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Abstract—Blockchain consensus faces a trilemma of security,
latency, and decentralization. High-throughput systems often
require a reduction in decentralization or robustness against
strong adversaries, while highly decentralized and secure sys-
tems tend to have lower performance. We present BlueBottle,
a two-layer consensus architecture. The core layer, BB-Core,
is an n = 5f+1 protocol that trades some fault tolerance for a
much lower finality latency with a medium-sized core validator
set. Our experiments show that BB-Core reduces latency by
20–25% in comparison to Mysticeti. The guard layer, BB-
Guard, provides decentralized timestamping, proactive mis-
behavior detection in BB-Core, and a synchronous recovery
path. When it observes equivocations or liveness failures in
the core–while tolerating up to f < 3n/5 faulty nodes in
the primary layer–guard validators disseminate evidence, agree
on misbehaving parties for exclusion or slashing, and either
restart the core protocol (for liveness violations) or select a
canonical fork (for safety violations). Together, these layers
enable optimistic sub-second finality at high throughput while
maintaining strong safety and liveness under a mild synchrony
assumption.

1. Introduction

The design of robust and efficient consensus protocols
remains a cornerstone challenge in distributed systems,
particularly within the demanding context of blockchain
technology. Existing blockchain systems face a trilemma
of high-security thresholds, low transaction-finality latency,
and extensive decentralization. As an example of these trade-
offs, consider Ethereum, Solana, and Avalanche, three of the
most influential blockchain systems that have demonstrated
their value over the last decade. Ethereum [1] takes a strong
stance on extensive decentralization to ensure that thousands
of participants can audit the chain’s state transitions and
even participate in the consensus protocol, and requires
high-security thresholds with a theoretical fault-tolerance
of n = 3f + 1. As a consequence of these two design
choices, Ethereum has an average transaction finality latency
of several minutes, though. Avalanche [2], on the other hand,
prioritizes decentralization and low transaction finality at the
cost of weaker probabilistic safety guarantees and a fault
tolerance somewhere between f =

√
n and n = 5f + 1

through its scalable Snowflake consensus protocol [3]. Fi-
nally, Solana [4] trades decentralization for resilience with

n = 3f + 1 and performance, i.e., low latency and high
throughput, but relies on professional validators1.

This paper introduces BlueBottle, a novel dual-layer
consensus architecture designed to synergistically combine
the strengths of different consensus paradigms and thereby
mitigate this trilemma. At BlueBottle’s core is a partially
synchronous consensus protocol that trades off failure tol-
erance (n = 5f + 1) for significantly lower latency than
other state-of-the-art consensus protocols and is operated
by a medium-sized set of core validators. A secondary
synchronous Byzantine Agreement protocol, which is op-
erated by a potentially much larger set of guard validators
(or simply “guards”), complements this core engine by
providing enhanced decentralization, high resilience, and a
robust recovery mechanism. Our approach aims to deliver
optimistic sub-second transaction finality while simultane-
ously harnessing the scale and resilience benefits of large-
scale decentralized protocols to quickly detect and recover.

The core layer. Building BlueBottle’s core layer requires
a high-performance consensus protocol. Our goal is sim-
ple: achieve the lowest possible finality latency and the
highest experimentally demonstrated throughput. To do so,
we introduce BB-Core, which builds on top the state-of-
the-art partially synchronous DAG-based consensus protocol
Mysticeti [5] and reduces latency by trading fault tolerance
from n = 3f + 1 to n = 5f + 1, where n is the number of
validators and f is the number of Byzantine faults tolerated.
BB-Core introduces the first 5f + 1 DAG-based consensus
protocol and commits transactions in under 0.5,s while
sustaining more than 200,000 tx/s (Section 6)—a perfor-
mance level unmatched in the BFT consensus literature.
We also introduce an asynchronous variant of BB-Core in
Appendix C, which tracks the performance of BB-Core with
a 33% latency increase.

We use the standard two-step design: first, consensus
fixes a single order of operations for everyone, and then
identical replicas apply that order ensuring they all end up
in the same state (state machine replication). Clients can
observe finality in two ways. Clients who follow every block
see finality in about 1RTT; under n = 5f+1, this becomes
roughly 0.5RTT faster than the equivalent n = 3f + 1
protocol. Clients who do not require such low finality and
prefer to avoid the bandwidth cost of streaming the DAG can

1. The votes of the top 84 validators, in terms of stake, are enough to
achieve supermajority. As per https://solanabeach.io/validators (Nov 25).

https://solanabeach.io/validators


rely on checkpoints, that is, compact summaries of recent
updates that are re-agreed upon through consensus. These
clients wait for two steps (one to commit and one to agree
on the commit), and this increase in latency comes with
increased safety. Specifically, they remain safe if fewer than
60% of validators are malicious. This holds because even
if an adversary creates two forks with f + 1 adversarial
validators, only one of the forks can be directly committed
through a checkpoint with 4f+1 support as long as at least
40% of the validators are honest.

The guard layer. The guard protocol in BlueBottle is
a highly decentralized auditing and recovery layer, called
BB-Guard. BB-Guard operates in synchronous steps and
monitors the primary layer for liveness or safety violations
(possible up to f < 3n/5 faults in the primary layer) in
the form of equivocations. If this happens, it enables a
synchronous recovery protocol.

Upon detecting such misbehavior, the guard validators
transition to a recovery phase. This consists of running
Byzantine Broadcast of accumulated evidence and determin-
istically agreeing on the set of core validators that misbe-
haved and then excluding them, potentially by slashing their
stake. If the violation relates to liveness, then the reduced
set of core validators restarts consensus, whereas if it was a
safety violation, they first agree on the canonical fork. As a
result, this safety mechanism allows BlueBottle to operate
with optimistic responsiveness while retaining strong safety
and liveness guarantees that rely on a synchrony assumption
orders of magnitude longer than the speed of the chain.

Contributions. We make the following contributions:

• We present BlueBottle, a novel dual-layer consensus
architecture that simultaneously achieves low latency,
high security, and high decentralization.

• We introduce the two main novel building blocks of
BlueBottle, namely BB-Core, a DAG-based consen-
sus protocol that reduces latency by lowering fault-
tolerance to n = 5f + 1 and BB-Guard, a highly de-
centralized guard protocol for misbehavior monitoring
and recovery.

• We provide a rigorous security analysis of both BB-
Core and BB-Guard, overall demonstrating that Blue-
Bottle achieves optimal safety and liveness guarantees
under standard assumptions.

• We implement and evaluate BB-Core and compare
it at scale against Mysticeti, confirming the expected
latency gains of around 20–25% while maintaining
similar throughput to Mysticeti.

2. System Overview

This section provides an overview on BlueBottle and
presents, in particular, the system and threat models, the
design goals, and a design overview.

2.1. System model

We assume a total number of nodes n. BlueBottle has
a core and an guard layer and distinguishes between core
and guard validators (or guards). We denote the number of
core validators as nc and the number of guard validators
as ng such that n = nc + ng. Core validators contin-
uously operate the core consensus protocol and process
transactions, while guard validators checkpoint the output
and audit the operation of core validators and help with
recovery. Both core and guard validators are selected using
a Sybil-resistant election mechanism [6] and we usually
assume a proof-of-stake approach [7]. We can translate the
quantitative assumptions on the nodes to stake assumptions
and we often use the two concepts interchangeably. Core
validators are chosen similarly to existing quorum-based
blockchains, consisting of roughly the 100 entities with
the highest stake or those that meet specific criteria, such
as owning a minimum percentage of the total stake [8].
Guard validators include all other stakeholding entities not
in this core group. The number of guards is assumed to
be significantly larger than the number of core validators
(multiple hundreds), while their total amount of stake is
significantly smaller. In practice, we expect full nodes to
operate as guards. We provide a discussion on the stake
distribution in the next section. BlueBottle operates as a
message-passing system.

2.2. Threat model

BlueBottle assumes a computationally bounded adver-
sary, ensuring that common cryptographic security assump-
tions, like those for hash functions and digital signatures,
hold. We assume there are at most f Byzantine nodes,
with n = 2f + 1. Byzantine nodes may behave arbitrarily,
whereas the remaining n − f nodes are honest and follow
the protocol. We provide a security assessment on the stake
requirements for the BB-Core and BB-Guard layers at the
end of this section.
Core layer. BlueBottle uses the novel BB-Core consensus
protocol at its core, which assumes that the total number of
core validators nc satisfies nc ≥ 5fc + 1, where fc is the
maximum number of Byzantine core validators which may
deviate from the protocol arbitrarily. The remaining core
validators are assumed to be honest following the protocol
specification. We further assume that BB-Core operates in a
partially synchronous [9] network. We also provide a variant
of BB-Core for asynchronous networks in Appendix C.
Since the threat model of the core layer is significantly
weaker than the global assumption, it can fail. However, it
will only fail accountably and, as a result, allow the system
to detect the adversarial nodes and exclude them, slowly
converging the threat model to the operational requirements
of the core layer.
Guard layer. For the guard layer, BlueBottle uses BB-
Guard and assumes a synchronous network, which is a
stronger networking model. Consequently, this synchrony



assumption also applies to BlueBottle overall. However,
BlueBottle provides optimistic responsiveness when the
assumptions of BB-Core hold and thus faster finality than
what is achievable under synchrony. When the BB-Core
assumptions are violated, we use the synchrony assumption
of BB-Guard to detect accountable faults and recover.
Client Finality Guarantees. The client finality guarantees
are a local assumption. This is on par with designs around
Flexible BFT [10, 11]. Clients who believe the adversary
is not actively compromising BB-Core can get the faster
finality, whereas the rest can follow the checkpoint finality.
Stake distribution between validator groups. We show
how to translate the quantitative assumptions from our threat
model to stake assumptions and determine the stake distri-
bution between core and guard validators. We assume there
is a total amount of stake S available such that S = 2Sf +1
where Sf is the stake controlled by the adversary. We
denote the stake assigned to core validators by Sc, the
stake assigned to guard validators by Sg, and require that
S = Sc + Sg. Given our initial stake distribution assump-
tions, the security assumption of the core layer might be
violated at some point. However, in this case, we still want to
achieve safety of checkpoints. To preserve checkpoint safety,
the adversary is allowed to control at most 60% of the core
validators’ stake. Let Scf denote the core stake controlled
by the adversary, we must thus maintain the invariant that

Scf ≤ 3/5 · Sc . (1)

Since the adversary can concentrate its full corruption bud-
get Sf = (S − 1)/2 on the core validators, i.e., Scf =
(S−1)/2, and considering that invariant 1 must nevertheless
hold, we obtain

(S − 1)/2 ≤ 3/5 · Sc ⇒ Sc ≥ 5(S − 1)/6 . (2)

In other words, we require that the total stake contributed
by the core validators Sc is at least 5(S−1)

6 .
Consequently, the stake contributed by the guard val-

idators Sa is S − Sc ≤ S+5
6 . For simplicity, we can set

Sc = S · 5/6 and Sg = S · 1/6.

2.3. Design goals

BlueBottle has the following three primary design goals
in terms of performance, security, and decentralization.
G1 High performance: BlueBottle provides significant

lower latency and equally high throughput as state-
of-the-art (DAG-based) consensus protocols when all
BB-Core underlying assumptions hold.

G2 High security: BlueBottle can tolerate up to Sf stake
being controlled by the adversary with the total amount
of stake being S = 2Sf + 1.

G3 High decentralization: BlueBottle enables non-core-
validator participants to contribute to the security of the
system through BB-Guard.

2.4. Design overview

We present an overview of BB-Core and BB-Guard.

2.4.1. The core layer. BlueBottle introduces the novel
consensus protocol BB-Core for its core layer. BB-Core
builds atop an uncertified DAG [5, 12, 13], and is the first
5f + 1 DAG-based consensus protocol. It trades off the
security threshold from n = 3f + 1 to n = 5f + 1 to
achieve finality in 2 message delays instead of the original
3. The BB-Core protocol follows similar ideas to Mysticeti
with the following modifications to its decision rules:

• Direct decision rule: Commit (skip) a leader in round
R, if it has 4f + 1 votes (blames) from round R+ 1.

