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Abstract. We revisit decentralized random beacons with a focus on
practical distributed applications. Decentralized random beacons (Beaver
and So, Eurocrypt’93) provide the functionality for n parties to generate
an unpredictable sequence of bits in a way that cannot be biased, which
is useful for any decentralized protocol requiring trusted randomness.

Existing beacon constructions are highly inefficient in practical set-
tings where protocol parties need to rejoin after crashes or disconnec-
tions, and more significantly where smart contracts may rely on arbitrary
index points in high-volume streams. For this, we introduce a new notion
of history-generating decentralized random beacons (HGDRBs).

Roughly, the history-generation property of HGDRBs allows for pre-
vious beacon outputs to be efficiently generated knowing only the current
value and the public key. At application layers, history-generation sup-
ports registering a sparser set of on-chain values if desired, so that apps
like lotteries can utilize on-chain values without incurring high-frequency
costs, enjoying all the benefits of DRBs implemented off-chain or with
decoupled, special-purpose chains. Unlike rollups, HG is tailored specif-
ically to recovering and verifying pseudorandom bit sequences and thus
enjoys unique optimizations investigated in this work.

We introduce STROBE: an efficient HGDRB construction which gen-
eralizes the original squaring-based RSA approach of Beaver and So.
STROBE enjoys several useful properties that make it suited for practi-
cal applications that use beacons:

1. history-generating: it can regenerate and verify high-throughput
beacon streams, supporting sparse (thus cost-effective) ledger en-
tries;

2. concisely self-verifying: NIZK-free, with state and validation em-
ploying a single ring element;

3. eco-friendly: stake-based rather than work based;

4. unbounded: refresh-free, addressing limitations of Beaver and So;

5. delay-free: results are immediately available.
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1 Introduction

A random beacon is a shared source of agreed-upon random bits. First introduced
in 1981 by Rabin [49] in the context of digitally-signed documents, beacons
use unpredictability to put adversarial strategies in doubt. Trusted beacons are
increasingly recognized as a critical resource for Decentralized Finance (DeFi),
blockchains, Byzantine Fault Tolerance (BFT), leader elections, and a range of
Decentralized Applications (dApps) including lotteries.

At fundamental protocol layers such as consensus, beacons drastically reduce
the time and effort needed to withstand protocol-defeating attacks. For example,
Feldman and Micali [34] implemented a common coin to achieve 2-round prob-
abilistic consensus, breaking the deterministic lower bound of f + 1 rounds [30].

At higher levels of abstraction, new and important properties and optimiza-
tions emerge. Crash failures, delays, and asynchrony in the interactions between
processes or the execution of smart contracts in a ledger environment make it
essential to have stronger and coordinated record-keeping, to make it easier to
retrieve and verify past results.

To complicate matters, many high-level applications like lotteries or gaming
require high-frequency streams. Frequencies and latencies at the scale of seconds
are too slow. Registering streams bit-by-bit in real-time on a ledger is simply
infeasible given transaction throughputs and latencies, let alone enormously cost-
prohibitive fees.

Registering intermittent results is a feasible and cheaper workaround - as long
as the intermittent results provide sufficient content and validation to enable
optimistic fault detection and recourse for any on-chain relying parties. To date,
such applications either run at very slow speeds (lotteries) or require centralized
trust (gaming platforms).

While a naive approach might register a long sequence accompanied by ag-
gregate signatures and rollups to prove step-by-step correctness, so that relying
parties can check content and validity, we take a novel and alternative approach,
employing history generation for streamlined communication size and speed.
Our protocols are direct and simple, providing a concise element to regenerate
the entire back sequence (effectively compressing it) and to validate it (obviating
NIZKs, let alone aggregation).

Decentralized random beacons. Beaver and So presented the first de-
centralized beacon (DRB) in [7], achieved by way of a threshold homomorphic
secret sharing of future bits. Their approach capitalized on the Blum-Blum-Shub
pseudorandom generator [9], in which successive squares in an RSA ring are pro-
duced. By reversing the sequence and employing tricks for threshold Lagrange
interpolation, [7] gave a self-certifying sequence obviating any need for ZKPs.

History-generating DRBs. A key contribution of this work is the notion
and implementation of history generation, a technique that is essentially equiv-
alent to compressing long sequences and providing a maximally concise validity
check. In the context of random streams produced by DRBs, we are able to take
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strong advantage of the sequential nature of the stream to achieve optimizations
exceeding those available to general-purpose calculations-with-ZKPs.

