
Beluga: Block Synchronization for BFT Consensus Protocols

Tasos Kichidis∗, Lefteris Kokoris-Kogias∗, Arun Koshy∗, Ilya Sergey‡∗,
Alberto Sonnino∗†, Mingwei Tian∗, Jianting Zhang§,

∗Mysten Labs
†University College London

‡National University of Singapore
§Purdue University

Abstract—Modern high-throughput BFT consensus protocols
use streamlined push-pull mechanisms to disseminate blocks
and keep happy-path performance optimal. Yet state-of-the-art
designs lack a principled and efficient way to exchange blocks,
which leaves them open to targeted attacks and performance
collapse under network asynchrony. This work introduces the
block synchronizer, a simple abstraction that drives incremental
block retrieval and enforces resource-aware exchange. Its in-
terface and role sit cleanly inside a modern BFT consensus
stack. We also uncover a new attack, where an adversary
steers honest validators into redundant, uncoordinated pulls
that exhaust bandwidth and stall progress. Beluga is a modular
and scarcity-aware instantiation of the block synchronizer. It
achieves optimal common-case latency while bounding the cost
of recovery under faults and adversarial behavior. We integrate
Beluga into Mysticeti, the consensus core of the Sui blockchain,
and show on a geo-distributed AWS deployment that Beluga
sustains optimal performance in the optimistic path and, under
attack, delivers up to 3× higher throughput and 25× lower
latency than prior designs. The Sui blockchain adopted Beluga
in production.

1. Introduction

The last decade of research in high-throughput Byzan-
tine fault-tolerant (BFT) consensus protocols has unveiled
that achieving world-class performance requires two key
design choices. Firstly, modern blockchains decouple block
ordering from bulk data dissemination [1], [2], and secondly,
they chain the disseminated data with causal references to
past disseminated data [2]–[4]. Both properties depart from
the blueprint used by legacy protocols such as PBFT [5],
where data is disseminated solely by a rotating leader using
monotonically increasing view numbers; instead, they adopt
a concurrent data dissemination approach. This means each
validator is expected to assemble transactions into blocks or
batches and broadcast them to all other validators [2].

This dissemination usually imposes chaining or causal
dependencies between blocks, but protocols implement this
with varying degrees of rigidity. Some protocols, such as
Narwhal-Hotstuff [2] and Autobahn [6] achieve this through

best-effort direct dissemination, after which a separate mod-
ule imposes a causal order over this data. Others, such as
HashGraph [7] and Blocklace-based systems [8], [9] have
validators assemble transactions into a block and dissemi-
nate the block by referencing as many blocks as possible.
Finally, protocols such as Bullshark [10] and Mysticeti [11]
force validators to only disseminate blocks upon collecting
at least a quorum of blocks from the previous round. Regard-
less of the approach, to implement atomic broadcast [12],
the data dissemination layer must implement the reliable
broadcast abstraction [12]. Specifically, even if the BFT
consensus protocol ensures consistency, the dissemination
layer must still enforce totality [12]: if one honest validator
receives a block, then all other validators must be able to
obtain it as well.

Through manual inspection of numerous high-
performant BFT codebases [13]–[21], we observed that
contrary to the liveness proofs and descriptions of these
protocols, none of the state-of-the-art protocols actually
implement an upfront reliable broadcast, such as Bracha
broadcast [22]. That is, they do not implement the totality
property through a double-echo. The reason is clear: this
would be prohibitively expensive as it consumes precious
bandwidth, and the double-echo is rarely needed (only
upon faults or poor network conditions) [2]. We empirically
uncover the same implicit two-phase pattern: an optimistic
push of block identifiers followed by a probabilistic pull
for missing blocks. We confirm this through a systematic
inspection of diverse production and prototype codebases
of state-of-the-art protocols, examining dissemination
modules, recovery loops, timers, and traces. The optimistic
push is implemented through weaker primitives such as
Byzantine consistent broadcast (which does not guarantee
totality) [14], [23], [24] or even best-effort broadcast [13],
[16]. A recovery mechanism asynchronously pulls any
missing blocks deemed “useful”.

The missing component. Despite its importance, this push-
pull mechanism remains unstructured glue code, often in-
volving uncoordinated pre-dissemination of block identi-
fiers, timer-driven random pulls, and no explicit bounds
on recovery message complexity (Sec. 2.2). Protocols run

ad hoc logic on received blocks to determine whether and
when to trigger the pull part of the protocol. This hidden
component governs throughput under load, tail latency, and
resilience against adversarial behavior and network condi-
tions. Yet it lacks a specification or provable bounds.

As an almost expected consequence of this discrepancy
between theory and practice, we uncover how an adversary
can induce a targeted performance degradation that we
call the pull induction attack. Byzantine replicas selectively
withhold messages during initial dissemination so that only
a small subset of honest validators receive a block. This
then triggers redundant and overlapping pull requests from
the remaining honest validators. The attack can be repeated
every round and can drastically increase latency and con-
sume recovery bandwidth (Sec. 3). We even observe that
some implementations entirely omit the pull mechanism,
thus claiming happy path performance while silently failing
to achieve liveness under adversarial settings.

In this work, we formalize the module of BFT consensus
responsible for implementing the reliable broadcast abstrac-
tion, which we call the block synchronizer (Sec. 2.1). This
module decides how validators push their blocks to other
validators, how to fetch any missing causal dependencies,
and runs a principled admission control on whether to
include the block in its local dependency graph (i.e., use it as
a parent). An ideal block synchronizer module must satisfy
three goals: (G1) eventual availability, ensuring that every
block can be retrieved; (G2) optimal push latency along the
optimistic path; and (G3) bounded amplification even under
adversarial scheduling. While existing block synchronizer
protocols naturally achieve G1, they fall short on G2 due
to conservative multi-step push procedures (such as explicit
consistent broadcast) and on G3 because of ad hoc push-
pull designs. We provide a summary of these protocols in
Sec. 2.2 (Table 1).

We then present Beluga, a block synchronizer module
that satisfies all the goals above (Sec. 4). Beluga is modular
and integrates into existing protocols without altering their
safety guarantees or ordering logic. The key insight behind
the construction of Beluga is that heavyweight upfront dis-
semination proofs (such as running an explicit Bracha broad-
cast) are sufficient but not necessary for robustness. Instead,
it structures the push phase to carefully select the causal
history of blocks based on scarcity signals (as opposed to
simply selecting the first that arrives) and opportunistically
leverages implicit dissemination evidence. The detection
of missing blocks is performed through the reception of
messages containing digests of past blocks unknown to the
validator. In other words, the pull mechanism leverages the
chaining and causal history of messages. Together, these
mechanisms enable scarcity-aware pulls that provably bound
recovery complexity while retaining optimal optimistic-path
performance. In short, Beluga aims to preserve the opti-
mistic high performance of current implementations while
reintroducing the robustness guarantees of true reliable
broadcast.

Real world impact. We implement Beluga within Mysticeti,

Figure 1. Latency comparison of the (production) Sui blockchain under
network attacks before (left) and after (right) deploying Beluga.

the consensus core of the Sui blockchain [25]. Our evalua-
tion on a geo-distributed AWS testbed shows that Beluga
maintains optimal optimistic-path latency and throughput
while significantly improving performance under targeted
attacks and adverse network conditions. Under attack sce-
narios, Beluga improves throughput by over 3× and reduces
latency by 25× compared to baseline Mysticeti with its
default block synchronizer (Sec. 6). We collaborated with
the Sui team for over a year to integrate Beluga into the Sui
blockchain. Beluga has been live since January 2025 with
mainnet-v1.42.0, helping to secure over 10B USD in
assets. Figure 1 shows the direct impact of Beluga: under
network degradation attacks, Sui’s tail latency improved by
5x after deploying Beluga.

Contributions. We make the following contributions:
1) We formalize the block synchronizer interface, threat

model, and latency metrics, and derive baseline limita-
tions of existing ad hoc mechanisms.

2) We design and analyze the pull induction attack, which
increases latency by up to 50× and degrade throughput
by up to 15× in existing systems.

3) We propose Beluga, a structured synchronizer with
scarcity-aware detection and diversity-maximizing pull
scheduling that preserves optimistic latency while bound-
ing amplification.

4) We implement and integrate Beluga into Mysticeti/Sui,
demonstrating no optimistic-path regression and signif-
icant under-attack throughput improvements (3×) and
latency reductions (25×).

2. Problem Definition

Network model: We assume a set V of n validators (or
parties; both are used interchangeably throughout this work)
{v1, . . . , vn} and a static adversary A that can corrupt up to
f < n/3 of the parties arbitrarily, at any point. A party
is crashed if it halts prematurely at some point during
execution. Parties that deviate arbitrarily from the protocol
are called Byzantine or bad. Parties that are never crashed or
Byzantine are called honest. Parties are communicating over

a partially synchronous network [26], in which there exists a
special event called Global Stabilization Time (GST) and a
known finite time bound ∆ (we use δ to represent the actual
network latency), such that any message sent by a party at
time x is guaranteed to arrive by time ∆+max{GST, x}.

Threat model The adversary is computationally bounded.
Pairwise points of communication between any two honest
parties are considered reliable, i.e., any honest message is
eventually (after a finite, bounded number of steps) de-
livered. However, until GST the adversary controls the
delivery of all messages in the network, with the only limi-
tation that the messages must be eventually delivered. After
GST , the network becomes synchronous, and messages are
guaranteed to be delivered within ∆ time after the time they
are sent, potentially in an adversarially chosen order.

2.1. The Block Synchronizer Problem

We formalize the block synchronization problem here.
We call it block synchronizer. As preliminaries, a block
B contains the following basic data fields: round number
r, block digest d, block creator author, connected parent
blocks (in digest) parents, a list of transactions payload,
and the creator’s signature on B.

Definition 1 (Block synchronizer). In the block synchro-
nizer problem, a group of n validators V (of which up
to f are Byzantine) collectively builds a structured, non-
empty, and ever-growing set of blocks that are indexed by
a monotonically increasing round number. Each validator
vi can call block proposei(B, r) to push its block B in
round r (where B.r=r) to the system. Each validator vi
outputs block accept i(B.d) to accept B. The block B must
include k blocks (from distinct validators) that B.author
has accepted in round B.r−1 as B.parents, where k is
a parameter specifying how blocks are structured. Each
validator vi then outputs block storei(B) to store B. The
protocol should satisfy the following properties:

• Round-Progression: In each global round r of the system,
at least 2f+1 validators (not necessarily honest) invoke
block propose to create and disseminate their blocks. In
other words, for each given r ≥ 0, at least 2f+1 produce
blocks that have r as their round.

• Round-Termination: For each global round r of
the system, every honest validator eventually outputs
block accept for the blocks produced in this round by
least 2f+1 validators. That is, for each given r ≥ 0, each
honest validator accepts block proposals, whose assigned
round is r, from at least 2f+1 different validators.

• Block availability: If an honest validator vi outputs
block accept i(B.d) for some block B produced r, then
vi eventually outputs block storei(B).

• Causal availability: If an honest validator vi outputs
block accept i(B.d) for some block B produced r, then
for every block B′ ∈ causal(B), vi eventually out-
puts block accept i(B

′.d), where causal(B) represents
B’s causal history (i.e., all blocks for which there is a
connection or path from B to them).

2.2. Existing Synchronizer Protocols

Existing consensus protocols have some integrated block
synchronization modules that are ad-hoc designed to guaran-
tee progress. In this section, we explore these designs, each
of which is composed of a push protocol and an optional
pull protocol. The comparison is summarized in Table 1.
Here, we model each class to the best of our abilities by
both studying their research and implementations.

2.2.1. Multi-chain Certified Synchronizer Protocol.
Many multi-chain BFT protocols, such as Autobahn [6]
and Star [27], are built on the Multi-chain certified syn-
chronizer protocol. In the Multi-chain certified synchronizer
protocol, validators structure blocks into multiple parallel
chains, where each block includes only one block from
the same validator in the last round as parents (i.e., k=1).
The Multi-chain certified synchronizer protocol consists of
a weak quorum-based push protocol to push blocks and a
deterministic pull protocol to fetch missing blocks.