• Indirect decision rule: Commit an undecided leader in
round R, if there is a committed leader in round R+2
that supports the round-R leader with at least 2f + 1
round-R+ 1 votes.

We introduce BB-Core formally in Section 3, analyse its
security in Section 4, and show that it indeed achieves
lower latency and equally high throughput as Mysticeti in
Section 6. BB-Core commit in under 0.5s while sustaining
a load of over 200,000 tx/s (Section 6).

2.4.2. The guard layer. BlueBottle introduces a novel
guard protocol, BB-Guard, which serves three goals:

Fault detection. This is the common-case execution of BB-
Guard. Guard validators synchronously gossip the blocks
output by BB-Core as a commit sequence and make sure
that there is no equivocated block proposal. If this is true
and no equivocation is detected within the timeout the BB-
Core continues uninterrupted. Otherwise, BB-Guard has to
proceed to accountability assignment.

Accountability assignment. There are two types of ac-
countable faults in BlueBottle: safety and liveness faults.
Safety faults are directly detected through the previous
mechanism and, once detected, are flagged to all connected
peers. Liveness faults are only detected when a core val-
idator flags a set of f + 1 validators as non-responsive and
sends this through the gossip network for notarization. At
this point, the guard validators start a timer to see if the
DAG building has halted. If the timer expires, they locally
decide that there are liveness faults.

Synchronous recovery. When a core validator detects a
fault, it starts the synchronous recovery protocol. For this,
it first decides on an accountable set of faulty validators it
wishes to exclude. This set is unique and the core validator
cannot change it afterwards. The accountable set comes from
either safety faults (i.e., double-spending from the core), or
liveness faults as described above. In either event, an honest
validator (core or guard) can deduce at least an f +1-sized
accountable set.

The validator then Byzantine Broadcasts (BB) this set
and all validators sign the set if they believe that the set
indeed constitutes Byzantine validators. The first BB that
outputs a valid set is considered the last message of the
view. The validators exclude the blamed stakeholders from
the new view and return to regular operation.



Algorithm 1 BB-Core
leadersPerRound ▷ A number between 1 and 4f + 1
waveLength ▷ Set to 2 for BB-Core, 3 for BB-Core-Async

procedure TRYDECIDE(rcommitted, rhighest)
S ← [ ] ▷ Holds decisions
for r ← rhighest down to rcommitted + 1 do

for l← leadersPerRound− 1 down to 0 do
i← r mod waveLength
D ← DECIDER(i, l)
w ← D.WAVENUMBER(r)
s← D.TRYDIRECTDECIDE(w)
if s = ⊥ then s← D.TRYINDIRECTDECIDE(w, S)
S ← s ∥ S

return S

procedure EXTENDCOMMITSEQ(rcommitted, rhighest)
S ← TRYDECIDE(rcommitted, rhighest)
Scommit ← [ ] ▷ Holds committed blocks
for s ∈ S do

if s = ⊥ then break
if s = Commit(bleader) then Scommit ← Scommit ∥ bleader

return LINEARIZESUBDAGS(Scommit) ▷ Same as DAG-Rider [14]

3. The BB-Core Protocol

BB-Core is the first 5f + 1 DAG-based consensus
protocol. It is built on top of an uncertified DAG, similarly
to Mysticeti [5] and Cordial Miners [12]. It commits in two
message delays by lowering the fault threshold to f < n/5
(≈ 20%). Algorithm 1 provides the main entry point and is
invoked whenever a validator receives a new block. Algo-
rithm 2 specifies the decision process, with each validator
instantiating one Decider instance per leader slot. Finally,
Algorithm 3 defines utility procedures that support common
operations used throughout the protocol. The orange-colored
lines of the algorithm refer to the asynchronous version
of BB-Core which we prove in the Appendix. This is of
independent interest and can be ignored.

3.1. The directed acyclic graph

BB-Core builds a directed acyclic graph (DAG) of
blocks that reference each other via cryptographic hashes,
similar to Mysticeti. This DAG enables validators to decide
(locally) which blocks to commit and in what order. The
BB-Core protocol proceeds in a sequence of logical rounds.
In each round, every honest validator proposes exactly one.
Block creation and validation. A block must include at
least the following elements to be valid: (1) the author A of
the block together with their valid cryptographic signature
on the block’s contents; (2) a round number R; (3) a list of
transactions; and (4) at least 4f +1 distinct hashes of valid
blocks from the previous round R− 1.

Honest validators store only valid blocks in their local
DAG and discard invalid ones. Moreover, they reference a
block’s hash in their proposals only if the block is valid and
after downloading and verifying its entire causal history,
thereby ensuring the correctness of the block’s lineage.
Rounds and waves. As already mentioned, BB-Core oper-
ates in rounds and two subsequent rounds R and R + 1
form a wave. Figure 1 (left) illustrates an example of a

Algorithm 2 Decider Instance
waveOffset = i ▷ The first parameter of the Decider (i)
leaderOffset = l ▷ The second parameter of the Decider (l)
waveLength ▷ Set to 2 for BB-Core, 3 for BB-Core-Async

procedure WAVENUMBER(r)
return (r − waveOffset)/waveLength

procedure PROPOSEROUND(w)
return (w ∗ waveLength) + waveOffset

procedure DECISIONROUND(w)
return PROPOSEROUND(w)+(waveLength− 1)

procedure STRONGLYCERTIFIEDLEADER(w, bleader)
Bdecision ← GETDECISIONBLOCKS(w)
return |{b′ ∈ Bdecision : ISVOTE(b′, bleader)}| ≥ 4f + 1

procedure SKIPPEDLEADER(w, bleader)
Bdecision ← GETDECISIONBLOCKS(w)
return |{b′ ∈ Bdecision : ¬ISVOTE(b′, bleader)}| ≥ 4f + 1

procedure TRYDIRECTDECIDE(w)
Bleader ← GETLEADERBLOCKS(w, leaderOffset)
for bleader ∈ Bleader do

if SKIPPEDLEADER(w, bleader) then return Skip

if STRONGLYCERTIFIEDLEADER(w, bleader) then return
Commit(bleader)

return ⊥

procedure WEAKLYCERTIFIEDLEADER(banchor, bleader)
w ← WAVENUMBER(bleader.round)
Bdecision ← GETDECISIONBLOCKS(w)
return |{b ∈ Bdecision : ISVOTE(b, bleader) ∧ LINK(b, banchor)}| ≥

2f + 1

procedure TRYINDIRECTDECIDE(w, S)
rdecision ←DECISIONROUND(w)
sanchor ← first s ∈ S s.t. rdecision < s.round ∧ s ̸= Skip
if sanchor = Commit(banchor) then

Bleader ← GETLEADERBLOCKS(w, leaderOffset)
if ∃ bleader ∈ Bleader s.t. WEAKLYCERTI-

FIEDLEADER(banchor, bleader) then return Commit(bleader)
else return Skip

return ⊥

single wave with six validators (v0, v1, v2, v3, v4, v5). The
first round R (Propose) of a wave contains the blocks that
the wave attempts to commit (P0, P1, P2, P3, P4, P5) along
with the equivocating block P ′1. In the second round R+ 1
(Decision), each block serves as a vote for the Propose
blocks it references. In the example of Figure 1, blocks
V0, V1, V2, V3, and V4 vote for P0, P1, P2, P3, and P4 (but
not for P ′1 or P5), whereas block V5 votes for P ′1, P2, P3, P4,
and P5 (but not for P0 or P1). The procedure ISVOTE(·) in
Algorithm 3 formally defines a vote. A Propose block is
considered strongly certified if it has at least 4f+1 votes. We
also say that the voting blocks form a strong certificate for
the proposed block. In the example, blocks P0, P1, P2, P3,
and P4 are strongly certified, while P ′1 and P5 are not. If a
block receives at least 2f+1 votes but fewer than 4f+1, it
is considered weakly certified. As before, we also say that
the voting blocks form a weak certificate for the proposed
block. As shown in Figure 1 (right), BB-Core initiates a
new wave every round: round R is a Propose round for
wave 1, round R + 1 is a Decision round for wave 1 and
a Propose round for wave 2, etc. Algorithm 2 formally
defines a wave.
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Figure 1: The structure of the BB-Core DAG. Left: A wave consisting of two rounds (Propose and Decision). Right: Wave patterns in the BB-Core
protocol (each round initiates a new overlapping wave).

Algorithm 3 Helper Functions
validators ▷ The set of validators
async ▷ Whether the protocol is asynchronous

procedure GETDECISIONBLOCKS(w)
rdecision ←DECISIONROUND(w)
return DAG[rdecision]

procedure GETLEADERBLOCKS(w, rank) ▷ Validators may equivocate
rpropose ← PROPOSEROUND(w)
if async then

rdecision ←DECISIONROUND(w)
s← COMBINECOINSHARES({b.share s.t. b ∈ DAG[rdecision]})

else
s← rpropose

leader ← validators[(s + rank) mod |validators|]
return {b ∈ DAG[rpropose] : b.author = leader}

procedure ISVOTE(bsupport, bleader)
/* Note: If waveLength = 2, equivalent to LINK(bleader, bsupport) */
function VOTEDBLOCK(b, id, r) ▷ Depth-first search

if r ≥ b.round then return ⊥
for b′ ∈ b.parents do

if (b′.author, b′.round) = (id, r) then return b′

res← VOTEDBLOCK(b′, id, r)
if res ̸=⊥ then return res

return ⊥
(id, r)← (bleader.author, bleader.round)
return VOTEDBLOCK(bsupport, id, r) = bleader

procedure LINK(bold, bnew)
return ∃ a sequence of k ∈ N blocks b1, . . . , bk s.t.
b1 = bold∧bk = bnew ∧∀j ∈ [2, k] : bj ∈

⋃
r≥1 DAG[r]∧bj−1 ∈

bj .parents

3.2. Proposers and anchors

BB-Core’s leader slots represents a pair (validator,
round) and can be either empty or contain the validator’s
proposal for the respective round. If the validator is Byzan-
tine, they may have equivocated, in which case the slot
would contain more than one block.

Multiple leader slots can be instantiated per round, en-
abling parallel leader block proposals. Each slot is in one
of three states: commit, skip, or undecided. All slots
begin in the undecided state, and the protocol’s objective
is to classify them as either commit or skip. The commit
state indicates that the slot’s block should be included in
the total ordering, while the skip state allows the protocol
to exclude slots from crashed or Byzantine validators. Cru-
cially, the undecided state forces subsequent leader slots
to wait, preventing unsafe commitments. Similarly to related
work [5, 15, 13, 16], the number of leader slots per round
is a system parameter. Before advancing round, validators
wait up to 2∆ time to receive the blocks from the leaders
slots of the previous round, if they have not already.

3.3. The decision rule

We present the decision rule of BB-Core through an
example protocol run. Figure 2 shows the local view
of a BB-Core validator in a system with six validators
(v0, v1, v2, v3, v4, v5), parameterized with two leader slots
per round. Following standard notation, we denote a block
as B(vi,R), where vi is the issuing validator and R is the
block’s round.



L0b

L0a

v0

v1

v2

v3

R

L1a L2b

L3b

R+2

L3a

L1b L2av4

v5

Figure 2: Example with six validators and two leader slots per round.

