
DISC-NG: Robust Service Discovery in the Ethereum Global Network

Michał Król∗, Onur Ascigil†, Sergi Rene‡, Alberto Sonnino§‡, Matthieu Pigaglio¶,
Ramin Sadre¶, Felix Lange∥, Etienne Rivière¶

∗City, University of London, †Lancaster University, ‡University College London, §Mysten Labs,
¶UCLouvain, ∥Ethereum Foundation

Abstract—The Ethereum Global Network (EGN) hosts a
complete ecosystem of decentralized services, including
blockchains such as Ethereum mainnet but also exchange
markets, content delivery networks, and many more. Service
discovery is a fundamental mechanism in the EGN, allowing
new nodes to look up and connect to other nodes already
participating in one of these services. The current service
discovery of the EGN, DISCv5, is not scalable and efficient
enough to support the current and future needs of the
ecosystem.

We present DISC-NG, a novel service discovery protocol
for the EGN that is scalable, efficient, and secure. DISC-NG
leverages the EGN-wide DHT to allow service participation
advertisements to meet service discovery requests. DISC-
NG compensates the unbalance in service popularity and
minimizes the potential for abuse by malicious nodes. We
implement DISC-NG in devp2p, the network stack used by
the majority of clients connecting to the EGN, as well as
in a large-scale simulator. DISC-NG can discover services
in the EGN faster than DISCv5 while being more robust to
malicious nodes. DISC-NG is now in a staging phase and
scheduled for deployment as an improvement to DISCv5.

1. Introduction
Following the advent of open blockchains, a large

number of decentralized applications emerged to form
complete, decentralized service ecosystems. These include
storage services (e.g. IPFS [57] or Filecoin [49]), ex-
change markets (e.g. Binance [7]), communication sys-
tems (e.g. Swarm [28]), interoperability networks (e.g.
Polkadot [64]), in addition to different distributed ledgers
at layer 1 (Ethereum mainnet, testnets, and alternatives)
and layer 2 (e.g. Arbitrum [2] or zkSync Era [66]).
The literature has so far considered various aspects of
decentralized systems including blockchain design and
consensus, smart contract platforms, economics, efficient
client designs, and the interoperability between different
services. In contrast, service discovery, a crucial aspect of
the security and performance of decentralized ecosystems,
received considerably less attention.

Service discovery enables new nodes to join a de-
centralized service ecosystem and obtain initial contacts
with peers already participating in one of its services.
Service discovery must not introduce a single point of
failure or centralization, yet it is a particularly crucial
and sensitive mechanism. It must ensure that malicious
participants to the open ecosystem are unable to bias
discovery operations against a victim node or service–
and that, despite the ability of these adversaries to operate

0 100 200 300 400
Rank

100

101

102

103

104

#N
od

es

mainnet
ropsten
rinkebygoerly
binancemusicoin
pirl

Zipf distribution
EGN services

Figure 1: Nodes number distribution of the Ethereum
Global Network (EGN) services in September 2023 sorted
by decreasing service popularity. A Zipf distribution is
given for reference.

multiple Sybil identities. Of particular importance is the
protection against eclipse attacks [32], [44], [54] where
an adversary would lure its victim(s) into a sub-network
formed of only nodes under its control, and censorship
attacks [8], [16], [55] preventing nodes from discovering
peers from a specific service.

With an average of 23,500 live nodes [19], the
Ethereum Global Network (EGN) is one of the largest
decentralized ecosystems currently in operation. While it
is widely known for supporting the Ethereum blockchain
(also known as the mainnet and supported by about 7,000
nodes), the platform hosts many additional decentralized
services. This includes blockchains used for test purposes
(Ropsten, Görli), divergent blockchains resulting from a
past fork (Ethereum classic), alternative cryptocurrencies
(Pirl, Musicoin), exchange markets (Binance), content
delivery networks (Swarm), or messaging services (Whis-
per). The platform already features almost 500 such ser-
vices, and their number grows every year [19].

The size distribution of the service-specific sub-
networks is very heterogeneous (Figure 1) featuring a long
tail, with a vast majority of services formed of a few
hundred nodes or less. In addition to security, performance
is of paramount importance for service discovery. The

Ethereum Global Network

? Service
discovery

Services’ sub-networks

maintnet
blockchain

storage
service

messaging
services

Figure 2: Formation of service-specific sub-networks us-
ing the EGN service discovery mechanism.

operation must be scalable, and ensure that the latency
and cost of service discovery are not influenced too sig-
nificantly by the relative popularity of the services.

The EGN operates as a unified global network or-
ganized as a Distributed Hash Table (DHT) [45], with
all nodes participating regardless of their respective ser-
vices. A new node initially joins this global network and
uses service discovery to locate the sub-network formed
of peers participating in its service of interest. Service
discovery returns a set of peers that are used as entry
points to that sub-network, typically supporting a specific
overlay network, as illustrated by Figure 2. For instance,
using these bootstrap peers nodes participating in mainnet
set up a GossipSub [60] publish/subscribe dissemination
overlay, and nodes participating in Swarm [28] build an
indexing overlay preserving sender anonymity [58].

The current EGN service discovery mechanism,
DISCv5, inherits its behavior from its predecessor,
DISCv4, and uses the global DHT to perform random
walks [26]. A node willing to join a service’s sub-network
contacts individually a series of nodes collected from ran-
dom lookups on the DHT, checking service membership
with every encountered node until it has collected enough
peers participating in its target service. This approach
offers good resilience to malicious behaviors but suffers
from very poor scalability and performance, in particular
for small sub-networks. Moreover, as more services join
the EGN, the inefficiency of the random discovery process
introduces a major risk of performance and scalability
bottleneck for the entire ecosystem.

Low performance for unpopular services is considered
a major problem by the Ethereum Foundation [26] and
applications using the EGN. For instance, finding 30 boot-
strap peers for Waku, an EGN messaging app, takes up to
45 min and requires sending 2,700 messages [62]. Higher
performance for popular services makes deploying new
systems difficult in comparison, promoting vendor lock-
in and potentially increasing centralization. Ethereum’s
new rollup-centric design will, furthermore, soon result in
numerous, additional low-participant applications (rollup
networks) integrated into the EGN [24]. The Ethereum
Foundation expressed the need for a more efficient dis-
covery mechanism to be implemented in DISCv5 [27].
However, to date, no such mechanism has been designed
or implemented.

Contributions. We present DISC-NG, a novel service
discovery mechanism for the EGN. Our protocol enables
nodes, members of service sub-networks, to advertise
their membership to these services in the form of service
advertisements propagated in the EGN. DISC-NG targets
simultaneously (1) robustness, i.e. the ability to resist ma-
licious behaviors and Sybil identities, (2) decentralization,
(3) efficiency, i.e. fast service discovery even for small
services, and (4) good load balance over participating
nodes. These features rely on two pillar contributions.

First, DISC-NG combines a pseudo-random advertise-
ment placement mechanism that ensures that the density
of advertisements for a service increases as discovery
requests get closer to the key associated with that service,
and a novel DHT walk mechanism collecting these adver-
tisements. In contrast with the use of direct DHT lookups,
these mechanisms protect from common DHT routing

attacks [1], [14], [59], [63]. Unlike DISCv5 random walks,
however, DISC-NG walks succeed in a predictable number
of steps, logarithmic in the network size.

Second, robustness, load balancing, and efficiency for
the discovery of smaller sub-networks all rely on a novel
admission protocol, by which nodes accept or reject in-
coming service advertisements. The admission protocol
ensures that malicious nodes cannot successfully flood
the network with advertisements, even when deviating
from the protocol or operating Sybils. It also ensures that
less popular services get a sufficiently high probability of
being represented and found. The core of the admission
protocol is a controlled waiting mechanism, by which
nodes request senders of incoming advertisements to wait
and come back after a time to be admitted. A careful
design of the functions selecting this waiting time allows
to promote diversity of advertisements stored by each node
and protects against a vast range of malicious behaviors.

We formally analyze the security (validity and live-
ness) of DISC-NG and mathematically model its perfor-
mance. We overcome multiple practical challenges and
implement DISC-NG in the code base of devp2p [18], the
peer-to-peer networking protocols stack used by a majority
of the clients connecting to the EGN (including Geth [20],
Hyperledger Besu [33], or Nethermind [25]).

We evaluate DISC-NG in a 50-server cluster support-
ing up to 1,000 devp2p nodes and with the emulation
of world-scale network conditions observed in large de-
centralized systems. In addition, we employ a simulator
whose results are cross-validated with results obtained
with the prototype. It allows us to study the behavior
of DISC-NG and competing designs with up to 50,000
nodes. Compared to DISCv5, DISC-NG discovers ten
times more peers per time slot while achieving a similar
or lower probability of being eclipsed by a powerful
attacker. Compared to the use of vanilla DHT lookup
operations, our system eliminates vulnerability to attacks
from resource-constrained attackers and reduces the load
on the busiest nodes in the network by two orders of
magnitude. DISC-NG is now in a staging phase and
scheduled for deployment as an improvement to DISCv5.
Impact. DISC-NG allows small networks to use the
large EGN for bootstrapping instead of running their own
infrastructure. In contrast to the current DISCv5, our
protocol ensures fairness for unpopular services, higher
security, fast bootstrap times, and better scalability. In the
long run, DISC-NG will encourage the development and
growth of new applications, promoting decentralization.
Outline. We start by providing background knowledge
and reviewing the current service discovery mechanism
of Ethereum in Section 2. We then detail our system
and threat models in Section 3. We present DISC-NG
components in Sections 4 to 6. Section 7 provides a formal
analysis of DISC-NG properties. We evaluate DISC-NG
in Section 8. We discuss related work in Section 9 and
conclude the paper in Section 10.

2. Background
We detail the operation of the EGN global DHT, which

is an evolution of the canonical Kademlia [45] design.
Then, we present DISCv5, the current service discovery
mechanism operating over this DHT, and its shortcomings.

1…
00…

011…
0100…

routing table for 0101… 0101… looks up key k=1100…

receives from

receives from

receives from k

Figure 3: Principle of Kademlia as used in the EGN. Left:
routing table with 5 buckets and associated prefixes. Right:
iterative lookup process by retrieval of buckets and queries
until finding the closest node.

2.1. The Ethereum Global Network DHT

All nodes in the EGN participate in a global, dis-
tributed hash table (DHT). A DHT is a structured overlay
network allowing lookup operations, i.e. locating a node or
group of nodes in charge of a particular key in a target key
space [52], [56]. The EGN uses an evolution of Kadem-
lia [45], a robust and mature DHT design. Every node n
in the overlay is assigned a unique identifier (ID) n.id,
drawn from the same key space as items, i.e. information
stored in the DHT. The distance dist between two keys x
and y is the logarithm of their bitwise exclusive or (XOR)
interpreted as an integer, i.e. dist(x, y) = log2(x⊕y). The
Kademlia DHT assigns a key x to the node n with the
identifier n.id that is the closest to x according to dist.

Each node n in the overlay maintains a rout-
ing table B(n.id) centered around n’s ID. The rout-
ing table is partitioned into m buckets B(n.id) =
{b0(n.id), b1(n.id), . . . , bm−1(n.id)}, where m is the
length in bits of nodes’ and items’ identifiers. Bucket
bi(n.id) contains a list of peers whose IDs share a common
prefix of length i with n.id.

The bucket partitioning scheme divides the key space
from the point of view of n into disjoint intervals, halv-
ing in length every time the bucket’s associated prefix
includes one more common bit with n.id, as shown by
Figure 3 (left). As a result, a node’s routing table provides
a more detailed (i.e. fine-grained) view of the subset of
the network with closer node IDs and a less detailed
view of nodes with distant IDs. This property is essential
for efficiency and enables lookup operations that take a
logarithmic number of steps (hops) in the number of nodes
in the network. It allows a degree of flexibility as each
bucket can contain any peer sampled from those whose
IDs fall within the corresponding interval of the key space.

In Kademlia, a node ni performing a lookup toward
key selects the closest node nj in its routing table to key
and sends it a message. Node nj returns the closest node
to key it knows, and the process repeats until no closer
nodes are found. For security, the EGN Kademlia variant
hides the precise target key. A node ni requests an entire
bucket where key is located from node nj , and filters them
locally before continuing the process (Figure 3, right).

2.2. DISCv5 service discovery

Currently, the EGN uses the DISCv5 protocol stack
that specifies not only the node discovery mechanism
but also the DHT implementation, and message wire
format. While some changes to the DHT implementation
have been introduced, DISCv5 uses the same discovery
mechanism as its predecessor network stack DISCv4.

EGN nodes perform random walks over the DHT by
looking up random keys and performing handshakes with
all encountered peers.

A handshake involves a secure channel establishment
between the initiator node and the encountered peer and
incurs overhead to both endpoints. If the initiator node
discovers during the handshake that the encountered peer
is part of the target service’s sub-network, it follows this
service-specific joining process. The objective of a node is
to fill up its service-level connection slots with outbound
connections (i.e. connections initiated by the node). The
process of node discovery completes when a node fills up
all these slots. Nodes also reserve a number of inbound
connection slots that can be filled with connections initi-
ated by other nodes.

Security and Efficiency. Peer discovery through random
walks is reasonably resilient to attacks. Attackers cannot
strategically place Sybil identities in the key space to
increase their chance of being discovered by victims, as all
locations in the key space have an equal chance of being
discovered. On the other hand, the brute-force approach
of performing handshakes with all randomly encountered
nodes is particularly inefficient. First of all, handshakes
with peers not in the target sub-network are wasteful
and incur unnecessary overhead. More importantly, for
services with low popularity, the number of handshakes
can be excessive, i.e. on average a node needs an order
of thousands of handshakes with other nodes to locate its
initial peer when 1% of the nodes are part of the target
service. Because all services are initially unpopular, the
upfront cost of building a sub-network can be large, and
finding peers can take a long time.

3. System and threat models

We present our system and threat models as well as the
target properties of DISC-NG. We summarize the notation
used in the paper in Table 1 in Appendix A.

3.1. System model

We assume a network of nodes N = {n0, n1, ...}. |N |
is unknown to the participants but is used in our analysis.
At startup time, each node generates a public/secret key
pair, which it uses to secure point-to-point communication
with its peers. Node n is identified by its node ID n.id
(the hash of its public key) and its IP address n.ip.