Weak quorum-based push protocol. For each round r, ev-
ery validator vi calls block proposei(B, r) to push a round
r block B into the system. Specifically, upon outputting
block accept for its own block in round r−1, vi moves to
round r and create a new block B with vi’s round r−1 block
in B.parents. Then, vi employs a two-step Propose-Vote
scheme to disseminate B. In the first step, vi broadcasts B.
In the second step, other validators respond to vi with signa-
tures on B and cache B. Note that validators do not output
block store at this point, since validators store a block only
after it is certified. After that, vi uses f+1 signatures to
construct a weak certificate WC(B.d) for B and outputs
block accept i(B.d) and block storei(B). WC(B.d) will
be piggybacked into vi’s round r+1 block B′. The other
validator vj receiving B′ will output block acceptj(B.d)
and output block storej(B) if receiving B.

Deterministic pull protocol. Validators in the Multi-chain
certified synchronizer protocol perform the pull protocol
independently from the push protocol. Specifically, when
a validator vi needs to pull a missing block B, vi determin-
istically chooses a set of f+1 validators VB in WC(B.d)
(i.e., validators who sign B) and sends a request message
to VB . Since validators in VB cache B, at least one honest
validator can serve as the provider of B. Therefore, vi
must be able to receive B. vi outputs block storei(B) once
block accept i(B.d) succeeds and it receives B.

The Multi-chain certified synchronizer protocol ensures
eventual availability (G1) and bounded amplification (G3),
but not optimal optimistic-path push latency (G2). Specifi-
cally, it achieves a push latency (or round latency, both of
them are used interchangeably throughout the paper) of 2δ
with the Propose-Vote scheme and a bounded pull latency
of 2δ (i.e., the time from when a node sends a pull request
to when it receives the missing data) with the deterministic
pull protocol. The pull complexity (i.e., the communication
complexity per node of fetching a missing block) is O(n).

TABLE 1. COMPARISON OF SYNCHRONIZER PROTOCOLS AND THEIR INTEGRATIONS TO BFT CONSENSUS, AFTER GST AND THE LEADER IS HONEST

Consensus
Protocols

Synchronizer
Protocols

Optimistic Case Adverse Case3

Push
Latency1

Consensus
Latency2

Pull
Complexity

Push
Latency

Consensus
Latency

Pull
Complexity

Star [27] Multi-chain certified 2δ 5δ O(n) 2δ 5δ O(n)

Beluga δ 5δ O(1) ∼2δ ∼7δ O(n)

Autobahn [6] Multi-chain certified 2δ 7δ O(n) 2δ 7δ O(n)

Beluga δ 7δ O(1) ∼2δ ∼9δ O(n)

Bullshark [10] DAG-based certified 3δ 6δ O(n) 5δ 10δ O(n)

Beluga δ 4δ O(1) ∼2δ ∼8δ O(n)

Shoal++ [28] DAG-based certified 3δ 4δ O(n) 5δ 8δ O(n)

Beluga δ 3δ O(1) ∼2δ ∼6δ O(n)

Sailfish [29] DAG-based RBC 4δ 5δ None 4δ 5δ None

Beluga δ 3δ O(1) ∼2δ ∼6δ O(n)

Sailfish++ [30] DAG-based RBC 2δ 3δ None 3δ 4δ None

Beluga δ 3δ O(1) ∼2δ ∼6δ O(n)

Mysticeti [11] DAG-based uncertified δ 3δ O(1) ≥3δ ≥9δ O(1)

Beluga δ 3δ O(1) ∼2δ4 ∼6δ O(n)

1 Push latency is the network latency to create and disseminate a round of blocks. It measures the protocol’s data
dissemination speed. We consider the push latency is optimal if it equals δ throughout this paper.

2 Consensus latency specifies how long the protocol requires to reach a consensus on a leader block.
3 The adverse case means that the adversary performs the pull-induction attacks (detailed in Sec. 3.1), or for Sailfish++ [30],

the optimistic termination condition is not satisfied.
4 Beluga can achieve the push latency of nearly 2δ under the adverse cases (see Sec. 5.2 for more details).

2.2.2. DAG-based Certified Synchronizer Protocol. The
certified DAG protocols, such as Bullshark [10], Shoal [31],
and Shoal++ [28], are built on a DAG-based certified syn-
chronizer protocol. In the DAG-based certified synchronizer
protocol, validators organize blocks into a directed acyclic
graph (DAG) using the quorum-based broadcast primitive. It
consists of a consistent broadcast (CBC)-based push proto-
col to push certified blocks and a deterministic pull protocol
to fetch missing blocks.

CBC-based push protocol. For each round r, every valida-
tor vi calls block proposei(B, r) to push a round r block B
into the system. Specifically, upon outputting block accept
for blocks in round r−1 from at least 2f+1 validators,
a validator vi moves to round r and creates a new block
B with all these round r−1 blocks as B.parents (thus,
k=2f + 1 in DAG-based synchronizer protocols). Then, vi
employs a three-step certificate scheme to disseminate B.
In the first step, vi broadcasts B. In the second step, other
validators respond to vi with signatures on B and cache
B. Note that validators do not output block store at this
point, since validators can store a block in the DAG only
after it is certified. Then, vi uses these 2f+1 signatures to
construct a certificate C(B.d) for B. In the third step, vi
broadcasts C(B.d). In addition, when receiving C(B′.d), vi
outputs block accept i(B

′.d) and output block storei(B
′) if

receving B′.

Deterministic pull protocol. The DAG-based certified syn-

chronizer protocol employs a deterministic pull protocol as
used by the Multi-chain certified synchronizer protocol. A
validator vi will request a missing block from the set of
validators VB in C(B.d). vi outputs block storei(B) when
block accept i(B.d) succeeds and it receives B.

The DAG-based certified synchronizer protocol ensures
eventual availability (G1) and bounded amplification (G3),
but not optimal optimistic-path push latency (G2). Specifi-
cally, it can achieve a push latency of 3δ with the CBC-based
push protocol and a pull latency of 2δ with the deterministic
pull protocol. The pull complexity is O(n).

2.2.3. DAG-based RBC Synchronizer Protocol. Many
recent DAG-based BFT consensus protocols, such as Sail-
fish [29] and its variant Sailfish++ [30], are built on a DAG-
based RBC synchronizer protocol. In the DAG-based RBC
synchronizer protocol, validators organize blocks into a
DAG using the reliable broadcast (RBC) primitive. The RBC
ensures that if an honest validator receives a block, all honest
validators will eventually receive it (i.e., ensuring the totality
property). Therefore, the pull protocol is theoretically not
needed in the DAG-based RBC synchronizer protocol, and
it only contains an RBC-based push protocol.1

1. However, we find the implementations of the DAG-based RBC syn-
chronizer protocol remain built on Bullshark’s codebase, which still em-
ploys a pull mechanism [24], [32], likely due to the practical challenges
of implementing upfront RBC (discussed in Sec. 1).

RBC-based push protocol. For each round r, every valida-
tor vi calls block proposei(B, r) to push a round r block B
into the system. Specifically, upon outputting block accept
for blocks in round r−1 from at least 2f+1 validators, a
validator vi moves to round r and creates a new block B
referencing all these round r−1 blocks as B.parents. vi
disseminates B using an RBC protocol [22], [30], [33], [34].
If vi is honest, according to the RBC’s Validity property,
every other honest validator vj will eventually deliver B
(i.e., vj will receive B). In addition, when vi delivers
B′ that is reliably broadcast by another validator vj , vi
checks if it can accept B′ by checking if it has outputted
block accept i(B

′′.d) for every block B′′ ∈ casual(B′). If
yes, vi outputs block accept i(B

′.d) and block storei(B
′)

right after. If no, vi will put B′ into a pending list and update
the list whenever it outputs block accept for a new block.

The DAG-based RBC ensures eventual availability (G1)
but fails to guarantee optimal optimistic-path push latency
(G2) and bounded amplification (G3). Specifically, imple-
menting an upfront reliable broadcast requires honest val-
idators to continually transmit messages to an unresponsive
adversary, leading to unbounded retransmissions. In addi-
tion, the push latency depends on the RBC protocol used, but
none of them are optimal (i.e., δ). For instance, Sailfish [29]
employs the RBC protocol from Das et al. [34], leading to
a push latency of 4δ. Sailfish++ [30] adopts the state-of-
the-art RBC protocol to achieve a push latency of 2δ (still
not optimal) in optimistic cases (where at least ⌈n+2f−2

2 ⌉
validators behave honestly). Sailfish++’s RBC protocol has
a round latency of 3δ when optimistic cases do not hold.

2.2.4. DAG-based Uncertified Synchronizer Protocol.
The Mysticeti [11] consensus protocol uses a DAG-
based uncertified synchronizer protocol. Validators structure
blocks into a DAG, where each block includes at least
2f+1 blocks from the last round as parents. The DAG-
based uncertified synchronizer protocol consists of a best-
effort broadcast (BEB)-based push protocol to push blocks
and a random pull protocol to fetch missing blocks.

BEB-based push protocol. For each round r, every valida-
tor vi calls block proposei(B, r) to push a round r block
B into the system. When receiving a block B′ from other
validators, vi checks if it has outputted block accept i(B

′′.d)
for every block B′′ ∈ casual(B′). If yes, vi outputs
block accept i(B

′.d) and block storei(B
′) right after. If

no, vi uses the pull protocol to get all missing blocks.
In essence, vi must synchronize the whole causal history
of B′ before outputting block accept . Upon outputting
block accept for blocks in round r−1 from at least 2f+1
validators, vi moves to round r and creates a new block B
with all these round r−1 blocks as B.parents. vi broadcasts
B in a best-effort way.

Random pull protocol. To pull a missing block B in the
DAG-based uncertified synchronizer protocol, the validator
vi randomly chooses a constant set of validators VB ⊆ V
and sends a request message to VB . vi repeatedly sends the
request message to different sets of validators at intervals un-

til receiving B. However, since B is not certified and vi re-
quests B from randomly selected validators, there is no guar-
antee that vi will ever receive B. After getting B, vi repeats
the pull protocol to get all missing blocks of causal(B).
During the pull process, vi outputs block accept i(B.d) and
block storei(B) consecutively once it has synchronized B
and all blocks in causal(B).

The DAG-based uncertified protocol achieves eventual
availability (G1) and optimal optimistic-path push latency
(G2), but not bounded amplification (G3). Specifically, it
achieves the round latency of δ with best-effort broadcast
under optimistic cases. However, due to its random pull,
it introduces uncertain pull latency and unbounded pull
requests, thereby potentially unbounded push latency for
every future round, despite having O(1) pull complexity.

3. Pull Induction Attacks and Key Insights

Despite the rich design space proposed by prior work,
none of them have taken a principled approach and achieved
all ideal goals (G1-G3, Sec. 1). This allows us to exploit
their vulnerabilities through a new class of attacks we call
pull induction attacks, which deliberately trigger unneces-
sary pulls to degrade their performance. This section sheds
light on the pain points of existing protocols and provides
several key insights that guide the design of Beluga.

3.1. Pull Induction Attacks

The goal of pull induction attacks is to induce honest
validators to pull blocks from others, thereby increasing
the round latency. To this end, the adversary selectively
disseminates its blocks to only a subset of honest validators.
Consequently, validators that do not receive the adversary’s
blocks are compelled to pull the missing blocks that are
included by the protocol. Table 1 (adverse case column)
presents a performance comparison of different block syn-
chronizer protocols under pull induction attacks.