Unbounded sequences. In the threshold homomorphic VSS approach of
[7], there is a bound on the number of bits to be produced without engaging in
some kind of refreshing state. The results are limited by stakeholders rather than
VDF-style delays: there is no explicit notion of using work as a computationally-
guaranteed limit on the cadence of a beacon. We address both limitations using
a generalized construction without incurring proof-of-work.

Roadmap. In the sequel, we describe intuitions of our constructions and how
applications can benefit from the novel, history-generating property. We cover
related work in §2, with particular attention to feature tradeoffs in Table 1.
Details of the construction appear in §3, with security model in §4 and proofs in
§5. We describe some extension in §6 and application details in §7.

1.1 Construction Intuition

Our starting point is to view RSA decryption as a trapdoor one-way function
in reverse, which can be efficiently verified. The beacon output of an epoch is
essentially the RSA decryption of the previous epoch’s output, and this carries
on perpetually. The verification of an output is to just RSA encrypt it with the
public key and see that if it equals to the previous epoch’s output. In this sense,
the beacon is self-certifying.

Viewed in a non-distributed setting, the setup of the beacon generates RSA
modulus N = pq along with a root-ing parameter s. Then the beacon proceeds
perpetually as:

x→ x1/s → x1/s
2

→ · · · → x1/s
T

→ · · ·

To parties that just know about N as a public parameter, this provides some
attractive properties: (1) The next value in the beacon is hard to predict given
the earlier values. (2) It’s easy to verify a beacon value against the last value.
In fact, we can check the value against any historical value, except that it gets
progressively harder with the gap. (3) An especially tantalizing property is that
any historical beacon value, can in fact be generated by just knowing the current
value.

Of course, the problem with this is that taking roots in an RSA ring is hard
without knowing the prime factors p and q. So we need a trusted party holding
the primes to be generating all the beacon values.

Recent advances in distributed RSA modulus generation allows us to generate
a public modulus N , with no single party knowing the factors. Imagine that in
addition we also give secret shares of s−1 (mod φ(N)) to n distinct parties:

sk1 + sk2 + · · ·+ skn = s−1 (mod φ(N))

At the time epoch T + 1, the n parties can then output xskiT each, where xT
is the output of the last epoch. On multiplying all the public shares, we get
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xT+1 = xs
−1

T (mod N). At the same time, observe that even (n−1) of the secret
keys are effectively independently random. Also observe every public share is
also self-certifying wrt the last epoch, in the sense xskiT = (xskiT+1)s.

Adapting the n-of-n setting to a threshold t-of-n setting introduces additional
challenges which do not affect known-order groups. Essentially, Shamir secret
sharing involves fractional Lagrange interpolation coefficients which are efficient
to compute to group elements if we know the order. However, this is not possible
to do in the exponent of RSA group elements, as φ(N) is not public. We adapt
and extend the techniques pioneered by [7] and also used by [52] to address this
challenge. The core trick is to lift the Lagrange coefficients by a factor of n!, so
that they are not fractional anymore.

2 Related Work

Random Beacons. Practical bias-resistant random beacons producing regu-
lar series of random outputs typically follow one of three approaches: the first
one uses publicly verifiable secret sharing (PVSS) mechanisms, the second uses
threshold signatures (or homomorphic VSS) and a distributed key generation
(DKG), and the third relies on verifiable delay functions (VDFs).

Beacons of the first type use the following blueprint design, they need 4
rounds for n participants to generate a random value. In the first round all nodes
simultaneously secret-share a freshly generated random value s among the rest
of the nodes. They do so by publishing the following values: n shares of s each
encrypted under receiving party’s public key, a commitment to the secret, and a
non-interactive zero-knowledge proof that those were generated correctly. In the
second round, the parties run some sort of consensus algorithm to agree which
nodes did the sharing correctly and which failed. This can also be replaced with
posting the shares on chain where anyone can verify the proofs independently,
although this typically relies on consensus provided by a chain (rather than en-
abled by the beacon). In the third round, the parties reveal their secrets and in
the fourth round for parties that withheld their secrets, shares of those secrets
are broadcast for recovery. The resulting beacon’s value is derived from the re-
vealed or recovered secrets. The rounds can be pipelined to get regular random
outputs at each round. Starting from the original proposal of Ouroboros [41] a
sequence of papers (Scrape [22], Albatross [23], HydRand [51], RandHerd [53])
has improved the communication, computation complexity per node and the ver-
ification complexity for beacon of this type. No centralized or trusted setup and
standard cryptographic assumptions are the main advantages of those protocols.
However, those protocols still remain communication-intensive, since they need
to run the full protocol (including consensus) for every fresh random value and
computation wise intensive, since every party needs to check that every secret-
share has been correctly constructed. A public verifier needs O(n) messages to
verify each beacon’s value, making it communication-wise expensive to verify a
series of random values.
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A full chain of our beacon, in contrast, can be verified using only the current
beacon’s output and the public parameters.

