
Bullshark: The Partially Synchronous Version

Alexander Spiegelman1, Neil Giridharan2, Alberto Sonnino3, and Lefteris Kokoris-Kogias4

1Aptos
2University of California, Berkeley

3Mysten Labs
4IST Austria

Abstract

The purpose of this manuscript is to describe the deterministic partially synchronous version of
Bullshark in a simple and clean way. This result is published in CCS 2022, however, the description
there is less clear because it uses the terminology of the full asynchronous Bullshark. The CCS version
ties the description of the asynchronous and partially synchronous versions of Bullshark since it targets an
academic audience. Due to the recent interest in DAG-based BFT protocols, we provide a separate and
simple description of the partially synchronous version that targets a more general audience. We focus
here on the DAG ordering logic. For more details about the asynchronous version, garbage collection,
fairness, proofs, related work, evaluation, and efficient DAG implementation please refer to [8, 7, 3, 6].
For an intuitive extended summary please refer to the blogpost [1].

1 Introduction

In the context of Blockchains, BFT consensus is a problem in which n parties, f of which might be Byzantine,
try to agree on an infinitely growing sequence of transactions. The idea of DAG-based BFT consensus is to
separate the network communication layer from the ordering (consensus) logic. Each message contains a set
of transactions, and a set of references to previous messages. Together, all the messages form a DAG that
keeps growing – a message is a vertex and its references are edges. The networking layer of building the DAG
can and should be optimized on a system level (see Narwhal [3]). Once a DAG is constructed the ordering
logic of its vertices adds zero communication overhead. That is, each party independently looks at its local
view of the DAG and totally (fully) orders all the vertices without sending a single extra message. This is
done by interpreting the structure of the DAG as a consensus protocol, i.e., a vertex can be a proposal and
an edge can be a vote. Importantly, due to the asynchronous nature of the network, different parties may see
slightly different DAGs at any point in time. A key challenge then is how to guarantee that all the parties
agree on the same total order.

2 Protocol

We describe here the partially synchronous version of Bullshark. To focus on the ordering logic of the
DAG (Section 2.2), we first assume a DAG with certain properties 2.1 is given. Then, for completeness, we
discuss a few alternatives to construct the DAG (Section 2.3). Details about the fairness, garbage collection,
evaluation can be found in [8, 7, 1], and an efficient DAG implementation in [3]. Check [8] for rigorous
(safety and liveness) proofs.

1

Figure 1: Illustration of the DAG structure.

2.1 DAG properties.

We consider a round-based DAG, see illustration in Figure 1. Each round contains at most n vertices (at
most 1 vertex per party). Each vertex is associated with a round number and its source (the party that
broadcast it). In addition to transactions information, each vertex also contains a set of at least n− f edges,
which point to vertices in the previous round.

We discuss the construction of the DAG below, but it is important to note now that due to the asyn-
chronous nature of the network, different parties may see slightly different views of the DAG at any point in
time. In order to guarantee that all the parties agree on the same total order of the DAG’s vertices without
any extra communication, the construction of the DAG must satisfy the following:

Validity: if an honest party has a vertex v in its local view of the DAG, then it also has all the causal
history of v (all vertices that can be reached from v).

Reliability: if an honest party has a vertex in round r by party p in its local view of the DAG, then
eventually all honest parties has a vertex in round r by party p in their views of the DAG.

Non-equivocation: if two honest parties have a vertex in round r by party p in their local views of the
DAG, then the vertices are identical (i.e., transaction information and edges are exactly the same).

By recursively applying Validity and Non-equivocation we get:

Completeness: if two honest parties have a vertex v in round r by party p in their local views of the DAG,
then v’s causal histories are identical in both parties’ local view of the DAG.

2.2 Ordering logic.

The non-equivocation property of the DAG eliminates the ability of Byzantine parties to lie, and as a result,
the completeness property allows us to apply deterministic logic to order the DAG even though parties have
slightly different local views of the DAG, which drastically simplifies the ordering logic.

As mentioned above each party observes its local view of the DAG and totally orders its vertices
without any extra communication. Notably, Bullshark needs neither a view-change nor a view-
synchronization mechanism. Since the DAG encodes full information, there is no need to “agree” on
skipping and discarding slow/faulty leaders via timeout complaints and view-synchronization we get for free
by the nature of the DAG construction.

We next demonstrate how each party locally interprets the structure of its view of the DAG via a
running example with n = 4 and f = 1. A detailed pseudocode appears in Algorithms 1. and 2 (the function
TryCommitting(v) is invoked by party pi when a new vertex in an even round is added to its local view
of the DAG).

2

Figure 2: Anchors and causal history.

Every even-numbered round in the DAG has a predefined leader and we refer to the vertex associated
with the leader as anchor. In figure 3, anchors are highlighted in solid green. The goal is to first decide
which anchors to commit. Then, to totally order all the vertices in the DAG, a party goes one by one over
all the committed anchors and orders their causal histories by some deterministic rule. Anchor A2 causal
history is marked by green-outlined vertices.