We give a concrete example of a pull induction attack
against the DAG-based uncertified synchronizer protocol
adopted by Mysticeti. We select Mysticeti as an example
system since it is a state-of-the-art protocol widely adopted
in industry [25], [35]. We leave the discussion of pull
induction attacks against other synchronizer protocols in the
full paper. In Figure 2, there are four validators v1, v2, v3,
and v4, of which v4 is the adversary. In round r−1, v4 only
disseminates its round r−1 block Br−1

4 to v1, making v1’s
round r block Br

1 reference Br−1
4 . When pushing round r

blocks and receiving Br
1 , both v2 and v3 miss Br−1

4 , and
thus, they invoke the random pull protocol to fetch Br−1

4
before accepting Br

1 and having enough (i.e., 3 with n=4
and f=1) accepted round r blocks to propose their round
r+1 blocks. The latency of round r thus consists of δ for
pushing round r blocks and at least 2δ for pulling Br−1

4 .
Similarly, in round r, v4 only disseminates its round r block
Br

4 to v2, making v2’s round r+1 block Br+1
2 reference Br

4 .
This will induce both v1 and v3 to pull Br

4 before accepting

#!' #!'(!

#"'

##'

#$'

#"'(!

##'(!

#$'(!

#"'("#$')!

#$')!

#$'

#$' ##'("

#!'("

##'(#

#$'(!

#$'(!

#$'("

(!
("
(#
($

$+1

$+2

Round $ latency =
1% push + ≥ 2% pull

Accept "$" Accept "!"#$
Accept "'"#! &

Commit leader "$"
Push blocks Pull blocks Wait quorum blocks

$+3

Round $+1 latency =
1% push + ≥ 2% pull

Round $+2 latency =
1% push + ≥ 2% pull

send to (" only
send to (# only

send to (! only

Figure 2. The pull induction attacks: the adversary v4 selectively shares its
blocks with honest validators. In round r−1, v4 only shares its round r−1
block Br−1

4 with v1, making v1’s round r block Br
1 reference Br−1

4 .
This will induce v2 and v3 to trigger the pull protocol to fetch Br−1

4 to
accept Br

1 , eventually increasing the latency of round r. Similarly, v4 only
shares its round r block with v2 and shares its round r+1 block with v3.
This will increase the latency of each round by at least one pull round-trip.

Br+1
2 , thereby increasing the latency of round r+1 to at

least 3δ. In round r+1, v4 only disseminates its round r+1
block Br+1

4 to v3, which will induce both v1 and v2 to pull
Br+1

4 before accepting Br+2
3 , thereby increasing the latency

of round r+2 to at least 3δ. Recall that the consensus of
Mysticeti requires three rounds of blocks [11, Algorithm 3].
As a result, the consensus latency of Mysticeti is at least 9δ
under this pull induction attack.

3.2. Key Insights

After reviewing the existing block synchronizer proto-
cols and their behavior under pull induction attacks, we have
the following insights.

Key insight 1: DAG-based synchronizer protocols can
accelerate the consensus latency, but at risk of being
delayed by the adversary. In DAG-based synchronizer
protocols, each block references at least 2f+1 parents, and
the connections between blocks can serve as proposal votes.
This allows validators to complete the consensus during
the formation of the DAG without extra communication by
interpreting the DAG structure locally. As a result, the con-
sensus latency of the protocols built on DAG-based synchro-
nizer is soundly low under happy cases (e.g., 3δ in Mysticeti
and 4δ in Sailfish). In contrast, the consensus protocols
built on Multi-chain certified must rely on a dependent
consensus process to order blocks, which introduces extra
communication overhead. For instance, apart from 2δ round
latency for pushing a round of blocks, Autobahn requires
an additional 5δ network latency to reach a consensus on a
leader block, leading to the consensus latency of 7δ.

However, forcing a block to reference 2f+1 parents en-
ables the adversary to delay the progress of the synchronizer
protocol with the pull induction attacks. Specifically, when
an honest validator has its block reference some adversary
blocks that are not shared with other honest validators, these
honest validators must pull the missing adversary blocks
before accepting the honest validator’s block and collecting
enough 2f+1 accepted blocks to move to the next round.

This increases the round latency by at least one pull round-
trip. As a result, both round latency and consensus latency
increase under the pull induction attacks.

Key insight 2: Block certificates allow performing the
push and pull protocols separately. In the Multi-chain
certified synchronizer protocol, validators push each block
accompanied by a certificate containing a quorum of ≥ f+1
signatures, thereby attesting the block and causal availabil-
ity. In this case, validators can output block accept for each
certified block they receive without pulling any missing
blocks in the block’s causal history while still ensuring the
Causal availability property. This enables the pull protocol
to be performed in separation from the push protocol. We
call this feature pulling blocks off the push path, as pulling
blocks can be completed independently from the push proto-
col. In contrast, blocks are pulled on the push path if pulling
missing blocks is necessary before validators accept them.

Supporting pulling blocks off the push path prevents
Byzantine validators from proactively delaying the progress
of the synchronizer protocol via pull induction attacks, since
pulling missing blocks does not prevent validators from
creating new blocks. However, the Multi-chain certified syn-
chronizer protocols adopt an explicit certificate mechanism,
where certificates are created within at least one round-trip
latency, leading to higher push and consensus latencies com-
pared to the DAG-based uncertified synchronizer protocol.

Key insight 3: The pull protocol introduces a trade-off
between round latency and communication complexity.
In certified synchronizer protocols (e.g., DAG-based cer-
tified and Multi-chain certified), the pull is deterministic,
where validators pull missing blocks from a specific set of
validators (with the set size O(n)). This ensures validators
can fetch the missing blocks within a constant round trip
(i.e., 2δ with one for sending requests and the other for
receiving blocks). However, this also introduces high com-
munication complexity per validator (i.e., O(n)) since each
validator might receive redundant blocks from others.

In contrast, the DAG-based uncertified synchronizer pro-
tocol adopts a random pull protocol, where validators ran-
domly pull the missing blocks from a small set of validators
(with the set size O(1)). This reduces the communication
complexity per validator to O(1). However, such a random
pull cannot ensure a constant round trip for synchronizing
missing blocks. This is not a problem when the protocol
is under happy cases, as pulling blocks does not impede
progress. However, under adverse cases, the DAG-based
uncertified synchronizer protocol requires at least 2δ in the
pull protocol, leading to at least 3δ round latency and at
least 9δ consensus latency.

4. The Beluga Protocol

4.1. Overview

Beluga is an efficient and robust DAG-based block syn-
chronizer protocol composed of two key components: an
AC-based optimistic push protocol (Sec. 4.2) and a hybrid

pull protocol (Sec. 4.3) based on the novel idea of Implicit
Proof-of-Availability (ImPoA).

AC-based optimistic push. Motivated by Insight 1, Bel-
uga adopts a DAG structure and employs an optimistic
push protocol, similar to the DAG-based uncertified syn-
chronizer, to achieve optimal round latency under happy
cases (G2) and bounded retransmission (G3). Specifically,
validators disseminate blocks using a best-effort broadcast,
resulting in δ round latency. However, unlike the DAG-
based synchronizer protocols, where validators arbitrarily
reference parent blocks, Beluga introduces an admission
control (AC) mechanism to filter out blocks based on the
creators’ behaviors. With AC, honest validators avoid ref-
erencing parent blocks created by suspected Byzantine val-
idators—specifically, those that previously triggered them
to invoke the pull protocol. This mechanism effectively
safeguards Beluga against pull induction attacks.

ImPoA-based hybrid pull. Motivated by Insights 2 and 3,
Beluga’s pull protocol aims to separate pulling from push-
ing and balance pull complexity and latency. To this end,
Beluga introduces an Implicit Proof-of-Availability (ImPoA)
mechanism, which enables validators to identify blocks that
can be safely accepted even if some of their ancestors are
temporarily unavailable, thereby enabling validators to pull
blocks off the push path. Based on ImPoA, we categorize
pulling blocks into two types: live blocks and bulk blocks.
Live blocks contribute to the quorum formation of the latest
round but have unavailable ancestors; validators must accept
these blocks to progress to the next round and propose new
ones. In contrast, bulk blocks do not contribute to quorum
formation in the current round. Leveraging this distinction,
Beluga employs a hybrid pull strategy: live blocks are pulled
deterministically to minimize the latency, while bulk blocks
are pulled randomly to reduce pull complexity. The pull
protocol allows Beluga to achieve eventual availability (G1)
and bounded push latency (G3).

Block structure. To capture validators’ behaviors during the
block pushing process and facilitate the pull process, Beluga
augments the block structure with three additional fields.
• Weak links: The weaklinks field references blocks that

a validator has received and accepted but not selected as
parents. We therefore called parents as strong links, both
are used interchangeably throughout the paper.

• Watermark: The watermark is an n-element array main-
tained by each validator, where the i-th entry implies the
highest round number of block received from validator vi.

• Ancestors: The ancestors is an n-element array storing,
for each validator vi, the highest round number of vi’s
blocks reachable from the current block.

4.2. AC-based Optimistic Push Protocol

Beluga’s push protocol specifies how validators create
blocks and disseminate their created blocks to others. Block
dissemination in Beluga is optimistic and relies on a best-
effort broadcast; that is, validators disseminate blocks to all

others without waiting for acknowledgments. Block creation
is governed by an Admission Control (AC) module, which
enforces rules that filter blocks according to the creators’
behaviors as quantified by a reputation mechanism. Figure 8
(deferred to Appendix B due to page limitation) illustrates
Beluga’s AC-based optimistic push protocol. We detail the
reputation mechanism and the AC module below.

Reputation Mechanism (Lines 23-32, Figure 8). Each
validator vi maintains a local reputation table TRi that
records the reputations of all validators. The reputation entry
TRi[j] reflects the contribution of validator vj to the block
pushing process. Specifically,
• Reputation Increase: vi increases vj’s reputation if it

receives 2f+1 blocks (denoted by Br) in round r that col-
lectively indicate vj’s round r−1 block has been received.
Formally, if for each block B ∈ Br, B.watermark[j] =
r−1, then TRi[j] is incremented.

• Reputation Decrease: vi decreases vj’s reputation when-
ever (i) it invokes the pull protocol to fetch a missing
block created by vj , or (ii) it receives pull requests for a
vj’s block from at least f+1 distinct validators. A pull
request serves as a report of vj’s delayed dissemination
behavior. Collecting f+1 such reports constitutes a blame
against vj , indicating that at least one honest validator
failed to receive vj’s block in a timely manner. Thus, vi
will decrease vj’s reputation with a blame.

Intuition behind the reputation mechanism. The reputation
mechanism is designed to capture validators’ behaviors dur-
ing the block pushing process. Specifically, if a validator
vi consistently pushes its blocks to all other validators,
honest validators will frequently observe 2f+1 blocks in-
dicating that vi’s latest block is disseminated and received
timely, thereby increasing vi’s reputation. In contrast, if vi
selectively pushes its blocks to only a subset of valida-
tors—performing a pull induction attack that forces others
to invoke the pull protocol to retrieve its blocks—its reputa-
tion will decrease. Consequently, honest validators naturally
maintain high reputations, whereas malicious validators that
frequently launch such attacks accumulate low reputations.

In Beluga, the reputation increase is set by 1, while
the reputation decrease is set by a large value RL (e.g.,
RL=10,000). This asymmetry prevents the adversary from
launching unbounded pull induction attacks and eventually
enables Beluga to achieve a decent round and consensus
latencies. A detailed analysis is presented in Sec. 5.2.

Admission Control (Lines 1-22, Figure 8). The AC module
determines which blocks are selected as parents for newly
created blocks based on their creators’ reputations. When
creating a new block in round r, a validator vi first collects
the latest blocks it has received from all validators with
round numbers ≤ r−1, denoted by the set Br−1. It then
selects parent blocks from Br−1 through the following steps:
(i) filter out any block in Br−1 that is not from round
r−1 or is deemed unacceptable; (ii) from the remaining
set, select the top 2f+1 blocks in based on their creators’
reputations in TRi. A block is considered acceptable if
vi has received all of its ancestors or can otherwise en-

sure its ancestors are available (see Sec. 4.3.1 for more
details). This AC mechanism ensures that honest validators
avoid referencing blocks created by suspected Byzantine
validators—specifically, those with low reputations due to
previously triggering pull requests. By excluding such ma-
licious blocks, an honest validator can create new blocks
whose ancestors have already been received and accepted
by all other honest validators, without invoking the pull
protocol during the push process. Consequently, Beluga is
inherently protected against pull induction attacks.

