
Cuttlefish: Expressive Fast Path Blockchains
with FastUnlock

Lefteris Kokoris-Kogias1,2, Alberto Sonnino1,3, and George Danezis1,3

1 MystenLabs
2 IST Austria

3 University College London

Abstract. Cuttlefish addresses several limitations of existing consensus-
less and consensus-minimized decentralized ledgers, including restricted
programmability and the risk of deadlocked assets. The key insight of
Cuttlefish is that consensus in blockchains is necessary due to contention,
rather than multiple owners of an asset as suggested by prior work. Pre-
vious proposals proactively use consensus to prevent contention from
blocking assets, taking a pessimistic approach. In contrast, Cuttlefish
introduces collective objects and multi-owner transactions that can of-
fer most of the functionality of classic blockchains when objects trans-
acted on are not under contention. Additionally, in case of contention,
Cuttlefish proposes a novel ‘Unlock’ protocol that significantly reduces
the latency of unblocking contented objects. By leveraging these fea-
tures, Cuttlefish implements consensus-less protocols for a broader range
of transactions, including asset swaps and multi-signature transactions,
which were previously believed to require consensus.

1 Introduction

Consensus is not required for implementing decentralized asset transfers [13].
This insight led to the design of cryptocurrencies based on consistent or reliable
broadcast [2,3,8], which offer several advantages. They exhibit exceptionally low
latency, operate purely asynchronously, and are highly scalable.

However, consensus-less systems suffer from two significant limitations. Firstly,
they have limited programmability, since to maintain liveness transactions must
be submitted in a valid and race-condition-free manner. Failure to do so can re-
sult in deadlocked assets that become forever inaccessible to their owners. Thus,
programmability is restricted to simple transactions involving objects owned by
a single entity, such as asset transfers or payments. Attempts to support more
complex transactions involving multiple users (e.g., asset swaps) or authorization
(e.g., multi-signature) risk causing deadlocks, rendering assets unusable indefi-
nitely. As a result, existing consensus-less cryptocurrencies [2,3,8] are only suited
for basic operations.

The second limitation arises from the strong requirement imposed on clients
in consensus-less systems to never issue conflicting transactions. Even minor bugs
in client implementations can lead to deadlocked assets. For instance, a faulty

2 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

wallet that unintentionally sends a transaction with a randomized signature
twice may be interpreted as two conflicting transactions, resulting in locked
assets. Similar issues occur when a client underestimates the required gas for a
transaction and attempts to reissue it with a higher gas amount.

To address these limitations, the recent Sui blockchain [4], introduces a hybrid
model that combines a consensus-less fast path with a consensus-based fallback.
Sui supports general-purpose smart contracts by utilizing broadcast in the fast
path, while transactions involving shared objects at risk of race conditions are
processed through the consensus fallback path. Consensus is also employed for a
daily system reconfiguration which drops all the locks of the fast path and thus
implicitly solves potential deadlocks. While Sui theoretically overcomes both
limitations, it does so at the cost of increased latency and reduced usability.
Accessing shared state necessitates sequencing transactions through consensus in
all scenarios, resulting in higher latency ranging from seconds instead of fractions
of a second, and prohibiting the use of parallel broadcast protocols for scalability.
Furthermore, deadlocked objects are only reset and made available once a day
upon reconfiguration, which proves impractical for objects that may legitimately
be used by multiple non-coordinating users and get accidentally locked. The fear
of losing access to resources for an entire day terrifies developers as it happens
on a daily basis due to honest mistakes. As a result, developers on Sui forfeit
the use of the low-latency path of Sui and fallback on implementing their smart
contract using consensus [22].

This paper introduces Cuttlefish, a solution that addresses both challenges
mentioned above. Extending the high-level design of Sui, Cuttlefish combines
a fast path reliable broadcast with a consensus fallback while enabling the ex-
ecution of consensus-less transactions, without introducing additional latency
unless there is actual contention. The first contribution of Cuttlefish is the en-
hancement of fast path object programmability. It achieves this by introducing
collective objects, which allow for complex access control and enable the execu-
tion of any type of transaction on the fast path. The transaction model is ex-
tended to support multi-owner transactions on the fast path, thereby expanding
the range of programmable actions beyond single-owner operations. The second
and core contribution of Cuttlefish is the design of FastUnlock, a mechanism
that facilitates the concurrent execution of conflicting transactions on the fast
path, ensuring liveness and enabling rapid unlocking of fast path objects. This
advancement makes Cuttlefish suitable for a broader spectrum of transactions,
including asset swaps and multi-signature transactions. Cuttlefish is currently
considered for adoption by the Sui blockchain team.

2 Motivating Applications of Cuttlefish

Cuttlefish addresses real-world needs raised by existing blockchains.

Deadlocks due to multiple or buggy clients. Cuttlefish tackles the common
challenge of locked objects in consensus-less blockchains, that leads to a poor user

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 3

experience. Using multiple wallets for the same account or objects can result in
concurrent conflicting transactions due to bugs, lack of synchronization, or being
offline. Even, a single wallet may send a transaction with insufficient gas, only
to later attempt to rectify the mistake by updating the gas value, and leading
to two conflicting transaction on the same account or objects. Unfortunately,
these innocent slip-ups or bugs are interpreted as equivocation attempts within
the context of consistent broadcasts, potentially deadlocking the assets involved.
Unlike previous solutions, Cuttlefish enabled users to swiftly regain control of
their assets through FastUnlock and retry their transactions safely.

Atomic swaps. Atomic swaps allow two parties to exchange digital assets with-
out the need for a trusted intermediary. While consensus-based blockchains can
achieve this through smart contracts, the risk of deadlock arises in consensus-
less environments due to the possibility of a Byzantine user issuing a concur-
rent transaction. Such a situation would effectively deadlock the assets of both
parties. However, this risk only materializes when an active attacker intention-
ally causes contention. In rare cases like these, the FastUnlock protocol enables
participants in the swap to quickly recover their assets. This safety net allows
Cuttlefish to support multi-owner transactions in the fast path, allowing fast
path atomic swaps and other multi party smart contracts, enhancing the pro-
grammability of consensus-less transactions.

