
Efficient Multiparty Protocols Using Generalized
Parseval’s Identity and the Theta Algebra

Giorgio Sonnino
Université Libre de Bruxelles (ULB)

Brussels, Belgium
giorgio.sonnino@ulb.be

Alberto Sonnino
Mysten Labs

London, U.K.
alberto@mystenlabs.com

Abstract—We propose a protocol able to show publicly addition
and multiplication on secretly shared values. To this aim, we
developed a protocol based on the use of masks and FMPC
(Fourier Multi-Party Computation). FMPC is a novel multiparty
computation protocol of arithmetic circuits based on secret-
sharing, capable to compute the addition and multiplication
of secrets with no communication. We achieve this task by
introducing the first generalization of Parseval’s identity for
Fourier series applicable to an arbitrary number of inputs and
a new algebra referred to as the Θ[n]-algebra. FMPC operates
in a setting where users wish to compute a function over some
secret inputs by submitting the computation to a set of nodes,
without revealing those inputs. FMPC offloads most of the
computational complexity to the end users and includes an online
phase that mainly consists of each node locally evaluating specific
functions. FMPC paves the way for a new kind of multiparty
computation protocol; making it possible to compute the addition
and multiplication of secrets stepping away from circuit garbling
and the traditional algebra introduced by Donald Beaver in 1991.
Our protocol is capable to compute addition and multiplication
with no communication and its simplicity provides efficiency and
ease of implementation.

Index Terms—Cryptography, Multiparty Protocols, Multi-
Party Computation

I. INTRODUCTION

MPC (Multi-Party Computations) are cryptographic pro-
tocols where several distinct, yet connected, computing de-
vices (or parties) jointly evaluate a public function while
preserving several security properties despite adversarial be-
havior [DPSZ12]. This work aims to solve the following
problem: Develops a method able to show publicly the result
of a general mathematical expression while keeping the inputs
of the expression secret. This problem must be solved by
satisfying the following conditions:

1) Users are indistinguishable from each other;
2) Users cannot communicate with each other;
3) All operations must be performed simultaneously for all
users;
4) The number of nodes that are not corrupted must not depend
on the number of nodes involved in the process;
5) The operations performed by the display are visible to the
public.

It is trivial to solve the problem when the mathematical ex-
pression is composed only of sums or only by multiplications
of (secret) codes. Indeed, in the first case (i.e., the expression

is made up of sums of the codes only) it is sufficient that
each user splits the codes into two contributions and sends
them to two distinct nodes that cannot communicate with
each other, according to the following procedure. Denoting
with aj the secret code of the user j, with j = 1, · · · , n,
each user splits its code in two parts, a(1)j and a(2)j , such that
aj = a

(1)
j + a

(2)
j ∀j. Successively, they send the contribution

a
(1)
j to the Node1 and the contribution a

(2)
j to the node

Node2, respectively. Node1 and Node2 perform the partial
sum S(1) =

∑n
j=1 a

(1)
j and S(2) =

∑n
j=1 a

(2)
j , respectively.

Finally, the Display shows publicly the value of the sum S
with S = S(1) + S(2) (see Figure 1). Similarly, when the
expression is made up of products of the codes only, it is
sufficient that each user splits its code in two parts, a(1)j and
a
(2)
j , such that aj = a

(1)
j · a(2)j ∀j. Successively, they send

the contribution a
(1)
j to the Node1 and the contribution a

(2)
j

to the node Node2, respectively. Node1 and Node2 perform
the partial product P (1) = Πn

j=1a
(1)
j and P (2) = Πn

j=1a
(2)
j ,

respectively. Finally, the Display shows publicly the value of
the product P with P = P (1) · P (2) (see Figure 2):
Another very efficient way to solve the previous problem is
based on the use of numerical masks.
As for the sum of the codes, the users chose additive masks
ωj (j = 1, · · · , n) and split the code in two parts: a(1)j =

aj + ωj and a
(2)
j = −ωj and they send a

(1)
j and a

(2)
j to the

the Node1 and Node2, respectively. Successively, Node1 and
Node2 perform the partial sums S(1) =

∑n
j=1 a

(1)
j and S(2) =∑n

j=1 a
(2)
j , respectively. Finally, the Display shows publicly

the value of the sum S with S = S(1) + S(2).
When the expression is made only by a multiplication of
the codes, the users chose the multiplicative masks ωj and
ω̃j (j = 1, · · · , n) such that |aj |ωjω̃j = aj with |aj |
denoting the absolute value (i.e., the modulus) of the code
aj

1. Successively, the users send the values of |aj |ωj and ω̃j to
Node1 and Node2, respectively. Node1 and Node2 perform
the partial product P (1) = Πn

j=1|aj |ωj and P (2) = Πn
j=1ω̃j ,

respectively. Finally, the Display shows publicly the numerical
value of the product P with P = P (1) · P (2).