Apart from parents, a validator also references other
acceptable blocks in Br−1 as weaklinks in the new block.
The weaklinks serve as evidence of block availability to
facilitate the pull process. We discuss it in Sec. 4.3.

4.3. ImPoA-based Hybrid Pull Protocol

Beluga’s pull protocol defines how validators fetch miss-
ing blocks when they cannot be accepted during the push
process. Beluga’s pull protocol is called the implicit proof-
of-availability (ImPoA)-based hybrid pull protocol. As illus-
trated in Figure 3, it comprises two components: an ImPoA-
based pull mechanism and a hybrid pull strategy.

4.3.1. ImPoA-based Pull Mechanism. The ImPoA-based
pull mechanism enables validators to pull certain blocks off
the push path once their availability can be proven. However,
unlike the existing certified synchronizer protocols (such as
Multi-chain certified) that create explicit block certificates at
the cost of additional communication overhead during the
push process, Beluga constructs implicit block certificates
by locally interpreting block patterns.

Implicit PoA. In Beluga, a block B is identified as implicitly
available if it is referenced (via strong or weak links) by
at least f+1 blocks from the subsequent rounds. Note that
a validator references B only if it (i) receives B, and (ii)
can verify the availability of B’s causal history (lines 4-
5, Figure 8). Consequently, these f+1 referencing blocks
collectively form an implicit proof-of-availability (PoA) for
B, implying that at least one honest validator can attest
to B’s causal availability. For instance, in Figure 3(a), the
missing block Br+1

1 is identified implicitly available as it
was referenced by two received blocks Br+2

2 and Br+2
4 .

Live and Bulk modules. With ImPoA, validators can safely
accept blocks even when parts of their causal histories are
missing, thereby allowing missing blocks to be pulled off
the push path. To accommodate the mechanism, Beluga em-
ploys two pull synchronizer modules: (i) bulk synchronizer
module, which retrieves missing blocks off the push path,
and (ii) live synchronizer module, which retrieves missing
blocks on the push path.

Mechanism specification. We now describe the workflow
of the ImPoA-based pull mechanism. Assume a validator vi
is currently proceeding in round r. Upon receiving a block B
containing missing parents (i.e., B has strong links to some
blocks that vi has not accepted) during the push process, vi

determines which pull synchronizer module will be used to
pull B’s missing ancestors based on B’s round number. We
denote Bbk the block set in the bulk synchronizer module
and Blv the block set in the live synchronizer module.

If B.r<r, it means that vi receives an old-round block
that will not be included in vi’s threshold clock (i.e., block
quorum for round r). The pull synchronization of B will
not affect the push protocol, and thus B could be synchro-
nized off the push path. vi then transmits B to the bulk
synchronizer module and includes B into Bbk.

If B.r≥r, it means that B is a live block from vi’s
local view. However, instead of transmitting B to the live
synchronizer module immediately, vi first checks whether
B can be proven available. Specifically, if every parent of
B has an implicit PoA from the live block set Blv or has
been block accept , then vi ensures B is available. vi then
transmits B to the bulk synchronizer, outputs block accept
and block store for B, and include B into the bulk block
set Bbk. If, otherwise, B is not proven available; vi then
transmits B to the live synchronizer module and includes B
into Blv. For example, in Figure 3(a), v4 is proceeding in
round r+2 and transmits Br+2

2 and Br+2
4 to the bulk syn-

chronizer module even though their common parent Br+1
1

was missing, since Br+1
1 has an implicit PoA. In contrast,

Br+2
3 is transmitted to the live synchronizer module.

Moreover, vi can dynamically transmit blocks from Blv

to Bbk according to the following conditions:

1) Upon advancing to a new round r′ > r, vi transmits any
B′ ∈ Blv to Bbk if B′.r < r′.

2) Upon including a new block into Blv, vi checks whether
any block B′ ∈ Blv is proven available. If yes, vi
transmits such available B′ from Blv to Bbk.

Identifying missing blocks. By utilizing the ImPoA-based
pull mechanism, Beluga classifies blocks with missing an-
cestors into two categories: Live blocks (i.e., blocks in
Blv) and Bulk blocks (i.e., blocks in Bbk). Each validator
vi can then locally identify missing blocks from Blv and
Bbk by checking their ancestors. However, since blocks in
the DAG are well-connected, Blv and Bbk might involve
overlapped missing ancestors. For instance, in Figure 3, the
missing block Br+1

1 is the common ancestor of both the live
blocks and the bulk blocks. As a result, vi might pull the
same missing blocks in both the live and bulk synchronizer
modules redundantly.

To avoid redundant synchronization, vi traces the last
accepted blocks from all validators and combines them with
blocks’ ancestors to identify missing blocks for distinct
synchronizer modules. Since each block must reference the
previous block proposed by the same validator [11], the last
accepted block Br

j from vj in round r indicates that all
blocks from vj with a round r′ ≤ r are proven available
and can be accepted by vi. Moreover, if a validator accepts
a block, it means that the block’s causal history is available
and can be accepted. As a result, with the information, vi
can identify the missing blocks that are only required by the
live blocks.

($

(!

('

(%

!-1 !

"!"#!

"'"

"$"&$
!+1 !+2

"'"#$

"$"

"!""!"&$

"'"&$

"%"&$ "%"

"$"#$

"!"#$

"%"#$

"'"#!

"%"#!

Last accepted
blocks Ancestors

"$" [r-1, r-1, r-1, r-2]
"!"#! [r+1, r+1, r-1, r+1]
"'"&$ [r-2, r-2, r-2, r-2]
"%"#! [r+1, r+1, r-1, r+1]

ImPoA-based
Pull Mechanism

Bulk Module

"!"#! "%"#!

"'"#!

"'"#!’s
ancestors
r+1
r+1
r+1
r

Hybrid Pull
StrategyLive Module

"'", "'"#$

"$"#$

sync from
a random

sync
from all

(a) The local view of the DAG (b) Classify bulk and live blocks, and identify missing blocks

missing "$"#$, "'", "'"#$

(c) Send pull requests

Accepted
blocks

Received
blocks

Missing
blocks

Pending
blocks

Figure 3. The ImPoA-based hybrid pull protocol for v4: (a) v4 is proceeding in round r+2 but misses blocks Br+1
1 , Br

3 , and Br+1
3 . Br+1

1 is identified
as implicitly available as {Br+2

2 , Br+2
4 } reference it. As a result, v4 accepts Br+2

2 and Br+2
4 even though their parent Br+1

1 is not received. (b) v4
transmits blocks that reference missing ones to the bulk and live synchronizer modules via the ImPoA-based pull mechanism. With the hints, v4 identifies
the missing blocks it needs to fetch. (c) v4 fetches blocks via a hybrid pull strategy, balancing pull latency and complexity.

As shown in Figure 3(b), the last accepted blocks and
their ancestors information imply that v4 (i) will be able to
accept r+1 block Br+1

1 from v1, and (ii) has accepted round
r+2 block Br+2

2 from v2, round r−1 block Br−1
3 from v3,

and round r+2 block Br+2
4 from itself. When processing

the pending block Br+2
3 (which references v3’s round r+1

block) in the live synchronizer module, v4 can identify Br
3

and Br+1
3 are only required by the live blocks (i.e., Br+2

3)
but Br+1

1 does not. As a result, the live synchronizer module
only requests the missing blocks Br

3 and Br+1
3 , while the

bulk synchronizer module requests the missing block Br+1
1 .

4.3.2. Hybrid Pull Strategy. After identifying the missing
blocks that a validator vi needs to fetch, vi deploys a hybrid
pull strategy to balance message and round complexities, as
shown in Figure 3(c).

Pulling blocks in the live synchronizer. Blocks Blv in
the live synchronizer module are time-sensitive, as their
missing blocks can block the push process. Thus, the live
synchronizer module adopts a deterministic pull strategy to
minimize the latency. Specifically, vi sends the pull requests
for all missing blocks specified in Blv to all validators. Such
a pull strategy might pull redundant blocks. However, it
guarantees that vi can receive missing blocks as long as they
are block accepted by one honest validator, and process live
blocks within a round-trip delay (i.e., 2δ).

Pulling blocks in the bulk synchronizer. Pulling blocks
in the bulk synchronizer does not block the push process,
and thus, is not sensitive to latency. Consequently, the
bulk synchronizer module adopts a random pull strategy to
minimize the pull complexity. Specifically, for each missing
block specified in Bbk, vi randomly chooses one validator
to send the pull request. If vi does not receive the requested
missing block within some predefined time (say ∆bk), it
randomly chooses another validator to send the pull request.

After getting missing blocks, vi outputs block accept
and block store for each of them if vi hasn’t done it before.

4.4. Building BFT Consensus on Beluga

Beluga can be integrated into any existing BFT consen-
sus protocols as an independent module. Figure 4 illustrates
how Beluga interfaces with a generic BFT state machine
replication system. In short, Beluga implements an efficient
and robust RBC abstraction. It provides the consensus mod-
ule with accepted blocks for ordering and guarantees the
availability of the ordered blocks for execution. The key
enabler of the generality is that the DAG structure in Beluga
implies the RBC patterns on blocks, allowing different BFT
consensus protocols to apply their own consensus rules over
these patterns to achieve consistent block ordering.

RBC pattern. In Beluga, validators can determine whether
a block has been reliably broadcast by interpreting the DAG
locally. Specifically, if a block is referenced by at least 2f+1
subsequent blocks, it forms an RBC pattern, indicating that
the block has been reliably broadcast (our pull protocol
ensures totality). A block exhibiting such a pattern is called
an RBC block. Generating an RBC block BR involves two
push rounds in Beluga. Any block that references this RBC
pattern, i.e., includes the 2f+1 blocks that reference BR, is
considered to be voting for BR.

Applying consensus rules on Beluga. With the RBC pat-
terns, a BFT consensus protocol can apply its underlying
consensus rules on top of Beluga. Table 1 (Sec. 2) summa-
rizes the performance comparison between the original BFT
consensus and its variant incorporating Beluga.

For multi-chain protocols such as Dashing [27] and
Autobahn [6], validators execute separate consensus in-
stances. A leader validator uses its most recent RBC block
(and blocks implying the RBC pattern, which certifies the
causal availability) as a proposal to coordinate a consensus
instance. This design achieves improved push latency in
optimistic conditions, at the cost of a modest increase in
consensus latency under adverse conditions.

For DAG-based protocols, the consensus is performed by
interpreting the DAG locally. Beluga enhances these proto-
cols by reducing both push and consensus latencies while
improving robustness. In these protocols, certain blocks are
designated as leader blocks to drive consensus progress.

During the push phase, Beluga’s admission control will
include leader blocks and those voting for the leader blocks,
from validators with benign reputations. To perform order-
ing, validators check whether the leader RBC blocks satisfy
the consensus rules defined by the BFT consensus protocol
itself. Distinct DAG-based BFT consensus protocols may
employ different consensus rules or impose additional con-
straints (e.g., Sailfish [29] enforces validators to either vote
for leader blocks or conduct no-vote certificates). Neverthe-
less, they can share the same interfaces provided by Beluga.

Specifically, for Bullshark [10] and its successor
Shoal [31], their consensus operates in two rounds of RBC
blocks: a leader RBC block is directly committed once
at least f+1 subsequent RBC blocks vote for it. When
executing their consensus rules atop Beluga, validators can
order blocks within four push rounds (with two rounds
of RBC blocks), achieving a consensus latency of 4δ in
optimistic cases and 8δ in adverse cases.

For Shoal++ [28], Sailfish [29], and Sailfish++ [30], their
consensus operates in one round of RBC blocks plus the first
messages of another round of RBC blocks. Specifically, a
leader RBC block is directly committed once at least 2f+1
first messages of the next-round RBC blocks vote for it.
Since the first message of an RBC block corresponds to a
single block in Beluga, integrating Beluga allows them to or-
der blocks within three push rounds, achieving a consensus
latency of 3δ in optimistic cases and 6δ in adverse cases.