Regulated stablecoins. Regulated stablecoins, require the issuer to be able to
block accounts or balances for regulatory reasons, besides their owner spending
them, which eludes consensus-less systems. Since multiple parties need to op-
erate on such objects they need to use consensus to sequence these potentially
conflicting operations, even though the issue nearly never execises their ability to
block objects (creating no practical contention). Cuttlefish allows for collective
objects, that may be used by more than one owner, or any pattern or complex
access control, and can be used in the fast path.

3 Background

A number of consensus-less systems have been proposed in the literature, includ-
ing FastPay [2], Astro [8], Zef [3], and Linera [18]. We will specifically describe
and extend Sui (the Sui Lutris mechanism [17]) as a basis for the Cuttlefish
design, as it is the only currently deployed mechanism with a consensus-less
fast path. Cuttlefish extends the expresivity of both object authentication and
transactions in the Sui fast path, and also extends that Sui consensus path to
support FastUnlock.

Object Types. All Sui blockchain state is composed on a set of objects. There
are three types of objects, and their use in a transaction determines whether the
fast path or the consensus path is to be used.

– Read-only objects cannot be mutated or deleted and may be used in any type
of transactions concurrently and by all users.

4 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

client

1

validatorvalidators
2

check &
 sign

3

4

5

validatorvalidators
6

submit
 cert

7

early
execute

Byzantine agreement

All certificates
are sequenced

8

late
execute

6'

7'

checkpoint

Fig. 1. General protocol flow of Sui Lutris [4] fast-path & consensus failover system.

– Owned objects have an owner field that determines access control. When
owner is an address representing a public key, a transaction may access the
object, if it is signed by that address (which can also be a multi-signature).
When the owner of an object (called a child object) is another object ID
(called the parent object), the child object may only be used if the root object
(the first one in a tree of possibly many parents) is included in the transaction
and authorized. This facility is used to construct efficient collections.

– Shared objects do not specify an owner. They can instead be included in
transactions by anyone, and do not require any authorization. Instead, they
perform their authorization logic (enforced by the smart contract).

Transactions. A transaction is a signed command that specifies several input
objects, a version number per object, and a set of parameters. If valid it con-
sumes the input object versions and constructs a set of output objects at a fresh
version—which can be the same objects at a later version or new objects. Owned
objects versions need to be the latest versions in validator databases, and not be
re-used across transactions. Shared objects need not specify a version, and the
version on which the transaction is executed is assigned by the system. A trans-
action is signed by a single address and therefore can use one or more objects
owned by that address. A single transaction cannot use objects owned by more
than one address.

Certificates. A certificate (Cert) on a transaction contains the transaction it-
self as well as the identifiers and signatures from a quorum of at least 2f + 1
validators. A certificate may not be unique, and the same logical certificate may
be signed by a different quorum of validators. However, two different valid cer-
tificates on the same transaction should be treated as representing semantically
the same certificate. The identifiers of signers are included in the certificate (i.e.,
accountable signatures [5]) to identify validators ready to process the certificate,
or that can serve past information required to process the certificate.

Processing in the Fast Path and Consensus. Figure 1 provide an overview
of Sui-Lutris and by extension Cuttlefish’s common-case. A transaction is sent
by a user to all validators (➊), that ensure it is correctly signed for all owned

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 5

objects and versions, and also that all objects exist (➋); a correct validator
rejects any conflicting transaction using the same owned object versions, in the
same epoch (so the first transaction using an object acquires a lock on it). They
then countersign it (➌) and returns the signature to the user. A quorum of
signatures constitutes a certificate for the transaction (➍). Anyone may submit
the certificate to the validators (➎) that check it.

At this point execution may take the fast path: if the certificate only refer-
ences read-only and owned objects it is executed immediately (➏) and a signature
on the effects of the execution returned to the user to create an effects certifi-
cate (➐) and the transaction is final. If any shared objects are included execution
must wait. In all cases, certificates are input into consensus and sequenced (➑).
Once sequenced, the system assigns a common version number to shared ob-
jects for each certificate, and execution can resume (steps ➏’ and ➐’) to finalize
the transaction. The common sequence of certificates is also used to construct
checkpoints, which are guaranteed to include all finalized transactions (➑).

Checkpoints and Reconfiguration. Sui ensures transaction finality either
before consensus for owned object transactions (➐) and after consensus for
shared object transactions (➐’). Its reconfiguration protocols ensure that if a
transaction could have been finalized it will eventually be included in a check-
point before the end of the epoch. At the end of the epoch, all locks are reset (➋).
Appendix B summarizes the reconfiguration protocol of Sui that Cuttlefish di-
rectly adopts.

Limitations of Sui. Misconfigured clients may create and submit concurrently
conflicting transactions in step (➊) and (➋), that reuse the same owned object
versions. In that case, neither transaction may be able to construct a certifi-
cate (➍), and the owned object becomes locked until the end of the epoch. Due
to the risk that owned objects can become locked through conflicting transac-
tions, Sui restricts transactions to only contain objects from a single owner, thus
limiting the applicability of the fast path—to avoid mistrusting users from lock-
ing each others’ objects for a day. For similar reasons, objects may also have at
most one owner. Cuttlefish addresses all these limitations.

4 Overview

Cuttlefish adopts the high-level design of Sui, namely using reliable broadcast
for a fast path with a fall-back to consensus (see Appendix A for definitions of
distributed systems primitives), but augments it in the following ways.

1. It allows for multi-owner transactions on the fast path that use objects with
different ‘owners’. In Sui this can only be expressed with shared objects in
transactions using the higher-latency consensus path.

2. It introduces collective objects that allow for complex authorization involving
different users or combinations of users, or even time or external events.
Collective objects extend owned objects and may be used on the fast path.

6 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

3. It adds a FastUnlock protocol that allows for fast path objects blocked due
to concurrent conflicting transactions to recover liveness within seconds,
whereas Sui would recover only within a day.

Collective objects and multi-owner transactions allow for more expressive
transactions in the fast path, but risk increasing the incidence of conflicting
transactions and locked owned objects. To alleviate this issue, Section 6 presents
a simple design for FastUnlock: it performs a no-op on locked objects using the
consensus path making them available again within seconds. Section 7 extends
the FastUnlock protocol to force a specific transaction instead of a no-op, which
is necessary when objects are under continuous contention.

