
SUI LUTRIS: A Blockchain Combining Broadcast and Consensus

Sam Blackshear∗, Andrey Chursin∗, George Danezis∗†, Anastasios Kichidis∗, Lefteris Kokoris-Kogias∗‡,
Xun Li∗, Mark Logan∗, Ashok Menon∗, Todd Nowacki∗, Alberto Sonnino∗†, Brandon William∗, Lu Zhang∗

∗Mysten Labs, †University College London, ‡IST Austria

Abstract—SUI LUTRIS is the first smart-contract platform to
sustainably achieve sub-second finality. It achieves this signifi-
cant decrease in latency by employing consensusless agreement
not only for simple payments but for a large variety of
transactions. Unlike prior work, SUI LUTRIS neither compro-
mises expressiveness nor throughput and can run perpetually
without restarts. SUI LUTRIS achieves this by safely integrat-
ing consensuless agreement with a high-throughput consensus
protocol that is invoked out of the critical finality path but
makes sure that when a transaction is at risk of inconsistent
concurrent accesses its settlement is delayed until the total
ordering is resolved. Building such a hybrid architecture is
especially delicate during reconfiguration events, where the
system needs to preserve the safety of the consensusless path
without compromising the long-term liveness of potentially
misconfigured clients. We thus develop a novel reconfiguration
protocol, the first to show the safe and efficient reconfiguration
of a consensusless blockchain. SUI LUTRIS is currently running
in production as part of a major smart-contract platform.
Combined with the Move Programming language it enables
the safe execution of smart contracts that expose objects as a
first-class resource. In our experiments SUI LUTRIS achieves
latency lower than 0.5 seconds for throughput up to 5,000
certificates per second (150k ops/s with bundling), compared to
the state-of-the-art real-world consensus latencies of 3 seconds.
Furthermore, it can gracefully handle crashes and recovery
of validators and does not suffer observable performance
degradation during reconfiguration.

1. Introduction
Traditional blockchains totally order transactions across

replicated miners or validators to mitigate “double-
spending” attacks, i.e., a user trying to use the same coin
in two different transactions. It is well known that total
ordering requires consensus. In recent years, however, sys-
tems based on consistent [1] and reliable [2] broadcasts
have been proposed instead. These rely on objects (e.g., a
coin) being controlled by a single authorization path (e.g.,
a single signer or a multi-sig mechanism), responsible for
the liveness of transactions. This concept has been used to
design asynchronous, and lightweight alternatives to tradi-
tional blockchains for decentralized payments [1], [3], [4].
We call these systems consensusless as they do not require
full consensus. Yet, so far they have not been used in a
production blockchain.

There are multiple reasons for this. First, consensusless
protocols typically support a restricted set of operations
limited to asset transfers. Second, deploying consesusless
protocols in a dynamic environment is challenging as they
do not readily support state checkpoints and validator recon-
figuration. Supporting these functions is vital for the health
of a long-lived production system. Finally, consensusless
protocols are not tolerant of client bugs as any equivocation
locks the assets forever.

As a result all existing blockchains implement
consensus-based protocols that allow for general-purpose
smart contracts. Sadly, this flexibility comes at the cost of
higher complexity and significantly higher latency even for
transactions that operate on unrelated parts of the state.

In this paper, we present SUI LUTRIS, the first system
that combines the consensusless and consensus-based ap-
proaches to provide the best of both worlds when processing
transactions in a replicated Byzantine setting. SUI LUTRIS
uses a consistent broadcast protocol between validators to
ensure the safety of all operations, ensuring lower latency
as compared to consensus. It only relies on consensus for
the correct execution of complex smart contracts operating
on shared-ownership objects, as well as to support network
maintenance operations such as defining checkpoints and
reconfiguration. It is maintained by a permissionless set of
validators that play a similar role to miners in Bitcoin.

Challenges. SUI LUTRIS requires tackling 3 key issues:
Firstly, a high-throughput system such as SUI LUTRIS re-
quires a checkpoint protocol in order to archive parts of
its history and reduce the memory footprint and bootstrap
cost of new participants. Checkpointing however is not as
simple as in classic blockchains since we do not have
total ordering guarantees for all transactions. Instead, SUI
LUTRIS proposes an after-the-fact checkpointing protocol
that eventually generates a canonical sequence of transac-
tions and certificates, without delaying execution and trans-
action finality.

Secondly, consensusless protocols typically provide low
latency at the cost of usability. A misconfigured client (e.g.,
underestimating the gas fee or crash-recovering) risks dead-
locking its account. We consider this an unacceptable com-
promise for production systems. We develop SUI LUTRIS
such that client bugs only affect the liveness of a single
epoch, and provide rigorous proofs to support it. The current
epoch length for our production system is 24h, but we ran

1

experiments with an epoch length of 10 minutes without
seeing any effect on the performance.

Finally, the last challenge to solve is the dynamic par-
ticipation of validators in a permissionless system. The lack
of total ordering makes the solution non-trivial as differ-
ent validators may stop processing transactions at different
points compromising the liveness of the system. Additional
challenges stem from the non-starvation needs of miscon-
figured clients coupled with ensuring that final transactions
are never reverted across reconfiguration events. To this end,
we design a custom reconfiguration protocol that preserves
safety with minimal disruption of the processing pipeline.

Real-world system. SUI LUTRIS has been designed for and
adopted as the core system behind a major new blockchain,
that uses the Move programming language [5] for smart
contracts. As of July 30, 2023, its mainnet is operated by
105 geo-distributed heterogeneous validators and processes
over 2.5 million certificates a day over 100 epoch changes
using the SUI LUTRIS protocols. It stores over 80 million
objects, owned by over 2.6 million addresses, defined by
over 6,000 Move packages. On the peak throughput day
(Jul. 27, 2023) it processed over 65 million certificates (most
of which owned object transactions), the highest volume
of any blockchain, and higher than the total number of
transactions on all chains combined, on that day. For this
reason, we present in the paper details that go beyond
merely illustrating core components. SUI LUTRIS achieves
finality within 0.5 seconds with a committee of 10 validators
processing up to 5,000 cert/s or with a committee of 100
validators processing about 4,000 cert/s (150k ops/s with
bundling). SUI LUTRIS can provably withstand up to 1/3 of
crash validators without meaningful performance degrada-
tion and can seamlessly reconfigure despite the complexities
of supporting a consesusless transaction processing path.
We evaluated SUI LUTRIS against Bullshark [6], a state-
of-the-art consensus protocol, operating within the same
blockchain and show that SUI LUTRIS achieves finality up
to 15x earlier than Bullshark.

Contributions. We make the following contributions:
• We present SUI LUTRIS, the first smart-contract system

that forgoes consensus for single-writer operations and
only relies on consensus for settling multi-writer opera-
tions, combining the two modes securely and efficiently.

• As part of SUI LUTRIS we show how to use a con-
sensus engine to efficiently checkpoint a consensusless
blockchain without forfeiting the latency benefits of run-
ning consensusless transactions. Our checkpointing mech-
anism puts transactions into a sequence after execution,
reducing the need for agreement and therefore latency.

• Finally, we show how to perform reconfiguration safely
and with minimal downtime. Unlike prior consensusless
blockchains our reconfiguration mechanism allows for
forgiving equivocation so that careless users can regain
access to their assets.

• We provide full implementation and evaluate the perfor-
mance of SUI LUTRIS, on a real geo-distributed set of

validators and under varying transaction loads.

2. Overview
SUI LUTRIS uses a novel approach to processing

blockchain transactions which ensures low latency by for-
going the need for consensus from the critical latency path.
Yet, skipping consensus provides finality (knowing that a
transaction will execute) and settlement (knowing the exact
execution result) only for single-owner assets (assets that
are immutable or owned directly or indirectly by a single
address, see below).

Despite single-owner transactions constituting most of
the load on our mainnet, these types of assets are not
expressive enough to implement all types of smart contracts
– since some transactions must process assets belonging to
different parties. For the rest of the transactions, we can
only get finality but need to postpone settlement until po-
tential conflicts are resolved. For this reason, we couple SUI
LUTRIS with a consensus protocol. This hybrid architecture
is both a curse and a blessing: two different execution paths
create the threat of inconsistencies and safety concerns; but,
the consensus component enables us to implement check-
pointing and reconfiguration, which consensus-less systems
lack.

We define the problem SUI LUTRIS addresses, the threat
model , the security properties maintained, and provide a
high-level overview of the algorithm.

2.1. Threat Model
We assume a message-passing system with a set of n

validators per epoch and a computationally bound adversary
that controls the network and can statically corrupt up to
f < n/3 validators within any epoch. We say that validators
corrupted by the adversary are Byzantine or faulty and the
rest are honest or correct. To capture real-world networks
we assume asynchronous eventually reliable communication
links among honest validators. That is, there is no bound on
message delays and there is a finite but unknown number of
messages that can be lost. Informally, SUI LUTRIS exposes
to all participants a key-value object store abstraction that
can be used to read and write objects.

Consensus Protocol. SUI LUTRIS uses a consensus protocol
as a black box that takes some valid inputs and outputs a
total ordering. It makes no additional synchrony assump-
tions and thus inherits the synchrony assumptions of the
underlying consensus protocol. In our implementation, we
specifically use the Bullshark protocol [6]. It is secure in
the partially synchronous network model [7], which stipu-
lates that after some unknown global stabilization time all
messages are delivered within a bounded delay. It could be
configured to run the Tusk protocol [8], making SUI LUTRIS
asynchronous.

2.2. System Model

Objects. SUI LUTRIS validators replicate the state repre-
sented as a set of objects. Each object has a type associated

2

that defines operations that are valid state transitions for the
type. Each object may be read-only, owned, or shared:
• Read-only objects cannot be mutated or deleted within an

epoch and can be used in transactions concurrently and
by all users.

• Owned objects have an owner field. The owner can be
set to an address representing a public key. In that case,
a transaction is authorized to use the object, and mutate
it, if it is signed by that address. A transaction is signed
by a single address and therefore can use objects owned
by that address. However, a single transaction cannot use
objects owned by multiple addresses. The owner of an
object (called a child object) can also be another object
(called the parent object). In that case, the child object
may only be used if the root object (the first one in a tree
of possibly many parents) is part of the transaction, and
the transaction is authorized to use the parent. This facility
is used by contracts to construct dynamic collections and
other complex data structures.

• Shared objects are mutable and do not have a specific
owner. They can instead be included in transactions by
anyone and they perform their own authorization logic
as part of the smart contract. Such objects, by virtue of
having to support multiple writers while ensuring safety
and liveness, require a full agreement protocol to be
executed safely.

Both owned and shared objects are associated with a version
number. The tuple (ObjID,Version) is called an ObjKey
and takes a single value, thus it can be seen as the equivalent
of a Bitcoin UTXO [9] that should not be equivocated.

Transactions. A transaction is a signed command specifying
the number of input objects (read-only, owned or shared),
a version number per object, an entry function into a smart
contract, and a set of parameters. If valid, it consumes the
mutable input objects and constructs a set of output objects
at a fresh version – which can be the same objects at a later
version or new objects.

2.3. Core Properties
SUI LUTRIS achieves the standard security properties of

blockchain systems relating to validity, safety, and liveness:
• Validity: State transitions at correct validators are in

accordance with the authorization rules relating to objects,
as well as the VM logic constraining valid state transitions
on objects of defined types. This property is unconditional
with respect to the number of correct validators in the
network.

• Safety: If two transactions t and t′ are executed on correct
validators, in the same or different epochs, and take as
input the same ObjKey, then t = t′. This property holds
in full asynchrony subject to a maximum threshold of
Byzantine nodes in the system.

• Liveness: All valid transactions sent by correct clients are
eventually processed up to final status, and their effects
persist across epoch boundaries. All ObjKey that have
not been used as inputs to a committed transaction are

eventually available to be used by a correct client as part
of a valid transaction. This property holds under partial
synchrony, due to our use of Bullshark [6] consensus (but
would hold in asynchrony when using Tusk [8]).

Liveness encompasses censorship resistance. It also only
holds for a correct client that may not equivocate by sending
conflicting transactions for the same owned object version.