Finally, Mysticeti [11] and Cordial Miners [36], when
equipped with Beluga, achieve the same optimal push and
consensus latencies in optimistic scenarios, while offer-
ing greater robustness under adverse conditions. This im-
provement arises because Beluga constructs a DAG using
a similar best-effort broadcast approach (but with distinct
admission control and pull mechanisms).

Garbage collection. Beluga naturally reuses the garbage
collection mechanism introduced by Narwhal [2]; this com-
ponent allows the protocol to clean up any partially dis-
seminated messages that were not promptly committed,
preventing unbounded storage and memory growth. Notably,
this module is employed in most implementations, both in
DAG-based and linear BFT protocols [13], [14], [19].

5. Analysis

5.1. Correctness Analysis

In this section, we prove Beluga satisfies the properties
defined in Definition 1 (Sec. 2.1).

Lemma 1. After GST, all honest validators will enter the
same round within 3∆.

Proof. W.l.o.g, assume round r is the last round entered
by honest validators before GST. After GST, the message
delay between honest validators is bounded by ∆. Thus,
all honest validators must receive at least one round r block
Br

i from honest validator vi by time GST+∆. Every honest
validator can synchronize all Br

i ’s parent blocks and missing

AC-based
Optimistic Push

ImPoA-based
Hybrid Pull

Consensus

Block Synchroniser

Missing
Blocks

ExecutionOrdered
Blocks

Admission
Control

Bulk
Module

Live
Module

Peers

Pushed Blocks Pulled Requests & Blocks

Accepted
Blocks

Garbage
Collection

Available
Transaction

Figure 4. Beluga can be integrated into any BFT consensus protocol. By
applying the consensus rules on the blocks produced by Beluga, validators
derive a consistent order for blocks. Beluga guarantees the availability of
ordered blocks for the state machine replication (SMR) execution.

ancestors via the pull protocol within 2∆. Consequently, all
honest validator can accept at least 2f+1 round r−1 blocks
and enter round r by time GST+3∆.

Lemma 2. After GST, if an honest validator vi enters round
r at time tr, and all honest validators have created and
disseminated their round r blocks by time tr, then all honest
validators will be able to enter round r+1 by time tr+3∆.

Proof. According to this lemma’s condition, tr is the time
when the slowest honest validator creates and disseminates
its round r block. By time tr+∆, all honest validators will
have received the round r blocks from all honest validators.
Even though some honest validators might need to synchro-
nize missing ancestors to accept some round r blocks, they
can accept these blocks via our pull protocol within the time
bound of 2∆. As a result, all honest validators can accept at
least 2f+1 round r blocks by time tr+3∆ and enter their
round r+1 blocks by time tr+3∆.

Theorem 1 (Block availability). Beluga satisfies
block availability. If an honest validator vi outputs
block accept i(B.d) for some block B produced r, then vi
eventually outputs block storei(B)

Proof. In Beluga, an honest validator vi outputs
block accept i(B.d) for some block B in round r
when vi received B. As a result, vi must have stored B
and output block storei(B).

Theorem 2 (Causal availability). Beluga satisfies
causal availability. If an honest validator vi outputs
block accept i(B.d) for some block B, then for every block
B′∈causal(B), vi eventually outputs block accept i(B

′.d),
where causal(B) represents B’s causal history.

Proof. In Beluga, an honest validator vi outputs
block accept i(B.d) for some block B in round r when vi
received B and ensures all its parents in round r−1 are

available—that is, vi has either outputted block accept for
the parent blocks or observed they are referenced by at least
f+1 subsequent blocks (Sec. 4.3). In the latter case where
the parent blocks (denoted by a set Br−1) are referenced
by at least f+1 subsequent blocks, according to Beluga’s
push protocol, the creators of these f+1 subsequent blocks
must have outputted block accept for Br−1. This means
that at least one honest validator vj has stored Br−1 and
ensured all parents of Br−1 in round r−2 are available.
As a result, vj must have either outputted block accept
for the parent blocks of Br−1 in round r−2 or observed
they are referenced by at least f+1 subsequent blocks. By
induction, we can see that for every block B′ ∈ causal(B),
there exists at least one honest validator that has stored B′

and ensured all its parents are available. As a result, vi can
eventually receive B′ from this honest validator via the
pull protocol and output block accept i(B

′.d).

Theorem 3 (Round-Progression). Beluga satisfies round-
progression. For each round r ≥ 0, at least 2f+1 validators
will create and disseminate their round r blocks.

Proof. For the genesis round 0, all validators will create and
disseminate their round 0 blocks. Thus, the lemma holds
for round 0. In addition, according to Lemma 1, all honest
validators can enter the same round (w.l.o.g. at round r)
within 3∆ after GST. As a result, all (i.e., at least 2f+1)
honest validators must be able to create and disseminate
their round r blocks by time GST+3∆. Thanks to Beluga’s
pull protocol, every honest validator can accept at least
2f+1 round r blocks and create its round r+1 block. By
induction, we can see that for any future round r′>r, at least
2f+1 validators will create and disseminate their round r′

blocks. Moreover, for any round 1 ≤ r′′ ≤ r, since Beluga’s
push protocol requires validators to reference at least 2f+1
parent blocks from the previous round when creating their
round r′′ blocks, at least 2f+1 validators must have created
and disseminated their round r′′ − 1 blocks. By induction,
we can see that for any previous round 1 ≤ r′′ ≤ r, at least
2f+1 validators must have created and disseminated their
round r′′ blocks. The proof is done.

Theorem 4 (Round-Termination). Beluga satisfies round-
termination. For each round r ≥ 0, each honest validator
accepts block proposals, whose assigned round r, from at
least 2f+1 different validators.

Proof. For the genesis round 0, since all honest validators
create their round 0 blocks, and round 0 blocks do not
reference any blocks, each honest validator can accept at
least 2f+1 round 0 blocks. The lemma holds for round 0.
In addition, according to Theorem 3, for each round r ≥ 1,
at least 2f+1 validators will create and disseminate their
round r blocks. Each round r blocks consist of at least
f+1 blocks created by honest validators. For these f+1
honest validators, according to Beluga’s push protocol, they
must output block accept to accept at least 2f+1 round
r−1 blocks. According to Theorem 1 and Theorem 2, these
round r−1 blocks and their causal histories are available to

all honest validators. As a result, each honest validator can
accept at least 2f+1 round r−1 blocks. By induction, we
can see that for any round r ≥ 1, each honest validator can
accept at least 2f+1 round r blocks. The proof is done.

5.2. Performance Analysis

In this section, we will show that Beluga can achieve
optimal round latency (i.e., ∆) under happy cases and the
round latency of nearly 2∆ under adverse cases after GST.

5.2.1. Round latency under happy cases. In happy cases,
all responsive validators (at least 2f+1) are honest and share
their blocks in time. According to Lemma 1, all honest
validators can enter the same round (w.l.o.g. at round r)
within 3∆ after GST and can create their round r blocks by
time GST+3∆. As a result, every honest validator must be
able to receive a quorum Br containing at least 2f+1 round
r blocks by time GST+4∆. Since all responsive validators
are honest in happy cases, every honest validator will receive
Br at time, w.l.o.g., tsync<GST+4∆ and move to the next
round r+1 at tsync. After that, all honest validators can
receive at least 2f+1 round r+1 blocks by time tsync+∆
and move to round r+2 at time tsync+∆. By induction, we
can see that the round latency under happy cases is ∆.

5.2.2. Round latency under adverse cases. We give a
sketch proof for Theorem 5 below and defer the detailed
proof to Appendix A.

Theorem 5. Beluga can achieve a round latency of nearly
2∆ under adverse cases.

Proof (sketch). To avoid being blamed and penalized in rep-
utation, the adversary must share its blocks with at least f+1
honest validators within a time interval of ∆. Specifically,
if the adversary vm shares its block Bm with an honest
validator vi at time ti and with another honest validator
vj at time tj>ti, then tj−ti<∆, since otherwise, vj will
need to fetch Bm after receiving vi’s block referencing Bm,
thereby reporting vm. For the remaining honest validators
that do not receive Bm directly from vm, they can either
utilize Beluga’s ImPoA pull mechanism to avoid fetching
Bm during their pushing phase, or propose two consecutive-
round blocks within 4∆ (cf. Lemma 6).

On the other hand, if the adversary shares its block with
fewer than f+1 honest validators, it will be blamed and its
reputation reduced by RL each time. Once the adversary’s
reputation falls below that of honest validators, Beluga ’s ad-
mission control will prevent its blocks from being referenced
via strong links by honest validators, resulting in a round
latency of ∆ thereafter (Lemma 4). Consequently, for each
RL reputation loss, the adversary must behave appropriately
(i.e., sharing its blocks with at least f+1 honest validators)
for at least RL rounds to restore its reputation. During
the recovery phase, the system reverts to the above case,
yielding a round latency of 2∆. By setting RL sufficiently
large, we can effectively force the adversary to perform
properly, leading to a round latency of nearly 2∆.

6. Experimental Evaluation
We evaluate the throughput and latency of Mysticeti [11]

equipped with Beluga through experiments conducted on
Amazon Web Services (AWS) on a geo-distributed testbed.
Appendix C describes our implementation in detail. We
then show its improvements over the baseline Mysticeti
implemented with the default push-pull block synchronizer
module (Sec. 2). We chose to implement Beluga within
Mysticeti because (1) it is a state-of-the-art DAG-based
BFT consensus protocol deployed in production in multiple
blockchains [25], [35], providing real-world impact, (2) its
open-source codebase [16] is well documented and modular,
facilitating implementation, and (3) it builds upon an uncer-
tified DAG, making it particularly vulnerable to the attacks
described in Sec. 3.1. These properties make Mysticeti an
ideal candidate to demonstrate the effectiveness of Beluga.

Our evaluation demonstrates the following claims:
C1 Beluga introduces no noticeable performance overhead

when the protocol runs in ideal conditions (no Byzantine
parties and synchronous network)

C2 Beluga drastically improves both latency and throughput
in the presence of asynchronous network conditions and
the attack presented in Sec. 3.1.
Note that evaluating the performance of BFT protocols

in the presence of generic Byzantine faults is an open
research question [37], and state-of-the-art evidence relies
on formal proofs.

Appendix D describes our experimental setup in detail.

6.1. Benchmarks in Ideal Conditions

Figure 5 depicts the performance of Mysticeti equipped
with both Beluga and the baseline block synchronizer op-
erating through a best-effort push protocol followed by a
random pull (described in Sec. 2) running with 50 honest
validators. As expected, the performance of the baseline
Mysticeti is similar to Mysticeti equipped with Beluga.
Both systems exhibit a stable throughput up to around
100,000 tx/s while maintaining a latency of around 0.5s,
and both scale easily to 300,000 tx/s (512-byte transactions)
while maintaining sub-second latency (0.8s). We did not
push throughput further for cost reasons, but both systems
appear to use less than 10% of their CPU at that point,
indicating that they could likely handle even higher loads.
This performance similarity is due to Beluga’s lightweight
requirements during the happy path: when all parties are
honest and the network is synchronous, Beluga imposes
minimal constraints on parent block selection and thus
operates similarly to the baseline push-pull synchronizer.
This confirms Item C1 that Beluga does not introduce any
significant overhead when the network is synchronous and
all parties are honest.