FastUnlock leverages the consensus protocol to signal that an owned object
is suspected of being under contention and should not be processed by the fast
path. Following invocations, the current version of the object is blocked, and
consensus is used to determine whether a transaction on it might have been
final; if not, in the simple FastUnlock the version of the object is increased with
a no-op. As a result, the object has a new version that can be accessed via the
fast path once again. Since the version is always updated, the transactions that
blocked the object are no longer valid, removing any replay attack opportunity.
This is not true in Sui as even after the end of the epoch a malicious client can
resubmit the equivocated transactions and try to re-lock the object.

Threat Model. Cuttlefish operates in the same threat model as Sui. It assumes
a message-passing system with a set of n validators and a computationally bound
adversary that controls the network and can corrupt up to f < n/3 validators
within any epoch. We say that validators corrupted by the adversary are Byzan-
tine or faulty and the rest are honest or correct. To capture real-world networks
we assume asynchronous eventually reliable communication links among honest
validators. That is, there is no bound on message delays and there is a finite but
unknown number of messages that can be lost. Similarly to Sui [17], Cuttlefish
additionally uses a consensus protocol as a black box that takes some valid in-
puts and outputs a total ordering [9,11,21], possibly operating within a partially
synchronous model [10].

5 Enhancing Programmability

Cuttlefish provides greater objects programmability on the fast path than exist-
ing consensus-less systems using two main ingredients: (i) multi-owner transac-
tions, and (ii) collective objects.

Multi-owner transactions. Sui Lutris requires all owned objects in a trans-
action to be ‘owned’ by the same address [17]. Cuttlefish lifts this restriction:
a transaction can reference owned objects with any root authenticator term.
The transaction contains the authentication evidence used to authorize all ob-
jects, such as a set of signatures over the transaction, potentially from multiple
addresses.

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 7

Validators must ensure that all owned objects referenced by a transactions
are correctly authorized before signing a transaction, which ensures that a valid
certificate represents an authorized transaction. Transactions that only contain
owned objects, even when they have different owners, can be executed on the
fast path. Then in addition they contain shared objects their execution needs to
be deferred after the certificate has been sequenced by consensus.

Multi-owner transactions make Cuttlefish more susceptible to owned-objects
being locked through error or malicious behaviour. For example, consider an
atomic swap T transaction that takes objects A owned by Alice and object B
owned by Bob and exchanges their ownership. If Alice signs T first, Bob may
refuse to sign initially denying Alice access to her object. If Alice loses patience
and tries to use A in another transaction T’, then Bob can sign T and race
Alice’s attempt to build a certificate. Now both T and T’ contain A and conflict
which can lead to a locked A (and B). To resolve such situations it is necessary
for Cuttlefish to implement FastUnlock described in Section 6.

Collective Objects. Collective objects are owned objects with a more complex
authenticator, than the usual address or object ID that Sui Lutris supports.
Complex authenticators allow conjunction, disjunction, and weighted thresholds
thresholds of authentication terms to be used as authenticators. Authentication
terms include the traditional address and object ID, but also conditions on time
or events that have occured in the environment of the execution. Due to the fact
that multiple non-coordinating or even mutually distrustful parties can use the
object in transaction, as well as the fact that some authorization terms are non-
deterministic, complex authenticators can lead to conflicting transactions being
authorized on objects and thus require the FastUnlock protocols to be practical.

More specifically Cuttlefish extends the authorization logic of an owned ob-
ject to be a root authentication term ⟨T ⟩ from the grammar in Figure 2:

⟨T ⟩ := PublicKey(pk) |ObjectID(oid)

:= BeforeTime(t) |AfterTime(t)

:= EventOccured(c, e)

:= Threshold(W, [(wi, ⟨T ⟩i)])

:=
∧
i

⟨T ⟩i (And)

:=
∨
i

⟨T ⟩i (Or)

Fig. 2. Grammar defining the authrorization logic for collective objects

8 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

– A PublicKey term is true if the transaction is signed by the public key
pk . Using a single such term as an authenticator for an object expresses the
authentication logic of a traditional single owner object in Sui.

– A ObjectID term requires the object with id oid to be included (and au-
thenticated) as part of the transaction. A single object id authenticator ex-
presses the traditional parent-child relation, and ownership rules in Sui.

– The BeforeTime and AfterTime are true if the (local) time the transac-
tion is received by the validator is respectively before or after t. Note that
since even honest validators cannot have perfectly synchronized clocks, it is
possible that a transaction with such a term becomes ‘stuck’.

– The EventOccured term becomes true if in the trace of finalized execu-
tions a specific event was emitted on chain c. Note that the chain may be
different chain than the one operated by Cuttlefish effectively making au-
thorization conditional on an oracle for another chain. Such an event may
be described by type or content and we abstract this in e. A reference to the
transaction that emitted the event can be provided as an authenticator to
help validators check this term.

– The Threshold defined a threshold W and a weight wi for a set of terms. It
is true if the sum of weights of the true terms exceed the threshold. It allows
the definition of flexible policies such as requiring a threshold of signature
or other conditions to be present to authorize the object being used.

– The And and Or define a number of terms, and are true if all or any of
these terms are true, respectively.

A transaction needs to provide evidence that all authenticator terms for all ob-
jects in its input set are true. For each input object it specifies the path(s) in the
authentication term tree that are true supporting the overall authenticator term,
collectively called authentication paths. It also contains a set of signatures (as a
list ordered by public key) signing the transaction. To allow for greater flexibility
the authentication paths are not signed (conceptually they are part of the sig-
nature not the transaction), and therefore a transaction cannot get information
about the logic that authorized its execution through this mechanism.

We note that an authorization path may be expressed in a very succinct
manner as a one bit per Threshold, And or Or branch pursued to demon-
strated the root authenticator term to be true. A single signature is required to
satisfy any number of PublicKey terms with the same pk . ObjectID terms
can be demonstrated as satisfied implicitly by including the oid as an input.
EventOccured, BeforeTime and AfterTime terms are satisfied (or not)
through the validator comparing their specified time with the current time or
consulting a chain for an event, and incur no additional overhead in terms of
evidence in the transaction.