2.4. Core Protocol Overview
Figure 1 illustrates the high-level interactions between a

client and SUI LUTRIS validators to commit a transaction. A
user with a private key creates and signs a user transaction
to either mutate objects they own (case 1) or a mix of
objects they own (at least one is gas) and shared objects
(case 2). This is the only time user signature keys are
needed; the remaining process may be performed by the
user or a gateway on behalf of the user (➊). The transaction
is sent to each SUI LUTRIS validator, which checks it for
validity, locks all input owned objects using their ObjKey,
signs it, and returns the signed transaction to the client (➋).
Algorithm 1 of Section 3.4 describes in details this step.
It is critical to see that since an ObjKey is locked for a
specific transaction, no double-spend can happen. As we
discuss later, however, there is a chance of liveness loss if
the client equivocates. This check is also used to prevent
attacking consensus with spam transactions which is easy
to do in Bullshark [6] as it orders bytes which could be
duplicate transactions.

The client collects the responses from a quorum (2f+1)
of validators to form a transaction certificate (➌). As a
result, unlike consensus-based blockchains, in SUI LUTRIS,
the validators need not gossip signatures or aggregate certifi-
cates, which is now the responsibility of the client/gateway.
Once the certificate is assembled, it is sent back to all val-
idators, who respond once they check its validity (a quorum
of responses at this point ensures transaction finality, see
below). If the transaction involves exclusively read-only and
owned objects the transaction certificate can be immediately
processed and settled (shown as the direct fast path in the
diagram).

All certificates are forwarded to a Byzantine agreement
protocol operated by the SUI LUTRIS validators (➍). When
step (➍) terminates consensus outputs a total order of
certificates, and validators check the certificate and settle
those containing shared objects. The execution result is a
summary of how the transaction affects the state and is used
to construct a signed effects response (➎). Algorithm 4 of
Section 3.4 describes in details this step. Once a quorum
of validators has executed the certificate its effects are final
(in the sense of settlement, see below). Clients can collect
a quorum of validator responses and create an effects cer-
tificate and use it as proof of the finality of the transactions
effects (➏). Subsequently, checkpoints are formed for every
consensus commit (➐), which are also used to drive the
reconfiguration protocols (not shown, see Section 4.1 and
Section 4.3).

The goal of the above protocol is to ensure that execu-
tion for transactions involving read-only and owned objects

3

validator 1

validator 2

...

validator n

client
1 3

4 5

6

2

process
transaction

make
transaction

assemble
certificate

process
certificate

assemble effect
certificate

sequence

C
he

ck
s

C
he

ck
s

C
on

se
ns

us

Ex
ec

ut
io

n

C
he

ck
po

in
t

7

checkpoint
certificate

direct fast path

Figure 1. Overview and transaction life cycle. The Byzantine agreement protocol is only executed for transactions containing shared objects and is not
necessary for transactions involving only single-owner objects.

requires only reliable broadcast and a single certificate to
proceed, costing a minimal O(n) communication and com-
putation complexity and no validator to validator communi-
cation. Smart contract developers can therefore design their
types and their operations to optimize transfers and other
operations on objects of a single user to reduce the cost of
their transactions. SUI LUTRIS also provides the flexibility
of using shared objects, through the classic Byzantine agree-
ment path, and enables developers to implement logic that
needs to be accessed by multiple users.

Transaction finality. The BIS [10] defines finality as the
property of being “irrevocable and unconditional”. We make
a distinction between transaction finality, after which a
transaction processing is final, and settlement, after which
the effects of a transaction are final and may be used in sub-
sequent transactions in the system. In SUI LUTRIS, unlike
other blockchains, both finality and settlement occur before
checkpoints are formed. In all cases, a transaction becomes
final when a quorum of validators accepts the transaction’s
certificate for processing, even before such a certificate
is sequenced by consensus or executed.. After this, no
conflicting transaction can occur, the transaction may not
be revoked, and is eventually executed and persist across
epochs. However, the result of execution is only known a-
priori for owned object transactions, and for shared object
transactions it is known only after consensus. Transaction
finality is achieved within two network round trips.

Settlement occurs upon execution on 2f + 1 validators,
when an effects certificate could be formed (even though
it is not known by any single party). For owned object
transactions this occurs upon 2f + 1 correct validators
executing the certificate without the delay of consensus; for
shared object transactions this happens upon 2f +1 correct
validators executing them just after the certificate has been
sequenced. In both cases, settlement is not delayed by the
process of commiting the transaction within a checkpoint,
and thus, has lower latency than checkpoint creation.

3. The SUI LUTRIS System
We present the SUI LUTRIS core protocol by providing

algorithms and specifying the checks performed by valida-
tors at each step of the protocol.

3.1. Objects Operations
SUI LUTRIS validators rely on a set of objects to repre-

sent the current and historical state of the replicated system.
An Object (Obj) stores user smart contracts and data within
SUI LUTRIS. Transactions can affect objects which can be
Created, Mutated, Wrapped, Unwrapped and Deleted.

Calling key(Obj) returns the key (ObjKey) of the object,
namely a tuple (ObjID, Version). ObjIDis cryptographi-
cally derived so that finding collisions is infeasible. Versions
monotonically increase with each transaction processing the
object and are determined via Lamport timestamps [11].
Calls to version(Obj) and initial(Obj) return the current and
initial version of the object respectively.

The owner(Obj) is either the owner’s public key that
may use this object, or the ObjID of another parent object,
in which case this is a child object. owned(Obj) returns
whether the object has an owner, or whether it is read-
only or a shared object (see below). The last transaction
digest (TxDigest) that last mutated or created the object
creator(Obj).

3.2. Protocol Messages
Validators and users run the core protocol described in

Section 2.4 by exchanging the following messages.

Transactions. A transaction (Tx) is a structure represent-
ing a state transition for one or more objects. They sup-
port a few self-explanatory access operations, such as to
get its digest digest(Tx), and different types of input ob-
jects inputs(Tx) (object reference), read only inputs(Tx),
shared inputs(Tx) (object ID and initial version), and
payment(Tx) (the reference to the gas object to pay fees).

A Transaction may be checked for validity given a set of
input objects, or can be executed to compute output objects:

4

• valid(Tx, [Obj]) returns true if the transaction is valid,
given the requested input objects provided. This check
verifies that the transactions are authorized to act on the
input objects, as well as sufficient gas is available to cover
the costs of its execution. Transaction validity, as returned
by valid(Tx, [Obj]) can be determined statically without
executing the Move contract.

• exec(Tx, [Objo], [Objs]) executes using the MoveVM [5]
and returns a structure Effects representing its effects
along with the output objects [Objout]. The output ob-
jects are the new objects Created, Mutated, Wrapped,
Unwrapped and Deleted by the transaction. When ob-
jects are created, updated, or unwrapped their version
number is the Lamport timestamp of the transaction.
[Objo] and [Objs] respectively represent the owned and
shared input objects. A valid transaction execution is
infallible and has deterministic output.

A transaction is indexed by the TxDigest over the raw data
of the transaction , which may also be used to authenticate
its full contents. All valid transactionshave at least one
owned input, namely the objects used to pay for gas.

Certificates. A transaction certificate (TxCert) on a trans-
action contains the transaction itself, the signature of the
user authorizing the use of the input objects, and the iden-
tifiers and signatures from a quorum of 2f +1 validators or
more. For simplicity, we assume that every operation defined
over a transaction is also defined over a certificate. For
instance, “digest(Tx)” is equivalent to “digest(TxCert)”.
A certificate may not be unique, and the same logical
certificate may be signed by a different quorum of valida-
tors or even have different authorization paths (e.g., a 2-
out-of-3 multisig). However, two different valid certificates
on the same transaction should be treated as representing
semantically the same certificate. The identifiers of signers
are included in the certificate to identify validators ready
to process the certificate, or that may be used to download
past information required to process the certificate. Addi-
tionally, the signatures are aggregated (eg. using BLS [12]),
compressing the quorum of signers to a single signature.

Transaction effects. A transaction effects (Effects)
structure summarizes the outcome of a transaction ex-
ecution. Its digest and authenticator is computed by
digest(Effects). It supports operations to access its data such
as transaction(Effects) (returns the transaction digest) and
dependencies(Effects) (the digest of all transactions to cre-
ate input objects). The contents(Effects) returns a summary
of the execution: Status reports the outcome of the smart
contract execution. The lists Created, Mutated, Wrapped,
Unwrapped, and Deleted, list the object references that
underwent the respective operations. Finally, Events lists
the events emitted by the execution.

Partial certificate. A partial certificate (TxSign) contains
the same information, but signatures from a set of validators
representing stake lower than the required quorum, usually
a single one. We call signed transaction a partial certificate

signed by one validator.

Effect certificates. Similarly, an effects certificate (EffCert)
on an effects structure contains the effects structure itself,
and signatures from validators1 that represent a quorum
for the epoch in which the transaction is valid. The same
caveats, about non-uniqueness and identity apply as for
transaction certificates. A partial effects certificate, usually
containing a single validator signature and the effects struc-
ture is denoted as EffSign. For transactions that only include
owned objects, this certificate provides both finality and
settlement. For transactions with shared objects validators
can first reply with an empty effects structure (so when
an empty effects certificate is formed the system reaches
finality) and then add the effects structure and re-sign after
consensus (to reach settlement). For the rest of the paper,
we omit the transmission of the empty effects structure for
simplicity.

3.3. Data Structures
Each validator maintains a set of persistent tables ab-

stracted as key-value maps, with the usual contains, get,
and set operations.

Reliable broadcast on owned objects uses the owned
lock map (OwnedLock[ObjKey] → TxSignOption) which
records the first valid transaction Tx seen and signed by
the validator for an owned object’s ObjKey, or None if
the ObjKey exists but no valid transaction using it as an
input has been seen. The certificate map (Ct[TxDigest] →
(TxCert,EffSign)) records all full certificates TxCert, in-
cluding Tx, processed by the validator, along with their
signed effects EffSign.

To manage the execution of shared object transactions,
the shared lock map (SharedLock[(TxDigest,ObjID)] →
Version) records the version number of ObjID assigned
to a transaction TxDigest. The next shared lock map
(NextSharedLock[ObjID] → Version) records the next
available version (we discuss their use in Section 3.4).

The object map (ObjDB[ObjKey] → Obj) records all
objects Obj created by executed certificates within Ct by
object key, and also allows lookups for the latest known
object version. This store can be completely derived by re-
executing all certificates in Ct. Only the latest version is
necessary to process new transactions and older versions
are only maintained to facilitate parallel execution, recon-
figuration, reads, and audits.

Only (OwnedLock,SharedLock,NextSharedLock)
require strong key self-consistency, namely a read on a key
should always return whether a value or None is present
for a key that exists, and such a check should be atomic
with an update that sets a lock to a non-None value. This
is a weaker property than strong consistency across keys
and allows for efficient sharding of the store for scaling.
To ensure this property, they are only updated by a single

1. Note that if the signature algorithm permits it, validator signatures can
be compressed, but always using signature aggregation because tracking
who signed is important for gas profit distribution and other network health
measurements.

5

task (see Section 3.4). The other stores may be eventually
consistent without affecting safety. Section 4.2 shows how
to initialize and securely reset stores upon epoch changes.

3.4. Validator Core Operation
Validators process transactions and certificates as de-

scribed in Section 2.4. Transactions are submitted to the
validator core for processing by users, while certificates can
either be submitted by users or by the consensus engine.

Process Transaction. Algorithm 1 shows how SUI LUTRIS
processes transactions; that is, step ➋ of Figure 1 (see
Section 2.4). The function LoadObjects (Line 3) simply
loads the specified object(s) from the ObjDB store; Load-
LatestVersionObjects (Line 4) loads the latest version
of the specified object(s) from the ObjDB store; and Ac-
quireLocks (Line 14) acquires a mutex for every owned-
object transaction input. Upon receiving a transaction Tx a
validator calls ProcessTx to perform a number of checks:
1) It ensures all object references inputs(Tx) and the gas

object reference in payment(Tx) exist in the ObjDB store
and loads them into [Obj]. For owned objects both the id
and version should be available; for read-only or shared
objects the object ID should exist, and for shared objects,
the initial version specified in the input must match the
initial version of the shared object returned by initial(·).
This check implicitly ensures that all owned objects have
the version number specified in the transaction since the
call to LoadObjects (Line 3) loads the pair ObjKey =
(ObjID,Version) from the ObjDB store; ObjDB store
holds a single entry (the latest version) per object.