6.2. Benchmarks under Attack

Figure 6 depicts the performance of Mysticeti with
both Beluga and the baseline block synchronizer in a 10-
validator deployment with 1 or 3 faults (we limit this

benchmark to 10 validators for cost reasons). The Byzantine
validators perform the pull induction attack described in
Sec. 3.1, creating conditions that can also arise from severe
network asynchrony. The baseline Mysticeti suffers severe
throughput degradation and dramatic latency increases. For
reference, the graph includes the no-fault performance with
10 validators to illustrate the performance gap under attack.
With three Byzantine faults, baseline Mysticeti’s throughput
drops by over 15x and its latency increases to over 50
seconds, compared to 0.5 seconds in the fault-free case. In
contrast, Mysticeti equipped with Beluga maintains substan-
tially higher throughput: Beluga rapidly detects and priori-
tizes inclusion of blocks from reliable validators in the DAG.
The throughput reduction (30%) is primarily attributable to
the loss of faulty validator capacity. Latency increases by
approximately 4x to around 2 seconds, which is expected
given the need to wait for additional blocks before proceed-
ing to the next round and to recover from attack-induced
asynchrony. This represents a substantial improvement over
baseline Mysticeti: over 3x higher throughput and 25x lower
latency with three Byzantine faults. These results confirm
Item C2 that Beluga significantly improves both latency and
throughput under asynchronous network conditions and pull
induction attacks.

7. From paper to Mainnet

The motivation for developing Beluga arose in March
2024 following a testnet incident on the Sui blockchain, trig-
gered by a fundamental change in the protocol’s networking
stack. Some validators misconfigured their machines, result-
ing in a situation where they could receive blocks from
other validators but were unable to propagate their own.
Consequently, these validators accumulated a large number
of blocks that remained unshared with the network. In one
extreme case, a single validator locally created approxi-
mately 750,000 blocks that had not been disseminated. Once
the validator corrected their configuration and broadcast all
these blocks simultaneously, the network experienced a stall:
fast validators began including these blocks in their DAGs,
and once f + 1 of them did so, the rest of the network had
to synchronize as well, causing a substantial performance
degradation. Specifically, all 750,000 blocks were commit-
ted within one minute, triggering an overwhelming number
of pull requests.

This incident revealed the root cause in the block syn-
chronizer component. Its admission control module (see
Figure 4) lacked sufficient filtering for poorly performing
validators, allowing the most recent hoarded blocks to enter
local DAGs. Moreover, the original pull protocol exacer-
bated the problem by indiscriminately pulling from both
poorly performing and random validators, resulting in high
synchronization latency. These observations underscored the
need for a high-quality DAG that minimizes synchronization
from underperforming validators.

We collaborated with the Sui team to experiment with
various heuristics inspired by leader scoring [38], but ini-
tially, excluding ancestors indiscriminately disrupted block

0 50k 100k 150k 200k 250k 300k
Throughput (tx/s)

0.0
0.2
0.4
0.6
0.8
1.0

La
te

nc
y

(s
) Mysticeti-Vanilla Mysticeti-Manta

Figure 5. Comparative throughput-latency performance of Mysticeti equipped with Beluga and with the baseline push-pull block synchronizer. WAN
measurements with 50 validators, no faults, and 512B transaction size.

0 20k 40k 60k 80k 100k 120k 140k
Throughput (tx/s)

0

1

10

100

La
te

nc
y

(s
)

Mysticeti-Vanilla
Mysticeti-Vanilla (1 attackers)
Mysticeti-Vanilla (3 attackers)

Mysticeti-Manta
Mysticeti-Manta (1 attackers)
Mysticeti-Manta (3 attackers)

Figure 6. Comparative throughput-latency performance of Mysticeti
equipped with Beluga and with the baseline push-pull block synchronizer.
WAN measurements with 10 validators, zero, one, and three faults, and
512B transaction size. (Note the log scale on latency.)

propagation even under benign conditions. This motivated
the introduction of optional dependencies (Sec. 4). Subse-
quently, they embarked on a multi-month effort to collect
detailed consensus metrics and evaluate different strategies
for scoring validators. This process ultimately led to the
design presented in Section 4. After nearly a year of testing
and tuning, Beluga was deployed on Sui mainnet version
mainnet-v1.42.0 in January 2025.

Figure 1 (Sec. 1) shows a production network replicating
the Sui mainnet with all 135 validators, in their respec-
tive geo-location and with distribution stake, sustaining a
constant load of 6,000 transactions per second. The figure
compares the original Mysticeti protocol run within the
Sui mainnet before Beluga deployment, and the improved
version with Beluga. The results demonstrate that Beluga
effectively mitigates the latency spikes previously observed
in the network under attack, resulting in a stable and pre-
dictable transaction commit latency. Beluga effectively pre-
vents poorly performing validators from adversely impacting
the overall network performance, resulting in a 5x reduction
in the 95th percentile, a 2x reduction in the 75th percentile,
and a 25% reduction in the 50th percentile latency.

Figure 7 shows the rate at which blocks from an inten-
tionally slow validator (green line) appear in the committed
DAG under the same production setup after deploying Bel-
uga. The validator’s contribution to the committed DAG falls
to zero within roughly 1-2 minutes as its score drops and
the admission-control module at other validators discards
its blocks. It remains zero throughout the attack, and then

Figure 7. Block proposal rate of an intentionally slow validator in a
Sui mainnet reproduction with 135 validators after deploying Beluga.
Each colored line represents the proposal rate of a different validator.
The validator’s proposal rate quickly drops to zero during the attack and
recovers shortly after performance is restored.

returns to its original rate within 3 minutes of recovering.
Notice how other validators remain largely unaffected (other
colored lined on the figure). This result demonstrates that
Beluga rapidly identifies and deprioritizes poorly performing
validators, preventing them from degrading network perfor-
mance during misbehavior, and then promptly restores their
ability to participate once they return to normal behavior. As
a result, recovering validators rejoin the consensus process
without long-term penalties.

8. Related Work

A largely unexplored dimension of the consensus litera-
ture concerns the design of synchronization primitives them-
selves. While many protocols assume a specific synchrony
model, prior work, to our knowledge, does not isolate,
specify, or evaluate such primitives as first-class, modular
components of consensus stacks. We address this gap by
defining and implementing synchronization abstractions that
compose cleanly with existing consensus protocols.

One key source of inspiration is the Pacemaker [39]
of leader-based protocols. The pacemaker separates view-
change timing, leader rotation, and timeout management
from the safety-critical core, which creates clean interfaces
and lets liveness mechanisms evolve independently. Our

synchronizer plays a similar role: it fits into the modular
blockchain architecture [40], defines isolated processes that
deliver high-performance support to the safety-critical total-
ordering algorithm, and lets engineers separate concerns.

A synchronizer protocol can be viewed as a decomposed
form of reliable broadcast [41], one of the most studied
problems in distributed computing. Unlike AVID [42], [43]
protocols, which focus on communication complexity in
asynchronous settings, or optimistic reliable broadcast [30],
which emphasizes latency under a low number of faults, our
design examines performance after GST in partially syn-
chronous or synchronous networks. This approach provides
a more practical perspective and has already enabled signifi-
cant performance improvements in Sui, a top-20 blockchain.

Acknowledgments

This work is funded by Mysten Labs and was conducted
while Jianting Zhang was interning with the company. We
thank George Danezis, Adrian Perrig, and Philipp Jovanovic
for their insightful discussions that greatly improved this
work.

References

[1] L. Yang, V. Bagaria, G. Wang, M. Alizadeh, D. Tse, G. Fanti, and
P. Viswanath, “Prism: Scaling bitcoin by 10,000 x,” arXiv preprint
arXiv:1909.11261, 2019.

[2] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a dag-based mempool and efficient bft consen-
sus,” in Proceedings of the Seventeenth European Conference on
Computer Systems, 2022, pp. 34–50.

[3] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[4] S. Cohen, R. Gelashvili, L. K. Kogias, Z. Li, D. Malkhi, A. Sonnino,
and A. Spiegelman, “Be aware of your leaders,” in International
Conference on Financial Cryptography and Data Security. Springer,
2022, pp. 279–295.

[5] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[6] N. Giridharan, F. Suri-Payer, I. Abraham, L. Alvisi, and N. Crooks,
“Autobahn: Seamless high speed bft,” in Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles, 2024, pp.
1–23.

[7] O. Green, “Hashgraph—scalable hash tables using a sparse graph data
structure,” ACM Transactions on Parallel Computing (TOPC), vol. 8,
no. 2, pp. 1–17, 2021.

[8] P. S. Almeida and E. Shapiro, “The blocklace: A byzantine-repelling
and universal conflict-free replicated data type,” 2025. [Online].
Available: https://arxiv.org/abs/2402.08068

[9] E. Shapiro, “Grassroots systems: Concept, examples, implementation
and applications,” 2024. [Online]. Available: https://arxiv.org/abs/
2301.04391

[10] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 2705–2718.

[11] K. Babel, A. Chursin, G. Danezis, A. Kichidis, L. Kokoris-Kogias,
A. Koshy, A. Sonnino, and M. Tian, “Mysticeti: Reaching the latency
limits with uncertified dags,” in Network and Distributed Systems
Security Symposium (NDSS), 2025.

[12] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[13] MystenLabs, “Sui blockchain,” https://github.com/mystenlabs/sui,
2025, accessed: 2025.

[14] A. Sonnino, “Narwhal and tusk implementation,” https://github.com/
asonnino/narwhal, 2025, accessed: 2025.

[15] ——, “Hotstuff implementation,” https://github.com/asonnino/
hotstuff/tree/3-chain, 2025, accessed: 2025.

[16] M. Labs, “Mysticeti: Low-latency dag consensus with fast commit
path,” https://github.com/asonnino/mysticeti, 2024.

[17] A. Sonnino, “Jolteon implementation,” https://github.com/asonnino/
hotstuff, 2025, accessed: 2025.

[18] Diem Association, “Diem blockchain,” https://github.com/diem/diem,
2025, accessed: 2025.

[19] N. Giridharan, “Autobahn artifact,” https://github.com/neilgiri/
autobahn-artifact, 2025, accessed: 2025.

[20] P. Tennage, “Mahi-mahi consensus implementation,” https://github.
com/PasinduTennage/mahi-mahi-consensus, 2025, accessed: 2025.

[21] D. Xiang, “Ditto implementation,” https://github.com/danielxiangzl/
Ditto, 2025, accessed: 2025.

[22] G. Bracha, “Asynchronous byzantine agreement protocols,” Informa-
tion and computation, vol. 75, no. 2, pp. 130–143, 1987.

[23] A. Sonnino, “Bullshark implementation,” https://github.com/
asonnino/narwhal/tree/bullshark, 2025, accessed: 2025.

[24] Nibesh Shrestha, “Sailfish codebase,” https://github.com/nibeshrestha/
sailfish, 2025, accessed: 2025.

[25] “Sui,” https://sui.io/, 2024.

[26] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–
323, 1988.

[27] S. Duan, H. Zhang, X. Sui, B. Huang, C. Mu, G. Di, and X. Wang,
“Dashing and star: Byzantine fault tolerance with weak certificates,”
in Proceedings of the Nineteenth European Conference on Computer
Systems, 2024, pp. 250–264.

[28] B. Arun, Z. Li, F. Suri-Payer, S. Das, and A. Spiegelman,
“Shoal++: High throughput dag bft can be fast!” arXiv preprint
arXiv:2405.20488, 2024.

[29] N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak, “Sailfish: To-
wards improving the latency of dag-based bft,” Cryptology ePrint
Archive, 2024.

[30] N. Shrestha, Q. Yu, A. Kate, G. Losa, K. Nayak, and X. Wang,
“Optimistic, signature-free reliable broadcast and its applications,”
in Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security, 2025.

[31] A. Spiegelman, B. Arun, R. Gelashvili, and Z. Li, “Shoal: Improving
DAG-BFT latency and robustness,” in Financial Cryptography and
Data Security (FC 2024), Revised Selected Papers, Part I, ser.
Lecture Notes in Computer Science, vol. 14744. Cham: Springer,
2025, pp. 92–109, fC 2024, Willemstad, Curaçao, March 4–8, 2024.
[Online]. Available: https://doi.org/10.1007/978-3-031-78676-1 6

[32] Qianyu Yu, “Sailfish++ codebase,” https://github.com/qyu100/
SFSailfish/tree/OptSFSailfish, 2025, accessed: 2025.

[33] I. Abraham, K. Nayak, L. Ren, and Z. Xiang, “Good-case latency of
byzantine broadcast: A complete categorization,” in Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing,
2021, pp. 331–341.