We represent the authenticator logic as a tree, with AND/OR, k-out-of-n
connectives as branches and identities, time conditions and object IDs as leafs.
In this representation, we can augment each branch and leaf with an optional
nonce, compute a Merkle tree over them, and only store a hash of the root as the
authenticator. In this way transfering to a complex authenticator is no different

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 9

than transferring an object to an address, and one cannot tell the difference until
the object is used in a transaction. A transaction then reveals only the paths
necessary to show that the condition for access is satisfied. This allows objects
to preserve secret authenticators until they are accessed, and even upon access
only reveal the information required. We leave using zero-knowledge proofs as
evidence all authenticators are satisfied in a transaction, allowing us to hide all
information besides authorization, for future work.

6 Baseline FastUnlock Protocol

Both multi-owner transactions and collective objects can result in deadlocks in
the fast path when correct clients attempt to access objects concurrently. To
remedy this issue Cuttlefish introduces a FastUnlock functionality. For simplic-
ity, we show how to unlock a single object by either executing a preexisting
transaction to finality or executing a no-op which only increases the version.
Section 7 extends the basic protocol to execute a new transaction instead of a
no-op. Sui [17] provides detailed specifications and implementations of its system
model and Cuttlefish largely extends it with the additional FastUnlock protocol.

New Persistent Data Structures. Each Cuttlefish validator maintains a set
of persistent tables abstracted as key-value maps, with the usual contains, get,
and set operations. The map

LockDb[ObjectKey]→ Cert or None

maps each object’s identifier and version, ObjectKey = (ObjectId,Version), to a
certificate Cert or None if the object’s version exist by the validator does not
hold any certificate. The map

UnlockDb[ObjectKey]→ Unlocked, Confirmed, or None

records whether a transaction over the specified object version is involved in a
current FastUnlock instance (Unlocked), has been sequenced by the consensus
engine (Confirmed), or none of the above (None).

All new owned object entries start with UnlockDb[ObjectKey] set to None.
Once a transaction certificate is sequenced through consensus it is always ex-
ecuted (whether it is for a shared object transaction or an owned object only
transaction) and all owned object entries have UnlockDb[ObjectKey] set to
Confirmed.

FastUnlock Protocol Description. In order to safely unlock an object, the
user interactively constructs a proof, called a no-commit certificate, that no
transaction modifying that object has been committed or will be committed on
the fast path. This proof consists of a message signed by a quorum of validators
attesting that they have not already executed a transaction over the ObjectKey,
and promising that they will not execute any transaction over the ObjectKey

10 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

validator 1

validator 2

validator 3

validator 4

client
1 3

4

5

6

2

Byzantine
agreement

sign
UnlockReq

make
UnlockReq

assemble
UnlockCert

process
UnlockCert

assemble effect
certificate

sequence

Fig. 3. FastUnlock interactions between a user and validators to unlock an object.

in the fast path. Only certificates sequenced over consensus may affect such an
ObjectKey going forward.

Figure 3 illustrates the fast-unlock protocol allowing a user to instruct valida-
tors to unlock a specific object. A user first creates an unlock request specifying
the object they wish to unlock:

UnlockRqt(ObjectKey,Auth)

This message contains the object’s key ObjectKey to unlock (accessible as
UnlockRqt.ObjectKey) and an authenticator Auth ensuring the user is authorized
to unlock ObjectKey. The authenticator is composed of two parts: (i) a trans-
action that mutates the object in question and potentially additional objects,
which is signed by the object owner, and (ii) a proof that the party requesting
an unlocking can modify at least one of the objects in the transaction. The au-
thenticator prevents rogue unlock requests for objects that are either not under
contention (the transaction shows there exists a transaction that uses the ob-
ject) or by parties not authorized to act on the objects. The user broadcasts this
UnlockRqt message to all validators (➊).

Each validator handles the UnlockRqt as follows (Algorithm 1). A validator
first performs the following check:

– Check (1.1) It ensures the validity of UnlockRqt by verifying the authen-
ticator Auth with respect to the ObjectKey to unlock. Specifically, it should
contain a valid transaction including ObjectKey and evidence that the unlock
is authorized given the owner of ObjectKey. Otherwise stop processing.

The validator attempts to retrieve a certificate Cert for a transaction on ObjectKey
exists (Step (1.2)) or sets Cert to None. Then, the validator records that the
object in UnlockRqt can only be included in transaction in the consensus path
(Line 11) by setting its entry in the UnlockDb[ObjectKey] to Unlocked (Step
(1.3)). It finally returns a signed unlock vote UnlockVote to the user:

UnlockVote(UnlockRqt,Option(Cert))

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 11

This message contains the UnlockRqt itself, the (possibly None) certificate Cert
leading to the execution of the object key referenced by UnlockRqt (➋).

Algorithm 1 Process unlock requests

// Handle UnlockRqt messages from clients.
1: procedure ProcessUnlockTx(UnlockRqt)
2: // Check (1.1): Check Auth. (Section 6).
3: if !valid(UnlockRqt) then return error

4:
5: // Step (1.2): No conflicting executions.
6: ObjectKey← UnlockRqt.ObjectKey
7: Cert← LockDb[ObjectKey] ▷ Can be None
8:
9: // Step (1.3): Record the decision to unlock.
10: UnlockVote← sign(UnlockRqt,Cert)
11: UnlockDb[ObjectKey]← Unlocked
12:
13: return UnlockVote

Algorithm 2 Process unlock certificates

// Handle UnlockCert message from consensus.
1: procedure ProcessUnlockCert(UnlockCert)
2: // Check (2.1): Check if we can execute (Section 6).
3: if UnlockDb[ObjectKey] = Confirmed then
4: return
5:
6: // Check (2.2): Check cert validity (Section 6).
7: if !valid(UnlockCert) then return error

8:
9: // Execute Cert or None (2.3)
10: Cert← UnlockCert.Cert
11: if Cert ̸= None then
12: Tx← Cert.Tx
13: else
14: Tx← No-Op

15: EffectSign← exec(Tx,UnlockCert)
16:
17: // Prevent execution overwrite.
18: UnlockDb[ObjectKey]← Confirmed
19:
20: return EffectSign

The user collects a quorum of 2f+1 UnlockVote over the same (UnlockRqt,Cert)
fields and assembles them into an unlock certificate UnlockCert:

UnlockCert(UnlockRqt,Option(Cert))

where UnlockRqt is the certified abort message created by the user and Cert is
the (possibly None) certificate leading to the execution of the objects referenced
by UnlockRqt. There are two cases leading to the creation of UnlockCert:

1. At least one UnlockVote carries a certificate. This scenario indicates that a
correct validator already executed a transaction, which implies the object is
not locked. However this is not a proof of finality and subsequent steps may
invalidate this execution.