Initially, all proposer slots are in the undecided state.
The validator examines the portion of the DAG shown in
Figure 2 and attempts to classify as many leader-slot blocks
as possible into either commit or skip.
Step 1: Determine the leader slots. The sequence of
leader slots for each round is predefined and known to all
validators. In the example of Figure 2, every validator knows
in advance that the leader slot sequence is [L0a, L0b, L1a,
L1b, L2a, L2b, L3a, L3b]. This deterministic mechanism
ensures that even if validators have divergent DAG views,
they still agree on the leader slots (and their order) for
a given round—regardless of whether a block has been
observed in that slot. This design also enables low latency
by allowing multiple leaders per round, using these slots to
order the causal history.
Step 2: Direct decision rule. The validator attempts to
classify each slot (even those without a block) as either
commit or skip. To do so, it processes each slot individ-
ually, starting with the lowest slot that is part of a complete
wave (L2b), applying the BB-Core direct decision rule. The
validator classifies a block B in a slot as skip if it observes
4f +1 blocks from the subsequent Decision round that do
not vote for it, and as commit if it is strongly certified. As
discussed in Section 3.1, a block B is strongly certified if
there are 4f+1 blocks voting for it. Otherwise, the validator
leaves the slot as undecided.

In this example, the validator first analyzes L2b and
observes that B(v0,R+3), B(v1,R+3), B(v2,R+3), B(v3,R+3),
and B(v5,R+3) strongly certify it. Therefore, it classifies L2b

as commit. Section 6 shows that this scenario is the most
common (in the absence of an adversary) and results in
the lowest latency. The validator then analyzes L2a and
observes that B(v0,R+3), B(v1,R+3), B(v2,R+3), B(v3,R+3),
and B(v5,R+3) do not vote for it. Therefore, it classifies
L2b as skip. The presence of 4f + 1 blocks from the
Decision round that do not vote for a block ensures that

it will never be certified, and will thus never be committed
by other validators with a potentially different local view of
the DAG. Section 6 shows that this rule allows BB-Core
to promptly skip (benign) crashed leaders to minimize their
impact on the protocol’s performance.
Step 3: Indirect decision rule. In the case where the direct
decision rule cannot classify a slot, the validator uses the
BB-Core indirect decision rule. This rule looks at future
slots to decide about the current one. First, it finds an
anchor. This is the earliest leader slot with a round number
R′ > R+ 1 that is either still classified as undecided or
already classified as commit. If the anchor is undecided,
the validator marks the current slot as undecided. If the
anchor is commit, the validator checks if it references at
least one weak certificate over the current slot. If it does,
the validator marks the current slot as commit. If it does
not, the validator marks the current slot as skip. Section 4
shows the direct and indirect decision rules are consistent,
namely if one validator direct commits a block no honest
validators will indirect skip it and vice versa.

In this example, the validator fails to classify L0b using
the direct decision rule as it is neither strongly certified
nor are there enough blocks from the subsequent Decision
round that do not reference it to classify it as skip. It
thus searches for its anchor. Since L2a has been classified
as skip, it cannot serve as an anchor; therefore, L2b is
the anchor for L0a. Given that L2b references B(v0,R+1),
B(v1,R+1), and B(v2,R+1), which form a weak certificate
for L0a, the validator classifies L0a as commit.

Finally, L0a cannot be classified using the direct decision
rule as well. Its anchor is again L2b, but it does not refer-
ence a weak certificate over L0a. Therefore, the validator
classifies L0a as skip.
Step 4: Commit sequence. After processing all slots, the
validator derives an ordered sequence of the leader-slot
blocks. It then iterates over this sequence, committing all
slots marked as commit and skipping all slots marked as
skip, until it encounters the first undecided slot. As
shown in Section 4, this commit sequence is safe, and
eventually, every slot is classified as either commit or
skip. In the example of Figure 2, the validator’s leader
sequence is [L0b, L1a].

Following the approach introduced by DagRider [14],
the validator derives the final commit sequence by lineariz-
ing the blocks within the sub-DAG defined by each leader
block using a depth-first search. If a block has already been
included by a previous leader slot, it is not re-linearized.
Leader slots are processed sequentially, ensuring that all
blocks appear in the final commit sequence exactly once and
in an order consistent with their causal dependencies. The
procedure LINEARIZESUBDAGS(·) (Algorithm 1) formal-
izes this step. In the running example, the commit sequence
is [L0b, B(v0,R), B(v1,R), B(v4,R), B(v5,R), L1a].

4. BB-Core Security and Liveness

Lemma 1. There will never be a block that an honest au-
thority directly commits while another honest authority



directly skips.

Proof 1. Assume for the sake of contradiction that such
a block exists and call it B. Thus, there are 4f + 1
authorities which support B and 4f+1 authorities which
blame B. Since f authorities are Byzantine, there are
3f+1 honest authorities that support B and a distinct set
of 3f + 1 honest authorities that blame B. This means
there are 7f + 2 authorities overall contradicting our
assumption of n = 5f + 1.

Lemma 2. There will never be a block that an honest
authority directly skips while another honest authority
indirectly commits.

Proof 2. Assume for the sake of contradiction that such
a block exists and call it B. Thus, there are 4f + 1
authorities which blame B and 2f +1 authorities which
support B. Since f authorities in the network are Byzan-
tine, there are 3f + 1 honest authorities that blame
B and a distinct set of f + 1 honest authorities that
support B. This means there are 5f+2 authorities overall
contradicting our assumption of n = 5f + 1.

Lemma 3. If at a round R, 4f + 1 blocks from distinct
authorities support a block B, then all blocks at future
rounds R′ > R will link to 2f +1 supports for B from
round R.

Proof 3. Each block links to 4f+1 blocks from the previous
round. For the sake of contradiction, assume that a block
B′ in round R′ > R does not link to 2f + 1 supports
for B from round R.

Case: R′ = R + 1. B′ links to 4f + 1 blocks from round
R. Since 4f + 1 blocks in round R support B, by
the standard quorum intersection, the minimum overlap
between B′ parents and B supports is 2f + 1. Thus,
the only way for B′ to not link to 2f + 1 supports is
if an honest validator equivocated in round R. This is a
contradiction.

Case: R′ > R + 1. B′ links to 4f + 1 blocks from round
R′− 1. At least 3f +1 of these blocks are produced by
honest authorities. Honest authorities always link to their
own blocks, which means they will eventually link to
their block from round R+1. The above case proves how
these blocks from round R+ 1 link to 2f + 1 supports
for B. Thus, the only way for B′ to not link to 2f + 1
supports for B is if all of these honest authorities do
not link to their own block in round R + 1. This is a
contradiction.

As a result of Lemma 3, we have the following corollary.
Corollary 1. There will never be a block which an honest

authority directly commits while another honest author-
ity indirectly skips.

Lemma 4. All honest authorities who have decided on a
leader block, agree on the decision.

Proof 4. Let Bn and Bm be the highest committed leader
blocks according to authorities X and Y respectively.
Without loss of generality, let n ≤ m. Note that leader

blocks decided by X which are higher than Bn are direct
skips which according to Lemma 1 and Lemma 2 will
be consistent with Y ’s decision. The proof continues by
induction on the statement for 0 ≤ i ≤ n, if both X
and Y decide on leader block Bi, then they either both
commit or both skip the block.

Case: i = n. By definition, X directly commits Bi and
from Lemma 1 and Corollary 1, Y will also commit Bi.

Case: Assuming the statement is true regarding Bi for k+
1 ≤ i ≤ n, we prove it is true for Bk. This is done by
enumerating decision possibilities.

1) If either authority directly commits Bk, then by Lemma
1 and Corollary 1, the other will commit.

2) If either authority directly skips Bk, then by Lemma 1
and Lemma 2, the other will skip.

3) Both X and Y indirectly decide Bk. Let AX
c and AY

d
be the anchors used by X and Y to indirectly decide
Bk. Since k+1 < c ≤ n, it follows from the induction
hypothesis that AX

c = AY
d . Thus, both X and Y use

the same anchor to decide Bk. The indirect decision
rule solely depends on the causal history of the anchor.
By using the same anchor, X and Y will agree on the
decision for Bk.

Theorem 1. BB-Core maintains safety.

Proof 5. The final state of consensus is a total ordering of
all blocks. In BB-Core, the total ordering is maintained
until an undecided leader block is encountered. From
Lemma 4, all honest validators agree upon the decisions
of all leader blocks until an undecided leader block. The
total ordering of all blocks is a deterministic algorithm
run on the sequence of committed leader blocks. Since
all honest validators have the same sequence of commit-
ted leader blocks, the total ordering will be the same.

Lemma 5. After GST, all honest authorities will enter the
same round within ∆.

Proof 6. Messages sent before GST will deliver in ∆ after
GST commences. Thus, the valid block of the highest
round that any authority sent before GST will be deliv-
ered to all authorities in GST + ∆. Upon receiving this
block, all honest authorities will enter the round.

Lemma 6. After GST, leader blocks from honest authorities
will receive support from all honest authorities.

Proof 7. By Lemma 5, all honest authorities will enter
the same round within ∆ after GST. When an honest
authority sends its leader block for this round, it is
delivered to all authorities within ∆. Since the protocol
sets the timeout to 2 ·∆, any honest authority that has
entered the round will receive the leader block and cast
support for it before timing out, regardless of when
exactly they entered the round relative to other honest
authorities.

As a result of Lemma 6, we have the following corollary.
Recall that there are 4f + 1 honest authorities.



Corollary 2. After GST, leader blocks from honest author-
ities will be (directly) committed.

Lemma 7. The round-robin schedule of leader-block pro-
posers ensures that, within a window of 2f + 2 rounds,
there are two consecutive rounds in which an honest
authority is the proposer of the highest-ranked leader
block.

Proof 8. The network contains f Byzantine authorities. In
2f +2 rounds, there are 2f +1 sets of two consecutive
rounds. Due to the schedule being round robin, in at
least f + 1 of the rounds, an honest authority will be
the proposer of the highest-ranked leader block. These
blocks are the highest-ranked leader block in exactly two
of the sets. By the pigeonhole principle, one set must
contain ⌈ 2·(f+1)

2f+1 ⌉ = 2 honest authorities proposing the
highest-ranked leader block.

Lemma 8. After GST, undecided leader blocks will even-
tually be decided.

Proof 9. Let B be an undecided leader block in round r.
By Lemma 7, after GST, there will be two consecutive
rounds, j and j+1 with j > r, where honest authorities
propose the highest-ranked leader block. By Corollary
2, their leader blocks will be committed. The proof con-
tinues by induction on the statement for rounds earlier
than j, all leader blocks are decided.

Case: All undecided leader blocks in rounds j−1 and j−2
will be decided as they now have decided anchors in
rounds j + 1 and j respectively.

Case: For undecided leader blocks in round i < j − 2,
j is higher than the decision round of the wave that i
is in. Thus, by the induction hypothesis, there are no
undecided leader blocks between i and j. Hence, the
leader block in round i will also be decided.

Theorem 2. BB-Core maintains liveness.

Proof 10. By Lemma 5, all honest authorities synchronize to
the same round within ∆ after GST. By Lemma 7, within
any window of 2f+2 rounds, there exist two consecutive
rounds where honest authorities propose the highest-
ranked leader blocks. By Corollary 2, these honest leader
blocks will be directly committed.
Furthermore, by Lemma 8, any previously undecided
leader blocks will eventually be decided once we have
committed blocks from honest authorities in consecutive
rounds. This creates a cascading effect where the com-
mitment of new honest blocks triggers the decision of
older undecided blocks.
Since we can guarantee that honest leader blocks are
committed every 2f +2 rounds, and each such commit-
ment resolves all pending undecided blocks, the protocol
makes continuous progress. No block remains undecided
indefinitely, and new blocks are regularly committed,
satisfying the liveness property.

Theorem 3. BB-Core implements Byzantine Atomic
Broadcast.