[34] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissemination
and its applications,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2705–2721.

https://arxiv.org/abs/2402.08068
https://arxiv.org/abs/2301.04391
https://arxiv.org/abs/2301.04391
https://github.com/mystenlabs/sui
https://github.com/asonnino/narwhal
https://github.com/asonnino/narwhal
https://github.com/asonnino/hotstuff/tree/3-chain
https://github.com/asonnino/hotstuff/tree/3-chain
https://github.com/asonnino/mysticeti
https://github.com/asonnino/hotstuff
https://github.com/asonnino/hotstuff
https://github.com/diem/diem
https://github.com/neilgiri/autobahn-artifact
https://github.com/neilgiri/autobahn-artifact
https://github.com/PasinduTennage/mahi-mahi-consensus
https://github.com/PasinduTennage/mahi-mahi-consensus
https://github.com/danielxiangzl/Ditto
https://github.com/danielxiangzl/Ditto
https://github.com/asonnino/narwhal/tree/bullshark
https://github.com/asonnino/narwhal/tree/bullshark
https://github.com/nibeshrestha/sailfish
https://github.com/nibeshrestha/sailfish
https://sui.io/
https://doi.org/10.1007/978-3-031-78676-1_6
https://github.com/qyu100/SFSailfish/tree/OptSFSailfish
https://github.com/qyu100/SFSailfish/tree/OptSFSailfish

[35] T. I. team, https://docs.iota.org/about-iota/iota-architecture/consensus,
2025.

[36] I. Keidar, O. Naor, O. Poupko, and E. Shapiro, “Cordial
miners: Fast and efficient consensus for every eventuality,” 2023.
[Online]. Available: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.DISC.2023.26

[37] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Twins: Bft systems made robust,” in ACM PODC, 2021.

[38] G. Tsimos, A. Kichidis, A. Sonnino, and L. Kokoris-Kogias,
“Hammerhead: Leader reputation for dynamic scheduling,” 2023.
[Online]. Available: https://arxiv.org/abs/2309.12713

[39] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” The Libra Assn., Tech. Rep, vol. 7,
2019.

[40] S. Cohen, G. Goren, L. Kokoris-Kogias, A. Sonnino, and A. Spiegel-
man, “Proof of availability and retrieval in a modular blockchain
architecture,” in International Conference on Financial Cryptography
and Data Security. Springer, 2023, pp. 36–53.

[41] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM (JACM), vol. 36,
no. 2, pp. 335–348, 1989.

[42] C. Cachin and S. Tessaro, “Asynchronous verifiable information
dispersal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05). IEEE, 2005, pp. 191–201.

[43] N. Alhaddad, S. Das, S. Duan, L. Ren, M. Varia, Z. Xiang, and
H. Zhang, “Asynchronous verifiable information dispersal with near-
optimal communication,” Cryptology ePrint Archive, 2022.

[44] T. T. Team, “Tokio,” https://tokio.rs, 2024.

[45] H. de Valence, “Ed25519 for consensus-critical contexts,” https:
//crates.io/crates/ed25519-consensus, 2024.

[46] RustCrypto, “Rustcrypto: Hashes,” https://github.com/RustCrypto/
hashes, 2024.

[47] Die.Net, “writev(3) - linux man page,” https://linux.die.net/man/3/
writev, 2024.

[48] Meta, “Sapling (minibytes),” https://github.com/facebook/sapling/
tree/main/eden/scm/lib/minibytes, 2024.

[49] T. S. Team, “Validator deployment amd configuration,” https://docs.
sui.io/guides/operator/validator/validator-config, 2025.

Appendix A.
Performance Analysis under Adverse cases

In this section, we give a rigorous proof to show that
Beluga can achieve a round latency of nearly 2∆ under
adverse cases. The proof relies on the following assumption.
(Note that the correctness of Beluga (cf. Section 5.1) does
not rely on these assumptions.)

Assumption 1 (Latency Triangle). After GST, the direct
network latency between any pair of honest validators is
always faster than going through an intermediate validator.

Assumption 1 is reasonable, since the direct communi-
cation path is usually the shortest path.

In adverse cases, there are at most f malicious validators
that aim to increase the round latency by inducing honest
validators to trigger the pull protocol. In the following, we
denote the set of honest validators as Vh and the set of
malicious validators as A.

Lemma 3. After GST, each honest validator will not get
blamed and have its reputation decreased by honest valida-
tors.

Proof. Recall in Beluga (Section 4.2), a validator vi will
get its reputation decreased by honest validators if f+1
validators report that they invoke the pull protocol to syn-
chronize vi’s blocks. An honest validator vj invokes the
pull protocol when it receives a block Br

k from another
validator Vk that references vi’s round r−1 block Br−1

i ,
but vj has not received Br−1

i yet. However, according to
Assumption 1, after GST, if vi is honest and sends its block
Br−1

i to vj , then vj must receive Br−1
i directly before

receiving it through an intermediate validator (i.e., through
Vk creating Br

k) indirectly. Therefore, vj will not invoke the
pull protocol to synchronize Br−1

i and will not report vi if
vi is honest. Since there are at most f malicious validators,
an honest validator will not be reported by f+1 validators
and will not get blamed by honest validators. The proof is
done.

Lemma 4. After GST, if all honest validators enter round
r at time tr and have their reputation higher than that of
any malicious validator, then for any future round r′ ≥ r,
the latency of round r′ is ∆.

Proof. Since all honest validators have a higher reputation
than any malicious validator, according to our reputation-
based push protocol, honest validators will reference round
r−1 blocks from honest validators only when creating their
round r blocks. There is no need to invoke the pull protocol
to accept these round r blocks after GST. As a result, the
latency of round r is ∆, and all honest validators can enter
round r+1 at time tr+∆. By induction, we can see that
the latency of any future round r′ ≥ r is ∆. The proof is
done.

Lemma 5. After GST, if all honest validators enter round
r at time tr, then either the expected latency of any future
round r′>r is within 2∆ or at least one malicious validator
is blamed by honest validators, in which case the latency of
round r′ is at most 3∆.

Proof. Recall that if an honest validator vi enters round r at
time tr, then vi must have received at least 2f+1 acceptable
round r−1 blocks and can create its round r block at tr.
Since all honest validators enter round r at time tr, every
honest validator will receive at least 2f+1 round r blocks
created by honest validators by time tr+∆. There are three
cases.

Case 1: If all honest validators have their reputation
higher than that of any malicious validator, then according
to Lemma 4, the latency of future round r′>r is ∆.

Case 2: If it is not the case 1, and for each round r−1
block created by malicious validators A, it is referenced by
at least f+1 round r blocks created by honest validators,
i.e., A share their round r−1 blocks with at least f+1
honest validator. In this case, thanks to the ImPoA-based
pull mechanism, every honest validator can accept all round
r blocks created by honest validators without synchronizing

https://docs.iota.org/about-iota/iota-architecture/consensus
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26
https://arxiv.org/abs/2309.12713
https://tokio.rs
https://crates.io/crates/ed25519-consensus
https://crates.io/crates/ed25519-consensus
https://github.com/RustCrypto/hashes
https://github.com/RustCrypto/hashes
https://linux.die.net/man/3/writev
https://linux.die.net/man/3/writev
https://github.com/facebook/sapling/tree/main/eden/scm/lib/minibytes
https://github.com/facebook/sapling/tree/main/eden/scm/lib/minibytes
https://docs.sui.io/guides/operator/validator/validator-config
https://docs.sui.io/guides/operator/validator/validator-config

any missing blocks on the push path and create its round
r+1 block at time tr+∆. The latency of round r+1 is ∆.
By induction, we can see that for any future round r′ ≥ r,
the latency of round r′ is ∆ for case 2.

Case 3: If it is not the case 1, and at least one round
r−1 block Br−1

m created by a malicious validator Vm is
referenced by fewer than f+1 round r blocks created by
honest validators, i.e., Vm delays or did not share Br−1

m

with more than f honest validators. We denote those honest
validators referencing Br−1

m by tr as VRef
h , and those who

do not as VNoR
h . There are two scenarios, and we show that

for any future round r′ ≥ r+1, the expected latency of r′

is at most 2∆ before Vm is blamed.
First, Vm will never share Br−1

m with VNoR
h , then

|VNoR
h | ≥ f+1 honest validators will report Vm, and Vm

will be blamed by honest validators.
Second, Vm delays sharing Br−1

m with some honest
validators VNoR

h1 but not the others VNoR
h2 to escape being

blamed, where |VNoR
h2 = VNoR

h \ VNoR
h1 | ≤ f . In this

scenario, note that VNoR
h1 must have received Br−1

m by time
tr+∆, since otherwise, VNoR

h1 learn Br−1
m is missing from

VRef
h ’s round r blocks and will report Vm. Thus, both

VRef
h and VNoR

h1 can create their round r+1 blocks by time
tr+∆. The delayed honest validators VNoR

h2 , instead, must
pull Br−1

m at time tr+∆ (when they receive round r blocks
from VRef

h ∪ VNoR
h1) and pull any missing round r blocks

at time tr+2∆ (when they receive round r+1 blocks from
VRef
h ∪ VNoR

h1). As a result, even for the delayed honest
validators VNoR

h2 , they can create their round r+1 blocks
by time tr+3∆ and create their round r+2 blocks tr+4∆.
Since the non-delayed VRef

h ∪VNoR
h1 can create their round

r+2 blocks by time tr+4∆, such a delaying process can
be repeated every two rounds. As a result, the maximum
average latency of each future round r′ ≥ r+1 is delayed
by at most 2∆, if Vm wishes to escape being blamed.

In addition, when Vm is blamed due to it delaying a
round r′′, according to Lemma 2, the latency of round r′′

is at most 3∆. The proof is done.

Lemma 6. After GST, once all honest validators enter round
r, for future round r′>r that malicious validators A delay,
its expected latency is within 2∆, or at least one malicious
validator is blamed by honest validators.

Proof. After GST, according to Lemma 1, all honest valida-
tors can enter the same round (w.l.o.g. at round r) within 3∆.
Let tr=GST+3∆. Note that at least one honest validator
Vfst must have created its round r block Br

fst before GST ,
and all honest validators must receive Br

fst by GST+∆.
Consider two sets of honest validators: slow honest

validators Vslw
h and fast honest validators Vfst

h = Vh \Vslw
h .

Validators in Vslw
h need to invoke the pull protocol for miss-

ing round r−1 blocks to enter round r by time tr, while val-
idators in Vfst

h do not. Apparently, we have |Vfst
h | ≥ f+1,

since otherwise, there are more than f+1 honest validators
in Vslw

h reporting A, and A would be blamed. Moreover,
note that all validators in Vfst

h must be able to create

their round r blocks by time GST+∆ (i.e., right after
receiving Br

fst), since otherwise, they need to invoke the
pull protocol to fetch missing round r−1 blocks referenced
by Br

fst, contradicting to the definition of Vfst
h . As a result,

all validators in Vslw
h must receive round r blocks from all

validators in Vfst
h by time GST+2∆. With our pull protocol

ensuring all live blocks can be acceptable within 2∆, all
validators in Vslw

h can accept all round r blocks from Vfst
h

by GST+4∆ = tr+∆. Consequently, validators in Vslw
h

can create their round r+1 blocks at time tr+∆. In addition,
because validators in Vfst

h can receive Vslw
h ’s round r blocks

by time tr+∆, they must be able to create their round r+1
blocks by time tr+∆. The latency of round r+1 is ∆. For
the next round r+2, there are two cases.

Case 1: If all honest validators enter round r+1 at time
tr+∆, according to Lemma 5, either the expected latency of
round r+2 is within 2∆ or at least one malicious validator
is blamed by honest validators.

Case 2: Otherwise, honest validators in Vfst
h enter round

r+1 before they receive Vslw
h ’s round r blocks at tr + ∆.

There are two scenarios, and we show that the expected
latency of round r+2 is within 2∆ before at least one
malicious validator is blamed.

