus

all calls to 𝑒𝑥𝑒𝑐 (Tx, ·) eventually succeed.

Lemma D.4 (Mirrored Dynamic Object Schedule). If a trans-

action Tx𝑗 is placed in a queue Pending[𝑜𝑖𝑑′] of a dynamically

accessed object 𝑜𝑖𝑑′ after a transaction Tx𝑖 , then Tx𝑗 is also placed in
the queue Pending[𝑜𝑖𝑑] of the root object 𝑜𝑖𝑑 after Tx𝑖 .

Proof. Let’s assume by contradiction that Tx𝑗 is placed in the

queue Pending[𝑜𝑖𝑑′] of a dynamically accessed object 𝑜𝑖𝑑′ after a
transaction Tx𝑖 but before Tx𝑖 is placed in the queue Pending[𝑜𝑖𝑑]
of the root object 𝑜𝑖𝑑 . By construction, Tx𝑖 can only discover 𝑜𝑖𝑑′

upon execution (Line 9 of Algorithm 11). However, Lemma B.7 en-

sures that Tx𝑖 cannot be executed before accessing 𝑜𝑖𝑑 . This means

Tx𝑖 access 𝑜𝑖𝑑 despite Tx𝑗 is already in the queue Pending[𝑜𝑖𝑑′].
This is however a contradiction of check HasDependencies(Tx𝑖 )
(Line 3 of Algorithm 10) ensuring that Tx𝑖 is at head of Pending[𝑜𝑖𝑑]
and thus placed in that queue before Tx𝑗 . □

Lemma D.5 (Dynamic Access at Head ofQueue). When dis-

covering a dynamically accessed object 𝑜𝑖𝑑′ by executing transaction

Tx𝑗 and adding Tx𝑗 to queue of Pending[𝑜𝑖𝑑′], Tx𝑗 is at the head of
the queue Pending[𝑜𝑖𝑑′].

Proof. Let’s assume by contradiction that there exists a trans-

action Tx𝑖 is at the head of Pending[𝑜𝑖𝑑′] while adding Tx𝑗 to
the queue Pending[𝑜𝑖𝑑′]. By Assumption 6, both transactions Tx𝑖
and Tx𝑗 conflict on the root of 𝑜𝑖𝑑′, named 𝑜𝑖𝑑 , and Lemma B.4

(Appendix B) ensures that they are both placed in the same queue

Pending[𝑜𝑖𝑑]. Given that Tx𝑖 is at the head of Pending[𝑜𝑖𝑑′] and
that Corollary D.2 states that transactions are removed from all

queues at the same call, Tx𝑖 is also present in the queue Pending[𝑜𝑖𝑑].
Furthermore, since Tx𝑖 is placed in Pending[𝑜𝑖𝑑′] before Tx𝑗 , LemmaD.4

ensures that Tx𝑖 is also placed in the queue Pending[𝑜𝑖𝑑] before
Tx𝑗 . Since the discovery of the dynamic object 𝑜𝑖𝑑′ can only occur

upon executing a transaction accessing it (at Line 9 of Algorithm 11)

and Tx𝑖 is placed in Pending[𝑜𝑖𝑑] before Tx𝑗 , it means that Pilot-

fish executed Tx𝑗 while Tx𝑖 is still in the queue Pending[𝑜𝑖𝑑]. This
is a direct contradiction of check HasDependencies() (Line 3 of
Algorithm 10). □

Lemma D.6 (Unlock after Processing). All objects dynami-

cally accessed by Tx are eventually discovered. That is, eventually

𝑒𝑥𝑒𝑐 (Tx, ·) ≠ (⊥, ·).

Proof. Lemma D.1 ensures that when 𝑒𝑥𝑒𝑐 (Tx, ·) (Line 9 of Al-
gorithm 11) returns (⊥, 𝑜𝑖𝑑′), Tx remains at the head of the queue

Tx1 Tx2 Tx3 Tx4 Tx5

R: {O1}
W: {O1}

R: {O1}
W: {O1, O3}

R: {O1, O2}
W: {O4}

R: {O2, O3}
W: {O4}

R: {O1, O3}
W: {O2, O3}

O1 (V1) O2 (V1) O3 (V1) O4 (V1)

R, [Tx1]

O1 (V2) O2 (V2) O3 (V2) O4 (V2)

W, [Tx1]
R, [Tx2]

R, [Tx3, Tx4]

W, [Tx5]

W, [Tx3]

W, [Tx4]

W, [Tx2]
R, [Tx4, Tx5]

W, [Tx5]

O1 (V3)

W, [Tx2]
R, [Tx3, Tx5]

Figure 15: Example of per-object-version queues using the same transactions

as in Figure 3.

Tx1 Tx2 Tx3

Tx4

Tx5

O1

O1, O3

O1

O3

Figure 16: Example of the happens-before/waiting-on relationship resulting

from the per-object-version queues of Figure 15. Edge labels indicate which

object is responsible for the dependency.