Multiple nodes may share the same IP address (due to
NAT or being hosted by the same physical machine) [44].
However, two nodes cannot share the same ID.

DISC-NG leverages the existing Ethereum DHT but
does not rely on its key lookup operations. DISC-NG
indexes different sub-networks in the EGN as services
S = {s0, s1, ...}. A service is represented by a string
identifier that hashes to a specific key. For brevity, we
use s to also refer to the identifier of service s.

We define the following roles in the system, that all
peers play simultaneously.

• Advertisers A(s) = {a0, a1, ...} participate in ser-
vice s and want to be discovered by their peers.
Advertisers A(s) make themselves discoverable by
placing advertisements (i.e. registering) for service s.

An advertisement (ad) maps a service to the adver-
tiser placing the ad. We define the set of advertisers
for all services as A =

⋃
s∈S A(s). A single node

can be an advertiser for multiple services.
• Discoverers D(s) = {d0, d1, ...} attempt to discover

advertisers registered under service s, using service
lookup operations. We define the set of discoverers
for all services as D =

⋃
s∈S D(s).

• Registrars R = {r0, r1, ...} accept ads from adver-
tisers, for any service. When asked for a specific
service s by discoverers, they respond with ads con-
taining advertisers that registered for this service.

We assume that the popularity of services in the
system is highly heterogeneous, i.e. it typically follows
a power law distribution [37]. Any node can participate
in registering and discovering (one or more) services and
use the same ID and IP for all its services.

3.2. Threat Model

We assume an open, adversarial environment. We dis-
tinguish between honest nodes Nh and malicious nodes
Nm with |Nh| + |Nm| = |N |. Honest nodes follow
the protocol while malicious ones may arbitrarily deviate
from it. We define sets of malicious Am, Dm, Rm and
honest Ah, Dh, Rh advertisers, discoverers, and registrars
respectively. Malicious actors can spawn multiple virtual
Sybil nodes within one physical machine, and operate
multiple physical machines.

A typical objective of malicious nodes could be to
prevent the discovery of ads made by honest advertisers.
Informally, they can aim to make a topic undiscoverable
(a censorship attack [55]) or to make discovery requests
return only ads pointing to malicious nodes under their
control (leading to an eclipsing attack in the target sub-
network). Malicious nodes can coordinate their actions,
i.e. a single actor can control multiple malicious nodes to
achieve its goals.

Below, we present and justify our additional assump-
tions. We formalize them in Section 7.

First, we assume a partially synchronous network
model [17], where messages are eventually delivered
within a bounded time ∆. We justify this assumption
by noting that no existing EGN service operates under a
weaker network assumption. Furthermore, the Ethereum
mainnet blockchain, the most popular EGN service, re-
quires a strictly stronger synchrony assumption [29].

Second, we consider that the underlying DHT has
mechanisms in place to prevent the success of DHT-level
eclipse attacks, i.e. where one node in the DHT would
end up being connected to only nodes under the control
of an attacker. In other words, we assume that, at all
times, all honest peers in the DHT overlay are connected
through at least one other honest peer. This assumption is
standard for most peer-to-peer systems [31], [36] as it is
impossible to guarantee the liveness of DHT operations in
the presence of fully eclipsed nodes. We assume that DHT
eclipse prevention mechanisms [3], [31], [32], [36], [44]
are in place and their operational assumptions satisfied.
We do not impose further constraints such as a threshold
on the ratio of malicious nodes, to guarantee protection
against eclipse attacks at the peer discovery level.

Finally, we assume that each honest node is able
to receive only a bounded amount of traffic per second
Tmax < 1125. The value is calculated based on our system
parameters (Table 1 of Appendix A) and further explained
in Section 7. This upper bound is much larger than the
currently achievable speed record of about 1014 bps [50].
We hence argue the practicality of this assumption. In
other words, we assume that no registrar (even if attacked
by an attacker with infinite resources) can receive and
process traffic that matches or exceeds Tmax .

3.3. Target Properties

Under the considered threat model, DISC-NG provides
the following security properties.
Validity. No honest registrar can be tricked into accepting
an ad by an advertiser who did not follow the protocol.
Liveness. (i) Honest advertisers can register an ad with
at least one honest registrar and (ii) honest discoverers
eventually discover a service that has been advertised by
an honest advertiser with an honest registrar.

DISC-NG achieves the following system properties.
Decentralization. DISC-NG does not rely on a single
trusted node or entity at any point.
Fairness. The system provides efficient lookup and reg-
istration operations for all participants regardless of the
service they look up or register for. Each advertiser has
an equal probability of being discovered by its peers. With
nodes complying with the protocol, DISC-NG ensures a
balanced load distribution across systems participants and
regions of the key space (i.e. it avoids hotspots).
Efficiency. DISC-NG ensures that the number of nodes
contacted and the number of messages exchanged increase
logarithmically with the number of system participants
|N |, for both lookup and register operations. Sending and
processing service discovery requests requires only simple
operations involving a constant amount of resources. The
storage usage for the registrars is limited by a configurable
but fixed cap that does not depend on the amount of
incoming traffic.

4. Placement of advertisements

We detail the distribution of advertisements in the
network and search for service-specific peers.
Challenge. The first challenge in designing a robust ser-
vice discovery mechanism is to decide on the placement of
ads, i.e. which registrars should be responsible for storing
ads for each service.

A first possibility would be to store ads at the closest
nodes to the hash of the service ID using traditional DHT
operations. Such a solution is efficient, as both advertisers
and discoverers know how to reach dedicated registrars
within a logarithmic amount of steps. Unfortunately, it
causes unequal load distribution across registrars, espe-
cially when the popularity of services varies significantly.
Registrars storing popular services would receive a large
portion of the registration requests in the network. Finally,
this solution is not secure, as an attacker could generate
and strategically place its Sybil identities, and take control
over all the traffic related to a single service [55].

service ID advertiser ID

advertiser routing table

initial advertise table

Figure 4: Creating an advertise table from a routing table.

Alternatively, advertisers could place their ads on ran-
dom registrars across the entire network. This approach,
as DISCv5, is secure as an attacker would need to take
control over the entire network to control a single service.
Furthermore, random placement is fair and achieves good
load balance across registrars regardless of the service
popularity distribution. However, and similarly again to
DISCv5, random placement is not efficient, as it makes it
difficult for discoverers to find placed ads, especially for
unpopular services.

DISC-NG advertisers place ads on random registrars
across the entire network, but the placement is biased
towards registrars close to the service hash. Discoverers
look up ads starting from the furthest bucket and continue
until they have collected ads from a sufficient number of
different advertisers. The process remains unpredictable
for the attacker for security while still finishing in a
logarithmic number of steps for efficiency. Discoverers of
popular services are more likely to discover enough ads
far from the service hash without reaching the closest reg-
istrars thus avoiding hot spots and guaranteeing fairness.

Distributing ads across registrars. Algorithm 1 presents
the DISC-NG advertisement procedure (also shown on
Figures 5a-5b). For each service s, its advertisers A(s)
continuously maintain up to Kregister active (i.e. unex-
pired) registrations or ongoing registration attempts in
every bucket of an advertise table B(s). Ongoing attempts
are tracked in a dedicated data structure (Line 1). The
advertise table B(s) is similar to the routing table but
centered around the service ID rather than the node’s ID
(Figure 4). It is initialized from the advertiser’s routing
table (Line 2). At every step, a random registrar in the
bucket is chosen (Line 6). The getRandomNode() func-
tion remembers already returned nodes and never returns
the same one twice during the same ad placement process.

An advertiser a ∈ A(s) willing to register an ad at
registrars starts by sending an initial request uniquely
containing the ad itself (Line 20). The ad contains the IP
of the advertiser a.ip, the service s the ad is for (Line 11),
and additional information needed to later contact the
advertiser (e.g. an application-specific port number). In
the remainder of the paper, we omit this additional infor-
mation in favor of brevity.

Registration may be unsuccessful if the selected reg-
istrar is down or refuses to store the ad (Line 28). In this
case, the ongoing registration entry is removed allowing a
different registrar to be queried. A successful registration
follows an admission procedure (Section 5) and places
an ad on an advertiser for a fixed amount of time E.
The advertisers run Advertise() periodically. Increasing
Kregister makes the advertiser easier to find at the cost of
increased communication and storage costs.

Looking up services. Algorithm 2 presents the DISC-NG
lookup procedure run by discoverers. Discoverer d ∈ D(s)

Algorithm 1 Advertisement algorithm run by advertisers.
1: ongoing← MAP ⟨bucket; LIST⟨registrars⟩⟩
2: B(s)← B(self.id)

3: procedure ADVERTISE(s)
4: for i in 0, 1, ...,m− 1 do
5: while ongoing[i].size < Kregister do
6: registrar← bi(s).getRandomNode()
7: if registrar = None then
8: BREAK
9: end if

10: ongoing[i].add(registrar)
11: ad.service← s
12: ad.ip← self.ip
13: SIGN(ad)
14: async(ADVERTISESINGLE(registrar, ad, i))
15: end while
16: end for
17: end procedure

18: procedure ADVERTISESINGLE(registrar, ad, i)
19: while True do
20: response← registrar.Register(ad)
21: B(s).add(response.neighbors)
22: if response.status = Confirmed then
23: SLEEP(E)
24: break
25: else if response.status = Wait then
26: SLEEP(min(E, response.ticket.wait for))
27: ad.ticket← response.ticket
28: else
29: break
30: end if
31: end while
32: ongoing[i].remove(registrar)
33: end procedure

runs Lookup(s) periodically and when more peers are
requested by its service application. The procedure aims
at identifying advertisers a0, a1, ... ∈ A(s) and returning
them to the application.

Similarly to advertisers, a discoverer starts with the
creation of service-specific search table B(s) (Algo-
rithm 2 Line 2, Figure 4). The lookup starts from the
farthest bucket b0(s) (i.e. peers whose ID has the small-
est common prefix with the service ID) and progresses
through all the buckets bi(s) ∈ B(s) (Line 4). Every
queried registrar returns a list of advertisers present for
s present in its ad cache (Algorithm 5 Line 2). The dis-
coverer issues a maximum of Klookup queries per bucket.

Making the advertisers A(s) and discoverers D(s)
walk towards s’s ID in a similar fashion guarantees that
the two processes overlap and contact a similar set of
registrars that relay the ads (Figure 5 exemplifies the
process for two advertisers a1, a2 ∈ A(s) and one dis-
coverer d ∈ D(s)). At the same time, contacting random
registrars in each encountered bucket makes it difficult
for an attacker to strategically place malicious registrars
in the network. The first bucket b0(s) covers the largest
fraction of the key space as it corresponds to peers with no
common prefix to s (i.e. 50% of all the registrars). Placing
malicious registrars in this fraction of the key space to im-
pact service discovery process would require considerable
resources. Subsequent buckets cover smaller fractions of
the key space, making it easier for the attacker to place
Sybils but also increasing the chance of advertisers already
gathering enough ads in previous buckets.

A queried registrar returns at most Freturn advertiser

service ID

advertiser a1 ∈ A(s)

(a) Advertiser a1 pushes ads at two registrars located in each
bucket of its advertise table, represented as diamonds.

service ID

advertiser a2 ∈ A(s)

(b) Advertiser a2 pushes ads at two registrars located in each
bucket of its advertise table, represented as stars.

service ID

discoverer d ∈ D(s)

∅ ∅

1
2

∅
3

?

(c) A discoverer d looks up ads starting from the furthest bucket,
and continues until it has collected ads from a sufficient number
of different advertisers, two in this example.

Figure 5: Advertisers continuously maintain a fixed num-
ber of ads in every bucket. Discoverers use an iterative
process to look up ads stored by advertisers, asking regis-
trars in the furthest buckets first, gradually moving towards
the service ID. The three figures show how two advertisers
push ads to different buckets (5a and 5b), and how a
discoverer looks up these ads (5c).

for s the registrar has in its ad cache. A successful search
stops when at least Flookup distinct advertisers have been
collected (Line 16) or no unqueried registrars remain in
any of the buckets (Line 7). Parameters Freturn and Flookup
play an important role in setting a compromise between
security and efficiency. A small value of Freturn << Flookup
increases the diversity of the source of ads received by the
discoverer but increases search time, and requires reaching
buckets covering smaller key ranges where eclipse risks
are higher. On the other hand, similar values for Flookup
and Freturn reduce overheads but increase the danger of a
discoverer receiving ads uniquely from malicious nodes.
Finally, low values of Flookup stop the search operation
early, before reaching registrars close to the service hash,
contributing to a more balanced load distribution.
Updating peer tables. The search and advertise tables
B(s) are bootstrapped upon their creation using entries
from the local node routing table. As the routing table of
node n is centered on its ID B(n.id) and not on s, the
density of peers around s might be low or even null, par-
ticularly when n.id and s are distant in the key space. The
buckets are thus filled opportunistically while interacting
with peers during the search or advertisement process.
Registrars, apart from responding to queries, return a list
of peers (Algorithm 4 Line 26 and Algorithm 5 Line 3)
that are later used to populate B(s) (Algorithm 1 Line 21
and Algorithm 2 Line 15).

Malicious registrars could return large numbers of
malicious nodes in a specific bucket attempting to poi-
son the routing process. To limit this risk, a local node
communicating with a registrar r asks it to return a single

Algorithm 2 Lookup algorithm run by discoverers.
1: procedure LOOKUP(s)
2: B(s)← B(self.id)
3: foundPeers← SET ⟨peers⟩
4: for i in 0, 1, ...,m− 1 do
5: for j in 0, ...,Klookup − 1 do
6: peer← bi(s).getRandomNode()
7: if peer = None then
8: BREAK
9: end if

10: response← peer.GetAds(s)
11: for ad in response.ads do
12: assert(ad.hasValidSignature())
13: foundPeers.add(ad.advertiser)
14: end for
15: B(s).add(response.neighbors)
16: if foundPeers.size ≥ Flookup then
17: return foundPeers
18: end if
19: end for
20: end for
21: return foundPeers
22: end procedure

Algorithm 3 Returning peers by registrars to nodes
traversing the DHT.