Proof 11. Validity: If an honest authority broadcasts a
block, it will be included in the DAG and processed
by the consensus protocol. Leader blocks are eventually
decided (either committed or skipped), as shown in The-
orem 2. Non-leader blocks are included in the lineariza-
tion process of committed leader blocks, ensuring all
honest authorities eventually deliver the same decision
regarding all blocks in the system.
Agreement: By Lemma 4, all honest authorities reach
identical decisions for all leader blocks. Since the to-
tal ordering is constructed deterministically from these
agreed-upon decisions, if any honest authority delivers
a block in the final ordering, all other honest authorities
will deliver the same block.
Integrity: The protocol’s block validation and crypto-
graphic signatures ensure that blocks are only accepted
from legitimate authors. The deterministic ordering al-
gorithm processes each decided block exactly once,
preventing duplicate delivery in the total ordering.
Total Order: From Theorem 1, all honest authorities
construct identical total orderings from the same se-
quence of committed leader blocks. Since all blocks
are delivered according to their position within these
identical orderings, all honest authorities deliver blocks
in the same sequential order.

5. The BB-Guard protocol

As we discussed in the previous section, BB-Core
achieves low latency, but in a setting that assumes fewer
corruptions, which introduces the practical risk of a weaker
resilience threshold. We now present an approach to further
mitigate any safety concerns, by introducing an additional
(slow) layer of higher resilience. That is BB-Guard, a proto-
col that monitors the operation of BB-Core in a synchronous
pace, and corrects potential violations via two guarantees;
(i) any safety or livenesss violation will be caught and (ii)
at least f + 1 violating core validators will be provably
identified by all participating validators. In practice, BB-
Guard will operate in a synchronous, slower pace than BB-
Core, while verifying that the main protocol is operating
correctly, and recovering liveness and safety in case any of
the two fails due to more than f corruptions. We present
the main BB-Guard functionality in Algorithm 4 and some
helper functions in Algorithm 5.

5.1. Motivation

The BB-Guard protocol fulfils a crucial function to
ensure safety and liveness of BlueBottle when the system
is under attack. We argue via two constructive examples.

Example 1: Liveness failure. Assume that during the
operation of BB-Core, the resilience assumption breaks, and
an adversary A takes control of f + 1 validators. In such
a case, it is simple to see that our protocol loses liveness
indefinitely, even via crash-faults only. The protocol requires
4f + 1 votes for each round’s slots to be determined and



for it to move forward on the next round. With fewer than
4f +1 honest validators participating, the protocol could be
skipping rounds or make no progress indefinitely.

Example 2: Safety failure. Again, assume that during
the operation of BB-Core, the resilience assumption breaks,
and an adversary A takes control of 3f core validators.
The adversary is then able to present to some validators
a directly committed leader block BL (4f + 1 support),
whereas for others it will be undecided (f+1 support). The
next leader will also be presented the latter case, so in its
view BL+1 will not have enough support to indirectly com-
mit BL. When BL+1 is directly committed, the validators
will diverge views (some will already have BL committed
whereas other will skip it) and safety will break.

Both examples showcase the importance of maintaining
the resilience assumption for BB-Core to operate correctly.
However, in practice, it is possible that an adversary could
temporarily break the resilience assumption. In such a case,
we would like to ensure that our protocol can recover both
safety and liveness, which has not been the case so far. This
is what we aim to achieve with BB-Guard.

5.2. BB-Guard setting

Before diving into the protocol details, we recall the
overall setting: We assume a set of n validators who in
total hold stake S such that each validator maintains stake
equivalent to S/n.2 We assume that there exists a polyno-
mially bounded adversary A who can corrupt up to a total
of Sf ≤ (S − 1)/2 stake in a static fashion, i.e. A picks
which validators to corrupt (up to the corruption threshold)
before the protocol starts, and cannot change corruptions
after. Furthermore, we separate the validators into two sets,
core and guard, such that

∑
vi∈core stakei ≥ 5S/6. 3

For this part of our construction, we assume that valida-
tors communicate over a synchronous, point-to-point pro-
tocol, with a known network delay ∆net. We also denote
by ∆, the network delay for reliable broadcast. This is
the theoretical delay with which we will analyze our guard
protocol4.

This is also the ∆ timeout used for the liveness proofs
of BB-Core, however, in the practical deployment we opti-
mistically wait a much smaller timeout before blaming a
leader. This practice has been introduced by Shoal [17],
where the real ∆ timeout is only used when many con-
secutive leaders are skipped. It balances well the practical
needs with the theoretical requirements and is what most
production systems follow.

2. This model can be easily simulated even in a setting where validators
hold unequal units of stake, by having each validator simulate a separate
Sybil validator per each unit of stake it holds.

3. As already mentioned earlier, this implies that A can corrupt at most
t · |core| validators, where t < 3/5.

4. In practice, we will set ∆ to a sufficiently large time so that all
messages are guaranteed to be delivered by then. Since this construction
is going to be part of the slow path, we can set ∆ to a large number.

5.3. Monitoring failures

Block handling. Upon receiving a block, each guard verifies
that the block is valid with respect to BB-Core, by executing
the predetermined validity checks defined by the BB-Core
protocol. Furthermore, guards check for equivocations with
respect to every received block. They do so, by maintaining
state of what blocks they have received from which core val-
idators for each round of BB-Core. If a block is equivocated
by its authoring validator, this is proof of misbehavior for
that party. In the current construction, guards simply do not
consider any such blocks at all. However, more sophisticated
designs could allow such blocks to contribute to the provable
equivocations of the system, so that malicious parties are
identified via such equivocations as well.
Blamesets. Blamesets are the main gadget of our construc-
tion. A valid blameset is a set of at least f+1 core validators,
that have provably misbehaved. There are two types of
blamesets, namely liveness and safety blamesets, according
to the type of misbehavior the validator has been proven to
have performed. Each valid blameset is accompanied by a
valid proof of misbehavior for each validator in it. Once an
honest guard has established a new valid blameset, it can
request a recovery process, via which, guards will agree on
one blameset, and slash the validators in that blameset.
Liveness failure detection. Guards are also tasked with
restoring the core protocol’s liveness. To check for potential
liveness failures, for each new round, they maintain a timer
∆live and a set asleep that contains inactive core validators
and is initialized to core, the set of all core validators. Upon
receiving a valid block from some core validator vi for round
r, the guard will remove vi from asleep(r), indicating
that the validator is active for the round. After the timer
expires, any validator remaining in asleep, will be blamed
by the guard. After the blaming phase, validators have a
chance to respond within a grace period ∆grace. During
the grace period, blamed (or not) validators can respond
by providing a valid block for the round produced by the
the blamed validator, to convince all others that the blamed
party is live. After the grace period , any validator who is
not convinced, votes against the blamed party. If enough
(majority) votes are gathered, validators can use them as
proof for the inclusion of the party in their liveness blameset.
Safety failure detection. Honest validators are guaranteed
to not equivocate, and to not vote for equivocating blocks.
However, if the safety assumption of the BB-Core protocol
breaks, i.e., the adversary can corrupt more than f valida-
tors, then equivocating blocks can be committed (still, no
two equivocating blocks can both be directly committed,
as long as the corruptions remain ≤ 3f ). However, as we
described before there could be an equivocation through the
indirect skip path. In this case, BB-Guard will come in play;
every time a guard observes a new set of blocks that are
being committed to the DAG, they compare existing already
committed, leader blocks to the new ones. In case a guard
finds two equivocating blocks, it compares their support, to
find the set of overlapping parties supporting the two. This



overlapping set, which as we show will be provable and will
contain at least f +1 misbehaving parties, can then be used
for recovery/slashing. The term equivocating blocks here is
broad and can refer to any type of equivocation: we focus
on BB-Core but this generalized to any consensus protocol
where equivocating blocks or votes can exist.

5.4. Recovery

In this construction, we show how guards can catch
liveness/safety issues, and in such cases, agree on a blameset
of at least f +1 Byzantine parties. Honest guards can agree
simply by running Byzantine agreement on the recovery set
of each guard, which they can do since they maintain honest
majority. After that, they can deterministically choose the
first (in order) valid blameset, as the set of core validators
to be removed.

After honest guards agree on such a blameset, they can
provably notify the core validators. They in turn can then
disregard the participants proven to be malicious (or in prac-
tice, slash their stake, which leads to future research towards
cryptoeconomic/incentive-based security of such systems).
The core validators can, at that point, execute an honest-
majority agreement protocol, since they will have regained
majority (by removing f + 1 malicious out of 5f + 1 total,
the new split is 2f +1 honest out of 4f +1 total). For this
reason, we focus on showing how to regain honest majority
in the core validators in cases of misbehaviour, and not on
the specifics of how to utilize the honest majority to recover
the protocol afterwards.

5.5. BB-Guard Security and Liveness

Lemma 9. Assume there are n = 5f + 1 core authorities
and up to 3f of them are malicious. No two honest
authorities can directly commit different leader blocks
(or directly commit and directly skip) for the same leader
and round.

Proof 12. Assume that this can occur. Then, there are 4f +
1 authorities which vote B(l,r) and 4f + 1 authorities
which vote (or skip) B′(l,r). Since there are 3f malicious
authorities, there are still f +1 honest votes needed for
B(l,r) and another f + 1 honest votes needed for B′(l,r)
(or to skip B′). This means that an honest authority must
do both, a contradiction.

Corollary 3. Lemma 1 holds even under 3f corruptions.

Proof 13. Same argument as in the respective proof, but
with 5f + 2 authorities required, instead of 7f + 2.

Lemma 10. If there exists a block which an honest core
authority directly commits while another honest core
authority indirectly skips, then there exist at least f +1
authorities that have provably equivocated.

Proof 14. Assume that such a block exists and call it B.
Each block links to 4f + 1 blocks from the previous
round. Assume that a block B′ in round R′ > R does

Algorithm 4 BB-Guard Main Functions
procedure ONROUND(r)

Set now = r − 1
Set timers ∆live = 4∆, ∆leader = 2∆
if ∆leader fires then

Set now = r
for l ∈ GETLEADERS(r − 1) : l ∈ asleep(r − 1) do

BC(LBlame, i, l, r − 1)

if ∆live fires then
for corej ∈ asleep(r) do

BC(LBlame, i, corej , r)
for l ∈ GETLEADERS(r − 1) : l /∈ asleep(r − 1) do

for corej : ¬ISVOTE(b(j,r), b(l,r−1)) do
BC(LBlame, i, corej , r)

Set timer ∆grace = 2∆
if ∆grace fires and |LBlamed(r)| ≥ f + 1 then

RECOVER(i, LBlamed(r), πr)
procedure ONBLOCK(b := B(u,r))

if Valid(b) ∧ Equivocates(b) = ⊥ ∧ now ≤ r then
asleep(r)← asleep(r) \ c;
BC((i, b, σi(b)))

procedure ONCOREUPDATE(S) ▷ ⊥ ̸= S ← TRYDECIDE(. . . )
(Set, π)← CHECKEQUIVOCATION(S)
if Set ̸= ⊥ then

RECOVER((i, Set, π))
else

for b ∈ S do
BC((i, b, σi(b)))

procedure ONLBLAME((j, corek, r)) ▷ blames(k, r) initialized to ∅
blames(k, r)← blames(k, r) ∪ {j}
if Maj(blames(k, r)) then

LBlamed(r)← LBlamed(r) ∪ {k}, πr ← πr∥blames(k, r)

procedure ONRECOVER((j, SB , π))
if isValidBlameSet(SB , π) and Si = ⊥ then

Si ← SB

RECOVER(i, Si, π)

Algorithm 5 BB-Guard Helper Functions
validators ▷ The set of validators

procedure GETLEADERS(r)
Let l = leadersPerRound, V = |validators|
return {validators[(r + d) mod V ] : d = 0, . . . , l− 1}

procedure RESOLVEEQUIVOCATION(b, b′)
Set← {v ∈ validators : supporting b and b′}
π ← {respective blocks showing support from Set}
return (Set, π)

procedure CHECKEQUIVOCATION(S)
if ∃b ∈ S : B ← EQUIVOCATES(b, LocState()) ∧ B ̸= ⊥ then

(Set, π)← RESOLVEEQUIVOCATION(B, b)
return (Set, π)

return ⊥
procedure RECOVER(j, BS, π)

BC(i, S, σi(S, recover))
Set RCVeci = ⟨Sj⟩j∈[n], where Sj is:{

Sj , if received unique: (j, Sj , σj(Sj , recover)) within ∆

1, else.