2) It checks valid(Tx, [Obj]) is true. This step ensures the
authentication information in the transaction allows ac-
cess to the owned objects. That is, (i) the signer of the
transaction must be the owner of all the input objects
owned by an address input; (ii) the parent object of any
included child object owned by another object should be
an input to the transaction; and (iii) sufficient gas can be
made available in the gas object to cover the minimum
cost of executing the transaction.

3) It ensures it can acquire a lock for every owned-object
transaction input; otherwise, it returns an error. Acquir-
ing a lock ensures that no other task can concurrently
perform the next step of the algorithm on the same input
objects.

4) It checks that OwnedLock[ObjKey] for all owned
inputs(Tx) objects exist, and it is either None or set to
the same Tx, and atomically sets it to TxSign. In other
words, for each owned input version in the transactions:
(i) a key for this object exists in OwnedLock and (ii) no
other transaction Tx′ ̸= Tx has been assigned as a value
for this object version in OwnedLock, i.e. Tx is the
first valid transaction seen using this input object. This
is a key validity check to implement Byzantine consistent
broadcast [13] and ensure safety.
Transaction processing ends if any of the checks fail and

an error is returned. If all checks are successful then the val-
idator returns a signature on the transaction, ie. a partial cer-

Algorithm 1 Process transaction
// Executed upon receiving a transaction from a user.
// Many tasks can call this function.

1: procedure PROCESSTX(Tx)
2: // Check 1.1: Ensure all objects exist.
3: [Objo] = LOADOBJECTS(inputs(Tx))
4: [Objr] = LOADLATESTVERSIONOBJECTS(read only inputs(Tx))

5: for (ObjID, InitialVersion) ∈ shared inputs(Tx) do
6: Objs = LOADLATESTVERSIONOBJECTS(ObjID)
7: if initial(Objs) ̸= InitialVersion then
8: return Error
9:

10: // Check 1.2: Check the transaction’s validity (see Section 3.2).
11: if !valid(Tx, [Objo]) then return Error
12:
13: // Check 1.3: Try to acquire a mutex over inputs(Tx)
14: guard = ACQUIRELOCKS(Tx) ▷ Error if cannot acquire all locks
15:
16: // Check 1.4: Lock all owned-objects.
17: TxSign = sign(Tx)
18: for ObjKey ∈ inputs(Tx) do
19: if OwnedLock[ObjKey] == None then
20: OwnedLock[ObjKey] = TxSign
21: else if OwnedLock[ObjKey] ̸= TxSign then
22: return Error
23:
24: return TxSign

tificate TxSign. Processing a transaction is idempotent upon
success, and always returns a partial certificate (TxSign)
within the same epoch. Any party may collate a transaction
and signatures (TxSign) from a set of validators forming a
quorum for epoch e, to form a transaction certificate TxCert.
It is critical that this step happens for all transactions
as it acts as spam protection for order-execute consensus
engines. In the original Bullshark [6] work it is trivial to
drop the throughput to zero by a single malicious client
sending corrupted transactions or duplicates. SUI LUTRIS
prevents such attacks thanks to the stronger coupling with
the state that allows only transactions with gas to make it
to consensus.

Many tasks can call ProcessTx concurrently (or in
parallel). SUI LUTRIS only acquires mutexes on the min-
imum amount of data: the owned-objects transaction inputs
(Algorithm 1 Line 14).

Process user certificates. Algorithm 4 shows how SUI
LUTRIS processes certificates; that is, step ➎ of Figure 1
(see Section 2.4). Algorithms 2 and 3 provide non-trivial
support functions. Every certificate input to a function of
Algorithm 4 is first checked to ensure it is signed by 2f +1
validators. Upon receiving a certificate TxCert a validator
calls ProcessCert to perform a number of checks:
1) It ensures epoch(TxCert) is the current epoch. This

is a property of the quorum of signatures forming the
certificate.

2) It loads the owned objects (Line 6) and shared objects
(Line 7). Success in loading these objects ensures the val-
idator already processed all past certificates concerning
the loaded objects. If any object is missing, the validator
aborts and returns an error. When loading shared objects,

6

Algorithm 2 Storage support (generic)
// Check whether the certificate as already been executed.

1: procedure ALREADYEXECUTED(TxCert)
2: TxDigest = digest(TxCert)
3: (,EffSign) = Ct[TxDigest]
4: if EffSign then return EffSign

return None

// All operations inside this function are atomic.
// Note that all owned and shared objects have the same version v.

5: procedure ATOMICPERSIST(TxCert,EffSign, [Objout])
6: TxDigest = digest(TxCert)
7: Ct[TxDigest] = (TxCert,EffSign)
8: for Obj ∈ Objout do
9: ObjKey = key(Obj)

10: ObjDB[ObjKey] = Obj
11: if owned(Obj) then
12: OwnedLock[ObjKey] = None

Algorithm 3 Storage support (shared objects)
// Assign locks to the shared objects referenced by TxCert.

1: procedure WRITESHAREDLOCKS(TxCert, v)
2: TxDigest = digest(TxCert)
3: for (ObjID, InitialVersion) ∈ shared inputs(TxCert) do
4: Version = NextSharedLock[ObjID] || InitialVersion
5: SharedLock[(TxDigest,ObjID)] = Version
6: NextSharedLock[ObjID] = v + 1 ▷ Lamport timestamp

// Check whether all shared objects referenced by TxCertare locked.
7: procedure SHAREDLOCKSEXIST(TxCert)
8: TxDigest = digest(TxCert)
9: for ObjID ∈ shared inputs(TxCert) do

10: if !SharedLock[(TxDigest,ObjID)] then
11: return false ▷ lock not found
12: return true

// Ensure that TxCert is the next certificate scheduled for execution.
13: procedure CHECKSHAREDLOCKS(TxCert)
14: TxDigest = digest(TxCert)
15: for ObjID ∈ shared inputs(TxCert) do
16: Obj = ObjDB[ObjID]
17: Version = version(Obj)
18: if SharedLock[(TxDigest,ObjID)] ̸= Version then
19: return false
20: return true

the function LoadObjects returns the shared object with
the highest version number.

3) If the certificate contains shared objects, it ensures the
certificate has already been sequenced by the consensus
engine; otherwise, it forwards the certificate to consensus
(Line 12). Finally, it checks the shared locks to ensure the
current certificate TxCert is the next certificate scheduled
for execution.
If all check succeeds, the transaction can be executed.

The validator then atomically persists the execution results
to storage (function AtomicPersist of Algorithm 2). It in-
serts the new (or mutated) objects in the ObjDB store and
sets the version number of all owned and shared objects
to the highest version number amongst all objects in the
transaction plus 1 (Lamport timestamp); that is, the new
version is v = 1+maxo∈[Objo]∪[Objs] version(o). The valida-
tor also persists the certificate along with the effects result-
ing from its execution; and updates the owned-object lock

Algorithm 4 Process certificate
Require: Input certificate (TxCert) is signed by a quorum

// Executed upon receiving a certificate from a user.
// Many tasks can call this function.

1: procedure PROCESSCERT(TxCert)
2: // Check 4.1: Ensure the TxCert is for the current epoch Epoch.
3: if epoch(TxCert) ̸= Epoch then return Error
4:
5: // Check 4.2: Load objects from store, return error if missing object.
6: [Objo] = LOADOBJECTS(inputs(TxCert))
7: [Objs] = LOADOBJECTS(shared inputs(TxCert))
8:
9: // Check 4.3: Check the objects locks.

10: if !SHAREDLOCKSEXIST(TxCert) then
11: // Sequence the certificates
12: FORWARDTOCONSENSUS(TxCert)
13: return
14: if !CHECKSHAREDLOCKS(TxCert) then return Error
15:
16: // Execute the certificate.
17: (EffSign, [Objout]) = exec(TxCert, [Objo], [Objs])
18: ATOMICPERSIST(TxCert,EffSign, [Objout])
19: return EffSign

// Executed upon receiving a certificate from consensus.
// This function must be called by a single task.

20: procedure ASSIGNSHAREDLOCKS(TxCert)
21: // Ensure shared locks are assigned only once.
22: if SHAREDLOCKSEXIST(TxCert) then
23: return
24:
25: // Extract the highest objects version.
26: vo = 1
27: for (ObjID,Version) ∈ inputs(TxCert) do
28: vo = max(vo,Version)

29: vs = 1
30: for (ObjID, InitialVersion) ∈ shared inputs(TxCert) do
31: Version = NextSharedLock[ObjID] || InitialVersion
32: vs = max(vs,Version)

33: vmax = max(vo, vs) ▷ Lamport timestamp
34:
35: // Lock all shared objects to vmax.
36: WRITESHAREDLOCKS(TxCert, vmax)

store to unblock future transactions using these objects. If
transaction execution fails, SUI LUTRIS unlocks any owned
objects used as input of the transaction. That is, it sets
OwnedLock[ObjKey] = None, ∀ObjKey ∈ inputs(Tx).
Unlocking owned objects is essential to allow future trans-
actions to re-use them. Gas payment is deduced from the
payment objects whether the execution succeeds or fails.

Process consensus certificates. Upon receiving a certifi-
cate output from consensus, the validator calls ASSIGN-
SHAREDLOCKS (Algorithm 4) to lock the transaction’s
shared-objects to a version number. This can be done
without executing the transactions, only by inspecting and
updating the transaction as well as the SharedLock and
NextSharedLock tables. When an entry for a shared ob-
ject does not exist in the tables it is assigned the ini-
tial version number given in the transaction input2. Oth-

2. At the beginning of a new epoch, the most recent version from the
objects table is used to support bootstrapping validators

7

erwise, it is given the value in the NextSharedLock ta-
ble. The NextSharedLock is updated with the Lamport
timestamp [11] of the transaction: the highest version of
all input objects used (owned, read-only, and shared) plus
one. ASSIGNSHAREDLOCKS must be only called by a sin-
gle task. After successfully calling ASSIGNSHAREDLOCKS,
the validator can call (again) ProcessCert to execute the
certificate.

Shared objects may be included in a transaction explic-
itly only for reads (we omit this special case from the algo-
rithms for clarity). In that case, the transaction is assigned
in SharedLock the version in the NextSharedLock table
for the shared object. However, the version of the object
in NextSharedLock is not increased, and upon transaction
execution, the shared object is not mutated. In order to
preserve the safety of dynamic accesses we make sure
that within a Bullshark commit (level of concurrency) all
read-only transactions on shared objects are executed on
the initial version V and only after writes are allowed to
execute and mutate the object. This facility allows multiple
transactions executing in parallel to use the same shared
object for reads. For example, it is used to update a clock
object with the current system time upon each commit that
transactions may read concurrently.

Additional checks. Algorithms 1 and 4 only describe the
core validator operations. In practice, validators perform a
number of extra checks to early reject duplicate messages.
For instance, validators can easily check whether a cer-
tificate has already been executed by calling AlreadyEx-
ecuted (Algorithm 2). Such a check is useful to improve
performance and prevent obvious DoS attacks but is not
strictly needed for security (it does not guarantee idempotent
validator replies on its own since both ProcessTx and
ProcessCert can be called concurrently by multiple tasks).

Protecting Users from Bugs. Equivocation of an ObjKey
is considered malicious in prior work and permanently locks
the Obj forever. However, equivocation is often the result of
a misconfigured wallet due to poor synchronization between
gateways or poor gas predictions leading to re-submissions.
As we discuss in Section 4.2 in SUI LUTRIS we only lose
liveness until the end of the epoch. In the new epoch, the
user can try again to access the same ObjKey with a fresh,
hopefully correct, transaction. This is in contrast with every
other consensusless blockchain that punishes all kinds of
equivocation with a deadlock of the asset forever.