1: procedure GETPEERS(s)
2: peers← SET ⟨peers⟩
3: B(s)← B(self.id)
4: for i in 0, 1, ...,m− 1 do
5: peers.add(bi(s).getRandomNode())
6: end for
7: return peers
8: end procedure

peer per bucket from r’s view of B(s) (Algorithm 3).
Contacting registrars in consecutive buckets divides the
search space by a constant factor, and allows learning new
peers from more densely-populated routing tables towards
the destination. The procedure mitigates the risk of having
malicious peers polluting the table while still learning rare
peers in buckets close to s.

5. Admission Protocol

We describe the registration procedure followed by an
advertiser when attempting to register an ad at a registrar.

Challenge. Registrars have a limited amount of memory
and can store only a finite number of ads. If the regis-
tration demand surpasses the supply, each registrar has to
decide which ads should be admitted. In an open setting,
implementing simple replacement policies such as Least
Recently Used (LRU) or Least Frequently Used (LFU)
exposes the system to an attacker that bombards registrars
with ads and evicts the ads of honest advertisers.

DISC-NG uses a waiting-time-based admission mech-
anism. When an advertiser sends an ad placement request
to a registrar, the registrar calculates the amount of time
the advertiser needs to wait before being admitted. DISC-
NG guarantees that no advertiser can be admitted before
waiting for the calculated time. The mechanism does not
require registrars to maintain any state for each ongoing
request preventing DoS attacks.

Admission. Algorithm 4 presents the admission procedure
run by registrar r to decide whether to admit ad coming
from advertiser a. Registrars store admitted ads in a data

structure called an ad cache. Each ad stored in the ad
cache has an associated expiry time E, after which the
ad is automatically removed. The total size of the ad
cache is limited by its capacity C. DISC-NG does not
impose service/IP/ID-specific limits on the content of the
ad cache to accommodate for diverse network conditions
and application popularity distributions.

Advertiser a ∈ A(s) may place at most one ad for
a specific service s in the ad cache of a given registrar
r. Registration requests for ads already in the cache are
ignored (Line 2). Based on the content of the ad cache and
ad, r calculates an ad-specific waiting time (Line 4). We
detail the calculation of the waiting time in Section 6. If
r decides that a has to wait (i.e. tremaining > 0 in Line 17),
r does not store ad but instead issues a ticket.

Tickets are digitally signed objects issued by registrars
to advertisers to reliably indicate how long an advertiser
already waited for admission. Each ticket contains a copy
of ad, the ticket creation time tinit, the ticket last modifi-
cation time tmod, and the time that a still has to wait for
before being admitted twait for.

Upon reception of a ticket, a waits for the indicated
time twait and attempts to register again at r. The consecu-
tive registration request must include the last ticket issued
by r. Tickets can be used uniquely during a registration
window δ (Line 14). δ is chosen to accommodate for the
maximum delay between the advertiser and the registrar.
This prevents an attacker from gathering many tickets,
accumulating long waiting times (Section 6), and submit-
ting the tickets all at once to overwhelm the registrar.
Advertisers only read the wait time twait from the ticket
and do not use the creation (tinit) or the modification (tmod)
timestamps. As a result, DISC-NG does not require clock
synchronization between advertisers and registrars.

Importantly, the waiting time twait is not binding. At
every registration attempt from a, r calculates a new wait-
ing time twait, based on the current content of the ad cache.
The remaining waiting time tremaining is calculated as a
difference between twait and the time a has already waited
for, as indicated in the ticket (Line 15). With consecutive
registration attempts, a increases its accumulated waiting
time and eventually will be admitted (Line 18). If a misses
its registration window or does not include its last ticket,
it loses all its accumulated waiting time and has to start
the admission procedure from scratch.

Discussion. The admission protocol allows registrars to
prioritize advertisers that have been waiting for the longest
time. At the same time, combining non-binding waiting
times with immutable tickets stored and the advertiser side
means that the registrars are not required to maintain any
state for each ongoing request before admitting an ad into
the ad cache. This feature protects against advertisers who
do not come back and against DoS attacks that would
attempt to exhaust registrars’ memory.

6. Waiting Time

Challenge. DISC-NG is designed to be robust against
various attacks, including those aim to dominate the ad
cache and exhaust the resources of a registrar. However,
it is challenging to distinguish between legitimate and
malicious advertisers in a decentralized setup.

Advertiser Registrar

AdvertiseSingle(eth, 8.8.8.8)

waiting time

diversity

occupancy

tic
ke

t

AdvertiseSingle(eth, 8.8.8.8)

tic
ke

t

waiting time

IPservice
10.10.2.12testnet
125.2.12.4eth
68.156.1.2file_share

Ad Cache

182.152.221eth

Expires
12s
15s
17s
19s

231.124.122eth 23s
14.128.17eth 27s

IPservice
83.21.12.148eth
10.10.2.12testnet
125.2.12.4eth
68.156.1.2file_share

Ad Cache
Expires
2s
17s
20s
22s

AdvertiseSingle(eth, 8.8.8.8)

tic
ke

t

waiting time

IPservice
10.10.2.12testnet
14.128.17eth
68.156.1.5file_share

Ad Cache

8.8.8.8eth

Expires
29s
7s
29s
30sregistration confirmed

wait longer(new waiting time)

wait (waiting time)

tic
ke

t

Figure 6: DISC-NG admission protocol. The advertiser
sends its ad to the registrar which calculates a waiting time
and issues a ticket. The advertiser waits for the indicated
time and attempts to register again including the ticket.
Due to additional ads admitted to the ad cache in the
meantime, the advertiser has to wait again and receive
an updated ticket. The advertiser eventually accumulates
enough waiting time and registers at the registrar.

Algorithm 4 Admission algorithm run by registrars.
1: procedure REGISTER(ad, ticket)
2: assert(ad not in ad cache)
3: response.ticket.ad← ad
4: twait ← CALCULATEWAITINGTIME(ad)
5: if ticket.empty() then
6: tremaining ← twait
7: response.ticket.tinit ← NOW()
8: response.ticket.tmod ← NOW()
9: else

10: assert(ticket.hasValidSignature())
11: assert(ticket.ad = ad)
12: assert(ad.notInAdCache())
13: tscheduled ← ticket.tmod + ticket.twait for

14: assert(tscheduled ≤ NOW() ≤ tscheduled + δ)
15: tremaining ← twait − (NOW()− ticket.tinit)
16: end if
17: if tremaining ≤ 0 then
18: ad cache.add(ad)
19: response.status← Confirmed
20: else
21: response.status←Wait
22: response.ticket.twait for ← MIN(E, tremaining)
23: response.ticket.tmod ← NOW()
24: SIGN(response.ticket)
25: end if
26: response.neighbors← GETPEERS(ad.s)
27: return response
28: end procedure

DISC-NG does not try to identify malicious adver-
tisers. Instead, it focuses on issuing waiting times that
promote diversity in the ad cache. It results in high waiting
times and slower admission for malicious advertisers using
Sybil identities from a limited number of IP addresses. At
the same time, it promotes less popular services with fast
admission ensuring fairness and robustness against failures
of single registrars.

Waiting time function. The waiting time determines the
time advertisers have to wait before being admitted to the
ad cache. The function directly shapes the structure of
the ad cache, determines its diversity, and performs flow

Algorithm 5 Lookup response algorithm run by registrars.
1: procedure LOOKUPRESPONSE(s)
2: response.peers← ad cache.getAdvertisers(s)[: Freturn]
3: response.neighbors← GETPEERS(s)
4: return response
5: end procedure

control. Each request is given a waiting time based on the
ad itself and the current state of the ad cache, according
to Equation (1).

w(ad) = E︸︷︷︸
scaling

× 1

(1− c
C)Pocc︸ ︷︷ ︸

occupancy score

×

 c(ad.s)

c︸ ︷︷ ︸
service similarity

+ score(ad.IP)︸ ︷︷ ︸
IP similarity

+ G︸︷︷︸
safety

(1)

In the remainder of this section, we describe the individual
components of Equation (1).
Scaling. The waiting time is normalized by the amount
of time each ad spent in the cache E (i.e. expiry time). It
binds the absolute values of the returned waiting time to
E and allows us to reason about the number of incoming
requests regardless of the time each ad spends in the ad
cache.
Occupancy score. The occupancy score progressively
increases the waiting time as the ad cache fills up and
limits the memory used by a registrar. c is the number of
ads already in the ad cache, C is the capacity of the ad
cache, and Pocc is a protocol parameter. When the number
of ads in the cache is low (c≪ C), the occupancy score
is close to 1. As the ad cache fills up, the score will
be amplified by the divisor of the equation. The higher
the value of Pocc, the faster the increase. With occupancy
c close to the capacity C, the occupancy score goes to
infinity thus limiting the number of admitted requests.
Service Similarity. The service similarity determines how
similar the incoming request is to the ads already in the ad
cache in terms of service ID. c(ad.s) is the number of ads
for service s already in the cache. Requests significantly
different from the current content of the cache (c(s) ≈ 0)
receive lower similarity scores resulting in lower overall
waiting times. The similarity goes to 1 as the specified
service dominates the cache c(s) ≈ c. Such an approach
promotes fairness across services, i.e. it is easier for less
popular services to get into the cache.
IP Similarity. The similarity score used for services can-
not be securely applied to IPs. It is easier for an attacker to
generate similar IP addresses (i.e. within a single subnet)
than to control many diverse ones (with different prefixes).
An attacker could thus easily generate multiple addresses
that would receive low similarity scores. A common solu-
tion is to limit the number of IPs coming from the same
subnetwork [20], [44]. Unfortunately, it is impossible to
reliably set those limits without knowing the network
size or NAT configuration of the honest nodes. DISC-
NG implements a more versatile approach that directly
captures the similarity across different IPs and translates

IP = 128.40.39.170 10000000….

9+1

5+1

0 0

1+1 4

0
4

1

11+1 3

2 2

12 1

Score(IP) = !"#"#" …
%&

0

0

0

0

0 00

0

1

1

1

1

1 111 0

p≥1 = 4.5

p≥2 = 2.25

p≥3 = 1.125

Figure 7: Inserting an IP address into the IP tree structure.

it into a numerical score. We introduce a binary tree
(Figure 7) that stores IPs used by ads in the cache.

Each tree vertex stores a counter, while the edges
represent consecutive 0s or 1s in a binary representa-
tion of IPs. Apart from its root, the tree consists of 32
levels (33 levels in total) representing bits in the binary
representation of IPv4 addresses1. Algorithm 6 presents
the pseudocode for adding an IP address to the tree. The
counter of every tree vertex is initially set to 0. When
adding an IP to the tree, the address is first converted to
its binary representation (Line 4) and follows a path in the
tree corresponding to consecutive bits (Line 7). Counters
of all the visited vertices are increased by 1 (Line 6).
As a result, the root counter stores the number of all the
IP addresses in the ad cache, its 0 successor stores the
number of the IPs starting with 0, root’s 1 successor stores
the number of the IP addresses starting with 1 and so on.

When the counter of a visited vertex is higher than
it should be in a perfectly balanced tree (Line 12), a
point is added to the score (Line 13). In the end, the
similarity score for an IP is normalized by the length
of the IP address, and thus the maximum score value
(Line 16). The add procedure is used to calculate the IP
score every time the waiting time is calculated. However,
the vertex counters are increased in Line 6 only when
an ad is admitted to the cache. When an ad expires,
its IP is removed from the tree, and the counters are
decreased. The IP similarity ranges from 0 to 1 and returns
values closer to 1 for IPs sharing the same prefix and
protects against filling the cache by advertisers with a
small number of distinct IPs.
Safety. A resourceful attacker could send ads for random
services (Service Similarity ≈ 0) and from diverse IPs (IP
similarity ≈ 0). To prevent the cache from overflowing in
such cases, the safety parameter G ensures that the waiting
time never reaches 0.
Lower Bound. Every change in the ad cache may increase
or decrease the waiting times of other pending requests.
Therefore, an advertiser receiving waiting time w1 at time
t1, may get a smaller waiting time w2 at time t2 (t1 < t2)
in case the content of the ad cache is different (e.g. when
an ad for the same service expires between t1 and t2). As

1. For simplicity, we present the tree for IPv4 addresses but its
adaptation for IPv6 is straightforward.

Algorithm 6 Adding an address to the IP tree.
1: procedure ADD(tree, IP)
2: v ← tree.root
3: score← 0
4: bits← IP.to binary()
5: for i in 0, 1, ..., 31 do
6: v.counter← v.counter + 1
7: if bits[i] = 0 then
8: v ← v.left
9: else

10: v ← v.right
11: end if
12: if v.counter > tree.root.counter

2i
then

13: score← score+ 1
14: end if
15: end for
16: return score

32
17: end procedure

Figure 8: Waiting time lower bound.

a result, advertisers are incentivized to frequently send
new ticket requests hoping to get a better waiting time
and generating unnecessary overhead in the system. To
prevent this, DISC-NG ensures that any advertiser already
in possession of a ticket, cannot get a better waiting time
by sending new ticket requests, as explained next.

When asking for a new waiting time before the previ-
ously obtained one elapses, an advertiser loses its already
accumulated waiting time (including the previous ticket
allows the registrar to ignore the request). This means that
asking for a new waiting at time t2 can lower the overall
waiting only if the new waiting time w2 is smaller than w1

by more than the time elapsed t2− t1: w1−w2 < t2− t1.
To avoid it, DISC-NG enforces a lower bound on the
waiting time. We make sure that an advertiser’s waiting
time received at t2 is not smaller than the waiting time at
t1 (t1 < t2) by more than t2 − t1 (Figure 8).

Keeping lower-bound information associated with pre-
viously received ads goes against the objective of storing
no information at the registrar related to pending requests.
The unbounded memory overhead induced by this storage
could be exploited by an attacker. We observe, however,
that storing bounds for every request is not necessary. To
illustrate why, let us consider a rewrite of the waiting
formula of Equation (1) as a summation:

w(ad) =
E ·G

(1− c
C)Pocc

+
E · c(ad.s)
c(1− c

C)Pocc
+

score(ad.IP)

(1− c
C)Pocc

(2)

In this summation, the total waiting time will respect
the lower bound as soon as a corresponding lower bound
is enforced for each of the three components. As a result,
a registrar only needs to store lower-bound information
for every different IP, and every different service already
in the ad cache. In contrast with the (unbounded) stream
of incoming ads, these two sets have a bounded size.