Each vertex in an odd round can contribute one vote for the anchor in previous round. In particular, a
vertex in round r votes for the anchor in round r − 1 if there is an edge between them. The commit rule
is simple: an anchor is committed if it has at least f + 1 votes. In Figure 3, anchor A2 is committed with
3 votes, whereas anchor A1 only has 1 vote and is not committed.

Figure 3: Commit rule requires f + 1 votes.

Recall that due to the asynchronous nature of the network, the local views of the DAG might differ for
different parties. That is, some vertices might be added to the local view of the DAG of some of the parties
but not yet added by the others. Therefore, even though some parties have not committed A1, others might
have. In Figure 4, party p2 sees 2 = f + 1 votes for anchor A1 and thus commits it even though party p1
has not. Therefore, to guarantee total order (safety), party p1 has to order anchor A1 before anchor A2. To
achieve this, Bullshark relies on quorum intersection:

Since the commit rule requires f + 1 votes and each vertex in the DAG has at least n− f edges to
vertices from the previous round, it is guaranteed that if some party commits an anchor A then
all anchors in higher rounds will have a path to at least one vertex that voted for A, and thus will
have a path to A.

Therefore, we get the following corollary:

If there is no path to a anchor A from a future anchor, then no party committed A
and it is safe to skip it.

3

Figure 4: Parties might have slightly different views of the DAG.

The mechanism to order anchors is the following: when an anchor Ai is committed, the validator checks
if there is a path between anchor Ai to Ai−1. If this is the case, anchor Ai−1 is ordered before Ai and the
mechanism is recursively restarted from Ai−1. Otherwise, anchor Ai−1 is skipped and the validator checks
if there is a path between Ai to Ai−2. If there is a path, Ai−2 is ordered before Ai and the mechanism is
recursively restarted from Ai−2. Otherwise, anchor Ai−2 is skipped and the process continues in the same
way. The process stops when it reaches an anchor that was previously ordered (as all the anchors before it
are already ordered).

In Figure 5, anchors A1 and A2 do not have enough votes to be committed and once the party commits
A3 it has to decide whether to order A1 and A2 before A3. Since there is no path from A3 to A2, A2 can be
skipped (no party committed it). However, since there is a path between A3 and A1, A1 is ordered before
A3). In this example the process stops here because A1 is the first anchor, but in general the process should
continue recursively from A1 until a previously ordered anchor is reached. Note that it might be the case
that no party committed A1, however it is safe to order it before A3 due to the Completeness property of
the DAG. All parties see the same history of A3 in their local vies of the DAG and thus deterministically
agree to order A1 before A3. In [8] we prove by induction that all parties order the same anchors.

Figure 5: Anchors’ ordering logic. A2 is not part of party 1 local view if the DAG

Finally, to totally order the vertices of the DAG, the party orders the causal history of the ordered
anchors one by one by some deterministic rule. In our example, it first order A1 and then orders the causal
history of A3. For an intuitive explanation of garbage collection and fairness, and for a DAG construction
discussion please refer to the blogpost [1].

4

Algorithm 1 Data structures and basic utilities for party pi

Local variables:
struct vertex v: ▷ The struct of a vertex in the DAG

v.round - the round of v in the DAG
v.source - the party that broadcast v
v.block - a block of transactions information
v.edges - a set of at least n− f vertices in v.round− 1 ▷ Used to provide fairness

DAGi[] - An array of sets of vertices

1: procedure path(v, u) ▷ Check if exists a path from v to u in the DAG
2: return exists a sequence of k ∈ N, vertices v1, v2, . . . , vk s.t.

v1 = v, vk = u, and ∀j ∈ [2..k] : vj ∈
⋃

r≥1 DAGi[r] ∧ vj ∈ vj−1.edges

3: procedure getAnchor(r)
4: p← getPredefinedLeader(r) ▷ Assume some predefined mapping known to all parties
5: if ∃v ∈ DAG[r] s.t. v.source = p then
6: return v
7: return ⊥

Algorithm 2 Eventually synchronous BullShark: algorithm for party pi.

Local variables:
orderedVertices← {}
lastOrderedRound← 0
orderedAnchorsStack← initialize empty stack

8: procedure TryCommitting(v)
9: if v.round mod 2 = 1 or v.round = 0 then

10: return
11: anchor← getAnchor(v.round-2)
12: votes← v.edges
13: if |{v′ ∈ votes : path(v′, anchor)}| ≥ f + 1 then
14: orderAnchors(anchor)

15: procedure orderAnchors(v)
16: anchor← v
17: orderedAnchorsStack.push(anchor)
18: r← anchor.round− 2
19: while r > lastOrderedRound do
20: prevAnchor← getAnchor(r)
21: if path(anchor, prevAnchor) then
22: orderedAnchorsStack.push(prevAnchor)
23: anchor← prevAnchor

24: r← r − 2

25: lastOrderedRound← v.round
26: orderHistory()

27: procedure orderHistory()
28: while ¬orderedAnchorsStack.isEmpty() do
29: anchor← orderedAnchorsStack.pop()
30: verticesToOrder← {v ∈