4. Long-Term Stability
Unlike prior consensusless systems, SUI LUTRIS is de-

signed to work in production for long periods of time.
For this to be practical we need protocols that allow for
taking down validators and spinning up new ones, which is
not possible in prior work which assumes infinite memory
and static membership. This section outlines these protocols
required to ensure its long-term stability, namely to produce
checkpoints and enable reconfiguration.

To minimize latency, SUI LUTRIS executes before cre-
ating blocks. However, this makes it more complex for
external parties to obtain proofs of transaction execution,
perform complete audits, or even systematically replicate
the state of the chain. To facilitate these functions, we
introduce checkpoints. Further, to tolerate mistakes we need
to safely unlock objects that were mistakenly locked through
client double spending bugs. The validator set, and validator
voting power, also need to evolve over time, to support
permissionless delegated proof of stake. These functions are
supported in the epoch-change and reconfiguration process.
It persists all final transactions and their effects across
epochs. Enables client to unlock objects involved in partial
locked transactions; and is a secure means for validators
to enter or exit the system without affecting its liveness
and performance. The period between reconfiguration is a
rare time of perfect synchrony and consistency across all
validators, when software upgrades can be performed and
global incentives and rewards can be distributed.

4.1. Checkpoints
SUI LUTRIS validators emit a sequence of certified

checkpoints each containing an agreed-upon sequence of
transactions, the authorization path of the transactions, and
a commitment to their effects. These form a hash-chain,
which is the closest SUI LUTRIS has to the blocks of a
traditional blockchain. Checkpoints are used for multiple
purposes: they are gossiped from validators to full nodes
to update them about the state of the chain; they are used
by validators to perform synchronization in case they fall
behind in execution; as well as to bring new validators up to
speed with the state at the start of each epoch. Checkpoints,
packaged along with the transactions and the effects struc-
tures they contain are also the canonical historical record of
execution used for audit.

Checkpoints are created asynchronously and/or in par-
allel with execution and attaining finality. However, a key
safety property holds due to our reconfiguration protocol
design. Namely, if a transaction is final within an epoch
then it will be present in a checkpoint within the epoch and
will persist across epochs. And conversely, if a transaction is
present within an epoch its effects are final. The checkpoint
creation process guarantees these invariants.

Checkpoint creation. Upon receiving a valid certificate
a correct validator records it and commits to including it
in a checkpoint before the end of the epoch. A validator
schedules all certificates for sequencing using the consensus
engine. For owned transactions this does not block execu-
tion, which can continue before the transaction is sequenced;
in the case of shared object transactions execution resumes
once the transaction certificate has been sequenced and the
shared object locks are determined (see Section 2.4). A
correct validator will not proceed to end an epoch before all
valid certificates it received are sequenced into checkpoints
(either as a result of itself or others inserting them into the
consensus engine).

Periodically, using a deterministic rule, validators pick

8

a consensus commit to use as a checkpoint (our current
implementation checkpoints each and every commit sepa-
rately). The new checkpoint contains all transactions present
in the commits since the last checkpoint and any additional
transaction required for the execution to be causally com-
plete. If a transaction’s certificate exists more than once,
the first occurrence is taken as the canonical one and the
accompanied user signature is included in the checkpoint
for audit purposes. Note that due to asynchrony and failures,
the certificates sequenced may not be in causal order, or
may contain ‘gaps’, i.e., missing transaction dependencies.
Checkpoint creation waits for all transactions necessary
for the checkpoint to be causally complete to be within
a commit, sorts them in canonical topological order, and
includes them in the checkpoint.

Each correct validator uses the same sequence of com-
mits to forming the checkpoint and therefore will yield
and sign the same checkpoint. The checkpoint header and
validator signature of each validator can then be sequenced
and the first 2f + 1 forms the canonical certificate for the
new checkpoint. Note that due to the need to fill causal gaps
in execution using subsequent commits, a checkpoint for a
commit may only be constructed after a future commit.

Properties and uses. Eventually, the complete set of trans-
actions will be sent to be checkpointed, and the entire causal
history will be in the checkpoint history. Informally, since
a final transaction is executed by 2f + 1 nodes, f + 1
correct nodes will try to sequence it until they succeed. As
we discuss in the next section 2f + 1 validators need to
consent to close the epoch and by quorum intersection, at
least one of them will delay until a transaction that is final
is in the checkpoint. Causally preceding transactions must
have been executed and be final, thus they will eventually
be sequenced leading to a complete causal history being
checkpointed. All these processes may happen eventually
without blocking earlier transactions finalize or settle.

Checkpoints are used as part of reconfiguration but are
also used as a simpler synchronization mechanism between
validators, as well as full nodes. Since correct validators
eventually include all certificates in consensus, this ensures
that all correct validators will eventually see and execute
all transactions without the need for complex state synchro-
nization protocols. Full nodes, in turn, may download the se-
quence of checkpoints to ensure they have a complete replica
of the state of the system. In peer-to-peer synchronization
full nodes can use the sequence number of the checkpoint
as a reference when requesting blocks of information from
other peers in sequence or in parallel.

4.2. Committee Reconfiguration

Reconfiguration occurs between epochs when the current
committee is replaced by a new committee. Other changes
requiring global coordination, such as software updates,
and parameter updates also take effect between epochs.
Immutable objects, such as system parameters or software
packages, may be mutated in that period.

Algorithm 5 Reconfiguration Contract
// Smart contract state
T ▷ Minimum stake to become a validator
S ▷ Last sequence number before starting epoch change
total old stake = GenesisStake ▷ Total stake of the old committee
total new stake = 0 ▷ Total stake of the new committee
old keys = GenesisKeys ▷ Identifiers of the old committee
members
new keys = {} ▷ Identifiers of the new committee members
epoch edge = 0 ▷ Sequence number of the last epoch’s checkpoint
state = Register ▷ Current state of the smart contract
stake = 0 ▷ Variable counting the accumulated stake

// Step 1: Users register to become the next validators.
1: function REGISTER(sender)
2: if state ̸= Register then return
3: if sender.stake ≥ T then
4: new keys = new keys ∪ sender
5: total new stake += sender.stake

// Step 2: New validators signal they are ready to take over.
6: function READY(sender)
7: seq = GETLATESTCHECKPOINTSEQ()
8: if state = Register and seq ≥ S then
9: state = Ready

10: if state ̸= Ready then return
11: if sender ∈ new keys then
12: stake += sender.stake
13: if stake ≥ 2 ∗ total new stake/3 + 1 then
14: state = End-of-Epoch
15: stake = 0
16: PAUSETXLOCKING ▷ Stop signing messages

// Step 3: Old validators signal the epoch can safely finish.
17: function END-OF-EPOCH(sender)
18: if state ̸= End-of-Epoch then return
19: if sender ∈ old keys then
20: stake += sender.stake
21: if stake ≥ 2 ∗ total old stake/3 + 1 then
22: state = Handover
23: stake = 0
24: epoch edge = GETLATESTCHECKPOINTSEQ()

// Step 4: The new validators take over.
25: function HANDOVER(sender)
26: if state ̸= Handover then return
27: seq = GETLATESTCHECKPOINTSEQ()
28: if seq ≥ epoch edge + 1 then
29: old keys = new keys
30: total old stake = total new stake
31: state = Register
32: new keys = {}
33: total old stake = 0, epoch edge = 0
34: SHUTDOWN ▷ Old validators can shutdown

The goal of the reconfiguration protocol is to preserve
safety of transactions between epochs, while allowing for
liveness recovery of equivocated transactions. To this end,
we require that if a transaction Tx was committed during
epoch e or before, no conflicting transaction can be commit-
ted after epoch e. This is trivial to ensure when running only
a consensus protocol since a reconfiguration event logged
on-chain clearly separates transactions committed in epoch
e from transactions committed in epoch e + 1. However,
in SUI LUTRIS solutions are not as straightforward. More
specifically, SUI LUTRIS requires a final transaction at epoch

9

e to have its effects reflected in all subsequent epochs.
The main challenge for SUI LUTRIS reconfiguration at

each validator is the race between committing transactions
and constructing checkpoints, that are running potentially
asynchronously to each other. If a checkpoint snapshots the
end-state of epoch e at time T and is only committed at time
T + 1, we cannot set that checkpoint as the initial state of
epoch e+1. If we did, all transactions happening during the
last timestamp are at risk of being unsafe when validators
drop their OwnedLock to allow for liveness recovery of
equivocated transactions. This is not an issue for the con-
sensus path of SUI LUTRIS since we can define as end state
the checkpoint at time T plus all transactions ordered before
it is committed at T+1. That end state is well-defined thanks
to the total ordering property of consensus. Unfortunately,
it is not easy to establish a set of committed transactions on
the consensus-less path.

Remember that the consensusless path works in two
phases, first a transaction locks the single-owner object and
produces a certificate. Then this certificate is sent as proof
to the validators who reply with a signed effects certifi-
cate (execution). The safety risk during a reconfiguration
is that a transaction is executed during the transition phase
without the checkpoint recording it. However, SUI LUTRIS
splits reconfiguration into multiple steps instead of doing it
atomically. As part of the last step, we pause the consensus-
less path. This allows us to show that if a transaction had
executed before the reconfiguration message then there is no
safety risk because we can guarantee that at least one honest
party will persist the execution in the state. We enforce this
by introducing an End-of-Epoch message that the committee
members of the current epoch send when they have seen
all the certificates they processed in the consensus output
sequence. The new committee takes over completely only
after 2f + 1 such End-of-Epoch messages are ordered. As
a result, SUI LUTRIS manages to preserve safety without
needing to block for long periods.

4.3. The SUI LUTRIS Reconfiguration Protocol
The SUI LUTRIS reconfiguration logic is coded as the

smart contract shown in Algorithm 5. Once a quorum of
stake for epoch e votes to end the epoch, authorities ex-
change information to commit to a checkpoint, determine
the next committee, and change the epoch. More specifically,
reconfiguration happens in four steps, (i) stake recalculation,
(ii) ready new committee, (iii) End-of-Epoch, and (iv) Han-
dover. Each step is handled by the interaction of the new and
old committee members with the smart contract functions.
This is key for the correctness of the protocol.

The smart contract is parametrized with (i) the total
number of checkpoints before initiating the epoch change
protocol S and (ii) the minimum amount of stake T required
to become a validator. The function GETLATESTCHECK-
POINTSEQ (Line 24) simply loads the latest checkpoint
sequence number known by the validator.

Step 1: Registration of new validators. Users wishing to
become validators in the next epoch submit a transaction to

the reconfiguration contract calling the REGISTER function.
This function establishes the static stake distribution for the
next epoch.3 The smart contract accepts registrations until
the Sth is created.

Step 2: Ready new committee. Before taking over com-
mittee operations, future validators run a full node to down-
load the required state to become a validator. At the bare
minimum, they ensure their following stores are up-to-date:
NextSharedLock, Ct, and ObjDB (see Section 3.3). Once a
validator for the new epoch is ready to start validating they
call the READY function to signal they have successfully
synchronized the required state. This function can only be
called towards the end of the epoch, after the creation of
S checkpoints (Line 8). The cutoff period for the epoch is
when a quorum of new validators is ready. At this point,
the old committee stops locking objects (Line 16), i.e.,
executing Algorithm 1.

Step 3: End of Epoch. When the new committee is ready
the old committee only runs consensus and their only job is
to make sure all the transactions they executed are sequenced
by the consensus engines (so that they are part of the next
checkpoint). To this end, they stop accepting certificates
from clients and instead make sure that all the certificates
they have processed are sequenced by the consensus engine.
They then call the END-OF-EPOCH function. This means
that any transactions submitted by clients for this epoch are
discarded with an end-of-epoch message and need to be
resent with an updated epoch number.

Step 4: Handover. After 2f+1 old validators call the END-
OF-EPOCH function, the system enters the handover phase.
After an extra checkpoint (Line 28) anyone can call the
function HANDOVER that effectively terminates the epoch.
At this stage, the state of the smart contract is reset and the
old validators can shut down (Line 34). If a validator also
participates in the new epoch, it must perform the following
operations before entering the next epoch:

• It drops the OwnedLock and SharedLock stores (see
Section 3.3).