When service s enters the cache for the first time,
bound(s) is set to 0, and a timestamp(s) is set to the
current time. When a ticket request arrives for the same
service, we calculate the service waiting time ws and
return the value ws = max(ws, bound(s)− timestamp(s)).
The bound and the timestamp are updated when a new
ticket is issued and ws > (bound(s)− timestamp(s)).

We also maintain a lower-bound state for the ticket
holders’ IP addresses in the IP tree structure: the state for
an IP address is maintained at the node, which corresponds
to the longest prefix match in the existing tree (without
introducing new nodes). We also aggregate the lower
bound states of multiple IPs mapping to the same node
by applying a max() function.

7. Formal Analysis

We formally argue the properties of DISC-NG. When-
ever referring to an honest party, we mean a party that
follows the protocols specified below.

Definition 1 (Honest advertiser). An honest advertiser is
an advertiser that follows Algorithm 1.

Definition 2 (Honest registrar). An honest registrar is a
registrar that follows Algorithm 4 when interacting with
an advertiser and Algorithm 5 when interacting with a
discoverer.

Definition 3 (Honest discoverer). An honest discoverer is
a discoverer that follows Algorithm 2.

7.1. Validity

Intuitively, validity ensures that no registrar can be
tricked into accepting an ad by an advertiser without a
valid ticket.

Definition 4 (Valid ticket). A valid ticket issued by a reg-
istrar r over an advertisement ad is a statement uniquely
referencing ad and a timestamp of the ticket’s creation;
and a signature by r over those fields.

Theorem 1 (Validity): No honest registrar r admits
an advertisement ad without a valid ticket (Definition 4)
referencing ad.

Proof. The proof can be found in Appendix B.1.

7.2. Liveness

We show that an honest discoverer eventually dis-
covers a service that has been advertised by an honest
advertiser with an honest registrar. The liveness of DISC-
NG relies on assumptions that we describe and motivate
in Section 3 and formalise below.

Assumption 1 (Partial synchrony [17]). There exists a
known ∆ and a global stabilization time (GST) after which
all messages sent among honest nodes are delivered within
the network delay ∆. All messages sent among honest
nodes are eventually delivered.

Assumption 2 (No eclipses). At all times, all honest nodes
(advertisers, discoverers, and registrars) are connected
through at least one other honest node.

Assumption 3 (Maximum throughput). The maximum
throughput that can be received by a single registrar is
Tmax < Xsize(C−1)

E (1 + G
(1/C)Pocc), where G and Pocc are

system parameters (see Table 1), Xsize is the average
request size, E is the ad expiration time, and C is the
maximum capacity of the registrars’ cache (see Section 5).

Advertiser liveness. An honest advertiser can eventually
register an ad with at least one honest registrar. Intuitively,
honest advertisers receive tickets indicating a minimum
waiting time before their ad can be registered. The cache
of the registrars has a bounded capacity, but ads expire
and are removed from the cache after a fixed amount of
time. As a result, we argue that it is impractical for an
adversary to overwhelm the cache of an honest registrar
because doing so would necessitate meeting unmanage-
able bandwidth demands.

Theorem 2 (Advertiser liveness): An honest advertiser
a can eventually register an ad ad with an honest regis-
trar r.

Proof. The proof can be found in Appendix B.2.

Discoverer liveness. An honest discoverer seeking a ser-
vice eventually connects with an honest advertiser offering
this service. Intuitively, an honest advertiser can eventually
register an ad for its service with a set of honest regis-
trars, and an honest discoverer eventually discovers these
registrars and thus the advertiser offering the service.

Theorem 3 (Discoverer liveness): An honest discoverer
d eventually discovers service s advertised by an honest
advertiser a with an honest registrar r.

Proof. The proof can be found in Appendix B.3.

7.3. Decentralization

DISC-NG does not rely on a single trusted entity at
any point. The underlying DHT represents a decentralized,
permissionless system. Any node can generate a node ID
close to the identifier of a particular service. Furthermore,
DISC-NG ads placement and discovery procedures (Sec-
tion 4) contact randomly chosen nodes in every DHT
bucket making sure that the data is stored to and obtained
from multiple locations.

7.4. Fairness

We argue that the load distribution across the reg-
istrars due to registration and lookup processes exhibits
a relatively low degree of imbalance. For simplicity, we
compare the load on registrar r1 located closest to the most
popular service s1 and the load on registrar r2 located
closest to the least popular service s2. We assume the IDs
of s1 and s2 to be located on the opposite sides of the DHT
key space, the worst-case scenario for load balancing.
Empirical analysis of registration load. Figure 9
presents the registration load ratio between both registrars
as a function of increasing imbalance of popularity be-
tween the two services (expressed as the ratio of the num-
ber of their respective advertisers |A(s1)| and |A(s2)|),
assuming advertisers with IP address diversity. The figure

0 20 40 60 80 100
|A(s1)|/|A(s2)|

0

20

40

60

r 1
/r

2 l
oa

d
ra

tio

3.1

with admission control
without admission control

Figure 9: Load ratio between registrars located closest
to most popular (r1) and least popular (r2) services for
Kregister = 5, |N | = 25000, |A(s1)|+ |A(s2)| = 15000.

0 200 400 600 800 1000
|D(s1)|

0

100

200

300

Lo
ok

up
 lo

ad
 o

n
r 1

K_lookup=K_register=3
K_lookup=K_register=5
K_lookup=K_register=7

Figure 10: r1’s lookup load as a function of increasing
popularity of s1 for |N | = 25000, |D(s2)| = 100.

was obtained by mathematically modeling the load caused
by advertisers for s1 and s2 and assuming a small uniform
background load from other services at both registrars, as
described in more detail in Appendix C.2.

When s1 is a hundred times more popular, r1 receives
only 3.1 times more requests than r2 with admission
control. On the other hand, when all the requests receive a
fixed waiting time (i.e. no admission control), r1 receives
nearly 60 times more requests than r2.

Initially, r1 receives more requests than r2. However,
as r1 admits ads, the waiting time for the remaining regis-
tration attempts increases due to the increasing occupancy
c and service similarity component c(s1)

c . The increased
waiting time slows the rate of incoming requests and limits
the traffic received by r1.
Empirical analysis of lookup load. Figure 10 presents
r1’s load due to lookups as a function of the popularity of
s1. For this figure, we fixed the number of advertisers and
discoverers for the unpopular service |D(s2)| = |A(s2)| =
100 and gradually increased the number of discoverers
D(s1) looking for service s1 as well as the number of
its advertisers, assuming |D(s1)| = |A(s1)|. We include
more details in Appendix C.2.

Depending on the Kregister and Klookup parameters,
the maximum load is experienced when the number of
advertisers/discoverers |D(s1)| = |A(s1)| is relatively
small. Eventually, the lookup load goes back to zero
when s1 becomes more popular because as the number
of advertisers and discoverers increases the probability
that the discoverers will finish their search before reaching
r1 increases as well. We observe the same behavior for
different Kregister and Klookup values as shown in Figure 10.

A discoverer looking for s1 will start at the furthest
bucket b0(s1) and progress toward bm−1(s1) until it finds
Flookup ads. Initially, this increases the load on r1 located

closest to the s1. However, the more participants in s1, the
more ads will be placed and discovered in early buckets
bi(s1)|i << m. As a result, an increasing number of
discoverers will terminate their lookup operations (finding
Flookup nodes) before reaching r1.

8. Performance Evaluation

We evaluate DISC-NG in two steps. First, we evaluate
a prototype extending using the devp2p [18] stack in a
testbed cluster of 50 servers and supporting up to 1,000
nodes. With the logarithmic-evolving performance of the
underlying DHT, achieving any significant DISC-NG be-
havior change beyond that scale would require many more
nodes (e.g., 20,000). We thus use the testbed results to
validate a simulator, allowing us to perform tests at a much
larger scale with confidence in the results, reaching up to
50,000 nodes. For all experiments, we assign node IDs
and IPs randomly drafted from the EGN [19].

8.1. Testbed and simulator validation

We first describe our evaluation of the performance
and cost of the DISC-NG prototype. We implement DISC-
NG in devp2p [18], the network stack used by the EGN,
and integrate it with the Go Ethereum (Geth) client [20]
as a service application.

We deploy instances of devp2p and Geth in a cluster of
50 servers, each equipped with an 18-core Intel Xeon Gold
5220 CPU and 96 GB of RAM. We performed careful
load tests and observed that each server could support up
to 20 instances of DISC-NG with no visible impact (i.e. no
contention on CPU resources, no memory shortage, and no
increase in application latencies). We consider, therefore,
network sizes of 200, 500, and 1,000 nodes.

Network emulation. DISC-NG is intended to operate
with WAN latencies. The fast 25-Gbps interconnect link-
ing our servers is not representative of such a setting.
We rely, therefore, on network emulation using the Linux
tool tc to reproduce the characteristics of a planetary-
scale deployment. As there is no publicly available data
of node-to-node latencies in the EGN, we use a similar
dataset [39] collecting the all-pair latencies in IPFS, a
large-scale storage network that has a similar scale and
decentralization objective as the EGN. Roundtrip latencies
range from 8 ms to 91 ms, with an average of 34 ms.
We further limit the connection capacity of each node to
20 KBytes/s.

Setup. We use 30 services whose popularities follow a
Zipf distribution (with parameter α = 1), as perceived in
Figure 1. Each node constantly registers for its assigned
service and performs 5 lookup operations. We survey
the number of peers Flookup required by various EGN
services. The Ethereum geth client [20] and the beacon
chain nodes [23] establish 25 connections, Swarm [28]
peers establish 8 outbound and 17 inbound connections,
and both Farcaster [21] and Waku [61] peers establish
up to 12 connections [40]. We thus aim to discover
Flookup = 30 peers as an upper bound of what is required
by current EGN applications taking into account potential
node failures and churn. We summarize and justify all the
default system parameters in Table 1 in Appendix A.

200 500 1000
#Size of the system (nodes)

0

1000

2000

3000

4000

5000

6000

Ba
nd

wi
dt

h
(B

yt
es

/s
)

in out

200 500 1000
#Size of the system (nodes)

0

20000

40000

60000

80000

100000

120000

#N
um

be
r o

f m
es

sa
ge

s

simulator prototype

Figure 11: Incoming and Outgoing bandwidth distribution
for increasing system sizes in the testbed cluster (left)
and corresponding distribution of message counts in the
testbed and the simulator (right).

200 500 1000
#Size of the system (nodes)

0.00

0.05

0.10

0.15

0.20

0.25

La
te

nc
y

(s
)

200 1000 500
#Size of the system (nodes)

0

20

40

60

Lo
ok

up
 p

at
h

le
ng

th
 (h

op
s)

simulator prototype

Figure 12: Distribution of latencies for looking up at most
30 advertisers in the network for increasing system sizes
(left), and comparison of the corresponding lookup path
length in the testbed and the simulator (right).

Simulator validation. We concurrently run the same ex-
periments in a simulator of DISC-NG that we developed
using PeerSim [46], a scalable P2P network simulator.

Bandwidth usage. We start by studying the resource
usage of DISC-NG. As advertisers periodically push ads
to the system, and as discoverers periodically attempt to
locate peers for their service, DISC-NG incurs a constant
flow of messages. Figure 11 presents the distribution of
bandwidth for different sizes of the network. We observe
that the incoming and outgoing bandwidth are well bal-
anced across peers (i.e. no peer acts as a bottleneck) and
that the overall bandwidth budget is very modest, and well
below the capacity of our emulated links. As the system
grows in size, the median bandwidth cost increases, with
outliers that are still well below the typical capacity of
an internet link. In the second plot, we compare the
distribution of the number of messages in the testbed and
those obtained in the simulation. The distributions match
and allow us to consider the number of messages as a
valid indicator of bandwidth usage in the simulations.

Service latencies. We now evaluate the latency of dis-
covery requests, presented in Figure 12. Each discoverer
attempts to find up to 30 advertisers in the network.
Discovery latency grows moderately with increasing sys-
tem sizes and remains in the order of a few hundred
milliseconds. The distribution of lookup path length aligns
with this observation and the lookup path lengths are
comparable in the testbed and simulations. It makes this
metric a valid indicator of service latency in simulations.

Local processing time. We zoom in on the local process-
ing time required for the different operations performed by
discoverers and advertisers (Figure 13). We consider cases
with an empty and a full ad cache. Lookups performed on

0 10 20 30 40 50 60 70
Time[us]

Service Lookup/Empty

Service Lookup/Full

Ad Admission/Empty

Ad Admission/Full

Figure 13: Request processing time.

Nodes
0

10

20

30

Av
g

nu
m

be
r o

f l
oo

ku
p

re
su

lts

Figure 14: Average number of lookup results obtained by
each node.

an empty ad cache are the fastest as they do not require
processing the ad cache content. Lookups performed on
a full ad cache require 66µs. The registration admission
operation requires 58µs and is not heavily influenced by
the increasing number of stored ads. For all operations, we
observe consistent processing time across multiple runs.

Finding advertisers. We analyze the average number
of lookup results obtained by each node, in the largest
configuration with 1,000 nodes. We focus on the 20 most
popular services. Figure 14 groups nodes by their service,
as indicated by the colors of the bars (order within one
color is random). Services are sorted from highest to
lowest popularity, as can be seen by the width of the color
zones. The vast majority of discoverers are always able to
find the required number of peers. Less popular service
nodes (right side of the graph) do not always obtain
enough results. This is caused by the lower number of
participants for those services (< 30). Importantly, within
each service, we observe the same number of obtained
results indicating high fairness.

Being found by discoverers. Figure 15 presents the
number of times each advertiser is discovered by others.
It allows us to verify that no advertiser is discriminated
against in the network. We use the same visual grouping
as in Figure 14. Within each service, nodes are discov-
ered with uniform distribution, and we did not observe
advertisers not discovered by their peers. The distribution
closely matches the one observed in Figure 14.