⋃
r>0 DAGi[r] | path(anchor, v) ∧ v ̸∈ orderedVertices}

31: for every v ∈ verticesToOrder in some deterministic order do
32: order v
33: orderedVertices← orderedVertices ∪ {v}

5

2.3 DAG construction

One naive way to disseminate the vertices and satisfy the DAG properties we need for ordering is to use
reliable broadcast [2]. However, standard implementations require O(n2) communication per vertex. We use
the Narwhal mempool system, which leverages a proof of availability mechanism, for an efficient and scalable
implementation. The proof of availability mechanism allows Narwhal to separate data dissemination from
the DAG construction, both of which is implemented with O(n) communication complexity in the common
case. In brief, parties keep steaming data to each other. A proof of a availability is a metadata (hash and
a quorum of signatures) guaranteeing any party is able to retrieve the data. As a result, instead of blocks
of transactions, each vertex of the DAG contains a list of proofs. After ordering the DAG, any party can
retrieve the data in case it does not have it.

Advancing rounds. Each vertex in the DAG points to at least n − f vertices in the previous round.
Therefore, before advancing to round r and broadcasting a new vertex, a party must wait for n− f vertices
in round r − 1. Since there are at least n − f honest parties, this can be done completely asynchronously
allowing the DAG to grow in network speed. Indeed, this is exactly how asynchronous solutions like Aleph [5],
Tusk [3] and DAG-Rider [6] advance rounds.

However, as we know from the famous FLP [4] result, deterministic partially synchronous consensus
protocols has to use timeouts to satisfy liveness. Specifically, the problem in advancing rounds whenever
n− f vertices are delivered is that parties might not vote for the anchor even if the party that broadcast it
is just slightly slower than the fastest n − f parties. To deal with this, Bullshark integrates timeouts into
the DAG construction. If the first n− f vertices a party p gets in an even-numbered round r do not include
the anchor of round r, then p sets a timer and waits for the anchor until the timer expires. Similarly, in an
odd-numbered round, parties wait for either f + 1 vertices that vote for the anchor, or 2f + 1 vertices that
do not, or a timeout.

Responsiveness. It is important to note that the DAG construction satisfies responsiveness. That is, after
GST, if the leader (the party that broadcasts the anchor) is honest, then the DAG is constructed in network
speed and timeouts never expire. Moreover, since the Narwhal system disseminates data in network speed
regardless the DAG construction, slightly slowing down the DAG construction does not effect the overall
throughput (each vertex will simple have slightly more metadata).

Virtual DAG. One alternative we consider is to separate a physical DAG from a virtual DAG. In brief,
the idea is that the physical DAG keeps advancing in network speed, i.e., parties advance physical rounds
immediately after n − f vertices are delivered in the current round. The logical DAG is piggybacked on
top of the physical DAG - each vertex has an additional bit that indicates whether the vertex belongs to
the logical DAG. A logical edge between two logical vertices exists if there is a physical path between them.
The timeouts are integrated into the logical DAG similarly to how they are integrated into the DAG in the
description above. The consensus logic runs on top of the logical DAG and once an anchor is committed, its
entire causal history on the physical DAG is ordered.

One may expect that the logical DAG approach would increase the system throughput because parties
never wait for a timeout to broadcast vertices on the physical DAG. However, as we explained above, since
Narwhal separates data dissemination from the DAG construction, this makes no difference in practice. On
the other hand, the latency in the logical DAG approach may actually increase – this is because if a logical
vertex is not ready to be piggybacked when the physical vertex is broadcast, it will need to wait for the next
physical round. Moreover, from the experience we gained implementing DAG-based protocols, we learned
that slightly back pressuring (slowing down) the DAG construction leads to maximum performance since
the vertices contain more metadata, which amortizes the overhead of building the DAG (e.g., networking,
computation, memory, storage, etc). In fact, during the development we evaluated and compared both
approaches and chose the inject timeouts in the physical layer as it significantly outperformed the decoupled
solution (logical DAG) in both throughput and latency.

For more details please refer to the blogpost [1].

6

References

[1] Dag meets bft. https://decentralizedthoughts.github.io/2022-06-28-DAG-meets-BFT/, 2022.

[2] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation, 75(2):130–
143, 1987.

[3] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal and
tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 34–50, 2022.

[4] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[5] Adam Gkagol, Damian Leśniak, Damian Straszak, and Micha l Świketek. Aleph: Efficient atomic broad-
cast in asynchronous networks with byzantine nodes. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pages 214–228, 2019.

[6] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is dag. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pages 165–175, 2021.

[7] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bullshark: Dag
bft protocols made practical. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2022.

[8] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bullshark: Dag
bft protocols made practical (full paper). arXiv preprint arXiv:2201.05677, 2022.

7

https://decentralizedthoughts.github.io/2022-06-28-DAG-meets-BFT/

	Introduction
	Protocol
	DAG properties.
	Ordering logic.
	DAG construction