• It rolls-back execution of any transaction that did not
appear in any checkpoint so far. As we discussed this
is safe as these transactions were not final.

The protocol design decouples all the essential steps needed
for a secure reconfiguration. This decoupling allows for the
necessary logic of defining the new committee, providing
the new committee sufficient time to bootstrap from the
actual handover, and preserving the safety of consensusless
transactions across epochs. As a result service interruption
is minimized to only a few seconds.

3. As this part is contained within one epoch the only risk is that some
validators are censored. Fortunately, Bullshark [6] (the consensus protocol
used by SUI LUTRIS) provides sufficient chain quality to allow honest
validators to lock their stake.

10

5. Implementation
We implement a networked multi-core SUI LUTRIS val-

idator in Rust forking the FastPay4, Narwhal5, and Bull-
shark6 projects. It uses Tokio7 for asynchronous network-
ing, fastcrypto8 for elliptic curve based signatures. Data-
structures are persisted using RocksDB9. We use QUIC10—
to achieve reliable authenticated point-to-point channels.
The implementation of SUI LUTRIS is around 30 kLOC
and over 10 kLOC of tests. Contrarily to most prototypes,
our implementation is production-ready and fully-featured.
It runs at the heart of a major new blockchain (integrated in
350 kLOC) mainnet. As of July 30, 2023, the mainnet is op-
erated by 105 geo-distributed heterogeneous validators, has
processed over 730 million certificates, at the rate of over
2.5 million certificates a day, in over 9 million checkpoints,
and has undergone over 100 epoch changes. It stores over
80 million objects, owned by over 2.5 million addresses,
defined by over 6,000 Move packages. We are open sourcing
our implementation of SUI LUTRIS11.

6. Evaluation
We evaluate the throughput and latency of our imple-

mentation of SUI LUTRIS through experiments on AWS.
We particularly aim to demonstrate the following claims. C1
SUI LUTRIS achieves high throughput despite its consensus-
intensive checkpointing mechanism. C2 SUI LUTRIS final-
izes owned-objects transactions with sub-second latency (in
the WAN) for small and medium committee sizes or when
the system is under low load. C3 SUI LUTRIS is robust
when some parts of the system inevitably crash-fail. C4
SUI LUTRIS validators are capable of quickly recovering
after crashes without visible performance impact. C5 SUI
LUTRIS’s epoch change mechanism only causes a small
disruption. Experimental evaluation of BFT protocols in
the presence of Byzantine faults is an open research ques-
tion [14]. However, we provide extensive safety and liveness
proofs in Appendix A.

6.1. Experimental Setup
To demonstrate those claims we compare the fast-path

of SUI LUTRIS with an implementation of Bullshark that
uses the same execution engine and consensus protocol as
SUI LUTRIS. This means that although Bullshark is used as
a baseline it also represents the actual performance of SUI
LUTRIS when deployed only with a shared objects work-
load. We use our implementation of Bullshark, which is an
extension of the original codebase, for three reasons. First,
the original Bullshark protocol only measures throughput
by counting the number of bytes committed; as a result the

4. https://github.com/novifinancial/fastpay
5. https://github.com/facebookresearch/narwhal
6. https://github.com/asonnino/narwhal/tree/bullshark
7. https://tokio.rs
8. https://github.com/MystenLabs/fastcrypto
9. https://rocksdb.org
10. https://github.com/quinn-rs/quinn
11. https://github.com/mystenlabs/sui

throughput reported did not correspond to the performance
of a real (production-ready) system because there was no ex-
ecution or state to be updated (i.e., Bullshark is a BAB [15]
and not an SMR [16]). Second, as a result of counting
bytes there was no duplicate suppression, resulting in a
potential O(n) duplicate transactions. In our implementation
we report the goodput of the system, i.e., the number of
distinct certificates finalized by the system. Finally, due to
lack of state it was trivial to DoS the original Bullshark by
sending invalid and malformed transactions such that the
goodput would drop to zero. Instead, in our experiments
we ensures that all transactions forwarded to the consensus
engine use valid gas objects that are spent regardless of
whether the transaction bytes are valid.

We deploy a fully-featured SUI LUTRIS testbed on AWS,
using m5d.8xlarge instances across 13 different AWS
regions: N. Virginia (us-east-1), Oregon (us-west-2), Canada
(ca-central-1), Frankfurt (eu-central-1), Ireland (eu-west-
1), London (eu-west-2), Paris (eu-west-3), Stockholm (eu-
north-1), Mumbai (ap-south-1), Singapore (ap-southeast-1),
Sydney (ap-southeast-2), Tokyo (ap-northeast-1), and Seoul
(ap-northeast-2). Validators are distributed across those re-
gions as equally as possible. Each machine provides 10Gbps
of bandwidth, 32 virtual CPUs (16 physical core) on a
2.5GHz, Intel Xeon Platinum 8175, 128GB memory, and
runs Linux Ubuntu server 22.04. SUI LUTRIS persists all
data on the NVMe drives provided by the machine (rather
than the root partition). We select these machines because
they provide decent performance and are in the price range
of ‘commodity servers’.

In the following graphs, each data point in the latency
graphs is the average of the latency of all transactions of the
run, and the error bars represent one standard deviation (er-
rors bars are sometimes too small to be visible on the graph).
We instantiate several geo-distributed benchmark clients
submitting transactions at a fixed rate for a duration of 10
minutes; unless specified otherwise each benchmark client
submits at most 350 tx/s and the number of clients thus
depends on the desired input load. When referring to latency,
we mean the time elapsed from when the client submits the
transaction to when it assembles an effect certificate over
the transaction (and the transaction has reached settlement
finality, see Section 2). The latency of SUI LUTRIS shared-
object transaction finality, are lower than the ones of Bull-
shark in our experiments: SUI LUTRIS reaches transaction
finality before execution with a latency equal to the owned-
object transaction. The Bullshark latency is similar to SUI
LUTRIS’s shared-object settlement latency instead (see Sec-
tion 2). When referring to throughput, we mean the number
of effect certificates over distinct transactions over the entire
duration of the run. Since SUI LUTRIS also accepts bundles
of multiple transactions (called programmable transaction
blocks, see Section 6.2) as input, we report throughput as
certificates per second (cert/s) to denote distinct unrelated
transaction throughput.

Transactions processed by SUI LUTRIS are payment
transfers and transactions processed by Bullshark are in-
crements of a shared counter which simulates the sequence

11

https://github.com/novifinancial/fastpay
https://github.com/facebookresearch/narwhal
https://github.com/asonnino/narwhal/tree/bullshark
https://tokio.rs
https://github.com/MystenLabs/fastcrypto
https://rocksdb.org
https://github.com/quinn-rs/quinn
https://github.com/mystenlabs/sui

0 1,000 2,000 3,000 4,000 5,000
Throughput (cert/s)

0.0

1.0

2.0

3.0

4.0

5.0

La
te

nc
y

(s
)

Lutris - 10 nodes
Lutris - 50 nodes
Lutris - 100 nodes

Bullshark - 10 nodes
Bullshark - 50 nodes
Bullshark - 100 nodes

0 20 40 60 80 100
Committee size

0

2,000

4,000

Th
ro

ug
hp

ut
 (

ce
rt

/s
)

0.5s latency cap - Lutris
5s latency cap - Lutris
5s latency cap - Bullshark

Figure 2. SUI LUTRIS and Bullshark WAN latency-throughput with 10, 50,
and 100 validators (no faults).

number of a shared account. We do not use the (real) main-
net load for our experiments because the system’s launch is
very recent and there is current not enough historic data to
produce more than a few seconds of benchmarks.

We benchmark the version of the codebase running
on mainnet-v1.4.312 and open-source all orchestration
scripts, benchmarking scripts, and measurements data to en-
able reproducible evaluation results13. Appendix B provides
a tutorial to reproduce our experiments.

6.2. Benchmark in the Common Case
Figure 2 compares the performance of SUI LUTRIS with

the baseline Bullshark when running with 10, 50, and 100
non-faulty validators. The lower part of the figure provides
another view of the same data by showing the maximum
achievable throughput while keeping the latency below 0.5
seconds and 5 seconds (the system’s SLA).

Bullshark finalizes 4,000 cert/s with a committee size
of 10 or 50 and 3,500 cert/s with a committee size of 100.
In comparison, SUI LUTRIS finalizes 5,000 cert/s with a
committee size of 10 or 50, and 4,000 cert/s with a commit-
tee size of 100. In all cases, SUI LUTRIS’s throughput out-
performs Bullshark’s despite its checkpointing mechanism
(see Section 4.1) that sequences all certificates through the
consensus engine. This observation validates our claim C1.

Regardless of the committee size, Bullshark’s latency is
about 3 seconds while SUI LUTRIS’s latency is less than 0.5
seconds – corresponding to a 6x latency improvement. This
observation validate our claim C2.

Programmable transaction blocks. SUI LUTRIS allows a
client to ‘bundle’ multiple transactions into a single system

12. https://github.com/asonnino/sui/tree/sui-lutris (commit 7f3d922)
13. https://github.com/asonnino/sui-paper/tree/main/data

0 20k 40k 60k 80k 100k 120k 140k
Throughput (ops/s)

0.0

1.0

2.0

3.0

La
te

nc
y

(s
)

Lutris - 100 nodes: 100 txs/PTB

Figure 3. SUI LUTRIS latency-throughput with bundles of 100 transactions
per programmable transaction block (PTB); 100 validators, no faults.

transaction, and signing only the bundle rather than each
individual transaction. We call such bundle programmable
transaction block (PTB). This is useful for large exchanges
and corporate entities submitting numerous transactions on
behalf of their users. Bundling transactions reduces the
number of messages exchanged between the client and the
system and greatly reduces the cost of signature verifica-
tion. Figure 3 shows the performance of a 100-validator
deployment of SUI LUTRIS executing a payload composed
of PTBs of 100 transactions14. The graphs shows a peak
at 150,000 opts/s indicating that SUI LUTRIS can process
1,500 bundles of 100 transactions per second while keeping
the latency below 0.5 seconds.

6.3. Benchmark with Faults

Figure 4 compares the performance of SUI LUTRIS
with the baseline Bullshark for a 10-validator deployment
when the system experiences (crash-)faults; after running
without faults for one minute, 1 and 3 validators crash.
The figure shows that Bullshark can finalize 3,500 cert/s
in about 5 seconds and 3,000 cert/s in about 7.5 seconds
when respectively 1 and 3 validators crashes. In contrast,
SUI LUTRIS is largely unaffected by validator’s crashes: it
can still finalize over 4,000 cert/s with a latency of less than
0.5 seconds. We thus observe that SUI LUTRIS provides
up to 15x latency reduction when the system experiences
(crash-)faults and validate our claim C3.

Figure 5 shows the throughput and latency of SUI
LUTRIS and Bullshark when 3 validators are crashing and
recovering. The plots are divided in 5 zones by vertical
black lines; no validators are crashed in the first zone;
then respectively 1, 2, and 3 validators are crashed in the
2nd, 3rd, and 4th zone; and all validators recover in the
last zone. The systems are submitted to a constant load
of 3,000 cert/s (regardless of the number of faults). Each
point on the graphs is the average metric observed by the
clients (averaged over all clients and with a 15-seconds
window). As expected, the throughput of Bullshark slightly
degrades (barely visible) and its latency increases when the
number of crash-faults increases. The 5th zone shows that
performance starts recovering when all validators recover.
The slight delay in recovery is due to the overhead required
by our orchestration to apply changes to the deployment
environment. In contrast, SUI LUTRIS is largely unaffected

14. These measurements required 40 benchmark clients, each an an
individual machine, to avoid client-side bottlenecks.

12

https://github.com/asonnino/sui/tree/sui-lutris
https://github.com/asonnino/sui-paper/tree/main/data

0 1,000 2,000 3,000 4,000 5,000
Throughput (cert/s)

0.0

5.0

10

15

20

25

30

La
te

nc
y

(s
)

Lutris - 10 nodes
Lutris - 10 nodes (1 faulty)
Lutris - 10 nodes (3 faulty)

Bullshark - 10 nodes
Bullshark - 10 nodes (1 faulty)
Bullshark - 10 nodes (3 faulty)

Figure 4. SUI LUTRIS and Bullshark WAN latency-throughput with 20
validators (1, 3, and 6 faults).