BA(j, Sj )→ SRj , for all j ∈ [n]
ORDER({SRj}j∈[n])→ O
return the first valid SRj ∈ O

not link to 2f+1 support for B from round R (otherwise,
from lemma 3, corollary 1 would apply and B would
never be indirectly skipped). In that case, focus on R′ =
R + 1. B′ links to 4f + 1 blocks from round R. Since
4f + 1 blocks in round R support B, and the total of
distinct core authorities is 5f +1, the minimum number
of equivocations is f + 1, and it is provable by their



difference in votes.

Lemma 11. If there exists a block that an honest core
authority directly skips while another honest core au-
thority indirectly commits, then there exist at least f+1
authorities that have provably equivocated.

Proof 15. Assume that such a block exists and call it B.
Thus, there are 4f + 1 authorities which blame B and
2f+1 authorities which support B. This requires a total
of 6f+2 votes, out of which only 5f+1 can be distinct.
As a results 6f+2−(5f+1) = f+1 need to both support
and blame B which constitutes a proof of equivocation.

Lemma 12. If there exist two honest core authorities who
have decided on a leader block and do not agree on the
decision, then there exist at least f + 1 core authorities
that have provably equivocated.

Proof 16. Let BX ̸= BY be the committed (or skipped)
leader blocks according to authorities X and Y respec-
tively for leader l in round r. By Lemma 9, no two
honest authorities could have both directly committed
conflicting blocks. Similarly, no two honest authorities
could have directly committed and directly skipped a
block respectively(Corollary 3). The only viable cases
are the following:

Case: X directly committed BX , while Y directly skipped
BY (and vice versa): From Lemma 10 (and Lemma 11
respectively), there will exist a set of at least f + 1
provably misbehaving parties.

Case: X directly committed BX , while Y indirectly com-
mitted BY (and vice versa): Similar to previous argu-
ments, this requires at least (4f +1)+ (2f +1) distinct
votes, i.e., at least f + 1 provable equivocations.

Case: X indirectly committed BX , while Y indirectly com-
mitted BY : Let AX and AY be the directly-committed
anchors used by X and Y to indirectly commit BX and
BY , respectively. Since no honest party could have voted
for both anchors, there are not enough votes for both
anchors to be directly committed (total votes needed
8f +2, but total votes on the protocol are 2f +1+6f ).

Case: X indirectly committed BX , while Y indirectly
skipped BY : In that case, let A denote the directly-
committed anchor used to indirectly commit BX , and A′

denote the directly-committed anchor used to indirectly
skip BY . Again, since no honest party could have voted
for both anchors, there are not enough votes for both
anchors to be directly committed.

Lemma 13. No honest core validators will ever be included
in a valid safety-blameset.

Proof 17. Honest validators receive blocks and vote based
on whether the blocks preserve the rules of the protocol.
The validators’ votes cannot be equivocated, and honest
validators will never vote for two conflicting blocks. As
such, honest validators can not be included in any valid
blameset.

Lemma 14. No honest core validators will ever be included
in a valid liveness-blameset.

Proof 18. Assume that an honest core validator v is correctly
included in a liveness-blame for some round r, i.e., at
least Sf + 1 guards have attested that they blamed v
for round r. At least one of the guards is honest, say g.
Then, according to Algorithm 4, either i) v did not vote
for a leader that g considers live, or ii) v did not vote
on time, or iii) v was a leader and did not send on time.
For the first case, g considers leaders on time, only if
it receives a valid leader block for the previous round
within 2∆ after the round has started. Even if the
previous round progressed instantly, within ∆, v must
have also progressed and received the leader’s block. If
v then voted for the leader, within another ∆, v’s block
voting for the leader would arrive to g, on time (within
the 4∆ duration of ∆g

live. As such, v must have seen a
leader block on time, and still not voted for it, which
contradicts the honest behavior.
Similarly for the second case, g considers on time any
valid vote that arrives within 4∆ after g enters the round.
Since v will enter the round by at most a ∆ delay after
g, if v were to follow the protocol, it would wait by at
most another 2∆ for the leader’s block and then submit
its vote. Since it takes at most an additional ∆ for v’s
vote to arrive at g, v must have entered the round on
time, and still not voted for it on time, which contradicts
the honest behavior.
Finally, if v was a leader for a round, it enters the round
within at most ∆ after the first honest party. An honest
leader immediately proposes a block on entering a round
for which it is the leader. Since g would wait for 2∆ for
the leader’s block after entering the round, even if v
entered the round ∆ time after g, it would still be on
time to send its block to g. Thus, v must have entered
the round on time, but not have sent its block on time,
which also contradicts the honest behavior.

Corollary 4. If the number of corruptions is ≤ f , then no
Recover call occurs.

Proof 19. Implied by Lemmas 13, 14, since there are not
enough misbehaving parties to construct blamesets.

Lemma 15 (Safety Violations). Any safety violation (equiv-
ocation) on BB-Core will be identified, and restored
within 2∆ +∆BA of the moment the first honest party
observes it.

Proof 20. Assume that an honest party (validator or guard)
observes two equivocating blocks (according to its view)
at time t. Due to synchrony, after ∆, all honest parties
will be observing a superset of the validator’s view, and
can also see the equivocation. Such equivocations can
always construct an f+1 blameset (per Lemma 12) and
as such by time t+2∆, all honest guards will be running
BA, some with input the blameset of the aforementioned
equivocation. Within another ∆BA, all guards will agree
on a blameset of at least f + 1 validators, (since there
exists at least one such valid blameset), and will recover
the safety of the protocol.



Lemma 16 (Liveness). For every round r, BB-Core pro-
gresses from r within 6∆ of entering r, or at least f+1
parties are blamed in BB-Guard.

Proof 21. First, parties enter round r of BB-Core, once they
receive 4f+1 blocks (from distinct senders) from round
r−1. Every guard will also enter rounds according to this
logic. From synchrony and broadcast, it is guaranteed
that once a guard enters round r, every participant will
enter round r at most within ∆ as well (similar to
Lemma 5). Each guard sets a timer ∆live = 4∆, by which
it expects to receive blocks from at least 4f + 1 core
validators; this is because in the worst-case, it would
take at most an additional ∆ for the slowest validator
to enter the round, it would wait for the leaders of the
past round for 2∆ and would take an additional ∆ for
its block to return to the guard. Each guard expects to
have received blocks from the leaders of the past round
already before the current round starts, or within 2∆ of
the current round start; this is because in the worst-case,
it would take an additional ∆ for the slowest leader to
enter the past round, and it would take another ∆ for its
block to arrive at the guard.
Say g∗ is the first honest guard that enters round r,
and let asleepg∗(r) denote the set once ∆g∗

live = 4∆

expires. Within another ∆ after ∆g∗

live (5∆ total), every
other guard’s (say g) timer will also expire and they
will be blaming each of the asleep core validators v ∈
asleepg(r). If |asleepg(r)| ≤ f for any g ∈ H , with H
denoting the set of all honest guards, then it is guaran-
teed that all guards can progress the round after another
∆ (6∆ total). The same holds if |∩g∈Hasleepg(r)| ≤ f ,
since locally, every guard by that time will have blocks
from all v /∈ ∩g∈Hasleepg(r), which are sufficient to
progress the BB-Core round. Otherwise, by 6∆ total,
all guards will have at least |H| = Sf + 1 blames for
all v ∈ ∩g∈Hasleepg(r), where |∩g∈Hasleepg(r)| ≥
f + 1.

6. Evaluation

We implement a BB-Core validator5 in Rust by forking
the Mysticeti codebase [18]. Section A provides more details
about our implementation and testing methodology. We
evaluate the throughput and latency of BB-Core through
experiments conducted on Amazon Web Services (AWS)
on a geo-distributed testbed. Section B describes the exper-
imental setup in detail.

We focus our evaluation on comparing BB-Core with
Mysticeti [5], one of the state-of-the-art BFT consensus
protocols in terms of both latency and throughput. The scope
of this evaluation is to show that BB-Core can achieve
lower latency than Mysticeti without sacrificing throughput,
but at the cost of a lower fault tolerance of up to 20%
Byzantine faults instead of 33%. Unfortunately, there is no
n = 5f + 1 BFT consensus protocol that has a publicly

5. https://github.com/phvv/mysticeti/tree/odontoceti (commit e02aeba)

available implementation [19, 20, 21, 22]. We leave to
future work a further evaluation, when such artifacts become
available.

Our evaluation demonstrates the following claims:
C1 BB-Core has similar throughput and lower latency than

Mysticeti when operating in fault-free and synchronous
network conditions.

C2 BB-Core scales as well as Mysticeti by maintaining
high throughput and low latency as the number of
validators increases.

C3 BB-Core has a similar throughput to and lower latency
than Mysticeti when operating in the presence of (be-
nign) crash faults.

Note that evaluating the performance of BFT protocols
in the presence of Byzantine faults is an open research
question [23], and state-of-the-art evidence relies on formal
proofs (presented in Section 4).

6.1. Benchmark under ideal conditions

We evaluate the performance of BB-Core under normal,
failure-free conditions in a wide-area network (WAN). Fig-
ure 3 (Left) reports results from a geo-replicated deployment
with a small committee of 10 validators and a larger com-
mittee of 50 validators. For cost reasons, we cap the input
load at 100,000 tx/s (10 validators) and 300,000 tx/s (50
validators). These rates are two orders of magnitude above
the observed peak throughput of any existing blockchain and
we believe sufficient to assess system behavior under load.

The figure shows that BB-Core successfully trades some
fault tolerance for lower latency. BB-Core lowers the com-
mit path to two message delays. Each round of BB-Core
must, however, wait for a larger parent quorum (80% of
validators) than Mysticeti (67%). Despite this larger quorum,
BB-Core reduces end-to-end latency by about 20–25% in
the WAN setting across all input loads, confirming claim C1.
Concretely, with 10 validators at 100,000 tx/s, BB-Core
attains about 357ms latency versus about 461ms for Mys-
ticeti; with 50 validators at 100,000 tx/s, BB-Core reaches
about 395ms versus about 505ms, and at 300,000 tx/s,
BB-Core reaches about 637 ms versus about 772ms. We
observe a consistent proportional latency reduction at both
committee sizes, confirming claim C2.

6.2. Benchmark under faults

Figure 3 (Right) shows both protocols under 3 crash
faults in committees of 10 and 11 validators (the minimum
sizes used for this fault level in our experiments). We cap
the offered load at 50,000 tx/s for cost reasons.

As expected, both systems sustain the input load with
no material latency inflation relative to the fault-free runs.
Mysticeti’s latency lies between 400 and 500 ms, whereas
BB-Core remains between 300 and 350ms, preserving a
20–25% latency advantage (again at the cost of lowering
fault tolerance) and confirming claim C3. Both systems
handle benign crashes gracefully by rapidly skipping faulty
leaders via the direct skip rule described in Section 3.

https://github.com/phvv/mysticeti/tree/odontoceti
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Figure 3: WAN throughput-latency performance comparison of BB-Core (n = 5f +1) and Mysticeti (n = 3f +1) with a 512B transaction size. The
y-axis starts at 300ms to zoom in on the latency difference between the systems.

7. Making the Core Asynchronous

We study BB-Core under partial synchrony and also
introduce an asynchronous variant. The asynchronous algo-
rithm mirrors the partially synchronous one, except for the
orange-highlighted additions; Appendix C provides formal
correctness proofs. Composing BlueBottle with its asyn-
chronous counterpart introduces a subtle effect: BB-Guard
must detect liveness faults via a different mechanism.

In the partially synchronous design, liveness monitoring
first checks whether the round leader is faulty and then
verifies that the received blocks correctly reject a faulty
leader. This procedure uses a timer of 3∆, where ∆ denotes
the network delay bound. The asynchronous variant removes
leader timeouts, so liveness detection completes in 2∆.