Beacons of the second type rely on a setup phase where a secret key is gen-
erated in a distributed manner, after which homomorphic VSS and/or threshold
signatures can be employed. The use of homomorphic VSS was pioneered in the
first DRB in 1993 [7], where successive values of a BBS generator are revealed.
The shares of square roots are, homomorphically and similar in spirit to thresh-
old RSA, square roots of shares. The shares and the reconstructed values each
act as verifiers of previous values (viz. by way of squaring). This particular solu-
tion suffers from a need to refresh to new sequence values periodically; it is not
unbounded as-is.

In numerous other, generalized approaches of this second style, nodes can use
a unique threshold signature scheme, such as threshold BLS [14, 15] (tBLS) in
Dfinity [39] and drand [32] or as threshold RSA (tRSA) signatures [52] in Cachin
et al. [20]) to sign an agreed-upon progression of values (either block-hashes,
or round-numbers, or a combination of those). The main advantage of those
protocols is efficiency (each party only sends a single message per beacon’s value)
and ease of public verifiability (current beacon’s value can be verified using only
public parameters). The disadvantages are a complicated setup phase (though
straightforward when a trusted party is assumed), for example to generate the
threshold key for tBLS over the Internet it still takes elaborate protocols with
O(n4) communication complexity costs [40, 44] and O(f) worse case run time.
We improve on the approach of tRSA by building a random beacon straight from
the RSA assumption requiring no additional proofs for correctness of signature’s
shares. Our scheme naturally gives a novel property of history generation in
contrast to existing approaches.

There is also a third approach that relies on a proof-of-delay mechanism [10]:
either a block-hash is passed through a verifiable delay function (VDF), or the
values submitted by the participants are passed through a VDF function to
generate a random value. Most prominent systems are RANDAO w. VDF [31],
continuous VDF [33] and RandRunner [50]. But those approaches are highly
computationally intensive for the prover and require precise estimates of con-
crete complexity, which are hard to predict in practice (competitions with high-
reward incentives were set-up by Chia Networks (chia.net) and Ethereum
(ethereum.org) in partnership with Protocol Labs (protocol.ai) to get con-
crete estimates of VDFs’ complexity). In the presence of a quantum adversary a
quantum-resistant VDF could be used to produce a quantum-resistant random
beacon, e.g. Veedo [54].

Distributed generation of an RSA modulus and an inverse of a pub-
lic exponent. The setup of our construction requires the generation of an RSA
modulus N that is a product of two primes. The most common way of generating
such a modulus in a centralized setting (a.k.a. with a trusted setup), is to ran-
domly sample κ-bits integers running Miller-Rabin probabilistic primality tests
on them [46, 48] until two primes are obtained with overwhelming probability,
multiplying them gives a 2κ-bits bi-prime N . Since currently there is no known

chia.net
ethereum.org
protocol.ai
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Albatross [23]
HydRand [51]
RandHerd [53]

N N N Y Y N none PVSS

RandRunner [50]
RANDAO++ [31]
cVDF [33]
Veedo [54]

N N Y Y Y N yes/no VDF

Dfinity [39]
drand [32]

N N Y Y Y N DKG tBLS

C03 [18]
BS93 [7]

N Y Y N Y Y mod.gen. RSA

STROBE mod.gen.+
(this work)

Y Y Y Y Y Y
inverse

RSA

Table 1. Comparison among several beacon protocols. Self-certifying beacons give
inexpensive verification of a beacon value against the previous one with no zero-
knowledge proofs. Refresh-free beacons allow for generation of indefinite sequence
of random values per single setup. BA-free beacons do not need to use Byzantine-
Agreement protocols. ROM-free beacons do not rely on a random oracle assumption.
Beacons based on the RSA assumption require a trusted setup or a distributed RSA
modulus generation (mod.gen), our protocol additionally requires the generation of
an inverse of a public exponent. Some VDF-based beacons do require a setup: those
based on RSA.