0 200 400 600 800
Duration (s)

0

1,000

2,000

3,000

4,000

Th
ro

ug
hp

ut
 (

ce
rt

/s
)

Lutris Bullshark

0 200 400 600 800
Duration (s)

0

2

5

8

10

12

15

La
te

nc
y

(s
)

Lutris Bullshark

Figure 5. Performance of a 10-validators committee when up to 3 validators
crash and recover.

by crash-recovering validators. These observations validate
our claim C4.

6.4. Stability during Epoch Changes
Figure 6 shows the throughput and latency over time

of 10-validator deployments of SUI LUTRIS and Bullshark.
The systems are submitted to a constant load of 3,000 cert/s
for about 35 minutes during which the systems undergo 3
epoch changes (one every 10 minutes, indicated by black
vertical lines). We observe that the performance of both SUI
LUTRIS (and Bullshark) are largely unaffected by the epoch
changes, thus validating our claim C5.

7. Related and Future Work
In our deployment, we demonstrated the power of SUI

LUTRIS which manages to provide a fully expressive smart
contract platform for mutually distrustful parties to collabo-
rate and exchange value. In one sentence, SUI LUTRIS is the
first secure smart-contract platform that provides sub-second

0 250 500 750 1,000 1,250 1,500 1,750 2,000
Duration (s)

0

1,000

2,000

3,000

Th
ro

ug
hp

ut
 (

ce
rt

/s
)

Lutris Bullshark

0 250 500 750 1,000 1,250 1,500 1,750 2,000
Duration (s)

0

1

2

3

4

5

6

La
te

nc
y

(s
)

Lutris Bullshark

Figure 6. Performance of a 10-validators committee during epoch changes.

finality for distributed ledger transactions without compro-
mising the expressiveness and the performance of state-of-
the-art consensus protocols such as Bullshark. To achieve
this it combines said state-of-the-art consensus protocols
with the ideas of the FastPay [1] low-latency settlement
systems in order to gain the ability to operate on arbitrary
objects through user-defined smart contracts, and with a
delegated proof-of-stake committee [17].

The SUI LUTRIS owned object path is based on Byzan-
tine consistent broadcast [18]. Previous works suggested
using this weaker primitive to build payment systems [2],
[3], [19] but lack an integration with a consensus path mak-
ing it both impractical to run for a long-time (no garbage-
collection or reconfiguration) as well as limited functionality
(only payments) and usability (client-side bugs result in
permanent loss of funds).

Other systems similar to SUI LUTRIS are Astro [3] and
ABC/CoD [20], [21]. Astro relies on an eager implementa-
tion of Byzantine reliable broadcast [13] which achieves
totality [13] without relying on an external synchronizer
at the cost of higher communication in the common case.
Additionally, Astro is designed as a standalone payment
system but does not handle checkpointing or reconfiguration.
Similar to Astro and FastPay, ABC [20] proposes a relaxed
notion of consensus where termination is only guaranteed
for honest senders, this however is quite disruptive for the
client experience as simple mistakes cause complete loss of
access to user assets. Additionally ABC provides no imple-
mentation or evaluation and is also limited to payments.

As part of SUI LUTRIS, we require integration with a
consensus protocol able to keep up with checkpointing the
throughput the fast-path is able to execute. For this reason,
we chose the use of Narwhal-Bullshark [6], [8] in a variant
without asynchronous fallback [22], due to their reported
and observed high performance. Similarly, SUI LUTRIS

13

requires integration with a deterministic execution engine
in order to provide end-to-end application level semantics
instead of simply ordering bytes. In our evaluation, we inter-
face with a modified version of Move that exposes objects
as programmable entities because of its secure interfaces
and code maturity. Nevertheless, our design is modular [23]
and can interface both with any total-ordering protocol [24],
[25], [26], [27], [28], [29] as well as with any deterministic
execution engine [30], [31].

8. Conclusion
SUI LUTRIS is the first smart-contract platform that for-

goes consensus for single-writer operations and only relies
on consensus for settling multi-writer operations, combining
the two modes securely. We describe system aspects to
achieve long-term stability and production-readiness that
are typically overlooked by research prototypes. It proposes
checkpointing transactions into a sequence after execution
(for large categories of transactions) to reduce the need for
agreement and latency, and shows how to safely reconfigure
the system with minimal downtime. SUI LUTRIS is currently
running in production as part of a major smart-contract
platform. Its mainnet is operated by 105 geo-distributed
heterogeneous validators (Jul. 30, 2023) and processes an
average of over 2.5 million certificates a day. At peak, it
sustained a chain utilization of over 65 million certificates a
day, which was higher than the total number of transactions
on all blockchains combined, during that period.

Acknowledgments
This work is funded by MystenLabs. We thank the Mys-

ten Labs Engineering teams for valuable feedback broadly,
and specifically Dmitry Perelman and Todd Fiala for man-
aging the implementation effort. A number of folks con-
tributed to specific aspects of the implementation of SUI
LUTRIS (amongst many other contributions to the overall
blockchain): Francois Garillot, Laura Makdah, Mingwei
Tian, Andrew Schran, Sadhan Sood and William Smith
implemented and optimized aspects of both SUI LUTRIS
and Narwhal / Bullshark consensus; Alonso de Gortari
oversaw the crypto economics of the blockchain, and Emma
Zhong, Ade Adepoju, Tim Zakia and Dario Russi designed
and implemented staking and gas mechanisms. Adam Welc
designed several Move tools and provided great feedback on
the manuscript. We also extend our thanks to Patrick Kuo,
Ge Gao, Chris Li, and Arun Koshy for their work on the
SUI LUTRIS SDK, clients, and RPC layer; Kostas Chalkias,
Jonas Lindstrøm, and Joy Wang designed and implemented
cryptographic components.

References
[1] M. Baudet, G. Danezis, and A. Sonnino, “Fastpay: High-performance

byzantine fault tolerant settlement,” in Advances in Financial Tech-
nologies (AFT), 2020.

[2] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D. Seredin-
schi, “The consensus number of a cryptocurrency,” in Principles of
Distributed Computing (PODC), 2019.

[3] D. Collins, R. Guerraoui, J. Komatovic, P. Kuznetsov, M. Monti,
M. Pavlovic, Y.-A. Pignolet, D.-A. Seredinschi, A. Tonkikh, and
A. Xygkis, “Online payments by merely broadcasting messages,” in
Dependable Systems and Networks (DSN), 2020.

[4] M. Baudet, A. Sonnino, M. Kelkar, and G. Danezis, “Zef: Low-
latency, scalable, private payments,” arXiv preprint, 2022.

[5] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki,
A. Pott, S. Qadeer, R. in, D. Russi, S. Sezer, T. Zakian, and
R. Zhou, “Move: A language with programmable resources,” https:
//move-book.com, 2019.

[6] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag BFT protocols made practical,” in Computer and
Communications Security (CCS), 2022.

[7] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), 1988.

[8] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a DAG-based mempool and efficient BFT con-
sensus,” in European Conference on Computer Systems (EuroSys),
2022.

[9] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” De-
centralized business review, 2008.

[10] Committee on Payment and Settlement Systems, “A glossary of terms
used in payments and settlement systems,” Bank for International
Settlement (BIS) Report, 2003.

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019.

[12] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2001.

[13] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[14] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching,
and D. Malkhi, “Twins: BFT systems made robust,” Principles of
Distributed Systems (OPODIS), 2020.

[15] F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast:
From simple message diffusion to byzantine agreement,” Information
and Computation, 1995.

[16] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” Computing Surveys (CSUR), 1990.

[17] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “SoK: Consensus in the age of blockchains,”
in ACM Advances in Financial Technologies (AFT), 2019.

[18] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[19] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D. Seredin-
schi, “AT2: asynchronous trustworthy transfers,” CoRR, 2018.

[20] J. Sliwinski and R. Wattenhofer, “Abc: Asynchronous blockchain
without consensus,” ArXiv preprint, 2019.

[21] J. Sliwinski, Y. Vonlanthen, and R. Wattenhofer, “Consensus on
demand,” in Stabilization, Safety, and Security of Distributed Systems,
2022.

[22] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: The partially synchronous version,” ArXiv preprint, 2022.

[23] S. Cohen, G. Goren, L. Kokoris-Kogias, A. Sonnino, and A. Spiegel-
man, “Proof of availability & retrieval in a modular blockchain
architecture,” Financial Cryptography and Data Securty (FC), 2023.

[24] D. Malkhi and K. Nayak, “Hotstuff-2: Optimal two-phase responsive
bft,” Cryptology ePrint, 2023.

14

https://move-book.com
https://move-book.com

[25] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback,” in Financial Cryptography and Data
Security (FC), 2022.

[26] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in Security and Privacy (SP), 2018.

[27] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” in Network and
Distributed System Security Symposium (NDSS), 2018.

[28] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
Usenix OSDI, 1999.

[29] A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis, “Replay attacks
and defenses against cross-shard consensus in sharded distributed
ledgers,” in European Symposium on Security and Privacy (Eu-
roS&P), 2020.

[30] R. Gelashvili, A. Spiegelman, Z. Xiang, G. Danezis, Z. Li, D. Malkhi,
Y. Xia, and R. Zhou, “Block-stm: Scaling blockchain execution by
turning ordering curse to a performance blessing,” in Principles and
Practice of Parallel Programming, 2023.

[31] W. Zhang and T. Anand, “Ethereum architecture and overview,” in
Blockchain and Ethereum Smart Contract Solution Development:
Dapp Programming with Solidity. Springer, 2022.

Appendix A.
Security Proofs of SUI LUTRIS

SUI LUTRIS satisfies validity, safety, and liveness as
informally described in Section 2.3. These properties hold
against any polynomial-time constrained adversary as long
as the following assumptions hold:
• BFT: Every quorum of 3f+1 validators contains at most
f Byzantine validators. Correct validators of previous
epochs never leak their signing keys.

• Network: The network is partially synchronous [7]. SUI
LUTRIS operates in the partial synchrony model only due
to our use of Bullshark [6] as consensus protocol (it would
operate in asynchrony if we used Tusk [8] instead).

When referring to a ‘valid’ transaction in the sections below,
we mean a transaction that successfully pass check (1.2)
defined of Algorithm 1 (Section 2.4).

A.1. Validity
We show that correct SUI LUTRIS validators only exe-

cute valid transactions. Validity holds unconditionally to the
network assumption. The protocol described in Section 2.4
ensures validity as long as the BFT assumption holds. How-
ever, our implementation ensures validity unconditionally
because correct validators re-run all checks of Algorithm 1
upon processing a certificate. Should the BFT assumption
break, they would thus early-reject certificates over invalid
transactions before even starting to process them.

Lemma 1 (Valid Certificates). All certified transactions are
valid with respect to the authorization rules relating to
owned object (defined in Section 2.2).

Proof. Certificates are signed by at least 2f + 1 validators,
out of which at least f+1 are correct. Correct validators only
sign a transaction after performing check (2) of Algorithm 1,

as a result, no invalid transaction will ever be signed by a
correct authority, and will thus never be certified.

Theorem 1 (SUI LUTRIS Validity). State transitions at cor-
rect validators are in accordance with (i) the authorization
rules relating to owned object (defined in Section 2.2), and
(ii) the Move smart contract logic constraining valid state
transitions on objects of defined types.

Proof. State transitions at correct validators only happen
if a valid certificate TxCert in Algorithm 4 exists and is
processed. Point (i) is thus directly proven by the application
of Lemma 1.Point (ii) is proven by noting that correct val-
idators only apply a state transition (Line 18 of Algorithm 4)
after calling exec(TxCert) at Line 17 of Algorithm 4. This
function only produces [Objout] by calling the Move smart
contract logic constraining valid state transitions on objects
of defined types.