This yields two implications. The first one is straightfor-
ward: the partially synchronous protocol trades one round
of optimistic-case latency for faster liveness recovery in the
asynchronous protocol. The second one is more significant:
the asynchronous variant removes the dependence on the
network delay ∆ between BB-Core and BB-Guard. This
decoupling lets operators choose a conservative ∆ (even
tens of seconds) without harming BB-Core’s performance
under crash faults. Operators can adjust this value at every
epoch. Moreover, a faulty-leader detection and exclusion
mechanism, such as HammerHead [24], further mitigates
the impact of faulty leaders.

8. Related Work

Byzantine fault-tolerant state machine replication (BFT-
SMR) is a foundational abstraction in distributed systems,
and its latency limits have been studied extensively [20,
25, 26, 27, 28, 29]. Classical work emphasizes worst-case
latency, with state-of-the-art protocols committing in three
communication steps while tolerating up to f < n/3 Byzan-
tine faults [27, 30, 31].

Motivated by practical deployments (e.g., blockchains),
recent work increasingly targets good-case latency under
partial synchrony, i.e., the latency to commit when the
designated leader is correct and the network satisfies partial

synchrony assumptions [32, 33]. In this setting, protocols
aspire to two-round commitment. SBFT [28] achieves two
rounds in the absence of Byzantine faults and reverts to a
slower path otherwise. FAB [20] removes this restriction
but was later shown to suffer from a liveness issue [34].
Kudzu [21] commits in three rounds in general and in
two rounds when the number of Byzantine faults is small
(f < n/5). Hydrangea [22] adopts a generalized fault
model that distinguishes Byzantine from crash faults; while
this model is weaker than a purely Byzantine model for a
fixed total fault budget, it requires careful parameterization
for practical deployment. Alpenglow [19] claims two-round
commitment while simultaneously tolerating less than 20%
Byzantine and less than 20% crash faults; however, this
guarantee this is impossible according to [22] and after
careful analysis it is actually a 3δ protocol as Rotor re-
quires 2δ and Votor an extra one. Optimistic fast paths
have also been explored in synchronous and asynchronous
settings [35, 36, 37, 38, 39, 40, 41].

For comparison, BlueBottle commits in two rounds
under partial synchrony while tolerating up to f Byzantine
faults with n = 5f + 1 replicas. Two-round finality with
n = 5f − 1 replicas is achievable when the protocol explic-
itly identifies and ignores faulty leaders [33, 42]. BlueBottle
could be extended with such leader-exclusion mechanisms to
attain the 5f−1 bound; however, we deliberately avoid this
design point because the incremental gain in fault tolerance
is modest relative to the additional protocol design and
engineering complexity it introduces.

Accountable safety [43, 44, 45] and accountable live-
ness [46, 47] strengthen classical safety and liveness via
crypto-economic mechanisms. In addition to preserving
agreement (safety) and eventual decision (liveness) below
a fault threshold, these notions enable attribution of prov-
able misbehavior—e.g., through slashing conditions—when
safety or liveness is violated, thereby deterring equivocation
or censorship in permissioned and permissionless settings.
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in one communication step,” in Proceedings of the 6th International
Conference on Parallel Computing Technologies, ser. PaCT ’01.
Springer-Verlag, 2001.

[37] R. Friedman, A. Mostefaoui, and M. Raynal, “ Simple and Efficient
Oracle-Based Consensus Protocols for Asynchronous Byzantine Sys-
tems ,” IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 1, pp. 46–56, 2005.

[38] K. Kursawe, “Optimistic byzantine agreement,” in Proceedings of the
21st IEEE Symposium on Reliable Distributed Systems, ser. SRDS
’02. IEEE Computer Society, 2002.

[39] R. Pass and E. Shi, “Thunderella: Blockchains with optimistic instant
confirmation,” in Advances in Cryptology – EUROCRYPT 2018.
Springer International Publishing, 2018.

[40] N. Shrestha, I. Abraham, L. Ren, and K. Nayak, “On the optimality of
optimistic responsiveness,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’20. Association for Computing Machinery, 2020.

https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
https://cdn.prod.website-files.com/5d80307810123f5ffbb34d6e/6008d7bbf8b10d1eb01e7e16_Avalanche%20Platform%20Whitepaper.pdf
https://cdn.prod.website-files.com/5d80307810123f5ffbb34d6e/6008d7bbf8b10d1eb01e7e16_Avalanche%20Platform%20Whitepaper.pdf
https://arxiv.org/abs/1906.08936
https://arxiv.org/abs/1906.08936
https://arxiv.org/abs/1906.08936
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://arxiv.org/abs/2310.14821
https://arxiv.org/abs/2310.14821
http://sui.io
https://arxiv.org/abs/2205.09174
https://arxiv.org/abs/2205.09174
https://doi.ieeecomputersociety.org/10.1109/ICDCS63083.2025.00060
https://doi.ieeecomputersociety.org/10.1109/ICDCS63083.2025.00060
https://arxiv.org/abs/2102.08325
https://arxiv.org/abs/2102.08325
https://github.com/asonnino/mysticeti
https://www.anza.xyz/alpenglow-1-1
https://www.anza.xyz/alpenglow-1-1
https://arxiv.org/abs/2505.08771
https://arxiv.org/abs/2505.08771
https://eprint.iacr.org/2025/1112
https://eprint.iacr.org/2025/1112
https://arxiv.org/abs/2003.13155
https://arxiv.org/abs/2003.13155
https://arxiv.org/abs/2003.13155
https://ieeexplore.ieee.org/document/8809541
https://ieeexplore.ieee.org/document/8809541
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1807.04938
https://doi.org/10.1007/978-3-031-48624-1_17
https://doi.org/10.1007/978-3-031-48624-1_17
https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467899
https://doi.org/10.1145/3465084.3467924
https://doi.org/10.1145/3465084.3467924
https://arxiv.org/abs/1801.10022
https://arxiv.org/abs/1801.10022


[41] N. Shrestha, Q. Yu, A. Kate, G. Losa, K. Nayak, and X. Wang,
“Optimistic, Signature-Free Reliable Broadcast and Its Applications,”
2025.

[42] I. Abraham and L. Ren, “2-round bft in simplex
style for n = 5f − 1,” https://decentralizedthoughts.github.
io/2025-08-06-5fminus1-simplex/, Aug. 2025, decentralized
Thoughts. Accessed: 2025-11-13. [Online]. Available: https:
//decentralizedthoughts.github.io/2025-08-06-5fminus1-simplex/

[43] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,”
arXiv cs.CR 1710.09437, 2019.

[44] J. Neu, E. N. Tas, and D. Tse, “The Availability-Accountability
Dilemma and Its Resolution via Accountability Gadgets,” in Financial
Cryptography and Data Security: 26th International Conference, ser.
FC ’22, 2022.

[45] P. Sheng, G. Wang, K. Nayak, S. Kannan, and P. Viswanath, “BFT
Protocol Forensics,” in Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, ser. CCS ’21.
Association for Computing Machinery, 2021.

[46] A. Lewis-Pye, J. Neu, T. Roughgarden, and L. Zanolini, “Accountable
Liveness,” in Proceedings of the 2025 on ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’25, 2025.

[47] E. N. Tas, D. Tse, F. Gai, S. Kannan, M. A. Maddah-Ali, and
F. Yu, “Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and
Impossibilities,” in 2023 IEEE Symposium on Security and Privacy,
ser. SP ’23, 2023.

[48] T. T. Team, “Tokio,” https://tokio.rs, 2024.

[49] H. de Valence, “Ed25519 for consensus-critical contexts,” https:
//crates.io/crates/ed25519-consensus, 2024.

[50] RustCrypto, “Rustcrypto: Hashes,” https://github.com/RustCrypto/
hashes, 2024.

[51] Die.Net, “writev(3) - linux man page,” https://linux.die.net/man/3/
writev, 2024.

[52] Meta, “Sapling (minibytes),” https://github.com/facebook/sapling/
tree/main/eden/scm/lib/minibytes, 2024.

[53] T. S. Team, “Validator deployment amd configuration,” https://docs.
sui.io/guides/operator/validator/validator-config, 2025.

[54] E. Blum, J. Katz, C.-D. Liu-Zhang, and J. Loss, “Asynchronous
byzantine agreement with subquadratic communication,” in Theory
of Cryptography: 18th International Conference, TCC 2020, Durham,
NC, USA, November 16–19, 2020, Proceedings, Part I 18. Springer,
2020, pp. 353–380.

[55] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constan-
tipole: practical asynchronous byzantine agreement using cryptogra-
phy,” in Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing, 2000, pp. 123–132.

[56] J. Loss and T. Moran, “Combining asynchronous and synchronous
byzantine agreement: The best of both worlds,” Cryptology ePrint
Archive, 2018.

[57] R. Bacho and J. Loss, “On the Adaptive Security of the Threshold
BLS Signature Scheme,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022.

[58] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International conference on the theory and application of
cryptology and information security. Springer, 2001, pp. 514–532.

[59] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, and G. Stern,
“Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and
Distributed Key Generation,” in Advances in Cryptology – CRYPTO
2023, 2023.

[60] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and
A. Tomescu, “Reaching Consensus for Asynchronous Distributed Key
Generation,” Distributed Computing, vol. 36, 2023.

Appendix A.
Implementation

We implement a networked, multi-core BB-Core val-
idator in Rust by forking the Mysticeti codebase [18]. Our
implementation leverages tokio [48] for asynchronous net-
working, utilizing raw TCP sockets for communication with-
out relying on any RPC frameworks. For cryptographic oper-
ations, we rely on ed25519-consensus [49] for asym-
metric cryptography and blake2 [50] for cryptographic
hashing. To ensure data persistence and crash recovery, we
employed the Write-Ahead Log (WAL). Our WAL optimizes
I/O operations through vectored writes [51] and efficient
memory-mapped file usage with the minibytes [52] crate,
minimizing data copying and serialization.

In addition to regular unit tests, we inherited and utilized
two supplementary testing utilities from the Mysticeti code-
base. First, a simulation layer replicates the functionality of
the tokio runtime and TCP networking. This simulated
network accurately simulates real-world WAN latencies,
while the tokio runtime simulator employs a discrete event
simulation approach to mimic the passage of time. Second,
a command-line utility (called orchestrator) which deploys
real-world clusters of BB-Core on machines distributed
across the globe.

We are open-sourcing our BB-Core implementation,
along with its simulator and orchestration tools, to ensure
reproducibility of our results6.

Appendix B.
Experimental Setup

This section complements Section 6 by detailing the
experimental setup used to evaluate BB-Core.

We deploy BB-Core on AWS, using m5d.8xlarge
instances across 13 different AWS regions: Northern Vir-
ginia (us-east-1), Oregon (us-west-2), Canada (ca-central-
1), Frankfurt (eu-central-1), Ireland (eu-west-1), London
(eu-west-2), Paris (eu-west-3), Stockholm (eu-north-1),
Mumbai (ap-south-1), Singapore (ap-southeast-1), Sydney
(ap-southeast-2), Tokyo (ap-northeast-1), and Seoul (ap-
northeast-2). Validators are distributed across those regions
as equally as possible. Each machine provides 10Gbps
of bandwidth, 32 virtual CPUs (16 physical cores) on a
3.1GHz Intel Xeon Skylake 8175M, 128GB memory, and
runs Linux Ubuntu server 24.04. We select these machines
because they provide decent performance, are in the price
range of “commodity servers”, and match the minimal spec-
ifications of modern quorum-based blockchains [53].