First, every round r block created by malicious valida-
tors A is referenced by at least f+1 round r+1 blocks
created by honest validators in Vfst

h . In this scenario, thanks
to the ImPoA-based pull mechanism, every honest validator
in Vslw

h can accept these round r+1 blocks without syn-
chronizing any missing blocks on the push path. As a result,
Vslw
h can create their round r+2 blocks at time tr + 2∆.

Since, Vslw
h create their round r+1 blocks at time tr + ∆

(as mentioned above), the latency of round r+2 is within
∆.

Second, at least one round r block created by malicious
validators A is referenced by fewer than f+1 round r+1
blocks created by honest validators in Vfst

h . This means
that at least one malicious validator Vm delays sharing its
round r block Br

m with some validators in Vfst
h1 ⊂ Vfst

h ,
because otherwise, all honest validators in Vfst

h can receive
enough round r blocks and enter round r+1 at the same
time. However, all honest validators in Vfst

h1 must be able to
create round r+2 blocks by time tr+2∆, since the delayed
validators in Vslw

h create their round r+1 blocks at time
tr + ∆ (as mentioned above). As a result, once receiving
Vfst
h1 ’s round r+2 blocks at time tr+3∆, Vslw

h can invoke
the pull protocol to fetch any missing round r+1 blocks
within 2∆, and create their round r+3 blocks by time
tr+5∆. Recall that Vslw

h create their round r+1 blocks at
time tr +∆. For Vslw

h , there are two rounds r+1 and r+2
between time tr+∆ and tr+5∆. As a result, the average
latency of these two rounds is (tr+5∆− tr+∆)/2 = 2∆.

By induction, we can see that for any future round r′>r,
the latency of round r′ is within 2∆ before any malicious
validator Vm is blamed. The proof is done.

Lemma 7. After GST, malicious validators A in Beluga
can only delay the progress of the protocol in a bounded
number of rounds with an expected latency higher than 2∆
every RL rounds.

Proof. Recall that a validator gets its reputation decreased
by RL by all honest validators if it is blamed, where RL ≥ 1
is a predetermined parameter. Without loss of generality,
we assume right after GST, each malicious validator has
its reputation Rm, and the lowest reputation of an honest
validator is Rh.

According to Lemma 6, malicious validators A can
delay the protocol for a round r with latency at most 4∆,
without getting blamed. We denote this period as D1, and
use |D1| to represent the number of rounds being delayed
with the expected latency of more than 2∆. D1 will increase
the latency of the protocol by at most 3∆ before A get
blamed.

After period D1, all honest validators can enter the
same round at the same time. According to Lemma 5, A
might still be able to delay some future rounds with the
expected latency of more than 2∆, but each of such round
will lead to at least one malicious validator being blamed
and getting lose of RL points. Based on the reputation
difference, we can derive that f malicious validators can
delay the protocol for (Rm − Rh) ∗ f/RL rounds before
their reputations are lower than that of any honest valida-
tor. We denote this period as D2, and similarly, we have
|D2| = (Rm−Rh)∗f/RL. According to Lemma 5, each of
these rounds will increase the round latency by at most 2∆.
As a result, D2 will increase the latency of the protocol by
at most (Rm −Rh) ∗ f/RL ∗ 2∆.

After period D2, A have the reputation equal to the
lowest reputation of an honest validator. Since according to
Lemma 3, the honest validators will not get their reputations
decreased after GST, A need to perform correctly to get their
reputation increased by honest validators. In particular, to
delay f rounds with the expected latency of more than 2∆
for each after D2, these f malicious validators A perform
carefully without getting blamed for at least RL rounds,
during which the expected latency of each round will be 2∆.
We denote this period as D3. During D3, A delay f rounds
with the expected latency of higher than 2∆ every RL

rounds. Thus, we have |D3| = f . According to Lemma 5,
each round being delayed will increase the round latency by
at most 2∆. As a result, D3 will increase the latency of the
protocol by at most f ∗ 2∆ every RL rounds.

By considering the above three periods, we can conclude
that A can delay the protocol with the expected round
latency higher than 2∆ for at most |D1|+|D2|+|D3| =
1+(Rm−Rh)∗f/RL+f rounds, and the extra latency intro-
duced by A is at most (3∆+(Rm−Rh)∗f/RL∗2∆+f∗2∆)
every RL rounds. As f,Rm, Rh, and RL are all constants,
the proof is done.

Finally, we have a proof for Theorem 5.

Proof for Theorem 5. According to Lemma 7, for every
RL rounds, malicious validators A can only increase the
round latency by more than 2∆ for a bounded number of
rounds. For these rounds, the total extra latency introduced
is (3∆+(Rm−Rh)∗f/RL∗2∆+f ∗2∆) every RL rounds.
For the other rounds, the expected round latency is 2∆. In
other words, to create blocks for RL rounds, the latency
of the protocol is at most RL ∗ 2∆+(3∆+(Rm − Rh) ∗
f/RL ∗2∆+f ∗2∆). As a result, the average round latency
of Beluga is at most (RL ∗ 2∆+(3∆+(Rm−Rh) ∗ f/RL ∗
2∆+f ∗2∆))/RL = 2∆(1+ 3+2f

2RL
+ (Rm−Rn)f

2∆R2
L

). By setting
a sufficiently large RL, the average round latency can be
arbitrarily close to 2∆. The proof is done.

Appendix B.
The Pseudocode of the AC-based Push Protocol

Figure 8 provides a pseudocode for Beluga’s push proto-
col. The key components consist of a reputation mechanism
(lines 23-32) and an admission control (lines 1-22), both of
which are detailed in Section 4.2.

Appendix C.
Beluga Implementation

We implement Beluga in Rust within Mysticeti [11]
by forking the Mysticeti codebase [16]. It leverages
tokio [44] for asynchronous networking, utilizing raw
TCP sockets for communication implementing a reliable
point-to-point channels, necessary to correctly implement
the distributed system abstractions without relying on any
RPC frameworks. For cryptographic operations, it rely on
ed25519-consensus [45] for asymmetric cryptography
and blake2 [46] for cryptographic hashing. To ensure data
persistence and crash recovery, it employs a Write-Ahead
Log (WAL) optimizing I/O operations through vectored
writes [47], efficient memory-mapped files, and minimizes
copies and serialization through minibytes [48].

By default, this Mysticeti implementation uses a tradi-
tional optimistic push followed by a random pull protocol
(described in Section 2) we modify its block synchronizer
module to use Beluga instead. Implementing our mechanism
requires to add less than 200 LOC, and does not require any
extra cryptographic tool.

In addition to regular unit tests, we inherited and utilized
two supplementary testing utilities from the Mysticeti code-
base. First, a simulation layer replicates the functionality of
the tokio runtime and TCP networking. This simulated
network accurately simulates real-world WAN latencies,
while the tokio runtime simulator employs a discrete event
simulation approach to mimic the passage of time. Second,
a command-line utility (called orchestrator) which deploys
real-world clusters of Beluga on machines distributed across
the globe.

Variables:
RL− The score decrease each time
TRi[]− An array of reputations (indexed by validators)
struct block B

· · · ▷ original fields
B.weaklinks - used to link blocks that vi has received and
accepted but not referenced as parents
B.watermark[] - an array of the highest round numbers of all
validators’ blocks received by vi
B.ancestors[] - an array of the highest round numbers of all
validators’ blocks reachable from B

▶ Call block proposei(B, r) to push a round r block B
1: procedure create new block(r, Br−1) ▷ Br−1 is a list of the

latest received blocks from all validators with round ≤ r−1
2: Initializes a block B with B.r = r, B.author = i, and other

original fields
3: parents← AC parent selection(r, Br−1)
4: B.parents← digests of parents
5: B.weaklinks← {B′.d|B′ ∈ Br−1\parents is acceptable}
6: watermark ← []
7: for ∀B′ ∈ Br−1 do
8: watermark[B′.author]← B′.r

9: B.watermark ← watermark
10: B.ancestors← compute ancestors(parents)
11: signs and broadcasts B using best-effort broadcast
12: update score with watermarks(r, Br−1)
13: outputs block accepti and block storei for B and every ac-

ceptable block in Br−1, if it hasn’t done so already
14: procedure AC parent selection(r, B)
15: B ← {B′ ∈ B|B′.r = r−1 ∧B′is acceptable}
16: parents← top 2f+1 blocks in B by TRi[B

′.author]
17: return parents
18: procedure compute ancestors(parents)
19: ancestors← []
20: for k ∈ 1, · · · , n do
21: ancestors[k] ← max({B′.r|B′ ∈ parents ∧

B′.author = vk} ∪ {B′.ancestors[k]|B′ ∈ parents})
22: return ancestors
23: procedure update score with watermarks(r, B)
24: for j ∈ 1, · · · , n do
25: count← 0
26: for ∀B′ ∈ B do
27: if B′.watermark[j] == r−2 then
28: count← count+ 1
29: if count ≥ 2f+1 then
30: TRi[j]← TRi[j] + 1
31: upon pulling or receiving f+1 pull requests (i.e., blames) for a

missing block created by vj do
32: TRi[j]← TRi[j]−RL

Figure 8. Beluga’s AC-based optimistic push protocol for validator vi.

We are open-sourcing our Beluga implementation, along
with its simulator and orchestration tools, to ensure repro-
ducibility of our results2.

Appendix D.
Experimental Setup

This section describes the experimental setup used for
evaluating Beluga in Section 6.

We deploy all systems on AWS, using m5d.8xlarge
instances across 13 different AWS regions: Northern Vir-
ginia (us-east-1), Oregon (us-west-2), Canada (ca-central-
1), Frankfurt (eu-central-1), Ireland (eu-west-1), London

2. https://github.com/asonnino/beluga/tree/paper (commit 9a3d2a3)

(eu-west-2), Paris (eu-west-3), Stockholm (eu-north-1),
Mumbai (ap-south-1), Singapore (ap-southeast-1), Sydney
(ap-southeast-2), Tokyo (ap-northeast-1), and Seoul (ap-
northeast-2). Validators are distributed across those regions
as equally as possible. Each machine provides 10Gbps
of bandwidth, 32 virtual CPUs (16 physical cores) on a
3.1GHz Intel Xeon Skylake 8175M, 128GB memory, and
runs Linux Ubuntu server 24.04. We select these machines
because they provide decent performance, are in the price
range of “commodity servers”, and match the minimal spec-
ifications of modern quorum-based blockchains [49].

The latency refers to the time elapsed from the moment
a client submits a transaction to when it is committed by
the validators, and the throughput refers to the number of
transactions committed per second. We instantiate several
geo-distributed benchmark clients within each validator sub-
mitting transactions in an open loop model, at a fixed rate.
We experimentally increase the load of transactions sent
to the systems, and record the throughput and latency of
commits. As a result, all plots illustrate the steady-state
latency of all systems under various loads. Transactions in
the benchmarks are arbitrary and contain 512 bytes. We
configure both systems with 2 leaders per round, and a
leader timeout of 1 second.

https://github.com/asonnino/beluga/tree/paper

	Introduction
	Problem Definition
	The Block Synchronizer Problem
	Existing Synchronizer Protocols
	Multi-chain Certified Synchronizer Protocol
	DAG-based Certified Synchronizer Protocol
	DAG-based RBC Synchronizer Protocol
	DAG-based Uncertified Synchronizer Protocol

	Pull Induction Attacks and Key Insights
	Pull Induction Attacks
	Key Insights

	The Beluga Protocol
	Overview
	AC-based Optimistic Push Protocol
	ImPoA-based Hybrid Pull Protocol
	ImPoA-based Pull Mechanism
	Hybrid Pull Strategy

	Building BFT Consensus on Beluga

	Analysis
	Correctness Analysis
	Performance Analysis
	Round latency under happy cases
	Round latency under adverse cases

	Experimental Evaluation
	Benchmarks in Ideal Conditions
	Benchmarks under Attack

	From paper to Mainnet
	Related Work
	References
	Appendix A: Performance Analysis under Adverse cases
	Appendix B: The Pseudocode of the AC-based Push Protocol
	Appendix C: Beluga Implementation
	Appendix D: Experimental Setup