Waiting times. At first, the equal discovery rate across
services with different popularity might be surprising. To
investigate it further, for each service, we plot the average
total waiting time received by its advertisers in Figure 16.
We express the waiting time in ad expiry time E and keep
the service colors consistent with the one used in Figure 14
and Figure 15. DISC-NG returns higher waiting times to
advertisers from popular services. As a result, those nodes
spend less time in the ad caches and more time waiting
to be admitted. This mechanism allows advertisements of
less popular services to get a fair share of ad cache space

Nodes
0

50

100

150

#T
im

e
Di

sc
ov

er
ed

Figure 15: Number of times each node is discovered
during lookup.

Topic
0.0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 w

a
it

in
g
 t

im
e
[E

]

Service

Figure 16: Avg. total waiting time received per service.

and results in an equal discovery rate.

8.2. Simulations

Setup. In addition to DISC-NG, we implement the fol-
lowing three baselines in the simulator.

• DISCv5 - described in Section 2.2.
• DHT - storing ads on 16 closest nodes of the service

ID, using vanilla Kademlia DHT lookup operations
as used in InterPlanetary File System (IPFS) [41],
[57], with LRU as the replacement policy for ads.

• DHTTicket - the same as DHT, but using DISC-NG
admission control (Section 6) instead of LRU.

The devp2p team reviewed our baseline implementations
to avoid bias or differences from the original specifica-
tions.

We set the number of services |S| = 300 with their
popularity following a Zipf distribution with exponent 1.0
(Figure 1). We consider a default size of 25,000 nodes,
recreating the current EGN topology, that we extend to
up to 50,000 nodes. Each simulation takes one hour of
simulated time during which each advertiser tries to main-
tain active (i.e. unexpired) registrations and each node per-
forms a single lookup operation uniformly spread across
the simulation time. We provide a full list of the default
simulation parameter values in Table 1 in Appendix A.

In the rest of this section, we use violin plots [65]
for a compact illustration of both the distribution and the
density of data points. We limit the shape of the violins
within the range of the observed data and set the widths of
each data point in the violin proportional to the count of
observations at that data point. We display the maximum
observed values (in red) if the range of the data points
exceeds the range of the y-axis.
Message overhead. Figure 17 and Figure 18 present the
number of messages received per node for the registra-
tion and lookup operations. For DISCv5, only lookups
generate messages as there is no registration process in
the protocol. DHT-based protocols introduce low average
overhead but overload nodes close to popular service IDs

5000 25000 50000

#Nodes in the network

0

500

1000

1500

2000

#
To

ta
l
re

c
e
iv

e
d
 m

e
s
s
a
g
e
s

m
a
x
:
4
.7
3
2
8
K

m
a
x
:
9
.6
6
9
K

m
a
x
:
5
.0
3
9
2
K

m
a
x
:
9
.8
8
1
2
K

DHT DHTTicket DISCv5 DISC-NG

Figure 17: Message overhead for different network sizes.

100 300 600

#Services in the network

0

500

1000

1500

2000

#
To

ta
l
re

c
e
iv

e
d
 m

e
s
s
a
g
e
s

m
a
x
:
5
.9
7
5
2
K

m
a
x
:
4
.7
3
2
8
K

m
a
x
:
4
.3
0
7
8
K

m
a
x
:
6
.1
1
5
K

m
a
x
:
5
.0
3
9
2
K

m
a
x
:
4
.5
9
2
2
K

DHT DHTTicket DISCv5 DISC-NG

Figure 18: Message overhead for a different number of
services during a single advertisement period.

impacting fairness. The DISCv5 protocol has a better
load distribution between nodes since the destination of
lookup messages is chosen randomly. However, its average
message overhead is the highest among all protocols.
DISC-NG introduces average overhead but provides more
equal load distribution compared to DHT-based protocols.

Finding Advertisers. Figure 19 presents the number of
discovered advertisers during a single lookup operation.
With a fixed number of services and increasing network
size, each service-specific network grows and it is easier to
find the required Flookup = 30 number of advertisers. How-
ever, DISCv5 again suffers from poor performance for all
the investigated network sizes due to its random movement
in the network. DHTTicket has worse performance than
DHT because the high contention when registering in only
16 nodes for the same service, causes high waiting times
and limits the number of nodes discovered. DISC-NG has
a discovery performance close to DHT.

Figure 20 presents the number of discovered advertis-
ers but with an increasing number of services. The random
walk of DISCv5 discovers a relatively low number of
results per operation (< 5). The performance decreases
with an increasing number of services in the network.
DHTTicket has a performance between DHT and DISCv5.
DISC-NG and DHT solutions discover the required num-
ber of 30 advertisers. The rare cases where those protocols
do not discover the required amount of peers. are caused
by services with ≤ 30 participants.

Simulating malicious nodes. We evaluate DISC-NG re-
sistance against malicious behaviors. DISC-NG provides
liveness across multiple queries for any number of mali-
cious nodes (Theorem 2, Theorem 3). However, a single
query can fail with probability increasing with the number
of malicious nodes and the diversity of IP addresses
controlled by the attacker.

We assume that all the malicious nodes coordinate

5000 25000 50000

#Nodes in the network

0

5

10

15

20

25

30

#
D

is
c
o
v
e
re

d
 p

e
e
rs

DHT DHTTicket DISCv5 DISC-NG

Figure 19: Discovered peers for different network sizes.

100 300 600

#Services in the network

0

5

10

15

20

25

30

#
D

is
c
o
v
e
re

d
 p

e
e
rs

DHT DHTTicket DISCv5 DISC-NG

Figure 20: Discovered peers vs. the number of services.

their efforts. Each malicious node acts as both an ad-
vertiser and a registrar.2 As advertisers, they place ads
at honest registrars at a rate 10 times higher than honest
nodes. As registrars, they accept and return only malicious
advertisements. Malicious nodes return uniquely other ma-
licious peers for all the DHT routing and service lookups.

By default, |Nm| = |N |
3 nodes are malicious. We

chose to evaluate DISC-NG for up to 50% malicious nodes
as, at this threshold, most services (e.g. the Ethereum
blockchain) lose their security properties anyway. We
introduce a #Attackers reusing IPs parameter defining the
number of attacker nodes reusing the same IP addresses (5
by default). Lower values mean diverse IPs of malicious
nodes but increase costs for the attacker. We use attacker
IPs having minimum similarity with the honest IPs to
obtain an upper bound on the impact of attacks. An honest
node is eclipsed when all advertisers obtained in a lookup
are malicious.

On top of each violin plot, we specify the percentage
of eclipsed (honest) lookup operations. We assume that
the attacker identifiers are uniformly distributed in the
address space. We omit the results for scenarios with
non-uniform Sybil ID distributions. In that case, the DHT
and DHTTicket suffer from 100% eclipse rates when the
attacker places 16 malicious nodes close to a target service
ID, compared to a 0% eclipse rate for DISCv5 and DISC-
NG. The results below represent the worst-case scenario
for DISC-NG and the best-case scenario for protocols we
compare against. We target an moderately popular service
(≈ 500 nodes participating in the service).

Lookup eclipse resistance. Figure 21 illustrates the per-
centage of malicious nodes in the lookup results and the
lookup eclipse rate. DISC-NG achieves ≈ 0% eclipse
rate, even with a high number of malicious nodes and is
the most resistant protocol. The admission control mech-

2. A malicious discoverer does not have a significant impact on the
system.

20% 33.33% 50%

#Malicious nodes

0.0

0.2

0.4

0.6

0.8

1.0

%
M

a
li
c
io

u
s
 n

o
d
e
s
 d

is
c
o
v
e
r
e
d

21.4% 37% 59.7%1.6% 4.9% 6.5%0.3% 0.3% 0.3%7.2% 10.6% 17.8%

DHT DHTTicket DISCv5 DISC-NG

Figure 21: Lookup eclipse rate for a different number of
Sybil nodes used in the attack.

50 5 1

#Attackers reusing same IP address

0.0

0.2

0.4

0.6

0.8

1.0

%
M

a
li
c
io

u
s
 n

o
d
e
s
 d

is
c
o
v
e
re

d 39.5% 37% 37%2.8% 4.9% 11.4%0.3% 0.3% 0.5%10.6% 10.6% 10.6%

DHT DHTTicket DISCv5 DISC-NG

Figure 22: Lookup eclipse rate for a different number of
IP addresses used by Sybil nodes.

anism combined with the ad placement strategy, forms
an efficient protection even against an attacker controlling
50% of the nodes. Surprisingly, the random approach of
DISCv5 performs worse than DISC-NG, reaching up to
17.8% eclipse rate. DISCv5 requires querying much more
nodes to obtain the required number of advertisers and
therefore has a higher chance of querying malicious nodes.
DHT achieves the worst performance, reaching up to
59.7% eclipse rate. Thanks to our admission mechanism,
DHTTicket outperforms both DISCv5 and DHT with a
< 6.5% eclipse rate.

In Figure 22, we vary the size of the IP address pool
used by the adversary. More IPs used by the attacker
makes DISC-NG more likely to get eclipsed as the at-
tacker IP score in the waiting time function is similar
to values received by honest nodes. However, even for
this worst-case scenario, DISC-NG achieves the eclipse
rate < 0.5%. DHT and DISCv5 suffer from significantly
higher but remain unaffected by the increasing number
of IPs used. Including the admission protocol, allows
DHTTicket to outperform the other baseline protocol.
However, the regular, DHT-based placement policy is
more susceptible to eclipsing compared to DISC-NG.

9. Related Work

A decentralized service discovery system can be orga-
nized by directly storing the membership information in
a DHT [45], [51], [52], [56]. DHT-based solutions offer
fault-tolerant, scalable and efficient ways of finding nodes
in large-scale networks. However, it is difficult to guar-
antee the availability of published service descriptions.
If nodes close to a service hash fail, the whole sub-
network becomes undiscoverable. While solutions such as

Chord4S [30] reduce this risk, the main drawback remains
the vulnerability to Sybil attacks.

Other systems implement service discovery on top of
publish-subscribe platforms. However, those solutions are
built directly on top of a DHT [5], [10], [53] (and share
its weaknesses), introduce high overhead to keep the data
up to date [60], introduce a single point of failure [13],
or require all nodes to be correct (i.e. not byzantine) [4].

Recently, multiple service discovery protocols were
implemented for the blockchain space [22], [35], [43].
Unfortunately, these solutions are meant to work in small-
scale systems [22], or require writing to the blockchain
(thus introducing significant monetary and/or computa-
tional cost) [35], [43].

Multiple works proposed DHT enhancements to make
it more resistant to Sybil attacks. This can be achieved by
exploiting social relations between participants operating
the nodes [14], [15], introducing some kind of Proof-
of-Work [6] or sampling participant identifiers [11]. All
these solutions are difficult to implement in current P2P
networks and may have a negative impact on privacy.
An extensive number of systems have been proposed for
resilient peer sampling in P2P networks [9], [34], [47],
[48]. While those systems are useful in some scenarios,
they cannot be easily adapted to application-specific peer
sampling required by the Ethereum ecosystem.

Relevant to our work, the Ethereum DHT was recently
enhanced [32], [44] to make it more resistant to low-
resource eclipse attacks at the DHT level. Those solutions
enable DISC-NG to operate, as it relies on honest partic-
ipants not being fully eclipsed at the DHT level.

The enforcement of a waiting time for incoming re-
quests to improve fairness and implement rate control has
been used for preventing DDoS attacks toward centralized
services or domains. In this context, the key interest is
to avoid maintaining a per-client state at a server while
offering priority services to clients that have waited the
longest and to adjust waiting times based on per-domain
traffic and congestion. Implementations of this idea in-
clude NetFence [42], Lazy Suzan [12] and the work of
Kung et al. [38]. In contrast with DISC-NG, however,
these approaches do not focus on content (service ads)
diversity but only use enforced waiting for rate control.

10. Conclusions

On the foundational level, DISC-NG is the first prac-
tical, secure, and efficient service discovery protocol that
can be deployed in large, real-world P2P networks. It com-
bines the efficiency of traditional DHT operations with
security inherited from pseudo-random ad placement. Our
novel admission protocol, while performing only simple
mathematical calculations, protects against a wide range of
malicious behaviors, ensures equal load distribution, and
promotes diversity in the network. DISC-NG is scheduled
for deployment in future versions of devp2p. An inter-
esting future direction is to add Sybil identities detection
mechanism [11] and automatically modify systems param-
eters to operate in a more secure, but more costly, mode
(e.g. by decreasing the maximum number of ads retrieved
from a single registrar).

Acknowledgements

We thank the Euro S&P 2024 anonymous reviewers
and our anonymous shepherd for their feedback and guid-
ance, which helped improve the paper. This work was
supported by the Ethereum Foundation. E. Rivière and
R. Sadre are supported by the Walloon Belgian region’s
project CyberExcellence.

References

[1] Mahdi Nasrullah Al-Ameen and Matthew Wright. Design and eval-
uation of Persea, a sybil-resistant DHT. In 9th ACM symposium on
Information, computer and communications security, ASIA CCS,
2014.

[2] Arbitrum. Secure scaling for Ethereum. https://arbitrum.io.

[3] John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan.
A fully-distributed scalable peer-to-peer protocol for byzantine-
resilient distributed hash tables. In 34th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA, 2022.

[4] Roberto Baldoni, Roberto Beraldi, Vivien Quema, Leonardo Quer-
zoni, and Sara Tucci-Piergiovanni. TERA: topic-based event
routing for peer-to-peer architectures. In Inaugural international
conference on Distributed event-based systems, DEBS, 2007.

[5] Ryohei Banno, Susumu Takeuchi, Michiharu Takemoto, Tetsuo
Kawano, Takashi Kambayashi, and Masato Matsuo. Designing
overlay networks for handling exhaust data in a distributed topic-
based pub/sub architecture. Journal of Information Processing,
23(2):105–116, 2015.

[6] Ingmar Baumgart and Sebastian Mies. S/Kademlia: A practica-
ble approach towards secure key-based routing. In International
Conference on Parallel and Distributed Systems, ICPADS, 2007.

[7] Binance. http://binance.com.

[8] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz.
Denial of service or denial of security? In 14th ACM conference
on Computer and communications security, CCS, 2007.

[9] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot,
and Alexander Shraer. Brahms: Byzantine resilient random mem-
bership sampling. Computer Networks, 53(13):2340–2359, 2009.

[10] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT
Rowstron. Scribe: A large-scale and decentralized application-
level multicast infrastructure. IEEE Journal on Selected Areas in
communications, 20(8):1489–1499, 2002.