In Section 6, latency refers to the time elapsed from the
moment a client submits a transaction to when it is commit-
ted by the validators, and throughput refers to the number
of transactions committed per second. We instantiate sev-
eral geo-distributed benchmark clients within each validator
submitting transactions in an open loop model, at a fixed

6. https://github.com/phvv/mysticeti/tree/odontoceti (commit e02aeba)
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rate. We experimentally increase the load of transactions
sent to the systems, and record the throughput and latency
of commits. As a result, all plots Section 6 illustrate the
steady-state latency of all systems under low load, as well
as the maximal throughput they can provide after which
latency grows quickly. Transactions in the benchmarks are
arbitrary and contain 512 bytes. We configure both BB-Core
and Mysticeti with 2 leaders per round, and a leader timeout
of 1 second.

Appendix C.
Asynchronous BB-Core

We present BB-Core-Async, the asynchronous variant
of BB-Core. It builds upon the same core ideas as BB-
Core, but operates in a fully asynchronous network model
and leverages a threshold common coin to achieve live-
ness. BB-Core-Async is the first 5f + 1-validator BFT
consensus protocol to achieve both safety and liveness in a
fully asynchronous network. It achieves low latency through
its shortened commit path. BB-Core-Async algorithm is
Algorithm 1, Algorithm 2, and Algorithm 3 when we also
include the orange-colored lines.

C.1. Additional Assumptions

First, the communication network is asynchronous and
messages can be delayed arbitrarily, but messages among
honest validators are eventually delivered.

Additionally, we employ a global perfect coin to intro-
duce randomization, similar to previous work [54, 55, 14,
56]. This coin can be constructed using an adaptively secure
threshold signature scheme [57, 58], with the distributed key
setup performed under asynchronous conditions [59, 60].

Each validator vk broadcasts messages by invoking
BCASTkm, q, where m is the message and q ∈ N is
a sequence number. Every validator vi has an output
Deliveri(m, q, vk), where m is the message, q is the se-
quence number, and vk is the identity of the validator that
initiated the corresponding BCASTkm, q. BlueBottle imple-
ments a BAB protocol and guarantees the following [14]:
• Validity: If an honest participant vk calls BCASTkm, q,

then every honest participant vi eventually outputs
Deliveri(m, q, vk), with probability 1.

• Agreement: If an honest participant vi outputs
Deliveri(m, q, vk), then every honest participant vj
eventually outputs Deliverj(m, q, vk) with probability
1.

• Integrity: For each sequence number q ∈ N
and participant vk, an honest participant vi outputs
Deliveri(m, q, vk) at most once, regardless of m.

• Total Order: If an honest participant vi outputs
Deliveri(m, q, vk) and Deliveri(m′, q′, v′k) where q <
q′, all honest participants output Deliverj(m, q, vk)
before Deliverj(m′, q′, v′k).

We only provide the lemmas with only a few of them
proven due to lack of space. We plan to release a full version
online.

C.2. Safety Lemmas

We start by proving the Total Order and Integrity prop-
erties of BAB. A crucial intermediate result towards these
properties is that all honest validators have consistent com-
mit sequences, i.e., the committed sequence of one honest
validator is a prefix of another’s, or vice-versa. This is shown
in Lemmas Lemma 21 and Lemma 22, which the following
lemmas and observations build up to.
Definition 1 (Weak Certificate). A weak certificate for a

block b in round r is a set of 2f + 1 distinct valid
round-(r+2) blocks, each from a distinct validator, that
support b.

Definition 2 (Strong Certificate). A strong certificate for
a block b in round r is a set of 4f + 1 distinct valid
round-(r+2) blocks, each from a distinct validator, that
support b.

Lemma 17 (Strong-to-Weak Propagation). Let b be a
round-r block with a strong certificate S (i.e., |S| =
4f + 1 distinct round-(r + 2) blocks supporting b, Def-
inition 2). Then every valid block at any future round
r′ ≥ r + 3 has paths to at least 2f + 1 blocks from S;
equivalently, it indirectly references a weak certificate
for b (Definition 1).

Proof 22. We prove the claim by induction on r′, starting
at r′ = r + 3.
Base case (r′ = r + 3): Let x be a valid round-(r +
3) block. By construction, x references 4f + 1 distinct
valid round-(r+2) blocks from distinct validators; thus
at most f of these can be Byzantine, so x includes at
least 3f+1 round-(r+2) blocks from honest validators.
Likewise, the strong certificate S contains at least 3f+1
blocks from honest validators (since at most f of its
4f+1 members can be Byzantine). Restricting attention
to honest validator identities (a universe of size 4f +1),
these two sets intersect in at least (3f +1)+(3f +1)−
(4f + 1) = 2f + 1 blocks. Hence x directly references
at least 2f +1 members of S, so x has paths to a weak
certificate for b.
Induction step: Assume that every valid round-r′ block,
for some r′ ≥ r + 3, has paths to at least 2f + 1
members of S. Consider any valid round-(r′ +1) block
y. By construction, y references 4f + 1 distinct round-
r′ blocks. By the induction hypothesis, each of those
round-r′ blocks has paths to at least 2f +1 members of
S. Therefore, y references at least one round-r′ block
that has paths to at least 2f + 1 members of S; by
transitivity of paths, y itself has paths to at least 2f +1
members of S, i.e., to a weak certificate for b.

Observation 1. A block cannot support for more than one
block proposal from a given validator, in a given round.

Proof 23. This is by construction. Honest validators interpret
support in the DAG through deterministic depth-first
traversal. So even if a block b in the vote round has paths
to multiple leader round blocks from the same validator



v (i.e., equivocating blocks), all honest validators will
interpret b to vote for only one of v’s blocks (the first
block to appear in the depth-first traversal starting from
b).

Lemma 18 (Strong certificate exclusivity). Fix a validator
v and round r. If some round-r block b of v has a strong
certificate, then no other round-r block b′ ̸= b of v can
have even a weak certificate. In particular, at most one
round-r block of v can have a strong certificate.

Proof 24. Suppose, for contradiction, that b has a strong
certificate S (so |S| = 4f + 1 decision-round blocks at
round r+2 support b), and some other block b′ ̸= b from
the same validator and round has a weak certificate W
(so |W | = 2f + 1 vote-round blocks at round r + 2
support b′). Both S and W are over the universe of
5f + 1 validator identities and contain one valid block
per identity.
Let Id(S) and Id(W ) be the sets of validator identities
appearing in the certificates S and W (one valid round-
(r + 2) block per identity). Then |Id(S)| = 4f + 1
and |Id(W )| = 2f + 1. By quorum intersection over
identities,

|Id(S)∩Id(W )| ≥ (4f+1)+(2f+1)−(5f+1) = f+1 > 0.

Since at most f validators are Byzantine overall, this in-
tersection contains at least one honest identity. Pick such
an honest validator u ∈ Id(S)∩ Id(W ), and let x be u’s
unique valid decision-round (round r+2) block (by the
uniqueness-per-round assumption). Because certificates
record one valid block per identity, the same block x
is the representative of u in both S and W , hence x
supports both b and b′. This contradicts Observation 1.
Therefore, b′ cannot have a weak certificate. Taking W
to be a strong certificate S′ gives the special case that
two distinct blocks of v in the same round cannot both
have strong certificates.

Observation 2. If an honest validator v directly or indirectly
commits a block b, then v’s local DAG contains a weak
certificate for b.

Proof 25. This follows immediately from our direct and
indirect commit rules.

Observation 3. Honest validators agree on the sequence of
leader slots.

Proof 26. This follows immediately from the properties of
the common coin, see Section C.1.

Observation 4 (Unique valid block per (validator, round)).
For any validator w and round r, at most one block

signed by w is counted as valid in round r. Since commit
rules apply only to valid blocks, any commitment for a
slot with leader w in round r must be that unique valid
block.

Proof 27. Immediate from the DAG construction and the
fact that commit rules consider only valid blocks.

Lemma 19. If an honest validator v commits some block
b in a slot s, then no other honest validator decides to
directly skip the slot s.

Proof 28. Assume by contradiction that some honest val-
idator v′ decides to directly skip s. By the direct-skip
rule, this means that in v′’s local DAG there exists a set
N of 4f + 1 distinct valid round-(r + 2) blocks (one
per validator identity) whose support does not go to b
(a direct-skip witness for s).
Since v commits b at s, by Observation 2 there exists
a weak certificate W for b at s in v’s local DAG:
a set of 2f + 1 distinct valid round-(r + 2) blocks
(one per validator identity) that support b (Definition 1).
Consider the identity sets Id(N) and Id(W ). We have
|Id(N)| = 4f + 1 and |Id(W )| = 2f + 1, hence by
quorum intersection over the 5f +1 validator identities,

|Id(N)∩Id(W )| ≥ (4f+1)+(2f+1)−(5f+1) = f+1.

As at most f validators are Byzantine, the intersection
contains at least one honest identity. Pick such an honest
validator u ∈ Id(N) ∩ Id(W ), and let x be u’s unique
valid round-(r + 2) block.
Because certificates/witnesses record one valid block per
identity, the same block x is the representative of u
in both N and W . By definition of W , x supports b;
by definition of N , the very same x is counted as not
supporting b at v′. By Observation 1 (uniqueness of
support per validator/round under the deterministic rule),
x cannot both support and not support b. Hence v′ cannot
have a valid direct-skip witness N , a contradiction.

Lemma 20. If an honest validator directly commits some
block in a slot s, then no other honest validator decides
to skip the slot s.

Proof 29. Assume by contradiction that an honest validator
v directly commits block b in slot s while another honest
validator v′ decides to skip s. By Lemma 19, v′ cannot
directly skip s; therefore v′ must attempt to skip s via
the indirect decision rule. Let r be the round of s.
Since v directly commits b, there exists a strong certifi-
cate S for b at s (i.e., |S| = 4f +1 distinct valid round-
(r + 2) blocks supporting b). By Lemma 17 (Strong-
to-Weak Propagation), every valid block at any round
r′ ≥ r + 3 has paths to at least 2f + 1 members of S,
i.e., it carries a weak certificate for b. In particular, any
valid anchor block for deciding s (which necessarily lies
at some round r′ ≥ r+3) has paths to a weak certificate
for b.
But the indirect skip rule for s requires an anchor whose
deterministic support excludes b (equivalently, with no
weak certificate for b). This contradicts the propagation
property above. Hence v′ cannot skip s indirectly either.
Contradiction.

Lemma 21. If a slot s is committed at two honest validators,
then s contains the same block at both validators.



Proof 30. Let v and u be honest validators and suppose v
commits block b at slot s. If u commits s as well, we
show that u commits b.
Let w be the validator identity of the leader for s (i.e.,
the creator of b). By Observation 3, all honest validators
agree on the leader identity per slot, so u also agrees
that s must contain a block by w.
By Observation 4, there is a unique valid round-r block
by w that can be committed in s.
Since v commits b and b is by w, b is this unique valid
block by w for round r. Hence if u commits s, it must
also commit b. Thus s contains the same block at both
validators.

We say that a slot is decided at a validator v if s is
committed or skipped, that is, if it is categorized as commit
or skip. Otherwise, s is undecided.
Lemma 22. If a slot s is decided at two honest validators

v and v′, then either both validators commit s, or both
validators skip s.

Proof 31. Assume by contradiction that there exists a slot s
such that v and v′ decide differently at s. We consider
a finite execution prefix and assume wlog that s is the
highest slot at which v and v′ decide differently (*).
Further assume wlog that v commits s and v′ skips s.
By Lemma 19 and Lemma 20, neither v nor v′ could
have used the direct decision rule for s; they must both
have used the indirect rule. Consider now the anchor
of s: v and v′ must agree on which slot is the anchor
of s, since by our assumption (*) above, they make
the same decisions for all slots higher than s, including
the anchor of s. Let s′ be the anchor of s; s′ must be
committed at both v and v′. Thus, by Lemma 21, v and
v′ commit the same block b′ at s′. But then v and v′

cannot reach different decisions about slot s using the
indirect decision rule. We have reached a contradiction.

We have proven the consistency of honest validators’
commit sequences: honest validators commit (or skip) the
same leader blocks, in the same order. However, we are
not done: we also need to prove that non-leader blocks are
delivered in the same order by honest validators. We show
this next.