way to sample a bi-prime (using only public randomness) for which nobody
knows the factors, the only way to alleviate the trusted setup is to distribute
the generation of the bi-prime modulus via a dedicated multi-party computa-
tion protocol. Boneh and Franklin [12,13] initiated the study of distributed RSA
modulus generation devising a protocol in a passive security model with hon-
est majority. The follow-up protocol of Algesheimer, Camenisch and Shoup [3]
devised a protocol for generation of N that is a product of two safe primes,
passively secure with honest majority. The follow-up work has hardened the
original Boneh-Franklin’s protocol to be secure in the presence of actively mali-
cious parties and honest majority [35]. The works mentioned above also generate
an inverse (RSA decryption key) in a distributed manner. An improvement to
this part of the protocol was also made by Catalano et al. [24]. A promising
approach of getting rid of the setup phase altogether, that was proposed in Ran-
dRunner [50] and in the work of Damg̊ard and Koprowski [28], can potentially
get applied to this work.
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3 The STROBE Protocol

We now define the syntax of a History Generating Decentralized Random Beacon
(HGDRB) and describe our STROBE construction.

Definition 1 (HGDRB). A History Generating Decentralized Random Bea-
con (HGDRB) is a set of algorithms (Setup,Gen,Eval, V erifyShare, Combine,
V erify,Back):

Setup: (λ, n, t)→ (pk, sk1, · · · , skn). The Setup algorithm takes the security pa-
rameter λ and threshold parameters n and t. The scheme allows t-of-n re-
construction, with secret shares given to n parties. The output is a public key
pk and secret shares sk1, · · · , skn.

Gen: pk → x0. The (one-time) Gen algorithm samples an initial random value
x0.

Eval: (ski, xT )→ xT+1,i. Each party takes the last epoch’s (T ) output xT , com-
putes and outputs a share of the next epoch’s output xT+1,i.

VerifyShare: (pk, xT,i, xT+1,i)→ {0, 1}. The VerifyShare algorithm checks the
epoch T + 1 shares against the corresponding epoch T shares.

Combine: (pk, xT,P1
, xT,P2

, . . . , xT,Pt)→ xT+1. Given t shares from epoch T
that pass VerifyShare the Combine algorithm outputs the next epoch’s beacon
value xT+1.

Verify: (pk, xT , xT+1)→ {0, 1}. The Verify algorithm checks the epoch T + 1
beacon output against the epoch T beacon output.

Back: (pk, xT , k)→ xT−k: This outputs the beacon value at epoch T − k given
the epoch T beacon value xT and k < T .

Informally, correctness asserts that honestly computed beacon values will
pass verify checks with respect to previous beacon outputs. The same should hold
for share outputs as well. The Back function allows to compute any historical
beacon value efficiently (going back a polynomial number of epochs).

The STROBE protocol. We now provide our HGDRB construction, called STROBE.
It is based on threshold inversion in RSA groups and its security follows from
the RSA assumption.

Setup(λ, n, t): The Setup algorithm takes the security parameter λ and samples
an RSA modulus N = pq with φ(N) = 4p′q′.
Sample primes p, q such that p − 1 = 2p′, q − 1 = 2q′ with p′, q′ also being
primes. Pick a prime s, s.t. min(p′, q′) > s > n. Let N = pq and observe
that s - φ(N). Sample a1, · · · , at−1 ← [1, N ] and let f(X) = v+ a1X + · · ·+
at−1X

t−1, where v = (n!s)−1 (mod p′q′).
Send secret shares ski = f(i) (mod N) to parties i ∈ [1, n]. Publish pk =
(N, s).

Gen(pk): The Gen algorithm samples a seed value seed ← [1, N ]. This is a
public random value that can be computed by MPC or by taking a block

hash. It then outputs x0 = seed4(n!)
2

(mod N).
The 4(n!)2 factor is an artifact of the security proof and will be explained in
Section 5.
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Eval(ski, xT ): Each party takes the last epoch’s (T ) output xT , computes and
outputs a share of the next epoch’s output xT+1,i:

xT+1,i = xskiT = x
f(i)
T (mod N).

VerifyShare(pk, xT,i, xT+1,i): The epoch T+1 shares can be self-verified against
the corresponding epoch T shares, by checking that

xsT+1,i = xT,i (mod N).

Combine(pk, xT,P1
, xT,P2

, . . . , xT,Pt): Given t epoch T shares, first check that
each of them pass VerifyShare. Let γ denote the set of these indices {P1, · · · , Pt}.
The Combine algorithm then computes the combined epoch T beacon value
xT by computing the interpolation:

xT =
∏
i∈γ

x
n!Li(0)
T,i (mod N),

where the Lagrange basis polynomials Li’s are defined as:

Li(X) =
∏

j∈γ,j 6=i

X − j
i− j

.