Pending[𝑜𝑖𝑑] (for any 𝑜𝑖𝑑 ∈ Tx). By construction, this only hap-

pens when Tx discovers a dynamic access to object 𝑜𝑖𝑑′; Tx is then
added to the queue Pending[𝑜𝑖𝑑′] (Algorithm 12). Lemma D.5 en-

sures that Tx is at the head of the queue Pending[𝑜𝑖𝑑′] and thus

ready for execution by referencing the newly discovered object

𝑜𝑖𝑑′. As a result, all dynamically accessed objects are eventually

discovered, and thus 𝑒𝑥𝑒𝑐 (Tx, ·) ≠ (⊥, ·). □

D.3 Versioned Queues Scheduling

This section shows the necessary changes to the algorithms of

Appendix D.1 and data structures of Appendix A to move from per-

object queues to per-object-version queues. A prerequisite for this

is versioned storage of the object data itself, that is, Objects should

be a map Objects[𝑜𝑖𝑑,Version] → 𝑜 instead of Objects[𝑜𝑖𝑑] → 𝑜 ,

which keeps old object versions for as long as they are referenced.

Given this, a transaction only writing (not reading) an object does

not have to wait on any transaction reading the previous version.

An example of this new queueing system can be seen in Figure 15.

Also, the resulting dependencies between transactions can be seen

in Figure 16. Without per-version queues all five transactions would

have to be executed sequentially instead.

One observation with these per-version queues is that each

queue now only contains a single writing transaction (at the very

beginning of the queue) and possibly many reading transactions
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Algorithm 13 Process ProposeMessage (Split-Queues)
1: i← 0 ⊲ All batch indices below this watermark are received

2: B← [ ] ⊲ Received batch indices

// Called by ExecutionWorkers upon receiving a ProposeMessage.
3: procedure ProcessPropose(ProposeMessage)
4: // Ensure we received one message per SequencingWorker

5: (BatchIdx,BatchId,𝑇 ) ← ProposeMessage
6: B[BatchIdx] ← B[BatchIdx] ∪ (BatchId,𝑇 )
7: while len(B[i] ) = 𝑛𝑠 do

8: (_,𝑇 ) ← B[i]
9: i← i + 1
10:

11: // Add the objects to their pending queues

12: for Tx ∈ 𝑇 do

13: for 𝑜𝑖𝑑 ∈ HandledObjects(Tx) do ⊲ Defined in Algorithm 4

14: Tx′ ← CurrentWriter[𝑜𝑖𝑑 ]
15: if 𝑜𝑖𝑑 ∈ W(Tx) then
16: CurrentWriter[𝑜𝑖𝑑 ] ← Tx
17: if 𝑜𝑖𝑑 ∈ R(Tx) then
18: WaitingOn[Tx′ ] ← WaitingOn[Tx′ ] ∪ {Tx}
19: WaitedOnBy[Tx] ← WaitedOnBy[Tx] ∪ {Tx′ }
20:

21: // Try to execute the transaction

22: TryTriggerExecution(Tx) ⊲ Defined in Algorithm 4

Algorithm 14 Core functions (Split-Queues, only modified shown)

1: j← 0 ⊲ All Tx indices below this watermark are executed

2: E← ∅ ⊲ Executed transaction indices

3: function HasDependencies(Tx)
4: return WaitingOn[Tx] ≠ ∅

5: function AdvanceLock(Tx, 𝑜𝑖𝑑)
6: // Cleanup the pending queue

7: 𝑇 ← ∅
8: for 𝑜𝑖𝑑 ∈ W(Tx) do
9: if CurrentWriter[𝑜𝑖𝑑 ] = Tx then ⊲ Tx is still the most recent write

10: CurrentWriter[𝑜𝑖𝑑 ] ← ⊥
11: for Tx′ ∈ WaitedOnBy[Tx] do
12: WaitingOn[Tx′ ] ← WaitingOn[Tx′ ] \ {Tx}
13: WaitedOnBy[Tx] ← WaitedOnBy[Tx] \ {Tx′ }
14: if WaitingOn[Tx′ ] = ∅ then
15: 𝑇 ← 𝑇 ∪ {Tx′ }
16: return𝑇

following it. This makes it straightforward to keep track of depen-

dencies between transactions directly, without explicitly creating

the queues. We use two maps for this: (a) CurrentWriter[𝑜𝑖𝑑] →
TxIdx keeps track of which transaction is writing the most re-

cent version of any object, and (b)WaitingOn[TxIdx] → [TxIdx]
keeps for each transaction a list of transactions currently writ-

ing object versions it depends on. Additionally, a reverse mapping

WaitedOnBy can be used to enable fast deletion fromWaitingOn.

OnceWaitingOn is empty for a transaction, it is ready for execu-

tion.When enqueueing a transaction, we can checkCurrentWriter

for all objects it reads to see which other transactions it needs to

wait on. This process is shown in detail in Algorithm 13 and Algo-

rithm 14.
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