Causal history and delivery conditions Consider an
honest validator v. We call the causal history of a block b
in v’s DAG, the transitive closure of all blocks referenced
by b in v’s DAG, including b itself. In BB-Core-Async, a
block b is delivered by an honest validator v if (1) there
exists a committed leader block l in v’s DAG such that b is
in l’s causal history (2) all slots up to l are decided in v’s
DAG and (3) b has not been delivered as part of a lower
slot’s causal history. In this case we say b is delivered at
slot s, or delivered with block l.
Lemma 23. If a block b is delivered by two honest validators

v and v′, then b is delivered at the same slot s, and b is
delivered with the same leader block l, at both v and v′.

Proof 32. Let s be the slot at which b is delivered at
validator v, and l the corresponding leader block in s,

also at validator v. Consider now the slot s′ at which b is
delivered at validator v′, and l′ the corresponding leader
block. Assume by contradiction that s′ ̸= s. If s′ < s,
then v would have also delivered b at slot s′, since by
Lemma 21 must commit the same leader blocks in the
same slots, so v could not have delivered b again at slot
s; a contradiction. Similarly, if s < s′, then v′ would
have already delivered b at slot s, since by Lemma 21
v and v′ must have committed the same block in slot
s; contradiction. Thus it must be that s = s′, and by
Lemma 21, l = l′.

We can now prove the main safety properties of Blue-
Bottle: Total Order and Integrity.
Theorem 4 (Total Order). BlueBottle satisfies the total

order property of Byzantine Atomic Broadcast.

Proof 33. This property follows immediately from
Lemma 23 and the fact that honest validators order the
causal histories of committed blocks using the same
deterministic function, and deliver blocks in this order.

Theorem 5 (Integrity). BlueBottle satisfies the integrity
property of Byzantine Atomic Broadcast.

Proof 34. This is by construction: a block b is delivered as
part of the causal history of a committed leader block
only if b has not been delivered along with an earlier
leader block (see ”Causal history & delivery conditions”
above). So an honest validator cannot deliver the same
block twice.

C.3. Liveness Lemmas

Block inclusion.. The following two lemmas establish that
blocks broadcast by honest validators are eventually in-
cluded in all honest validators’ DAGs.
Lemma 24. If a block b produced by an honest validator

v references some block b′, then b′ will eventually be
included in the local DAG of every honest validator.

Proof 35. This is ensured by the synchronizer sub-
component in each validator: if some validator w re-
ceives b from v, but does not have b′ yet, w will request
b′ from v; since v is honest and the network links are
reliable, v will eventually receive w’s request, send b′

to w, and w will eventually receive b′. The same is
recursively true for any blocks from the causal history
of b′, so w will eventually receive all blocks from the
causal history of b′ and thus include b′ in its local DAG.

Lemma 25. If a honest validator v broadcasts a block b,
then b will eventually be included in the local DAG of
every honest validator.

Proof 36. Since network links are reliable, all honest valida-
tors will eventually receive b from v. By Lemma 24, all
honest validators will eventually receive all of b’s causal
history, and so will include b in their local DAG.



Main structural lemmas.. These are the main struc-
tural lemmas that we will use to prove liveness. The key
idea is that the reference rule creates significant overlap
among honest blocks across consecutive rounds, which we
can leverage to ensure that a randomly chosen leader has
sufficient honest support to be directly committed.

Lemma 26 (Reference Honesty Lower Bound). Any valid
round-(R + 1) block (whether created by an honest or
Byzantine validator) references at least 3f + 1 honest
round-R blocks.

Proof 37. In any round there are 5f + 1 total validators of
which at most f are Byzantine, so at least 4f + 1 are
honest. A valid round-(R + 1) block, by definition of
the protocol’s formation rule, references at least 4f + 1
distinct round-R blocks (one per validator identity). At
most f of these can be Byzantine, hence at least 4f +
1− f = 3f + 1 are honest.

Lemma 27 (Many Heavily Referenced Round-R Blocks).
There are at least 2f + 1 honest round-R blocks each

referenced by at least f +1 honest round-R+1 blocks.

Proof 38. By Lemma 26 every valid round-(R + 1) block
references at least 3f +1 honest round-R blocks. There
are 4f+1 honest validators, hence 4f+1 honest round-
(R + 1) blocks in total. Consider the bipartite graph
whose left vertices A are the honest round-(R + 1)
blocks and whose right vertices B are the honest round-
R blocks; connect a ∈ A to b ∈ B if a references b.
Let E be the total number of edges. Each a ∈ A has
degree at least 3f + 1, so

E ≥ (4f + 1)(3f + 1).

Suppose for contradiction that fewer than 2f +1 honest
round-R blocks have degree at least f + 1 (i.e., are
referenced by ≥ f + 1 honest round-(R + 1) blocks).
Let X ⊆ B be the (assumed) set of degree ≥ f + 1
blocks with |X| ≤ 2f . Any block in B \ X then has
degree at most f .
We upper bound E under this hypothesis:

E ≤ |X|(4f + 1) + (|B| − |X|)f
= |X|(4f + 1− f) + f(4f + 1)

= |X|(3f + 1) + f(4f + 1).

Using |X| ≤ 2f we get

E ≤ 2f(3f + 1) + f(4f + 1)

= (6f2 + 2f) + (4f2 + f)

= 10f2 + 3f.

Yet

(4f + 1)(3f + 1) = 12f2 + 7f + 1 > 10f2 + 3f,

a contradiction. Therefore, |X| ≥ 2f + 1, establishing
the claim.

Lemma 28 (Common Honest Ancestors). Any set of 4f+1
round-R+2 blocks collectively references at least 2f+1
common honest round-R blocks.

Proof 39. Let H denote the set of (at least) 2f + 1 honest
round-R blocks guaranteed by Lemma 27: every h ∈ H
is referenced by at least f + 1 honest round-(R + 1)
blocks.
Consider any multiset S of 4f + 1 round-(R + 2)
blocks (they may be arbitrary, honest or Byzantine).
By applying Lemma 26 to round R + 1 vs. R + 2,
each valid round-(R+2) block includes at least 3f +1
honest round-(R+ 1) blocks among the 4f + 1 distinct
references it must carry.
Fix some h ∈ H . Suppose, for contradiction, that
a particular s ∈ S fails to (indirectly) reference h.
Then s must omit every honest round-(R + 1) block
that references h. However, h has at least f + 1 such
honest round-(R+1) children, while s can omit at most
(4f + 1) − (3f + 1) = f honest round-(R + 1) blocks
(because it necessarily includes at least 3f + 1 of the
4f + 1 honest ones). Since f + 1 > f , omitting them
all is impossible. Therefore, every s ∈ S (indirectly)
references h.
The argument holds for each h ∈ H , so all blocks in
S commonly (indirectly) reference every element of H .
Thus, their intersection over round-R ancestors contains
H , and has size at least |H| ≥ 2f + 1.

Liveness theorems.. We now leverage the structural
overlap to obtain probabilistic liveness via the common coin.
Definition 3 (Core Set of Round R). Let CR be the set of

honest round-R blocks each referenced by at least f +1
honest round-(R + 1) blocks. By Lemma 27, |CR| ≥
2f + 1.

Lemma 29 (Persistence of Core Support). Every valid
round-(R+ 2) block (indirectly) references every block
in CR.

Proof 40. Immediate from Lemma 28 since CR ⊆ H for
the set H used there.

We denote by l ≤ 5f +1 the number of leader slots per
round.
Lemma 30 (Direct Commitment via Core Intersection).

Fix a round r and let n = 5f + 1. When l leader slots
are sampled uniformly at random without replacement
from the n validators, the probability that at least one
slot can be directly committed is

p⋆ = 1−
(
n−|CR|

l

)(
n
l

) .

Moreover, if l > n−|CR| (in particular, if l > 3f using
|CR| ≥ 2f + 1) then p⋆ = 1 (deterministic success).

Proof 41. By Lemma 29, any selected leader whose block
lies in CR is (eventually) directly commit-able by every
honest validator. Thus a successful direct commitment
in round r occurs iff the sampled set intersects CR. The



probability that it does not intersect CR is exactly the
hypergeometric zero-success probability

(
n−|CR|

l

)
/
(
n
l

)
;

subtracting from 1 yields p⋆.
If l > n− |CR|, it is impossible to choose all l leaders
outside CR, so the intersection is certain and p⋆ = 1.
Using only |CR| ≥ 2f + 1, we have n − |CR| ≤
5f + 1 − (2f + 1) = 3f , hence any l > 3f suffices
for determinism.

Lemma 31 (Eventual Slot Resolution). Fix a slot s. Every
honest validator eventually either commits or skips s,
with probability 1.

Proof 42. We prove the lemma by showing that the proba-
bility of s remaining undecided forever at some honest
validator is 0. In order for s to remain undecided forever,
s cannot be committed or skipped directly. Furthermore,
s cannot be decided using the indirect rule. This means
that the anchor s′ of s must also remain undecided
forever, and therefore the anchor s′′ of s′ must remain
undecided forever, and so on. The probability of this
occurring is at most equal to the probability of an infinite
sequence of rounds with no directly committed slots,
equal to limt→∞(1 − p⋆)t = 0, where p⋆ > 0 is the
probability from Lemma 30.

Theorem 6 (Validity). BB-Core-Async satisfies the validity
property of Byzantine Atomic Broadcast.

Proof 43. Let v be an honest validator and b a block broad-
cast by v. We show that, with probability 1, b is even-
tually delivered by every honest validator. Lemma 25
b is eventually included in the local DAG of every
honest validator. So every honest validator will even-
tually include a reference to b in at least one of its
blocks. Let r be the highest round at which some honest
validator includes a reference to b in one of its blocks.
By Lemma 30, with probability 1, eventually some block
b′ at a round r′ > r will be directly committed. Block b′

must reference at least 4f+1 blocks, thus at least 3f+1
blocks from honest validators. Since all validators have
b in their causal histories by round r, b′ must therefore
have a path to b. Lemma 31 guarantees that all slots
before b′ are eventually decided, so b′ is eventually de-
livered. Thus, b will be delivered at all honest validators
at the latest when b′ is delivered along with its causal
history.

Theorem 7 (Agreement). BB-Core-Async satisfies the
agreement property of Byzantine Atomic Broadcast.

Proof 44. Let v be an honest validator and b a block
delivered by v. We show that, with probability 1, b
is eventually delivered by every honest validator. Let
l be the leader block with which b is delivered, and
s the corresponding slot. By Lemma 31, all blocks up
to and including s are eventually decided by all honest
validators, with probability 1. By Lemma 23, all honest
validators commit l in s. Therefore, all honest validators
deliver b eventually.
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Figure 4: WAN throughput-latency performance comparison
of BB-Core (n = 5f + 1), BB-Core-Async (n = 5f + 1),
and Mysticeti (n = 3f+1) with a 512B transaction size. The
y-axis starts at 300ms to zoom in on the latency difference
between the systems.

C.4. BB-Core-Async Performance

We implement BB-Core-Async by extending our BB-
Core prototype (Appendix A) and evaluate it using the same
setup as in Section 6. We compare its performance with BB-
Core (n = 5f + 1) and Mysticeti (n = 3f + 1).

Figure 4 presents the WAN throughput–latency results
for BB-Core, BB-Core-Async, and Mysticeti under two
scenarios: (a) committees of 10 and 50 validators without
faults (Figure 4a), and (b) committees of 10 and 11 valida-
tors (enough to tolerate 3 and 2 faults) under corresponding
crash failures (Figure 4b). We cap throughput at 50,000
tps for cost reasons. BB-Core-Async matches Mysticeti’s
throughput–latency performance across both scenarios and
committee sizes, as both commit in three rounds in the
common case. This highlights a key trade-off: for equiva-
lent performance, one can choose between an asynchronous
protocol with n = 5f + 1 or a partially synchronous one
with n = 3f + 1.
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