The polynomials satisfy the following property: for ∀i, j ∈ γ : Li(i) = 1,
and Li(j) = 0 for i 6= j. The (n!) factor is essential to clear the denomina-
tors of the interpolation coefficients, which makes sure there is no fractional
exponent to compute.

Verify(pk, xT , xT+1): The epoch T+1 beacon output can be self-verified against
the corresponding epoch T beacon output, by checking that

xsT+1 = xT (mod N).

Back(pk, xT , k): This outputs the beacon value at epoch T − k as:

xT−k = xs
k

T (mod N).

We assume that each share carries the identity information (metadata) about
which party generated it. Apart from the V erify (and V erifyShare) algorithms
checking against the last epoch outputs, the Back algorithm provides an alter-
nate way to check against any previous epoch output, all the way to epoch 0
(and 1). In fact if the shares from epoch 1 are also made part of the trusted pk,
then this provides a way of checking the beacon value without accessing the past
beacon values at all. The trade-off is that checking against beacon values in the
past grows computationally expensive with the number of epochs elapsed. As
an extension of the core protocol, we can also leverage techniques from popular
VDF constructions, as described in Section 6.
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Correctness. We have x0 = seed4(n!)
2

. Assume inductively, xT−1 = seed4(n!)
2s−T+1

.
Correctness of the beacon outputs follows as below:

xT =
∏
i∈γ

x
n!Li(0)
T,i = x

n!
∑
i∈γ f(i)Li(0)

T−1 = seed4(n!)
2s−T+1n!

∑
i∈γ f(i)Li(0)

= seed4(n!)
2s−T+1n!f(0) = seed(n!)

2s−T 4(n!)vs

As v = (n!s)−1 (mod p′q′), we have 4(n!)vs = 4 (mod φ(N)). Therefore,

seed4(n!)vs = seed4 (mod N).
Substituting, we get:

xT = seed4(n!)
2s−T .

This carries the induction successfully forward, and also leads to successful
verification: xsT = xT−1. Similar steps apply to the individual shares as well.

4 Security Model

There are various flavors of security that we could require of a random beacon. To
narrow down the syntax, we will focus on stake-based, self-certifying, threshold
beacons. The baseline security we want is that an adversary should not be able
to predict future beacon values based on seeing past values and corrupting less
than a threshold number of participants.

Unpredictability vs. Pseudorandomness. We could require the next beacon value
to be pseudorandom, instead of just unpredictable. We observe that we could
essentially compile an unpredictable beacon into a pseudorandom one, either by
applying a random oracle (similarly to what is described as “tick-tock” in [33]),
or if we want to avoid the RO assumption, by extracting hardcore bit(s), as
in [9]. There exist applications where unpredictability suffices, but in most of the
cases, such as a decentralized lottery or leader election, unbiased randomness is
essential. .

We also note that, for a self-certifying and/or history generating beacon,
there needs to be a part of the beacon output that cannot be pseudorandom, as
otherwise it cannot be used for the certification assertion and/or historical value
computation.

Active vs. Passive. A passive adversary just observes the transcript of an honest
run of the protocol, including public shares and beacon outputs and then tries
to predict the next beacon value. An active adversary, on the other hand, can
actively modify the public share values and beacon outputs. In this paper we con-
sider active adversaries. In our setting, the self-certification essentially ensures
that there is only a unique value for each expected public share or beacon value
that can pass onto the next phase. This makes any adversarial modifications
immediately noticeable and subject to rejection.
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Selective vs. Adaptive. Another dimension to specify the adversary is on whether
we restrict it to corrupt parties that it declares upfront (selective), or allow
the parties to be corrupted dynamically as it observes and interacts with the
protocol (adaptive). Our core protocol only satisfies selective security in this re-
spect. We leave it as an open problem to construct an adaptively secure protocol
which retains the efficiency standard of our selective one. A generic (complexity-
leveraging) approach can be used to get an adaptively secure scheme from a
selectively secure one: the reduction simply needs to guess the set of corrupted
parties and then run the selective reduction aborting if the selection of corrupted
parties does not match the one requested by the adversary. This, unfortunately,
leads to a loss in security that is exponential in the number of parties, n, thus
limiting the number of parties to be at most logarithmic in the security pa-
rameter λ. There are other promising approaches in the works for threshold
RSA cryptosystems. Canetti et al. [21] proposed a methodology for transform-
ing a selectively-secure threshold scheme into an adaptively-secure one, where
the protocol needs to be modified to carefully erase secrets and to use simple
zero-knowledge proofs, the adversary is rewinded in the proof which also incurs
a security loss although not as large as with the complexity-leveraging approach.
A follow-up work of Almansa et al. [4] simplified this result for RSA, but at the
cost of the secret’s re-sharing after every round, with an emergent benefit of
making the scheme proactively secure. In a proactively secure scheme the adver-
sary can corrupt at most t players in a time period determined by the protocol.
Since the set of corrupted parties changes, each party can become corrupt at
some point (i.e. leak its secrets), but if the party recovers from a compromise
then a subsequent secret’s re-sharing will enable the party to be honest again.