A.2. Safety
We prove the safety of the SUI LUTRIS protocol. That is,

we show that at the start of every epoch, all correct validators
have the same state. We prove safety using three main
ingredients: (i) correct validators execute the same set of
transactions, (ii) correct validators execute those transactions
in the same order whenever (partial) order matters, and (iii)
the execution of those transactions causes the same state
transition across all correct validators.

Execution set. We start by showing that all correct valida-
tors eventually execute the same set of transactions.

Lemma 2 (Owned-Object Execution Set). No correct val-
idators have executed a different set of owned object trans-
actions by the end of epoch e.

Proof. Correct validators assemble checkpoints by observ-
ing the sequence of transaction certificates committed in
consensus (Section 4.3). By the agreement properties of
the consensus protocol, all correct validators obtain the
same sequence of certificates. They then use those ordered
certificates to construct the same checkpoints since creating
checkpoints is a deterministic process given the certificate
sequence input. Correct validators execute all transactions
within the checkpoints they assemble. Additionally, at the
end of every epoch validators revert the execution of any
owned-object transaction not included in a checkpoint (see
Section 4.1), hence only owned-object transactions included
in a checkpoint persist. Reverting these transactions is safe
as only transactions included in a checkpoint are final (see
Theorem 3).

Lemma 3 (Shared-Object Execution Set). No correct val-
idators have executed a different set of shared object trans-
actions by the end of epoch e.

Proof. Correct validators execute all shared object transac-
tions sequenced by the consensus protocol before the last
checkpoint of epoch e (see Section 4.2). By the agreement
property of the consensus protocol, all correct validators

15

obtain the same sequence and thus execute the same set
of shared-object transactions.

Execution order. We now show that correct authorities
execute conflicting transactions in the same order.

Lemma 4 (BCB Consistency). No two conflicting transac-
tions, namely transactions sharing the same owned inputs
objects, object version, and epoch, are certified.

Proof. The proof of this lemma directly follows from
the consistency property of Byzantine consistent broadcast
(BCB) over the label (e,ObjID,Version). Let’s assume two
conflicting transactions TxA and TxB taking as input the
same owned object Obj with version Version are certified
during the same epoch e. Then f +1 correct validators per-
formed check (1.4) of Algorithm 1 and produced TxSignA
and f + 1 correct validators did the same and produced
TxSignB . A correct validator performing check (1.4) can-
not successfully process both (conflicting) TxA and TxB ;
indeed it will return an error at Line 21. As a result, a
set of f + 1 correct validators produced TxSignA but not
TxSignB , and a distinct set of f + 1 correct validators
produced TxSignB but not TxSignA. Hence there should
be f + 1 + f + 1 = 2f + 2 correct validators additionally
to the f byzantine. However N = 3f + 1 < 3f + 2 hence
a contradiction.

Lemma 4 operates over the label (e,ObjID,Version)
rather than only (ObjID,Version) because of check (1.4)
of Algorithm 1. This check relies on the integrity of the
store OwnedLock, which is dropped upon epoch change
(Section 4.3). This is however not a problem because cer-
tificates carry their epoch number and are only valid for a
single epoch (see check (4.1) of Algorithm 4).

Lemma 5 (Shared-Locks Consistency). The shared lock
store SharedLock of correct validators are never conflict-
ing; that is, the shared lock stores of correct validators are
either identical or a subset of each other.

Proof. Let’s assume two correct validators update their store
SharedLock by assigning different version numbers to a
shared object Obj of a certificate TxCert. Correct valida-
tors only assign a version number to Obj after sequencing
TxCert through consensus (Section 3.4). They then call
ASSIGNSHAREDLOCKS (Algorithm 4) and Line 36 of Al-
gorithm 4 assigns a version number to Obj. The function
ASSIGNSHAREDLOCKS is deterministic and thus the ver-
sion number assigned to Obj depends only on the consensus
output sequence. As a result, two correct validators assign
a different version to Obj only if they receive a different
consensus output sequence. However, by the agreement
property of the consensus all correct validators received the
same output sequence, hence a contradiction.

Lemma 6 (Owned Objects Sequential Execution). If two
certificates TxCert and TxCert′ both take as input the
same owned object Obj (and no shared objects), all correct
validators execute TxCert and TxCert′ in the same order.

Proof. Let’s assume two correct validators v and v′ ex-
ecute in different orders TxCert and TxCert′ taking the
same input object Obj. That is, v executes TxCert then
TxCert′, and v′ executes TxCert′ then TxCert. We argue
this lemma by contradiction of Lemma 4. Check (4.2) of
Algorithm 4 ensures that a correct validator only executes
certificates by following the sequence of monotonically in-
creasing version numbers (i.e., Lamport timestamps Line 33
of Algorithm 4). As a result, since v executes TxCert
before TxCert′, it follows that version(Obj) of TxCert
is strictly lower than version(Obj) of TxCert′. Similarly,
since v′ executes TxCert′ before TxCert it follows that
version(Obj) of TxCert′ is strictly lower than version(Obj)
of TxCert. This implies that both TxCert and TxCert take
as input Obj with the same version number. We finally note
that correct validators only execute certificates valid for the
current epoch (check (4.1) of Algorithm 4), thus TxCert
and TxCert′ share the same epoch number. As a result,
TxCert and TxCert share the input Obj for the same version
and epoch number and are thus conflicting. This is a direct
contradiction of Lemma 4.

Lemma 7 (Shared Objects Sequential Execution). If two
certificates TxCert and TxCert′ both take as input the same
shared object Obj, all correct validators execute TxCert and
TxCert′ in the same order.

Proof. Let’s assume two correct validators v and v′ execute
in different orders TxCert and TxCert′ taking the same
input shared object Obj. That is, v executes TxCert then
TxCert′, and v′ executes TxCert′ then TxCert. We note
TxDigest = digest(TxCert), TxDigest′ = digest(TxCert′),
and call ObjID the identifier of Obj. We argue this lemma
by contradiction of Lemma 5. First, we note that Lamport
timestamps (see Line 33 of Algorithm 4) ensure correct
validators always assign strictly increasing version numbers
to shared objects. Since v executes TxCert before TxCert′,
its SharedLock store holds the following two entries:

SharedLock[(TxDigest,ObjID)] = Version

SharedLock[(TxDigest′,ObjID)] = Version′

with Version < Version′. Similarly, since v′ executes
TxCert′ before TxCert, its SharedLock store holds the
following two entries:

SharedLock[(TxDigest′,ObjID)] = Version′

SharedLock[(TxDigest,ObjID)] = Version

with Version′ < Version. This however means that the stores
of v and v′ conflict, which is a direct contradiction of
Lemma 5.

State transistions. We finally show that correct authorities
executing the same sequence of certified transitions end up
in the same state.

Lemma 8 (Objects Identifiers Uniqueness). No polynomial-
time constrained adversary can create two objects with the

16

same identifier ObjID without two successful invocations of
exec(TxCert) over the same certificate TxCert.

Proof. We argue this lemma by the construction of the
object identifier ObjID. Section 3.1 derives each objects
identifier ObjID by hashing the digest digest(TxCert) of
the certificate creating the object along with an index unique
to each input object of TxCert. The adversary thus needs
to find a hash collision to generate the same ObjID twice
through the invocation of exec(TxCert) and exec(TxCert′),
where TxCert ̸= TxCert′.

Lemma 9 (Deterministic Execution). Every correct valida-
tor executing the same set of certificates makes the same
state transitions.

Proof. Every certificate TxCert in the sequence is executed
by calling the function PROCESSCERT of Algorithm 4. The
function exec(TxCert) (Line 17) calls the Move VM to
produce the set of the newly created or mutated objects
[Objout]. The determinism of the Move VM and the correct-
ness of its type checker ensures that every correct validator
calling exec(TxCert) with the same input TxCert produces
the same [Objout]. ATOMICPERSIST (Line 18) then persists
the state transition atomically (preventing crash-recoveries
from corrupting the state).

SUI LUTRIS safety. We now prove the safety of SUI
LUTRIS using the previous lemmas.

Theorem 2 (SUI LUTRIS Safety). At the start of every
epoch, all correct validators have the same state.

Proof. We argue this property by induction. Assuming a
history of n − 1 epochs for which this property holds we
consider epoch n. Lemma 2 and Lemma 3 prove that all
correct validators will execute the same set of transactions
by the start of epoch n+ 1. Then Lemma 6 and Lemma 7
show that correct validators can only execute those trans-
actions in the same order (whenever order matter). Finally,
Lemma 9 shows that the execution of those transactions
causes the same state transition across all correct validators.
As a result, every correct validator will have the same state
at the start of epoch n+1. The inductive base case is argued
by construction: all correct validators start in the same state
during the first epoch (i.e., genesis).

Client-perceived safety. Clients consider a transaction Tx
final if there exists an effect certificate EffCert over Tx. We
thus show that the existence of EffCert implies that Tx is
never reverted (Lemma 15 shows that Tx will eventually be
executed). Thus all final transactions will be in a checkpoint
within the epoch.

Theorem 3 (Client-Perceived Safety). If there exists an ef-
fect certificate EffCert over a transaction Tx, the execution
of Tx is never reverted.

Proof. Let’s assume there exists an effect certificate EffCert
over a transaction Tx and that the execution of Tx is

reverted. The execution of Tx is reverted if and only if
Tx is not included in a checkpoint by the end of the
epoch. However, correct validators only sign EffCert after
including Tx in the list of certificates to be sequenced and
eventually observed into a checkpoint c. By the liveness
property of consensus within an epoch, a correct validator
will eventually be able to sequence the certificate as long
as the epoch is ongoing. The epoch ending before the
certificate being sequenced and included in a checkpoint
implies that a set of f +1 correct validators signed EffCert
and did not see it included in a checkpoint within the
epoch, and a disjoint set of f + 1 correct validators did
not sign EffCert and participated in the reconfiguration
protocol to to move to the next epoch. This implies a total
of f + 1 + f + 1 + f = 3f + 2 > 3f + 1 validators, hence
a contradiction.

Theorem 4 (No Conflicts). No two conflicting effect certifi-
cates exist. That is, two different effect certificates sharing
the same input objects and object version.

Proof. Let’s assume two conflicting effect certificates
EffCert and EffCert′ exist. We distinguish two (exhaus-
tive) cases, (i) EffCert and EffCert′ share an input owned
object with the same version number, and (ii) EffCert
and EffCert′ share an input shared object with the same
version number. Case (i) implies there must exist two
conflicting certificates TxCert and TxCert (remember ef-
fect certificate are created by signing certificates). This
is however a direct contradiction of Lemma 4. Case (ii)
implies that the f+1 correct validators who signed EffCert
persisted SharedLock[(TxDigest,ObjID)] = Version, and
the f + 1 correct validators who signed EffCert′ per-
sisted SharedLock[(TxDigest,ObjID′)] = Version. Since
Lemma 5 ensures the shared lock store of correct validators
do not conflict, the set of f+1 correct validators who signed
TxCert is disjoint from the set of f + 1 correct validators
who signed TxCert′. As a result, there must be a total of
f + 1 + f + 1 + f = 3f + 2 > 3f + 1 validators, hence a
contradiction.

A.3. Liveness
We prove the liveness of the SUI LUTRIS protocol. We

start by showing that correct users can always obtain a
certificate over their valid transactions, even across epochs.

Lemma 10 (Dependencies Availability). Given a certificate
TxCert a correct user can always retrieve all the depen-
dencies (i.e. parents) of TxCert.

Proof. We argue this property by induction on the serialized
retrieval of the direct parent certificates. Assuming a history
of n + 1 certificate dependencies for which this property
holds, we consider certificate n noted TxCert. TxCert is
signed by 2f + 1 validators, out of which at least f + 1
are correct. Correct validators only sign a transaction after
ensuring they hold all its input objects (check (1.1) of
Algorithm 1). This means that f + 1 correct validators
have executed (and persisted) certificate n − 1 that created

17

the inputs of TxCert. A correct user can thus query any
of those f + 1 correct validators for certificate n − 1.
The inductive base case assumes that the first dependency
of every certificate is a fixed genesis (which we ensure
axiomatically).

Lemma 11 (Certificate Creation). A correct user can obtain
a certificate TxCert over a valid transaction Tx.