2. No UnlockVote carries a certificate. This scenario is a ‘no-commit’ proof as
there are f+1 honest validators that will not process certificates (UnlockDb
holds Unlocked) thus no certificate execution in the fast path will ever be-
come final.

The user submits this UnlockCert for sequencing by the consensus engine (➌). All
correct validators observe a consistent sequence of UnlockCert messages output
by consensus (➍) and process them in order as follows (Algorithm 2). A validator
performs the following checks, and if any fails they ignore the certificate:

– Check (2.1) They ensure they did not already process another transaction
to completion (i.e. UnlockDb is not Confirmed) or a different UnlockCert
for the same objects keys.

12 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

– Check (2.2) They check UnlockCert is valid, that is, the validator ensures (i)
it is correctly signed by a quorum of authorities, and (ii) that the certificate
Cert it contains is valid or None.

The validator then executes the transaction referenced by Cert (step 2.3) if one
exists. Otherwise, if Cert is empty, the validator undoes any local transaction ex-
ecuted on the object4, then executes a no-op, that is, the object contents remain
unchanged but its version number increases by one. The validator finally marks
every object key as Confirmed to prevent future unlock certificates or check-
point certificates from overwriting execution (Line 18) and returns an EffectSign
to the user (➎). The user assembles a quorum of 2f +1 EffectSign messages into
an effect certificate EffectCert that determines finality (➏).

Appendix C details the use of gas objects within the context of FastUnlock
and D proves the safety and liveness of the protocol. The key insight is that
an UnlockCert forces transactions on the owned object to go through consensus
sequencing. There, either a transaction certificate or an unlock certificate will
be sequence first and consistently executed. An unlock certificate for a finalized
transaction will always result in the execution of the same transaction.

Auto-Unlock. The basic FastUnlock scheme presumes that the request to un-
lock an object is authenticated by the owner(s) of the object. This ensures that
only authorized parties can interfere with the completion of a transaction, but
it also restricts who can initiate unlocking in case of loss of liveness. Alterna-
tively, an ‘Auto Unlock’ scheme may use a synchrony assumption instead to
initiate unlock: each validator upon signing a transaction associates with each
input object the current timestamp. An Auto Unlock request is identical to a
FastUnlock request, but is not authenticated by the object owner. Instead, its
validity is checked (checks (1.1) and (2.1)) by ensuring that a sufficient delay ∆
has passed since the object was locked. To ensure liveness the delay ∆ should
be long enough to allow for the creation of transaction certificates if there is
no contention. FastUnlock and Auto Unlock can be combined: an authenticated
request can be processed immediately, but an unauthenticated request is only
valid after ∆.

7 Contention Mitigation

The basic FastUnlock protocol speeds up recovery from loss of liveness due to
mistakes. However, Cuttlefish aims to support workloads on the fast path that
are truly under contention. In this case, the basic protocol in Section 6 is in-
sufficient, since it can result in multiple rounds of locking and no-op unlocking
without any user transaction being committed. We present a protocol that pro-
poses a new transaction during the unlock phase that is executed once the unlock

4 The UnlockCert with Cert being None ensures such an execution could not have
been final; only a single layer of execution can ever be undone, and no cascading
aborts can happen.

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 13

is sequenced, ensuring liveness. Additionally, we show how to generalize the basic
protocol to unlock multiple objects at once.

Algorithm 3 Process unlock requests (multi)

// Handle UnlockRqt messages from clients.
1: procedure ProcessUnlocktTx(UnlockRqt)
2: // Check (3.1): Check authenticator.
3: if !valid(UnlockRqt) then return error

4:
5: // Collect certificates.
6: c← None
7: for ObjectKey ∈ UnlockRqt.ObjectKeys do
8: c← c ∪ LockDb[ObjectKey]

9: UnlockVote← sign(UnlockRqt, c)
10:
11: // Record the decision to unlock.
12: if c == None then
13: for ObjectKey ∈ UnlockRqt.ObjectKeys do
14: UnlockDb[ObjectKey]← Unlocked

15:
16: return UnlockVote

Algorithm 4 Process unlock certificates (multi)

// Handle UnlockCert messages from consensus.
1: procedure ProcessUnlockCert(UnlockCert)
2: // Check (4.1): Check message validity.
3: for ObjectKey ∈ UnlockCert.ObjectKeys do
4: if UnlockDb[ObjectKey] = Confirmed then
5: return
6:
7: // Check (4.2): Check message validity.
8: if !valid(UnlockCert) then return error

9:
10: // Check (4.3): Can we execute the tx?
11: v ← []
12: if UnlockCert.Cert = [] then
13: Tx← UnlockCert.UnlockRqt.Tx
14: EffectSign← exec(Tx,UnlockCert)
15: v ← EffectSign
16: for ObjectKey ∈ UnlockCert.ObjectKeys do
17: UnlockDb[ObjectKey] = Confirmed

18: else
19: for Cert ∈ UnlockCert.Cert do
20: EffectSign← exec(Cert)
21: v ← v ∪ EffectSign
22: for ObjectKey ∈ Cert.ObjectKeys do
23: UnlockDb[ObjectKey] = Confirmed

24: return v

The multi-objects unlock protocol follows the same general flow as the single-
object unlock protocol described in Section 6. We thus describe the protocol
referring to the steps ➊-➏ depicted in Figure 3.

Protocol description. The user first creates an unlock request specifying a set
of objects to unlock:

UnlockRqt([ObjectKey],Tx,Auth)

This message contains a list of the object’s keys [ObjectKey] to unlock (accessible
as UnlockRqt.ObjectKeys), a new transaction Tx to execute if the unlock process
succeeds, and an authenticator Auth ensuring the sender is authorized to access
all objects in [ObjectKey]. The user broadcasts this message to all validators (➊).

Algorithm 3 describes how each validator handles this unlock request UnlockRqt.
They first perform Check (3.1) Line 3 to check the authenticator Auth is valid
with respect to all objects. This check ensures that the user is authorized to
mutate all the objects referenced by UnlockRqt and to lock all owned object
referenced by Tx. The validator then collects any certificates for the objects
referenced by UnlockRqt (Line 8) and adds them to the response as Cert. The
validator then marks object in UnlockRqt as reserved for transaction executed
through consensus only (Line 14).