Given the above discussion, we now formally define the security model that
we consider for our core protocol: unpredictable, selective and adaptive.

Definition 2 (Selective-secure Unpredictability). We say that an HG-
DRB is Selective-secure Unpredictable if the following adversary has negligible
advantage:

1. The Challenger runs Setup(λ, n, t) and outputs pk to the Adversary.

2. The Adversary selects a time epoch S < poly(λ) and a set of parties γ =
{P1, P2, · · · , Pt−1} to corrupt.

3. The Challenger sends the transcript of the protocol till time epoch S to the
Adversary, as well as the secret shares for parties in γ. This includes the
outputs of Gen and those of Eval for all i ∈ [1, n] and T ≤ S.

4. The Adversary outputs a quantity x′.

5. The Adversary wins if V erify(pk, xS , x
′) passes.

Although the above definition does not explicitly let the adversary modify
public share and beacon values, this is still equivalent to an active adversary,
as the self-verification of beacon and share values ensure that only the unique
correct values would not be rejected.
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5 Proof of Security

In this section, we show that the STROBE protocol satisfies Selective-secure
Unpredictability under the RSA assumption.

Definition 3 (RSA Assumption). The Challenger samples RSA number
N = pq and picks a quantity s co-prime to φ(N). Then it randomly samples
z ← [1, N ] and sends (N, s, z) to the Adversary. The Adversary outputs y. The
RSA assumption states that the probability of ys = z (mod N) is negligible.

Theorem 1 (Security). The STROBE protocol is Selective-secure Unpre-
dictable under the RSA Assumption.

Proof. Let (N, s, z) be an RSA challenge for a prime s > n.

Setup: The Challenger outputs pk = (N, s). Suppose the Adversary picks an
epoch S and corrupts parties in the set γ = {P1, · · · , Pt−1}. Sample bP1

, · · · , bPt−1
←

[1, N ]. Send Adversary shares ski = bi, for all i ∈ γ.

Eval: Consider an implicit polynomial f(X), such that f(0) = v, where
v = (n!s)−1 (mod p′q′), and f(i) = bi, for all i ∈ γ:

f(X) = vL0(X) +
∑
i∈γ

biLi(X).

Here Li(X) are Lagrange basis polynomials of degree t− 1 each:

Li(X) =
∏

j∈{γ∪{0}},j 6=i

X − j
i− j

.

The polynomials satisfy the following property: for ∀i, j ∈ (γ ∪ {0}) : Li(i) = 1,
and Li(j) = 0 for i 6= j. Note that it is possible to evaluate zn!Li(j) for any
i, j ∈ [0, n], since the (n!) factor eliminates the denominators of interpolation
polynomials, making it possible to evaluate the exponentiation.

Set x0 = z4(n!)
2sS and xT,j = z4f(j)(n!)

2sS−T+1

. Now, for j ∈ γ, we can
compute xT,j explicitly based on f(j) = bj . We now show that for j /∈ γ,
we can compute xT,j without explicitly computing f(j). Observe that 4v =
4(n!s)−1 (mod φ(N))), therefore zv4n!s = z4 hence xT,j can be explicitly con-
structed as follows:

xT,j = z4f(j)(n!)
2sS−T+1

= z(f(j)4n!s)·(n!)s
S−T

= z(4L0(j)+
∑
i∈γ bi·(4n!s)·Li(j))·(n!)s

S−T

Note that the last (n!) factor is essential to make sure we can clear the
denominator of L0(j) and thus avoid any divisions in the exponent. Send x0 and
the xT,j ’s for all T ∈ [1, S] and j ∈ [1, n] to the adversary.