[11] Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Efficient
DHT attack mitigation through peers’ ID distribution. In Work-
shops and Phd Forum of the IEEE International Symposium on
Parallel & Distributed Processing, IPDPSW. IEEE, 2010.

[12] Jon Crowcroft, Tim Deegan, Christian Kreibich, Richard Mortier,
and Nicholas Weaver. Lazy susan: dumb waiting as proof of work.
Technical report, University of Cambridge, Computer Laboratory,
2007.

[13] György Dán and Niklas Carlsson. Centralized and distributed pro-
tocols for tracker-based dynamic swarm management. IEEE/ACM
Transactions on Networking, 21(1):297–310, 2012.

[14] George Danezis, Chris Lesniewski-Laas, M Frans Kaashoek, and
Ross Anderson. Sybil-resistant DHT routing. In European Sym-
posium On Research In Computer Security, ESORICS. Springer,
2005.

[15] George Danezis and Prateek Mittal. Sybilinfer: Detecting sybil
nodes using social networks. In Annual Network and Distributed
System Security Symposium, NDSS, 2009.

[16] Dan Dumitriu, E Knightly, Aleksandar Kuzmanovic, Ion Stoica,
and Willy Zwaenepoel. Denial-of-service resilience in peer-to-peer
file sharing systems. ACM SIGMETRICS Performance Evaluation
Review, 33(1):38–49, 2005.

[17] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[18] Ethereum. DevP2P: peer-to-peer networking protocols for
Ethereum clients. https://github.com/ethereum/devp2p/.

[19] Ethereum. Discv4 DNS list. https://github.com/ethereum/
discv4-dns-lists.

[20] Go Ethereum. Go ethereum: Official go implementation of the
ethereum protocol. https://geth.ethereum.org/.

[21] Farcaster. Farcaster: a sufficiently decentralized social network
built on Ethereum. https://docs.farcaster.xyz/.

[22] Carson Farmer, Sander Pick, and Andrew Hill. Decentralized
identifiers for peer-to-peer service discovery. In IFIP Networking
Conference, 2021.

[23] Ethereum Foundation. Ethereum 2.0: Beacon chain.
https://ethereum.org/en/eth2/beacon-chain/.

[24] Ethereum Foundation. Ethereum roadmap: Scaling ethereum.
https://ethereum.org/roadmap/scaling.

[25] Ethereum foundation. Nethermind: .NET Ethereum client. https:
//geth.ethereum.org/.

[26] Ethereum Foundation. Node discovery protocol v5 - rationale.
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-
rationale.md.

[27] Ethereum Foundation. Node discovery protocol v5 - theory.
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-
theory.md.

[28] Swarm Foundation. Swarm: distributed data storage and retrieval
system. https://www.ethswarm.org.

[29] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. In 34th Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, EuroCrypt. Springer, 2015.

[30] Qiang He, Jun Yan, Yuanyuan Yang, Ryszard Kowalczyk, and Hai
Jin. A decentralized service discovery approach on peer-to-peer
network. IEEE Transactions on Services Computing, 6:1 – 1, 01
2013.

[31] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. In 24th USENIX
Security Symposium, 2015.

[32] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn
Scheuermann. Eclipsing ethereum peers with false friends. In
Workshops of the IEEE European Symposium on Security and
Privacy, EuroS&PW. IEEE, 2019.

[33] Hyperledger. Besu: Ethereum client for both public and private
permissioned network use cases. https://geth.ethereum.org/.

[34] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie
Kermarrec, and Maarten Van Steen. Gossip-based peer sam-
pling. ACM Transactions on Computer Systems (TOCS), 25(3):8–
es, 2007.

[35] Navin V Keizer, Onur Ascigil, Ioannis Psaras, and George Pavlou.
Flock: Fast, lightweight, and scalable allocation for decentralized
services on blockchain. In International Conference on Blockchain
and Cryptocurrency, ICBC. IEEE, 2021.

[36] Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and
Cristina Nita-Rotaru. Under the hood of the Ethereum gossip
protocol. In International Conference on Financial Cryptography
and Data Security, FC, 2021.

[37] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason,
Andrew Miller, and Michael Bailey. Measuring Ethereum network
peers. In Internet Measurement Conference, IMC, 2018.

[38] Yi-Hsuan Kung, Taeho Lee, Po-Ning Tseng, Hsu-Chun Hsiao,
Tiffany Hyun-Jin Kim, Soo Bum Lee, Yue-Hsun Lin, and Adrian
Perrig. A practical system for guaranteed access in the presence of
ddos attacks and flash crowds. In 23rd International Conference
on Network Protocols, ICNP. IEEE, 2015.

[39] Probe Lab. Final report: NAT hole punching measure-
ment campaign. https://github.com/plprobelab/network-
measurements/blob/master/results/rfm15-nat-hole-punching.md.

[40] Protocol Labs. Gossipsub spec. https://github.com/libp2p/specs/
blob/master/pubsub/gossipsub/gossipsub-v1.0.md.

[41] Protocol Labs. A Kademlia DHT implementation on go-libp2p.
https://github.com/libp2p/go-libp2p-kad-dht.

[42] Xin Liu, Xiaowei Yang, and Yong Xia. Netfence: preventing
internet denial of service from inside out. ACM SIGCOMM
Computer Communication Review, 40(4):255–266, 2010.

[43] Yacov Manevich, Artem Barger, and Yoav Tock. Endorsement in
Hyperledger Fabric via service discovery. IBM Journal of Research
and Development, 63(2/3), 2019.

[44] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-
resource eclipse attacks on Ethereum’s Peer-to-Peer network. IACR
Cryptology ePrint Archive, 2018(236), 2018.

[45] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the XOR metric. In International
Workshop on Peer-to-Peer Systems, IPTPS. Springer, 2002.

[46] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P
simulator. In 9th International Conference on Peer-to-Peer, P2P,
2009.

[47] Barlas Oğuz, Venkat Anantharam, and Ilkka Norros. Stable dis-
tributed P2P protocols based on random peer sampling. IEEE/ACM
Transactions on Networking, 23(5):1444–1456, 2014.

[48] Matthieu Pigaglio, Joachim Bruneau-Queyreix, Yérom-David
Bromberg, Davide Frey, Etienne Rivière, and Laurent Réveillère.
RAPTEE: Leveraging trusted execution environments for
byzantine-tolerant peer sampling services. In 42nd International
Conference on Distributed Computing Systems, ICDCS. IEEE,
2022.

[49] Protocol Labs. Filecoin: an open-source cloud storage marketplace,
protocol, and incentive layer. https://filecoin.io.

[50] Benjamin J Puttnam, Ruben S Luı́s, Georg Rademacher, Yoshinari
Awaji, and Hideaki Furukawa. 319 tb/s transmission over 3001 km
with s, c and l band signals over > 120nm bandwidth in 125 µm
wide 4-core fiber. In Optical fiber communications conference and
exhibition, OFC. IEEE, 2021.

[51] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, aug 2001.

[52] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing, Middleware,
2001.

[53] Vinay Setty, Maarten Van Steen, Roman Vitenberg, and Spyros
Voulgaris. Poldercast: Fast, robust, and scalable architecture for
P2P topic-based pub/sub. In ACM/IFIP/USENIX 13th International
Middleware Conference, Middleware. Springer, 2012.

[54] A Singh, T-W Ngan, P Druschel, and DS Wallach. Eclipse attacks
on overlay networks: Threats and defenses. In 25th IEEE Inter-
national Conference on Computer Communications, INFOCOM,
2006.

[55] Srivatsan Sridhar, Onur Ascigil, Navin Keizer, François Genon,
Sébastien Pierre, Yiannis Psaras, Etienne Riviere, and Michał Król.
Content censorship in the interplanetary file system. In Annual
Network and Distributed System Security Symposium, NDSS, 2024.

[56] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger,
M Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on networking, 11(1):17–32, 2003.

[57] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro,
Will Scott, Moritz Schubotz, Bela Gipp, and Yiannis Psaras. De-
sign and evaluation of IPFS: a storage layer for the decentralized
web. In Annual conference of the ACM Special Interest Group on
Data Communication, SIGCOMM, 2022.

[58] Viktor Trón. The book of Swarm: Storage and communication
infrastructure for a self-sovereign digital society. Technical report,
Swarm Foundation, 2024.

[59] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A
survey of DHT security techniques. ACM Computing Surveys
(CSUR), 43(2):1–49, 2011.

[60] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias,
and Yiannis Psaras. GossipSub: Attack-resilient message propaga-
tion in the Filecoin and ETH2.0 networks. CoRR, abs/2007.02754,
2020.

[61] Waku. Waku: A secure, private, and decentralized messaging
protocol. https://wakunet.org/.

[62] Waku. Waku v2 discv5 roadmap discussion.
https://forum.vac.dev/t/waku-v2-discv5-roadmap-discussion/121/8.

[63] Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, De-
nis Foo Kune, Nicholas Hopper, and Yongdae Kim. Attacking
the Kad network. In 4th international conference on Security and
privacy in communication networks, SecureComm, 2008.

[64] Web3 Foundation. Polkadot interoperability network. https:
//polkadot.network.

[65] Mike Yi. A complete guide to violin plots. https://chartio.com/
learn/charts/violin-plot-complete-guide/.

[66] zkSync Era. Scaling the Ethos and technology of Ethereum. https:
//arbitrum.io.

A. Notation

Table 1 summarizes the notations and default values
of the system parameters used by DISC-NG.

In consultation with developers of devp2p, we assume
a cache capacity of C = 1, 000 entries, the ad expiry
time E = 15min and an average size of an advertisement
equal to 1KB. The security G and the exponent Pocc
determine the possibility of the ad cache going above the
capacity C. G should be set to a small value to limit
its influence on the waiting time (where IP and service
similarity scores should play the dominant role). Pocc
should be large enough to prevent overflowing of the cache
and small enough to enable usage of large portions of
the cache under normal traffic conditions. We empirically
set G = 107 and Pocc = 10. These values provide good
protection against ad cache overflowing and good usage of
cache space under normal conditions. We choose Kregister
and Klookup = 5 as a reasonable tradeoff between effi-
ciency, load balance and security. We set Flookup = 30, as
the most common value used by current EGN applications.
We choose Freturn = 10 to ensure that the discoverers
receive ads from at least 3 different registrars.

B. Security Proofs

This appendix completes Section 7 by providing the
proofs of Theorem 1, Theorem 2, and Theorem 3.

B.1. Validity Proof (Theorem 1)

We prove Theorem 1 by showing that no registrar can
be tricked into accepting an ad by an advertiser without a
valid ticket.

Lemma 1 (Minimum waiting time). The minimum waiting
time wc associated with a valid ticket t (Definition 4)
issued by a honest registrar r with a current cache size
of c is

wc =
GE

(1− c/C)Pocc
(3)

where G and Pocc are constant system parameters (see
Table 1), E is the ad expiry time, c is the current size
of the r’s cache, and C is the maximum capacity of that
cache.

TABLE 1: Notation and default parameters

Participants
N = {ni} Set of network nodes ni

n.IP node n’s IP address
n.id node n’s identifier
Nh ⊆ N Set of honest nodes
Nm ⊆ N Set of malicious nodes
S = {si} Set of services si
A(s) = {ai} Set of advertisers of service s. A =

⋃
s∈S A(s)

D(s) = {di} Set of discoverers of service s. D =
⋃

s∈S D(s)
R = {ri} Set of registrars
Ah, Dh, Rh Honest advertisers, discoverers, and registrars
Am, Dm, Rm Malicious advertisers, discoverers, and registrars

Attributes
∆ Upper bound for message delivery delay
Tmax Maximum traffic (bytes/s) that can be received by a single registrar
c number of ads in the ad cache (occupancy)
c(s) number of ads for service s in the ad cache
B(n.id) = {bi(n.id)} Set of buckets bi of a routing table centered around the ID of node n
B(s) = {bi(s)} Set of buckets bi of an advertise table or search table centered around the ID of service s
w(ad) waiting time for an ad ad
w̄(X) average waiting time assigned to a set of registration requests X
ticket.tinit ticket creation time
ticket.tmod ticket last modification time
ticket.twait for ticket waiting time
score(IP) IP similarity score

System parameters Default values
C capacity of the ad cache 1,000
Kregister number of ads placed per bucket 3
Klookup parallel requests during lookup 5
E expiry time (ad lifetime) 15min
Flookup number of peers to find 30
Freturn max number of service-specific peers re-

turned from a single registrar
10

Pocc occupancy exponent 10
G safety parameter for the similarity score 10−7

δ registration window 1s
Xsize average request size 1,000 B
m number of buckets advertise/search table 16

Simulation parameters Default values
Simulation time 1 hour
Network size |N | 25,000
Number of services |S| 300
Service popularity Zipf distribution exponent 1.0
Percentage of attackers |Nm|

|N| 33%

Number of attackers reusing IP address domain |Nm|
|n.ip∈Nm| 5

Proof. The waiting time wc is minimal when all the
ads held by the registrar r are different from the one
referenced by ticket t (i.e. c(service) = 0) and when
these ads originated from a different IP address than t
(i.e. score(IP) = 0). We find Equation (3) by inserting
these values into Equation (1).

Lemma 2 (Ticket requirement). No honest registrar r
admits an advertisement ad without a ticket.

Proof. Let us assume an honest registrar r admits ad
without any ticket. Ads admission only happens at Line 18
of Algorithm 4 if tremaining ≤ 0 (Line 17 of Algorithm 4).
Upon attempting to admit ad without any ticket (Line 5
of Algorithm 4), r sets tremaining ← twait (Line 6 of
Algorithm 4); and Algorithm 4 does not modify tremaining
later. However, Lemma 1 indicates twait > 0 (assuming
G ̸= 0 and E ̸= 0, which we ensure axiomatically), which
implies tremaining > 0, hence a contradiction.

Theorem 1 (Validity). No honest registrar r admits an
advertisement ad without a valid ticket (Definition 4)
referencing ad.