The validator finally returns an unlock vote UnlockVote to the user:

UnlockVote(UnlockRqt, [Option(Cert)])

14 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

This message contains the unlock message UnlockRqt itself and possibly a set
of certificates [Cert] on transactions including the object keys referenced by
UnlockRqt (possible empty) (➋). If Cert is not empty the certified transactions
may have been finalized, and should be executed instead of the new transaction.

The user collects a quorum of 2f + 1 UnlockVote over the same UnlockRqt
message and assembles them into an unlock certificate UnlockCert:

UnlockCert(UnlockRqt,Cert)

where UnlockRqt is the user-created certified unlock message and UCert is the
unions of all set of certificates received in UnlockRqt responses. The user sub-
mits this message to the consensus engine (➌) The consensus engine sequences all
UnlockCertmessages; all correct validators observe the same output sequence (➍).

Algorithm 4 describes how validators process these UnlockCert messages after
they are sequenced by the consensus engine. The validator first ensures they did
not already process another UnlockCert or Cert through checkpoint for the same
objects keys (Line 4). They then check UnlockCert is valid, that is, the validator
ensures (i) it is correctly signed by a quorum of authorities, and (ii) that all
certificates [Cert] it contains are valid (Line 8). The validator can only execute
the transaction Tx specified by the user if UnlockCert.Cert is empty (Line 12). The
validator then marks every object key of [ObjectKey] as Confirmed to prevent
any future unlock requests on the ObjectKey from overwriting execution with a
different transaction (Line 23) and returns a set of EffectSign to the user (➎).

The user assembles an EffectSign from a quorum of 2f +1 validators into an
effect certificate EffectCert that determines finality (➏).

8 Related and Future work

The Cuttlefish’s fast path is based on Byzantine consistent broadcast [6]. Pre-
vious works suggested using this weaker primitive to build payment systems [1–
3, 8, 12, 14, 17] or even as an exclusion-based locking mechanism for optimistic
state-machine replication [15]. Zzyzx specifically uses a two-mode unlock mech-
anism that checks if all replicas have a matching history over the object and
retracts the lock or runs full consensus to find the best state to adopt. Unlike
Zzyzx, Cuttlefish provides the machinery to not only abort but also directly ex-
ecute a new transaction and exploits the idea of shared objects to allow for easy
execution when there is true contention. Addtionally, Cuttlefish comes with a
full set of proofs.

Section 3 extensively discussed Sui [17], the closest systems to Cuttlefish.
Notably, Sui includes a restricted variant of multi-owner transactions to sup-
port sponsored transactions, and a restricted variant of complex authenticators
allowing only weighted thresholds of signatures as an authenticator.

Sui additionally, supports a batch execution mechanism called Programmable
Transaction Blocks (PTB). In a PTB a user can bundle multiple of their trans-
actions together for execution and allows for a significant increase in operations
per second Sui can process. Unfortunately, this is currently only available for a

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 15

single owner largely due to the risk of deadlocks if one of the bundled operations
is under a race condition. With Cuttlefish we envision providing this significant
advantage in terms of throughput efficiency for general-purpose workloads as
dapp operators will be able to bundle transactions of many users in a single
certificate workflow knowing that if something goes wrong, they could invoke
FastUnlock and seamlessly regain liveness.

Another closely related work is FastPay which implements a payment sys-
tem using a Byzantine consistent broadcast primitive and a lazy synchronizer to
achieve totality [6]. Zef combines FastPay with the Coconut anonymous creden-
tials scheme [20] to enable confidential and unlinkable payments. Astro relies on
an eager implementation of Byzantine reliable broadcast [6] to achieve totality
without relying on an external synchronizer at the cost of higher communication
in the common case. Similarly, ABC [19] proposes a relaxed notion of consensus
where termination is only guaranteed for honest users. All these systems lack an
integration with a consensus path making them both impractical to run for a
long-time (no garbage-collection or reconfiguration) as well as limited function-
ality (only payments) and usability (client-side bugs result in permanent loss of
funds). If integrated, then Cuttlefish would apply directly to allow more use-
cases on the low latency consensusless path without the risk of locking assets
forever due to race conditions.

9 Conclusion

Cuttlefish proposes a novel approach to decentralized ledgers that addresses the
shortcomings of previous consensus-minimized systems. By realizing that the
requirement for consensus in blockchains is driven by contention rather than
the number of owners, Cuttlefish challenges traditional wisdom and provides
an alternative perspective. When objects are not under contention, the use of
collective objects and multi-owner transactions, combined with the right authen-
tication mechanism enables Cuttlefish to give the majority of the functionality
seen in traditional blockchains within two round-trips of communication. To
properly deal with deadlock when the objects are under contention, Cuttlefish
proposes the novel FastUnlock protocol allowing users to quickly regain access
to locked assets. As a result, Cuttlefish allows for the consensus-less execution
of a broader set of transactions, including asset swaps and multi-sig transactions
that were previously thought to need consensus.

Acknowledgment

This work is supported by Mysten Labs. We thank the Mysten Labs Engineering
teams for valuable feedback broadly, and specifically to Xun li and Mark Logan
for advising on a design that would best fit the Sui codebase.

16 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

References

1. Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Dionysis Zin-
dros. Brick: Asynchronous incentive-compatible payment channels. In Financial
Cryptography and Data Security (FC), 2021.

2. Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-
performance byzantine fault tolerant settlement. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 163–177, 2020.

3. Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. Zef:
Low-latency, scalable, private payments. arXiv preprint arXiv:2201.05671, 2022.

4. Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Son-
nino, et al. Sui lutris: A blockchain combining broadcast and consensus, 2023.

5. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for
smaller blockchains. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 435–464. Springer, 2018.

6. Christian Cachin, Rachid Guerraoui, and Lúıs Rodrigues. Introduction to reliable
and secure distributed programming. Springer Science & Business Media, 2011.

7. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI,
1999.

8. Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo
Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei
Tonkikh, and Athanasios Xygkis. Online payments by merely broadcasting mes-
sages. In 2020 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 26–38. IEEE, 2020.

9. George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegel-
man. Narwhal and tusk: a dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference on Computer Systems, pages
34–50, 2022.

10. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

11. Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus with
asynchronous fallback. In Financial Cryptography and Data Security: 26th Inter-
national Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers,
pages 296–315. Springer, 2022.

12. Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. AT2: asynchronous trustworthy transfers. CoRR, 2018.

13. Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovič, and Dragos-
Adrian Seredinschi. The consensus number of a cryptocurrency. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 307–316,
2019.

14. Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-
Adrian Seredinschi. The consensus number of a cryptocurrency. In Principles of
Distributed Computing (PODC), 2019.

15. James Hendricks, Shafeeq Sinnamohideen, Gregory R Ganger, and Michael K Re-
iter. Zzyzx: Scalable fault tolerance through byzantine locking. In 2010 IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN), pages 363–
372. IEEE, 2010.

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 17

16. Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman.
All you need is dag. In Proceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pages 165–175, 2021.

17. Mysten Labs. Build without boundaries. https://sui.io, 2022.
18. Linera. Unlocking the power of decentralization. https://linera.io, 2022.
19. Jakub Sliwinski and Roger Wattenhofer. Abc: Asynchronous blockchain without

consensus. ArXiv preprint, 2019.
20. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George

Danezis. Coconut: Threshold issuance selective disclosure credentials with appli-
cations to distributed ledgers. In Network and Distributed System Security Sym-
posium (NDSS), 2019.

21. Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. Bullshark: Dag bft protocols made practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pages
2705–2718, 2022.

22. Sui. Private conversation with the Sui team, 2023.

A Distributed Systems Primitives

This section presents the fundamental definitions of the distributed primitives
we use as black boxes.

Consensus. Consensus is the process of agreeing on a value or decision among
a group of nodes, each of which has its local input and can communicate with
other nodes over a network. Consensus protocols satisfy the following properties:

– Termination: Eventually, every honest node decides on a value.
– Agreement: All honest nodes decide on the same value.
– Validity: If all nodes have the same input value, then any node that decides

must decide on that value.
– Integrity: Nodes only decide on values proposed by some nodes.

State Machine Replication. A Byzantine fault-tolerant state machine repli-
cation protocol commits client transactions into a sequential log akin to a single
non-faulty server, and provides the following two guarantees:

– Safety: Any two honest replicas that commit a transaction at a log position
commit the same transaction.

– Liveness: A transaction submitted through an honest replica is eventually
committed by all honest replicas at some log position.

SMR typically uses a consensus instance per log position. In this work, we use
the term SMR and consensus interchangeably and assume a black box construc-
tion. Any type of consensus that provides safety under asynchrony is sufficient,
whether classic [7, 11] or DAG-based [9, 16,21].

Reliable Broadcast. Reliable Broadcast is a weaker version of consensus that
provides liveness only in the presence of an honest source node that drives the

18 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

protocol to completion. As we will discuss later in the paper this is sufficient for
the safety and liveness of transactions that do not experience contention on the
objects they operate. Unfortunately in the presence of a faulty or buggy source
node objects can lose liveness forever. A reliable broadcast algorithm should
satisfy the following properties:

– Validity: If an honest node broadcasts a message, then every honest node
eventually delivers that message.

– Integrity: If an honest node delivers a message, then that message was pre-
viously broadcast by the source.

– Agreement: If a honest node delivers a message m, then every honest node
delivers m.

B Epoch Change

Sui divides time into a sequence of epochs, each comprising an approximately
equal number of checkpoints. At the end of each epoch, validators release all
their locks to allow users with equivocated objects to regain access to them in
the next epoch5. However, this design choice introduces a potential risk: what
happens to transactions that were in progress during the epoch change?

To mitigate this risk, Sui implements an incremental epoch change process.
As a first step, validators pause transaction processing and focus solely on gen-
erating checkpoints. This ensures that validators can eventually terminate once
all executed transactions are secure. In a second step, validators submit all the
certificates they have executed for checkpointing. Once all the certificates known
to the validator have been checkpointed, the final step is for the validator to send
an end-of-epoch message to be sequenced by the consensus protocol. The epoch
change is considered complete when 2f+1 end-of-epoch messages are sequenced.

The safety of transactions in progress right before the start of the epoch
change process is guaranteed by the requirement that an honest validator must
not send an end-of-epoch message until all the certificates it executed are se-
quenced (either by itself or others inserting them into the consensus protocol).
This ensures that if a transaction has been finalized in the fast path, at least
one honest validator will either include it in a checkpoint or prevent the epoch
from completing. As a result, no finalized transaction is reverted or ‘forgotten’
during the epoch change. The preservation of this property can be extended to
apply directly to the unlock transactions.

C Handling Gas Objects

Typical transactions not only mutate objects but also consume a gas object to
spend for the computation. If, however, the transaction is locked then this gas is
blocked as well. For this reason Cuttlefish requires a fresh gas-object in order for

5 Transactions are valid only within the epoch they were signed to prevent replays.

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 19

consensus to process the unlock request. Specifically together with Algorithm 1,
the parties should provide a fresh gas object for their request. This gas object
is checked for validity along with the check in Line 3 and locked for the unlock
transaction in Line 11. When the user collects the no-commit proof in the second
step of the protocol, the 2f + 1 collected signatures also serve as a certificate
for the gas object. The consensus then checks the validity of the certificate and
spends it locally before entering Algorithm 2. Then when consensus executes the
transaction three scenarios may happen:

– The unlock request is valid and includes a certificate. Then the execution
happens as usual and both the gas object for the unlock and the gas object
for the execution are consumed.

– The unlock requests is valid and comes with a no-op. Then the gas object
for unlock is consumed. If there was some locked transaction racing the
FastUnlock then the accompanying gas object is potentially blocked. The
user can then explicitly unlock that gas object by running FastUnlock.

– The unlock request is not processed because a checkpoint certificate already
executed a transaction. Then the gas object is still consumed without altering
the state of the ObjectKey.

D Security Arguments

We argue about the safety and liveness of Cuttlefish. Intuitively, Cuttlefish does
not invalidate the finality guarantees of the normal fast path operations. That
is, a client holding an effect certificate can be assured that its transaction will
not be reverted.

Theorem 1. If there exists an effect certificate EffectCert over a transaction
Tx, the execution of Tx is never reverted.