RSA response: Let’s suppose the adversary comes up with x′ as the next
epoch candidate. Given the self-certification checks upto time epoch T , we in-

ductively have xk = xs
−k

0 = z4(n!)
2sS−k , for k ∈ [0, S]. If the adversary re-

sponse x′ passes verification, then we should have x′s = xS = z4(n!)
2

, Let
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w = (4(n!)2)−1 (mod s) and let w(4(n!)2) = 1+ks for some computable integer

k. Then x′sw = z4(n!)
2w = z1+ks. Therefore, z = (x′wz−k)s. Hence x′wz−k will

be a winning response to the RSA challenge.

Distributions: Finally, we observe that as sS is invertible module φ(N) and
sampling uniformly from [1, N ] and [1, φ(N)] are statistically indistinguishable,
the distribution of x0 in the STROBE construction and this proof are statistically
indistinguishable. Matching these distributions is the technical reason behind the
extra 4(n!)2 factor in the Gen algorithm.

6 Extensions

6.1 Dynamic beacon committees.

STROBE can also easily handle dynamically changing the participants execut-
ing the beacon protocol. For example, this could involve rotating to a newly
chosen committee (even of a different size) of parties after some fixed number of
epochs. The new committee will then continue to generate future outputs of the
beacon. In fact, the new committee can also be chosen based on the output of
the distributed beacon. Dynamic participation can be accommodated by using
the old committee to reshare the secret key to the new committee through ex-
isting literature on dynamic proactive secret sharing [8, 45]. Note however, that
such protocols need to make the assumption that honest parties from previous
committees delete their shares so that an adversary cannot recover the secret
key even by corrupting more than a threshold number of parties from a previ-
ous committee. The above scenario is also referred to as a “long range” attack
(c.f., [26]).

6.2 Succinct proofs of beacon validation.

In earlier sections we observed that it is possible to check the beacon value

xT at epoch T against the seed value x0 by checking x0 = xs
T

T . However, this
takes sequential time T . One way to speed up verification is to exploit the RSA
repeated powering structure of this check and use existing techniques like [47,55]
to add a proof in addition to the beacon value.

In particular, we can just apply Wesolowski’s [55] proof technique in reverse

and produce the proof π = x
bsT /`c
T , where ` is the result (a prime number) of

a random oracle H applied to (x0, xT , T ). The verifier computes ` and r as the
remainder on dividing sT by ` and then checks x0 = π`xrT . However, a drawback
of this method is that producing the proof takes about T time as well, which
may not be ideal to do every epoch.

A better approach is to use a continuous VDF [33]. In a continuous VDF, it is
efficient to publish and use intermediate proofs at every time epoch. The Ephraim
et al [33] continuous VDF makes use of the recursive structure of Pietzak’s
VDF [47]. The high level idea is that they checkpoint a logarithmic number
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of past values and keep recursively merging an appropriate number of them in
order to prevent growing the proof size. We can also similarly checkpoint and

merge based on a similar recursion, while reversing the order: x0 = xs
T/2

u and

xu = xs
T/2

T , where u = T/2 is the midpoint.
We can use a continuous VDF at defined intervals as well, instead of every

epoch. A verifier can sequentially compute the expected value until the last such
interval and then just check the VDF proof.

7 Applications

In this section, we discuss applications of random beacons. In particular, we
argue how the novel history generation feature of STROBE can enable attractive
technical advancements in many scenarios.

7.1 Blockchain-based gambling and lotteries

Lotteries and gambling smart contract solutions are gaining in popularity, and
a portion of them advertise transparency, unbiased randomness generation (un-
controllable from participants) and consumer privacy. It is well known that the
original success of Bitcoin was partly due to gambling activities, especially via
the Satoshi Dice which operated since 2012 and dominated the bitcoin transac-
tions in its first years of operation [36]. There is a growing number of blockchain
gambling contracts, and as of September 2021, according to statistics provided
in [29], there exist at least 151 lottery, 129 casino, 70 poker and generally 600+
gambling smart contracts in Ethereum alone. Moreover, lotteries have also been
proposed as an alternative reward scheme for miners by randomly recirculating
lost coins and collecting gold dust [37]. Furthermore, leader election in BFT
consensus schemes, can also be implemented via a lottery [11,38].

The most common approach in proof of work ledgers is to use the block-hash
as a seed to pick winning numbers, due to its unpredictability characteristics.
However, this value can be biased [16] and VDFs on top of the original seed
have been proposed [17], which however introduce significant delays. Various
other attacks have been reported which are related to modulus bias or lack of a
proof of origin mechanism for the seed [25].