Proof. A correct validator always signs a transaction Tx if
it passes all 4 checks of Algorithm 1. Lemma 10 proves
that a correct user can always ensure check (1.1) passes
by providing all the transaction’s dependencies the validator
missed. Correct transactions always pass check (1.2). Check
(1.3) always passes for the first copy of Tx received by
the validator (at any given time). Finally correct users do
not equivocate. Thus Tx is the first and only transaction
referencing its owned object, and always passes check (1.4).
As a result, if Tx is disseminated to 2f+1 correct validators
by a correct user, they will eventually all return a signature
TxSign to the user. The user then aggregates those TxSign
into a certificate TxCert over Tx.

Lemma 12 (Certificate Renewal). A correct user holding a
certificate over transaction Tx for an old epoch e that did
not finalize in e can get a new certificate over Tx for the
current epoch e′.

Proof. A correct user holding a certificate over transaction
Tx for an old epoch e can re-submit Tx to 2f + 1 cor-
rect validators to obtain a new certificate for the current
epoch e′. Indeed, correct validators sign Tx if it passes
all 4 checks of Algorithm 1 like in Lemma 11. If the
validator did not already execute Tx, the correct user can
ensure check (1.1) passes by providing all the transaction’s
dependencies the validator missed (Lemma 10). Check (1.2)
and (1.3) will pass exactly as described in Lemma 11.
Finally, check (1.4) passes since correct users do not at-
tempt equivocation during epoch e′ and correct validators
drop the store OwnedLock upon epoch change (and thus
OwnedLock[ObjKey] == None, for every input of Tx). As
a result, if Tx is disseminated to 2f + 1 correct validators
by a correct user, they will eventually all return a signature
TxSign to the user. The user then aggregates those TxSign
into a certificate TxCert over Tx.

The existence of a certificate implies that every owned
object used as input of a certified transaction is locked for a
particular version number. We now prove that all the shared
objects of the certificate are also eventually locked for a
version number.

Lemma 13 (Shared Locks Availability). A correct user can
always ensure that all correct validators eventually assign
shared locks to all shared objects of a valid transaction Tx.

Proof. Lemma 11 shows that a correct user can always
assemble a certificate TxCert over a valid transaction Tx.
The correct user can then forward the TxCert to an hon-
est authority who submits it to the consensus engine. By

the liveness property of the consensus, TxCert is eventu-
ally sequenced by all correct validators. When TxCert is
sequenced, correct validators call ASSIGNSHAREDLOCKS
(Algorithm 4). Line 36 of Algorithm 4 then assigns locks
to all shared objects of TxCert.

We finally show that the existence of a certificate ensures
the transactions of a correct user are eventually included in
a checkpoint, and thus eventually executed.

Lemma 14 (Effect Certificates Availability). A correct user
can always ensure an effect certificate EffCert over trans-
action Tx will eventually exist if a certificate TxCert over
Tx exists.

Proof. A correct validator signs an effect EffSign if it passes
all 3 checks of function PROCESSCERT of Algorithm 4. A
correct user can ensure that check (4.1) passes by either
providing the validator with the certificate TxCert during
the same epoch of its creation or by re-creating a certificate
for the current epoch (Lemma 12). A correct user can
ensure check (4.2) passes by providing all the certificate’s
dependencies the validator missed (Lemma 10). Lemma 13
ensures that a correct user can make correct validators assign
shared locks to all shared objects of a certificate TxCert,
thus validating the first part of check (4.3) Line 10. It can
then ensure the second part of check (4.3) Line 14 succeeds
by providing the validator with all dependencies it missed.
As a result, a correct user can collect at least 2f +1 effects
EffSign over Tx and assemble them into an effect certificate
EffCert.

Lemma 15 (Checkpoint Inclusion). If an effect certificate
over transaction Tx exists within an epoch, Tx will be
included in a checkpoint within the same epoch.

Proof. If an effect certificate EffCert exists, at least f + 1
correct validators executed its corresponding transaction Tx.
When correct validators execute a transaction they include
it in the list of certificates to sequence and checkpoint
(Section 4.1). Since f +1 correct validators are also needed
to close the epoch, and a correct validator will not do so until
it witnesses all listed certificates being sequenced, and by the
liveness of consensus within an epoch, it follows that eventu-
ally the certificate will be sequenced (similar to Theorem 3).
Since all certificates on which a certificate depends must also
have been executed (in case of owned objects) or sequenced
and executed (in case of shared objects) before an honest
validator executes the transaction and signs it, it follows that
if an EffCert exists then an EffCert for all dependencies
will also exist and also be eventually sequenced. Since the
certificate and all its causal dependencies will eventually
be sequenced within the epoch, they will be included in a
checkpoint within the epoch.

Lemma 16 (Checkpoint Execution). All correct validators
eventually execute all transactions included in all check-
points.

Proof. Correct validators assemble checkpoints out of cer-
tificates sequenced by consensus. By the liveness property of

18

the consensus protocol, all correct validators can eventually
sequence all the certificates they are executed (or observe
others do so) and assemble them into checkpoints. We
conclude the proof by noting that correct validators execute
all transactions within all checkpoints they assemble.

Theorem 5 (SUI LUTRIS Liveness). A correct user can
always ensure its transaction Tx will eventually be finalized.
That is, all correct validators execute it and never revert it.

Proof. Lemma 11 ensures that a correct user can eventually
obtain a certificate TxCert over their valid transaction Tx.
Lemma 14 then ensures the user can get an effect certificate
EffCert using TxCert. Lemma 15 shows that the existence
of EffCert implies the transaction is eventually included
in the a checkpoint. Finally Lemma 16 shows that all
transactions included in all checkpoints are executed. To
conclude the proof we note that the execution of transactions
included in checkpoints is never reverted (Section 4.3).

Theorem 6 (Client-Perceived Starvation Freedom).
Let’s assume two correct validators respectively
set OwnedLock[ObjKey] = sign(Tx1) and
OwnedLock[ObjKey] = sign(Tx2) (with Tx1 ̸= Tx2)
during epoch e. A correct user can eventually obtain an
effect certificate over transaction Tx′ accessing ObjKey at
epoch e′ > e.

Proof. All owned objects locked by transactions at epoch e
are freed upon entering epoch e+ 1 (see Section 4.2); that
is, correct validators drop all OwnedLock[·] upon epoch
change. Correct validators thus sign a correct transaction
Tx′ accessing ObjKey at epoch e′ > e submitted by correct
clients (who do not equivocate). Lemma 11 then ensures
the client eventually obtains a certificate over Tx′ and
Lemma 14 ensures the client eventually obtains an effect
certificate over Tx′.

Appendix B.
Reproducing Experiments

We provide the orchestration scripts15 used to bench-
mark the codebase evaluated in this paper on AWS .

Deploying a testbed. The file ‘ /.aws/credentials’ should
have the following content:

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

configured with account-specific AWS access key id and
secret access key. It is advise to not specify any AWS region
as the orchestration scripts need to handle multiple regions
programmatically.

A file ‘settings.json’ contains all the configuration pa-
rameters for the testbed deployment. We run the experiments
of Section 6 with the following settings:

15. https://github.com/asonnino/sui/tree/sui-lutris/crates/orchestrator

{
"testbed_id": "${USER}-sui",
"cloud_provider": "aws",
"token_file": "/Users/${USER}/.aws/credentials

",
"ssh_private_key_file": "/Users/${USER}/.ssh/

aws",
"regions": [

"us-east-1",
"us-west-2",
"ca-central-1",
"eu-central-1",
"ap-northeast-1",
"ap-northeast-2",
"eu-west-1",
"eu-west-2",
"eu-west-3",
"eu-north-1",
"ap-south-1",
"ap-southeast-1",
"ap-southeast-2"

],
"specs": "m5d.8xlarge",
"repository": {

"url": "https://github.com/mystenlabs/sui.
git",

"commit": "sui-lutris"
}

}

where the file ‘/Users/$USER/.ssh/aws’ holds the ssh
private key used to access the AWS instances.

The orchestrator binary provides various functionalities
for creating, starting, stopping, and destroying instances. For
instance, the following command to boots 2 instances per
region (if the settings file specifies 13 regions, as shown in
the example above, a total of 26 instances will be created):
cargo run --bin orchestrator -- \

testbed deploy --instances 2

The following command displays he current status of the
testbed instances
cargo run --bin orchestrator testbed status

Instances listed with a green number are available and ready
for use and instances listed with a red number are stopped. It
is necessary to boot at least one instance per load generator,
one instance per validator, and one additional instance for
monitoring purposes (see below). The following commands
respectively start and stop instances:
cargo run --bin orchestrator -- testbed start
cargo run --bin orchestrator -- testbed stop

It is advised to always stop machines when unused to avoid
incurring in unnecessary costs.

Running Benchmarks. Running benchmarks involves in-
stalling the specified version of the codebase on all remote
machines and running one validator and one load generator
per instance. For example, the following command bench-
marks a committee of 100 validators (none faulty) under a
constant load of 1,000 tx/s for 10 minutes (default), using
3 load generators:
cargo run --bin orchestrator -- benchmark \

--committee 100 fixed-load --loads 1000 \
--dedicated-clients 3 --faults 0
--benchmark-type 0

The parameter ‘benchmark-type‘ is typically set to “0” to
instruct the load generators to submit individual payment

19

https://github.com/asonnino/sui/tree/sui-lutris/crates/orchestrator

transactions. It can also be set to “batch” to instruct them
to submit bundles of 100 payment transactions, as experi-
mented in Figure 3. When benchmarking individual transac-
tions, we select the number of load generators by ensuring
that each individual load generator produces no more than
350 tx/s (as they may quickly become the bottleneck). We
set the number of load generators to 40 when benchmarking
bundles of 100 transactions (Figure 3).

Monitoring. The orchestrator provides facilities to monitor
metrics. It deploys a Prometheus instance and a Grafana
instance on a dedicated remote machine. Grafana is then
available on the address printed on stdout when running
benchmarks with the default username and password both
set to admin. An example Grafana dashboard can be found
in the file ‘grafana-dashboard.json’16.

Troubleshooting. The main cause of troubles comes from
the genesis. Prior to the benchmark phase, each load gener-
ator creates a large number of gas object later used to pay
for the benchmark transactions. This operation may fail if
there are not enough genesis gas objects to subdivide or if
the total system gas limit is exceeded. As a result, it may
be helpful to increase the number of genesis gas objects per
validator in the ‘genesis config’ file17 when running with
very small committee sizes (such as 10).

16. https://github.com/asonnino/sui/blob/sui-lutris/crates/orchestrator/
assets/grafana-dashboard.json

17. https://github.com/asonnino/sui/blob/
7f3d922432b185e6977513ea577929ea06097102/crates/sui-swarm-config/
src/genesis config.rs#L361

20

https://github.com/asonnino/sui/blob/sui-lutris/crates/orchestrator/assets/grafana-dashboard.json
https://github.com/asonnino/sui/blob/sui-lutris/crates/orchestrator/assets/grafana-dashboard.json
https://github.com/asonnino/sui/blob/7f3d922432b185e6977513ea577929ea06097102/crates/sui-swarm-config/src/genesis_config.rs#L361
https://github.com/asonnino/sui/blob/7f3d922432b185e6977513ea577929ea06097102/crates/sui-swarm-config/src/genesis_config.rs#L361
https://github.com/asonnino/sui/blob/7f3d922432b185e6977513ea577929ea06097102/crates/sui-swarm-config/src/genesis_config.rs#L361

	Introduction
	Overview
	Threat Model
	System Model
	Core Properties
	Core Protocol Overview

	The Sui Lutris System
	Objects Operations
	Protocol Messages
	Data Structures
	Validator Core Operation

	Long-Term Stability
	Checkpoints
	Committee Reconfiguration
	The Sui Lutris Reconfiguration Protocol

	Implementation
	Evaluation
	Experimental Setup
	Benchmark in the Common Case
	Benchmark with Faults
	Stability during Epoch Changes

	Related and Future Work
	Conclusion
	References
	Appendix A: Security Proofs of Sui Lutris
	Validity
	Safety
	Liveness

	Appendix B: Reproducing Experiments