Proof. Let us assume an honest registrar r admits an
ad without a valid ticket. Ads admission only happens
at Line 18 of Algorithm 4 if tremaining ≤ 0 (Line 17 of
Algorithm 4). There are then only two cases: (i) r admits
ad without any ticket, (ii) r admits ad with an invalid
ticket. Lemma 2 ensures ad is not admitted without a valid
ticket, hence we only need to consider case (ii). Line 10
of Algorithm 4 ensures the algorithm aborts if the ticket
does not contain a timestamp and a valid signature over
ad. There are thus no cases, where r admits ad with an
invalid ticket, hence a contradiction.

B.2. Advertiser Liveness Proof (Theorem 2)

We argue that an honest advertiser can eventually
register an ad with at least one honest registrar. Intuitively,

honest advertisers receive tickets indicating a minimum
waiting time before their ad can be registered. The cache
of the registrars has a bounded capacity, but ads expire
and are removed from the cache after a fixed amount of
time. As a result, we argue that it is impractical for an
adversary to overwhelm the cache of an honest registrar
because doing so would necessitate meeting unmanage-
able throughput demands.

Lemma 3 (Registrar availability). An honest advertiser a
eventually runs Algorithm 1 with an honest registrar r.

Proof. This proof directly follows from Assumption 2.
Advertiser a continuously looks for registrars through
DHTs lookups (Section 4) and runs Algorithm 1 with
every registrar it connects with; it thus eventually runs
Algorithm 1 with an honest registrar r.

Lemma 4 (Registrar’s cache availability). The cache of
an honest registrar r is never full.

Proof. We prove this lemma by contradiction assuming
that the cache maintained by registrar r reaches size
c = C − 1 (where C is the maximum cache capacity).
Equation (10) (Section C.1) can be re-written to express
the total number |X| of incoming requests as a function
of the cache size c, the ads expiry time E, and the average
waiting time w̄(X) assigned to the incoming requests X:

|X| = c · (1 + w̄(X)

E
) (4)

Lemma 1 shows that the minimum waiting time associated
with a valid ticket is given by

wc =
G · E

(1− c/C)Pocc
(5)

We derive the minimum number of incoming requests
required to maintain the cache full with c requests by
combining Equation (4) and Equation (5):

|X| = c · (1 + G

(1− c/C)Pocc
) (6)

We compute the throughput TC−1 required to maintain
the cache c = C−1 by denoting Xsize the average request
size and substituting c = C − 1 in Equation (6):

TC−1 =
Xsize(C − 1)

E
(1 +

G

(1/C)Pocc
) (7)

This leads to TC−1 = Tmax , which contradicts Assump-
tion 3; hence c ̸= C − 1. We conclude the proof by
noting that the size c of the registrar’s cache increases
monotonically through the serialized processing of each
incoming request; as a result, the size of the cache cannot
reach c = C without first reaching c = C − 1, which
implies c < C − 1 < C.

Lemma 5 (Finite waiting time). There exists a maximum
waiting time wmax larger than every waiting time w com-
puted by an honest registrar r; that is, w ≤ wmax ∈ N.

Proof. Honest registrars configure C ̸= 0 (Table 1), which
we can ensure axiomatically. Let us assume w →∞. This
implies c = C (Equation (1)), which contradicts Lemma 4.

Lemma 6 (Guaranteed advertise after waiting). An honest
registrar r always admits a new ad upon receiving a
valid ticket t (Definition 4) old of at least wmax units of
time (i.e. the maximum waiting time) within its scheduled
window.

Proof. Upon receiving ticket t, registrar r computes twait

(Line 4 of Algorithm 4). Since t is not empty, r di-
rectly proceeds with the checks Lines 10, 12, and 14
of Algorithm 4. All these checks pass since t is valid
(Definition 4), ad is new (i.e., not yet registered with
r), and r receives t within its scheduled window. Since
twait < wmax (Lemma 5) and t is old of at least wmax

units of time, the registrar computes tremaining < 0
(Line 15 of Algorithm 4) and admits ad (Lines 17 and
18 of Algorithm 4).

Theorem 2 (Advertiser liveness). An honest advertiser a
can eventually register an advertisement ad with an honest
registrar r.

Proof. Lemma 3 ensures an honest advertiser a eventually
runs Algorithm 1 with an honest registrar r. Advertiser a
thus attempts to register ad with registrar r (Line 20 of
Algorithm 1). Since registrar r is honest, it runs Algo-
rithm 4 and always replies to a (Line 27 of Algorithm 4).
Two cases are then possible: (i) r directly admits ad (Line
18 of Algorithm 4) and confirms it to a (Line 22 of Algo-
rithm 1), or (ii) r replies with a valid ticket (Definition 4)
instructing a to wait for w units of time (Line 25 of
Algorithm 1). Case (i) is straightforward, r registers ad
and the proof concludes; we are thus left with case (ii).
Advertiser a continuously tries to register ad using the
registrar’s ticket (Lines 19 and 20 of Algorithm 1). After
GST and after (at most) wmax units of time (Assumption 1
ensures GST eventually arrives and Lemma 5 ensures
wmax exists), a provides r with a ticket old of at least
wmax units of time within its scheduled window. Lemma 6
then ensures r registers ad.

B.3. Discoverer Liveness Proof (Theorem 3)

We argue that an honest discoverer seeking a service
eventually connects with an honest advertiser offering this
service. Intuitively, an honest advertiser can eventually
register an ad for its service with a set of honest regis-
trars, and an honest discoverer eventually discovers these
registrars and thus the advertiser offering the service.

Lemma 7 (Registrar discovery). An honest discoverer d
eventually runs Algorithm 2 with an honest registrar r.

Proof. This proof directly follows from Assumption 2.
Discoverer d continuously looks for new registrars through
DHTs lookups (Section 5) and runs Algorithm 2 with
every registrar it connects with. Since d randomly samples
the peers it connects with (Algorithm 3), it eventually runs
Algorithm 2 with an honest registrar r.

Lemma 8 (Lookup termination). Let us assume a set of
honest registrars R advertises an ad for service s. An
honest discoverer d running Algorithm 2 over the input s
eventually connects with a registrar r ∈ R.

Proof. We prove this lemma by induction through the
serialized discovery of honest registrars throughout mul-
tiple runs of Algorithm 2. Lemma 7 ensures the recursion
base. Let us assume discoverer d is connected with honest
registrar r′; we show there exists at least one run of
Algorithm 2 where it connects with different honest reg-
istrar r′′. Discoverer d running Algorithm 2 visits buckets
b0(s), b1(s), . . . and queries Klookup registrars per bucket
until it finds Flookup peers (Line 17 of Algorithm 2). Let
us assume that this is achieved after visiting l buckets.
d always selects random peers (Algorithm 3) but can be
unlucky and only contact malicious registrars (malicious
registrars only return malicious ads), and/or only receive
malicious ads from honest registrars. The probability for
this to happen for all l visited buckets is

pecc =

l−1∏
i=0

(pecci)Klookup (8)

where pecci is the probability to only receive malicious ads
from a random queried registrar in bucket bi(s). Remem-
ber that discoverer d continuously (re-)runs Algorithm 2
over input s until it eventually connects with a registrar
r ∈ R (Section 5). As a result, we only need to show
that there exists at least one run where pecc < 1. To find
pecci , we look at the random registrar in bucket bi(s). Let
pmi be the probability that the registrar is malicious and
1−pmi the probability that it is honest. For the latter case,
let phmi be the probability that the honest registrar only
returns malicious ads. The probability pecci to be eclipsed
in that bucket is therefore

pecci = pmi + (1− pmi) · phmi (9)

Assumption 2 ensures there exists at least one run of
Algorithm 2 where (1 − pmi) > 0 and phmi > 0. As a
result, discoverer d connects to registrar r′′.

Lemma 9 (Ad discovery). An honest discoverer d wishing
to discover service s eventually connects with an honest
registrar r advertising an ad for service s (registered by
an honest advertiser a).

Proof. After GST, Theorem 2 ensures advertiser a even-
tually registers an ad for service s with the set of reg-
istrars R. Lemma 7 ensures discoverer d eventually runs
Algorithm 2 with a honest registrar r′. Lemma 8 then
ensures d eventually discovers and connects with a regis-
trar r ∈ R; and Assumption 1 ensures this connection
eventually happens before the ad expires. As a result,
discoverer d connects with a registrar r ∈ R advertising
an ad for service s.

Theorem 3 (Discoverer liveness). An honest discoverer
d eventually discovers service s advertised by an honest
advertiser a with an honest registrar r.

Proof. After GST, Lemma 9 ensures discoverer d eventu-
ally connects with an honest registrar r advertising ad for
service s, registered by an honest advertiser a. Discoverer
d thus learns the address of a and discovers service s.

C. Extended Analysis
In this appendix, we provide more details on fairness

in Section 7 and discuss additional mathematical analysis
of our protocol.

C.1. Efficiency

C.1.1. Memory usage is bounded by the capacity of
the ad cache. We focus exclusively on registrars, as
advertisers and discoverers require a fixed amount of
memory for their operations. The amount of ads in the
cache is given by

c =
|X| · E

E + w̄(X)
(10)

where |X| is the number of requests constantly trying to
get into the table, E is ad lifetime and w̄(X) is the average
waiting time assigned to the incoming requests X . In the
worst case scenario, when the requests achieve 0 similarity
score for both the service and the IP addresses, the waiting
time is

w̄(X) = G · E/
(
1− c

C

)Pocc

. (11)

The possibility of the cache going above the capacity
is determined by G and Pocc. G should be set to a small
value to limit its influence on the waiting time (where
IP and service similarity scores should play the dominant
role). Pocc should be large enough to prevent overflowing
of the cache and small enough to enable usage of large
portions of the cache under normal traffic conditions.

Lemma 10. Ad cache never reaches its capacity C.

Proof. Let us assume registrar rj receiving registration
requests Xj = {xij} The number of ads in r’s ad cache
depends on the total number |Xj | of incoming requests
and the average waiting time they receive w̄(Xj). Let us
assume that it is possible to reach c = C ads in the ad
cache. This would require maintaining |Xj | high enough
to reach c = C − 1 and then increasing it further, where
|Xj | = c(E+w̄(Xj))

E . In the worst case scenario, when all
the requests xij ∈ Xj achieve 0 similarity score for both
the service and the IP addresses, the waiting time is:

w̄(Xj) =
G× E

(1− c
C)Pocc

, (12)

so that |Xj | =
c(E+ G×E

(1− c
C

)Pocc
)

E = c(1+ G
(1− c

C)Pocc). Calcu-
lating |Xj | necessary to maintain c = C − 1 gives us

|Xj | = (C − 1)

(
1 +

G

(1− C−1
C)Pocc

)
. (13)

Substituting the protocol parameters, we get |Xj | ≈ 1025.
Every request has to be re-sent to the registrar at least

every E (Algorithm 4, line 22) and the size of a request is
Xsize = 1000 B. Therefore, the size of the income traffic
requires bandwidth bandwidth = 1125 bps. This value is
much larger than the currently achievable speed record of
≈ 1014 bps [50]. Therefore, in practice, it is impossible
to reach c = C ads in the ad cache.

In consultation with developers of Geth [20], we
assume a cache capacity of C = 1, 000 entries and
an average size of an advertisement equal to 1KB. As
discussed in Section 7 earlier, we choose G = 10−7 and
Pocc = 10; these values provide good protection against
cache overflowing and a good usage of cache space under
normal conditions.

Pending requests (i.e. not in the cache) do not create
any state, apart from updating the lower bound, at the
registrar (i.e. the registrar uniquely calculates the waiting
time and returns a signed ticket). The lower bound state
created by registrars is bounded by the number of distinct
IPs and services in the cache and is thus bounded by its
capacity C.

C.1.2. Register and lookup operations finish within
O(log(|N |)) steps. As detailed in Section 4, registration
of ads and service lookup operations allow learning peers
from buckets associated with increasingly large prefixes to
the service ID destination, guaranteeing these operations
to finish within O(log(|N |)) steps.

C.2. Fairness

We assume a Zipf distribution of the service popular-
ities in the system and that the service IDs are uniformly
distributed in the DHT key space. For simplicity, we
uniquely compare the load of registrar r1 – located close
to the most popular service s1 and the load of registrar r2
– located close to the least popular service s2.

We assume the IDs of s1 and s2 to be located on
the opposite sides of the DHT key space, the worst-
case scenario for load balancing. Both r1 and r2 receive
different amounts of traffic for both s1 and s2, and the
same amount of traffic for other services, represented by
a fictive “background” service sβ .

C.2.1. Registration operations achieve equal load dis-
tribution. As the closest node to the ID of s1, r1 receives
registration requests from all advertisers A(s1). As the
furthest node from the ID of s2, it also receives, on av-
erage, |A(s2)|×Kregister

|N |/2 requests from advertisers for service
s2. Analogically, r2 receives requests from all advertisers
A(s2) and |A(s1)|×Kregister

|N |/2 requests for service s1.
As |A(s1)| ≫ |A(s2)| (service s1 is much more pop-

ular than s2), the initial number of requests is higher for
registrar r1. However, as its ad cache fills up, r1 will issue
higher waiting times making the requests less frequent.
Figure 9 presents the registration load ratio between both
registrars as a function of increasing popularity between
the two services. The load difference experiences sub-
linear growth. When s1 is 100 times more popular, r1
receives only 1.6 times more requests than r2. We also
present results without the admission control (i.e. all the
requests receive a fixed waiting time) for reference.

To obtain Figure 9, we extend Equation (10) by the
service similarity score (still assuming complete IP ad-
dress diversity). The average number of ads c1 and c2 for
services s1 and s2, respectively, in r1’s cache is

c1 =
|A(s1)|

1 + (G+ c1
c) · (1−

c
C)−Pocc

(14)

c2 =

|A(s2)|·Kregister

|N |/2

1 + (G+ c2
c) · (1−

c
C)−Pocc

(15)

cβ =
|Aβ |

1 + (G+
cβ
c) · (1− c

C)−Pocc
(16)

c = c1 + c2 + cβ (17)

where |Aβ | is a “background load” representing the reg-
istration requests of the other services in the system. For
Figure 9, we set |Aβ |=100. Again, the above system of
non-linear equations must be solved numerically for c1
and c2.