We should note that for high-throughput games, like continuous poker shuf-
fling, VDF delays might not be tolerable for UX reasons. On the other hand,
updating the blockchain state too often can be expensive, thus ideally a dy-
namic balance between the PRNG output frequency and gas cost should be
configurable. One of the main advantages of STROBE is that the latest beacon
can be automatically used to “verifiably” derive all of the previous random num-
bers down to the original genesis beacon. This property can be utilized by smart
contract developers to minimize cost by skipping beacon epochs when required,
but lotteries can still continuously run for every epoch. It also works as a DoS
defence, especially when the beacon is provided by an external oracle service to
the blockchain; if there is significant delay on updates, the latest beacon suffices
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to execute all of the pending lottery games. This is equivalent to supporting
{smart contract}-based “light clients” of a beacon generation committee.

Finally, lotteries could be executed in optimistic mode [1], by blindly accept-
ing any submitted beacon without correctness checking. Then, in a reasonable
time-frame and before processing winner’s payout, the beacon’s validity can be
challenged by providing a fraud proof, which is nothing more than submitting a
flag which triggers history validation.

7.2 Deeper Blockchain Integration

The design described in Section 3 relies on authorities on-the-side for issuing cre-
dentials. In this section, we present designs that incorporate STROBE author-
ities within the infrastructure of a number of semi-permissioned Blockchains.
This enables the generation of randomness as a side effect of the normal system
operations, taking no additional dependency on extra authorities. It remains
an open problem how to embed STROBE into permissionless systems, based
on proof of work or stake. These systems have a highly dynamic set of nodes
maintaining the state of their blockchains, which cannot readily be mapped into
STROBE’s authorities.

Integration of STROBE into permissioned (BFT-based) blockchain platforms
is straightforward. In Hyperledger Fabric Fabric [19] for instance, contracts run
on private sets of computation nodes and use the Fabric protocols for cross-
contract calls. In this setting, STROBE authorities can coincide with the Fabric
smart contract authorities. Upon a contract setup, they perform a setup and
key distribution, and then start generating randomness when authorized by the
contract. For generating randomness, the only secrets maintained are the private
STROBE authorities keys; all other operations of the contract can be logged and
publicly verified. The threshold trust assumption—namely that of integrity and
availability— is guaranteed under the corruption of a subset of authorities is
preserved, and prevents forgeries by a single corrupted node.

We can also naturally embed STROBE into sharded scalable blockchains, as
exemplified by Omniledger [43] (which supports digital tokens), and Chainspace [2]
(which supports general smart contracts) or as part of a heterogeneous shard [5].
In these systems, transactions are distributed and executed on ‘shards’ of au-
thorities, whose membership and public keys are known. STROBE authorities
can naturally coincide with the nodes within a shard—a special transaction type
in Omniledger, or a special object in Chainspace, can signal to them that gen-
erating randomness. The authorities, then issue the partial randomness share
necessary to reconstruct the random value, and attach it to the transaction they
are processing anyway. Users (or anyone else) can aggregate, and generate the
random value by parsing the transactions on-chain.

Incentives for Randomness Generation. One open question is on managing the
incentives of releasing shares for the randomness beacon. On a first sight the
fault-tolerance of STROBE makes the problem a public goods game, since only
a threshold needs to participate. One way to break this has been proposed in



STROBE: Stake-based Threshold Random Beacons 15

prior work [6,42] where the shares are published on chain and rewards are given
only to “useful” shares (i.e. the first t that make it on-chain). This breaks the
public goods game and makes it a race between the authorities who are eager to
release their share and get rewarded.

7.3 Beacon Streams

There exist applications requiring constant high-throughput of beacons, espe-
cially in the online gaming sector. Most games require a combination of “skills”
and “luck”, and as video gaming has become a market where professional players
participate in tournaments with real prizes, a fair beacon stream would enable
new types of transparent gaming features. Due to potential internet speed is-
sues, server overloading and other factors, reliability might be at stake [27] and
thus, some game providers prefer UDP connections to offer greater flexibility by
executing packets out of order or discarding non important ones [56]. STROBE’s
history generation feature fits really well in streaming designs, and allows client
software to generate game states by computing every missing beacon. Note that
in these applications, VDF-based beacons are not good candidates due to the
intrinsic delay, while the proof of stake nature of STROBE offers fairness guaran-
tees by not relying in the event organizer’s or software publisher’s honesty. Along
the same lines, STROBE has an advantage in low or expensive bandwidth loca-
tions (i.e., remote IoT devices) by allowing reading a beacon infrequently and
generating past randomness internally.
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