Proof. We assume that the execution of Tx is reverted and lead to a contra-
diction. The transaction cannot be reverted at the end of the epoch as it will
contradict the properties we inherit from Sui which Cuttlefish did not modify.
Hence, the transaction can only be reverted if there exist an UnlockCert over an
ObjectKey modified by Tx. For this to happen there should be an UnlockCert over
that ObjectKey carrying an empty certificate. From Check (1.2) of Algorithm 1
a correct validator only provides and UnlockVote with an empty Cert if it has
not executed anything for ObjectKey. From our assumption that ObjectKey did
admit a no-op there should be f+1 honest validators that did not partake in the
generation of the EffectCert of Tx and hence passed the check. Additionally, for
the EffectCert to exist by definition it has 2f + 1 signatories over the ObjectKey
in question, at least f + 1 of them being honest. This implies a total of at least
f + 1 + f + 1 + f = 3f + 2 > 3f + 1 validators, hence a contradiction.

The dual also applies meaning that if an UnlockCert exists then no EffectCert
over the ObjectKey will be generated in the fast path. The proof analogue by add

20 Lefteris Kokoris-Kogias, Alberto Sonnino, and George Danezis

an extra check during the EffectCert generation that correct validators refuse to
process certificates when the recorded Unlocked in their UnlockDb.

Next we show that validators that might process on the consensus path both
a Cert (through checkpointing) and UnlockCert will arrive at the same execu-
tion result. We prove the case where an UnlockCert is ordered first. For this,
we need to enhance the protocol of checkpointing in Sui to check the value of
UnlockDb[ObjectKey] and ignore a cert that tries to process a Confirmed
Okey, which is a straightforward change.

Theorem 2. If a correct validator executes an UnlockCert certificate over ObjectKey
as sequenced by the SMR engine, no correct validator will subsequently execute
a conflicting a Cert as sequenced by the SMR engine .

Proof. The proof directly follows from the safety property of the SMR engine
that all validators will process certificates in the same order. Hence, upon pro-
cessing UnlockCert, all honest validators mark the execution of ObjectKey as
confirmed by setting UnlockDb[ObjectKey] ← Confirmed (Line 18 of Algo-
rithm 2). Then, check (2.1) of Algorithm 2 (and its dual added at the checkpoint
algorithm) ensures that if any further Cert or UnlockCert with a conflict is given
as input to the execution engine it is rejected.

The dual can be proven in the same manner since we enhance the execution
of Cert during the checkpoint process with updating UnlockDb[ObjectKey] ←
Confirmed after processing. Then all UnlockCert on the ObjectKey will be re-
jected at the Check (2.1) of Algorithm 2.

Liveness argument. Intuitively, we argue that Cuttlefish—and its composi-
tion with normal fast path operations—neither deadlocks nor enables unjustified
aborts (which could starve an object from progress).

Lemma 1 (Unlock Certificate Availability). A correct user can obtain an
unlock certificate UnlockCert over a valid ObjectKey.

Proof. A correct validator always signs UnlockVote if it passes the check of Al-
gorithm 1. Well formed UnlockRqt always come with a valid authentication path
(Check (1.1)), and Check (1.2) always returns an UnlockVote. As a result, if
UnlockRqt is disseminated to 2f + 1 correct validators by a correct user, they
will eventually all return an UnlockVote. The user then aggregates those votes
into a unlock certificate UnlockCert over ObjectKey.

Theorem 3 (Cuttlefish Liveness). If a correct and authorized user initiates
a fast-unlock protocol, the ObjectKey in question will eventually admit a new
transaction.

Proof. A correct and authorized user will eventually generate an unlock certifi-
cate by Lemma 1. Additionally from the liveness property of SMR the unlock
certificate will either eventually be added as part of the SMR output or the
epoch will end. If the first happens by agreement of consensus the UnlockCert

Cuttlefish: Expressive Fast Path Blockchains with FastUnlock 21

will be executed by all validators, leading to the termination of the fast-unlock
protocol and an updated ObjectKey. If the epoch ends, all locks are dropped and
liveness of all ObjectKey are automatically available for processing.

Theorem 3 is sufficient for correct users as either they will manage to no-op
an incorrect invocation of ObjectKey, drive the tranasction of a correct Tx to
completion, or the epoch end will automatically unblock them. This means that
there will always be an available ObjectKey to be modified.

Now that we proved that an authorized user will succeed into unblocking the
ObjectKey we also need to show that an unauthorized user will not succeed into
starving legitimate users from progress through abusing fast-unlock.

Theorem 4 (Starvation Freedom). An user cannot successfully initiate a
fast-unlock on any ObjectKey it is cannot produce an Auth.

Proof. All honest validators check the authorization vector Auth of the request-
ing user (Line 3 in Algorithm 1). This means that no honest party will lock an
object without an authorization, including slow parties that have not yet seen
the ObjectKey which will reject or cache the request for later processing. As a
result, by the model, there will never be sufficient UnlockVote to generate an
UnlockCert driven by an unauthorized user.

Generalization to multi-object unlock. The multi-object unlock protocol
can be seen as a composition of many single-object unlock protocols (one per
object) as well as a single commit protocol (for the accompanied transaction).
As a result, the safety of the protocol follows from the fact that objects are
independent of each other so if at least one has a prior certificate then the commit
flow will lead to committing that prior certificate (which iteratively applies to
all objects with prior certificates). If on the other hand, no object has a prior
certificate then the workflow is the combination of the simple FastUnlock per
object together with the shared-object path of committing the transactions of
Sui which is safe as proven in the original Sui paper [4].

Second, we explore liveness. There are two cases: (1) all objects can be un-
locked, (2) one or more objects are already certified. The first case is exactly the
same as the simple protocol of Section 6 and a proof would follow exactly the
same structure. For the second case, we first look into the base case of a single
object that is already certified which is already proven in the previous sections.
For more than one objects we can see that since the validator adds all certificates
in their reply and then processes each certificate separately when handling the
unlock cert then there is no interaction between certificate processing and can
be considered a batch of independent requests.

Finally, for liveness the accompanied transaction might need to acquire locks.
This is also an independent invocation of the Sui fast-path. As a result if the
transaction is valid it will either succeed or blocks. In the latter case, the user
will have to invoke fast-unlock again including in the set of to-unlock objects the
newly blocked objects of the transaction. Given that there is a finite number of
objects a user holds an unlock request will eventually succeed.