C.2.2. Lookup operations achieve equal load distribu-
tion. Let us assume again that registrar r1 is the closest
node to the ID of service s1. All the discoverers D(s1)
looking for s1 will go towards this node during their
lookup operations, so the number of requests is expected
to grow as |D(s1)| grows. At the same time, the more
advertisers s1 has, the more ads will be placed in other
buckets further away from s1 and therefore r1. Recall that
discoverers stop their lookup operations after collecting
Flookup peers. We set Flookup = 30, a value commonly used
by applications in the Ethereum ecosystem. As the number
of ads in the network grows, more discoverers are likely
to stop before reaching r1. Figure 10 presents r1’s load for
increasing values of |D(s1)|, assuming |D(s1)| = |A(s1)|
for simplicity. Depending on the Kregister and Klookup
parameters, the maximum load is experienced when the
number of s1-advertisers/discoverers is relatively small.
It goes back to 0 when the service becomes popular in
the network. We choose Kregister and Klookup = 5 as a
reasonable tradeoff between efficiency, load balance and
security.

In the following, we describe how Figure 10 is ob-
tained. As described in Section 4, a discoverer looking
for service s1 will start at the furthest bucket and progress
toward the closest registrar to that service’s ID until it has
received Flookup responses. Let bucket 0 be the furthest
bucket containing |N |/2 registrars, bucket 1 the closer
bucket containing |N |/4 registrars etc. In each bucket i,
the discoverer will query max(Klookup,

|N |
2i+1) registrars.

We need to calculate the probability that a discoverer
will reach the last bucket, i.e., the closest registrar to the
service ID. In the following, we calculate the distribution
p0..l(Resp = y) of the number of responses y that a
discoverer will have received after traversing buckets 0
to l.

Let prr,i(Resp = y) be the probability that the discov-
erer will receive y responses from a registrar rr in bucket
i. We have

prr,i(Resp = y) =

|A(s1)|∑
g=0

p(rr received g registrations

∧ rr has min(y, Freturn) ads)

where Freturn is the maximum number of responses a
registrar will return. The probability that the registrar
received g registrations is the probability that g out of
the |A(s1)| advertisers chose the registrar. For bucket i, it
is given by the binomial distribution:

p(rr received g registrations) =(
|A(s1)|

g

)(
Kregister

|N |/2i+1

)g (
1−

Kregister

|N |/2i+1

)|A(s1)|−g

(18)

Given g registrations, the number of ads that the registrar
returns can be calculated using Equation (14) by substi-

tuting |A(s1)| with g. Combining both results, we can
calculate the joint probability prr,i(Resp = y).

Calculating the exact probability pi(Resp = y) that
a discoverer obtains y responses in bucket i and the
probability p0..l(Resp = y) to obtain y responses after
visiting buckets 0 to l is numerically intensive. For Fig-
ure 10, we use Monte-Carlo simulation to approximate
p0..l(Resp = y) from prr,i(Resp = y). For each bucket
0 ≤ i ≤ l, the simulation randomly draws Klookup samples
from the distribution prr,i(Resp = y), in this way simu-
lating the querying of Klookup registrars per bucket. This
approximation assumes that the distribution of responses
for the individual registrars in a bucket are independent,
which is mostly correct for large |N |. The simulation
is repeated 100,000 times for the result shown in the
figure. The probability to reach the last registrar is then
p0..m−1(Resp < Flookup), where m is the number of
buckets.

C.3. Security

C.3.1. DISC-NG achieves high resistance against DoS
attacks. DISC-NG implements an admission control
mechanism protecting the ad cache from being over-
whelmed by an attacker with a limited number of IP
addresses. Including a non-deterministic component in the
ad placement mechanism reduces the efficiency of DoS at-
tacks targeting a specific service or a part of the key space.
Preventing honest nodes from using the system requires
involving resources significantly surpassing the combined
resources (see above) of the honest participants and incurs
a preventive resource/monetary cost. Importantly, all the
malicious ads are removed after ad lifetime E. An attacker
thus has to constantly use their resource to perform the
attack and the system quickly recovers once the attack
stops.

C.3.2. DISC-NG achieves high resistance against
eclipse attacks. We assume an attacker performing all
the malicious activities listed in Section 3 using Sybil
nodes. A lookup operation is considered eclipsed if all
the peers received by the discoverer consist of malicious
nodes. A discoverer can receive malicious peers from
honest registrars (if malicious advertisers were able to
place their ads) and malicious registrars (always returning
the maximum amount of Freturn malicious peers). The
probability of being eclipsed by a random node in a
bucket thus depends on the probability of encountering a
malicious registrar (determined uniquely by the number of
Sybil identities) and the probability of an honest registrar
returning uniquely malicious peers (determined also by
the number of IP addresses under the attacker’s control).
Figure 23 illustrates the probability of a lookup operation
being eclipsed as a function of the increasing ratio be-
tween malicious and honest nodes. For all tested setups,
the eclipse probability is close to 0 when the attacker uses
less than 4 times the amount of honest nodes participating
in a service3. An attacker can eclipse 60% of the lookups
only when using 10 nodes per 1 honest node and providing
a distinct IP address for all of them. However, such an

3. For comparison, a regular DHT lookup operation can be eclipsed
by using a fixed amount of 20 Sybil nodes (Section 8)

0 2 4 6 8 10
Malicious/honest nodes ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ok

up
 e

cli
ps

e
pr

oa
bi

lit
y One IP shared by all the attackers

One distinct IP address per 10 attackers
One distinct IP address per 1 attackers

Figure 23: Lookup eclipse probability.

attack would introduce a significant resource/monetary
cost to the attacker.

In the following, we explain how the lookup eclipse
probability shown in Figure 23 can be calculated. A
honest discoverer looking for service s will visit buck-
ets b0(s), b1(s), . . . and will query Klookup registrars per
bucket until it has found Flookup peers. Let us assume that
this is achieved after visiting l buckets. The discoverer
can be unlucky and only contact malicious registrars (as-
suming that malicious registrars will only return malicious
ads), and/or only receive malicious ads from honest reg-
istrars. The probability for this to happen for all t visited
buckets is

pecc =

l−1∏
i=0

(pecci)Klookup (19)

where pecci is the probability to only receive malicious ads
from a random queried registrar in bucket bi(s).

To find pecci , we look at the random registrar in bucket
bi(s). Let pmi be the probability that the registrar is
malicious and 1 − pmi the probability that it is not ma-
licious. For the latter case, let phmi be the probability that
the honest registrar will only return malicious ads. The
probability pecci to be eclipsed in that bucket is therefore

pecci = pmi + (1− pmi) · phmi (20)

The probability pmi that an individual registrar in
bucket bi(s) is malicious depends on what source the
discoverer used to add nodes to its search table for that
bucket. If the discoverer itself is located in bucket bu(s),
it can be expected that, on average, the buckets b0(s) to
bu(s) are fully populated by the discoverer from its own
routing table and that the routing table is also able to
provide 17 nodes uniformly distributed over the key space
for the remaining buckets. Since the buckets get smaller
and smaller toward s, we can expect that we will get 8
nodes for bucket bu+1(s), 4 nodes for bucket bu+2(s),
2 nodes for bucket bu+3(s), and one node for bucket
bu+4(s) from the routing table. The probability for each
of these nodes to be malicious is |Nm|

|N | . However, this
means that in order to achieve Klookup = 5 lookups per
bucket, the discoverer also has to resort to nodes returned
by the queried registrars starting from bucket bu+2(s). If
the queried registrar is honest, it will return nodes that are
malicious with probability |Nm|

|N | . However, if the registrar
is malicious, we can assume that all the nodes it returns
are malicious, too. Consequently, the probability that a
node in bucket bu+2(s), bu+3(s), . . . is malicious will be
greater than |Nm|

|N | and will increase with i.

To calculate phmi , we need to know the distribution
of honest and malicious ads in a honest registrar. If the
registrar contains ch honest and cm malicious ads, the
probability to randomly select only malicious ads from
those ch + cm ads is

∏ch+cm

j=0
cm−j

ch+cm−j
. Calculating the

distribution of ch and cm analytically is difficult due
to the complexity of the waiting time calculation. In-
stead, we approximate phmi using the averages of ch and
cm. On average, a registrar in bucket bi(s) will receive
qh =

|Nh|·Kregister

|N |/2i+1 honest and qm =
|Nm|·Km

register

|N |/2i+1 malicious
registration requests. The averages of ch and cm can then
be obtained by solving

ch =
qh

1 + (G+ ch

c + score(IP)h) · (1− c
C)−Pocc

(21)

cm =
qm

1 + (G+ cm

c + score(IP)m) · (1− c
C)−Pocc

(22)

c = ch + cm (23)

where the average IP scores for honest ads score(IP)h

and malicious ads score(IP)m depends on the numbers
of honest ads and malicious ads in the table and on the
number of different IP addresses used by the advertisers.
We show in Appendix C.3.3 how to calculate score(IP)h

and score(IP)m.
We solve Equations (21)–(23) numerically to obtain

phmi and use Monte-Carlo simulation to calculate pmi .
Figure 23 shows the resulting eclipse probability pecc

for different scenarios and the default parameter values.
For this figure, we assume u = 2, which is the average
expected bucket for a random discoverer.

C.3.3. IP Score. We explain how to calculate averages
for the IP scores. To simplify the understanding we will
start with simple situations and complete them step by
step. Furthermore, for the more complex situations, we
only show the calculation where the number of entries in
the cache with identical IP addresses is a power of 2.

Situation 1: There are already e random addresses in
the tree. What score will a new random IP address get?

We assume completely random addresses. That means
it can happen with a certain probability that some of the
random addresses are identical.

First level of the tree: With probability 0.5, the new ad-
dress goes to the 0-branch and the probability that branch
contains more than e

2 of the entries is P (#0 ≥
⌊
e
2

⌋
+1).

Also with probability 0.5, the new address goes to the 1-
branch and the probability that branch contains more than
e
2 of the entries is P (#1 ≥

⌊
e
2

⌋
+ 1). Since the binomial

distribution is symmetric, P
(
#0 ≥

⌊
e
2

⌋
+ 1
)
= P (#1 ≥⌊

e
2

⌋
+ 1). The average score for the first level is:

scorelevel(e) =
e∑

i=⌊ e
2⌋+1

(
e
i

)
2e

= 1−
⌊ e

2⌋∑
i=0

(
e
i

)
2e

We assume that the levels are independent and that
we will have, on average, e

2i−1 entries in each subtree of
level i. Using the above equation on each level gives

scorerand(e) =
1

32

32∑
i=1

scorelevel

(e

2i−1

)

Situation 2: There are already e+ k addresses in the
tree, however e are random and k are identical. What
score will a new random IP address get?

We assume again completely random addresses. That
means it can happen with a certain probability that one
of the random addresses is identical to another random
address or even to the k identical ones.

Let’s first define the probability that at least q out of
m fair coin tosses are head:

p(m, q) =

m∑
i=q

(
m
i

)
2m

First level (“level 0”) of the tree: With probability
0.5, the new IP address is in the same branch as the k
identical addresses. The probability that more than half of
the entries are in this branch knowing that the k identical
are in this branch is

p

(
e,

⌊
e+ k

2

⌋
+ 1− k

)
.

With probability 0.5, the new IP address is in the
branch that only contains random addresses. The prob-
ability of having the majority of the entries in this branch
knowing that k are definitely not in this branch is

p

(
e,

⌊
e+ k

2

⌋
+ 1

)
.

In total, the score for the first level is

1

2
p

(
e,

⌊
e+ k

2

⌋
+ 1− k

)
+

1

2
p

(
e,

⌊
e+ k

2

⌋
+ 1

)
.

On the second level, we have four branches, of which
one contains with certainty the k identical addresses,
leading to the score

1

4
p

(
e

2
,

⌊
e+ k

4

⌋
+ 1− k

)
+

3

4
p

(
e

2
,

⌊
e+ k

4

⌋
+ 1

)
.

And so on for the other levels. In total, the average
score is:

scorerand(e, k) =
1

32

32∑
i=1

[
1

2i
p

(
e

2i−1
,

⌊
e+ k

2i

⌋
+ 1− k

)
+

(
1− 1

2i

)
· p
(

e

2i−1
,

⌊
e+ k

2i

⌋
+ 1

)]
Situation 3: There are already e+ k addresses in the

tree, however e are random and k are identical (also ran-
dom). What score will an IP address get that is identical
to the k identical entries?

The situation is similar to situation 2. However, we
know that we always stay on the branch with the k
identical entries. The score is:

scoreidentical(e, k) =
1

32

32∑
i=1

p

(
e

2i−1
,

⌊
e+ k

2i

⌋
+ 1− k

)
Situation 4: There are already e+2f · k addresses in

the tree, however e are random and there are 2f “groups”

of k entries with identical addresses. Those 2f addresses
are distributed perfectly over the tree. What score will a
new random IP address get?

Since the 2f addresses are distributed perfectly over
the tree, the new random address will see exactly 2f−1 ·k
of them in its branch at the first level, 2f−2 ·k in its branch
at the second level etc. After level f , the subtrees start to
behave like in situation 2.

The score for the level 1 ≤ j ≤ f is:

p

(
e

2j−1
,

⌊
e+ 2fk

2j

⌋
+ 1− 2f−jk

)
.

After level f , we can apply the score of situation 2 to
each subtree:

score(IP)h =
1

32

f∑
j=1

p

(
e

2j−1
,

⌊
e+ 2fk

2j

⌋
+ 1− 2f−jk

)

+
1

32

32∑
i=f+1

[
1

2i−f
p

(
e

2i−1
,

⌊
e+ 2fk

2i

⌋
+ 1− k

)
+(

1− 1

2i−f

)
· p
(

e

2i−1
,

⌊
e+ 2fk

2i

⌋
+ 1

)]
Situation 5: Like situation 4 (i.e., e+2f ·k addresses),

but the new address is not random; it is one of the 2f

addresses.
The score for levels 1 to f is the same as in situation

4. However, for the levels > f , the “new” address will
always stay on a branch that contains the k entries with
the same address. For those levels, we can use the result
from situation 3.

score(IP)m =
1

32

f∑
j=1

p

(
e

2j−1
,

⌊
e+ 2fk

2j

⌋
+ 1− 2f−jk

)

+
1

32

32∑
i=f+1

p

(
e

2i−1
,

⌊
e+ 2fk

2i

⌋
+ 1− k

)