1Notice that by choosing the masks ωj in such a way that |aj |ωj ω̃j = aj ,
it is not possible to determine neither the value nor the sign of the code aj

Fig. 1. Display of the expression S =
∑n

j=1 aj by keeping secret the codes aj . This scheme illustrates how an expression, composed of a sum of secret

codes only, can be shown publicly by keeping secret the codes of single users. The users split their code in two pieces a
(1)
j and a

(2)
j . The values of a

(1)
j

and a
(2)
j may be chosen such that aj = a

(1)
j a

(2)
j or, by using additive masks ωj , a(1)j ≡ aj + ωj and a

(2)
j ≡ −ωj . At least, one node is not corrupted.

Fig. 2. Display of the expression P = Πn
j=1aj by keeping secret the codes aj . This scheme illustrates how an expression composed only by a product

of secret codes can be shown publicly by keeping secret the codes of single users. The users split their code in two pieces a
(1)
j and a

(2)
j . The values of

a
(1)
j and a

(2)
j may be chosen such that aj = a

(1)
j a

(2)
j or, by using multiplicative masks ωj , a(1))j ≡ |aj |ωj and a

(2))
j ≡ ω̃j with ω̃j defined such that

aj = |aj |ωj ω̃j .At least one node is not corrupted.

Another important problem that we have to solve is the
determination of a procedure able to use, instead of two nodes,
an arbitrary number of nodes N , while keeping constant the
number of nodes that must not be corrupted. It is customary
to enumerate the nodes with N = 3f + 1 with f denoting a
natural number (i.e., f = 1, 2, · · ·). It is easy to set up this
procedure when the mathematical expression is made only
by sums of the codes or products of the codes. Indeed, it is
sufficient for each user to divide their code into 2f+1 pieces:

aj =

3f+1∑
i=1

a
(i)
j in case of sums

aj = Π3f+1
i=1 a

(i)
j in case of products

and then send each piece to a different node. The numerical
value of the expression can be shown publicly without reveal-

ing the secrets provided that at least one node is not corrupted.
Of course, the same procedure applies when using masks.

To sum up when the expression contains either sums or
products of the (secret) codes, the problem of showing publicly
the numerical value of this expression is trivially solved. The
issue arises when the expression is composed of a combination
of sums and products of codes. This work aims to present
a protocol able to show publicly addition and multiplication
on secretly shared values. This problem has already been
solved by Donald Beaver in 1991 by using traditional algebra
- essentially based on the number theory - and a wide series
of circuits garbling [Bea91]. Unfortunately, Beaver’s proto-
col requires many rounds of communication and this slows
down the machine time with consequent expensive energy.
To overcome these obstacles we resort to a more sophis-
ticated mathematical approach, based on the use of masks

and FMPC (Fourier-based Multi-Party Computation) [Son19].
Our protocol operates by using the masks’ method and paves
the way for a new kind of multiparty computation protocol
capable of computing sums and multiplications of secrets as
an alternative to circuit garbling. More precisely, we hide the
users’ input codes within the cosine components of the Fourier
series of the main function (denoted by f(x)), combined with
additive masks that can be chosen arbitrarily by the users. The
result of the function is visible publicly but, of course, the
user’s mask is kept secret. Users send the secret codes hidden
by the masks to four nodes. Computations are performed
by using a new algebra, referred to as the Θ[n]-algebra
(or Theta-algebra). Finally, the results of the calculation are
transmitted to the display which, thanks to the generalized
Parseval’s identity for Fourier series applicable to an arbitrary
number of inputs, can show publicly the numerical result of
the mathematical expression while keeping secret the users’
codes. The participants’ privacy is guaranteed if at least three
nodes are not corrupted. Successively, we solved the problem
using 3f + 1 nodes, grouped in four categories. In this case
users, besides the additive mask, arbitrarily choose another
multiplicative mask. Even for multiple nodes, the participants’
privacy is guaranteed if at least three nodes belonging to three
different categories are not corrupted and at least one node,
belonging to the second level of computation, is not corrupted.
Compared to the original Beaver’s method, our protocol is
capable to compute addition and multiplication with no online
communication and its simplicity provides efficiency and ease
of implementation.

The manuscript is organized as follows. Section II presents a
protocol capable to show publicly addition and multiplication
for two players, This task is accomplished by using additive
masks and FMPC. Section III is devoted to the application of
the theorems valid for the Chebyshev polynomials. We shall
see that these theorems allow showing a general mathemat-
ical expression while keeping secret the users’ codes. The
mathematical framework to be used for treating the case of
n players is described in Section IV. In Section V we treat
the problem for n players by using the generalized Parseval’s
identity and the Θ[n]-algebra. Finally, in Section VI we solve
the problem for 3f + 1 nodes, grouped in four categories.
In this case, users need to choose, arbitrarily, multiplicative as
well as additive masks. The generalized Parseval’s identity and
the use of the Theta-algebra ensure the correct result shown by
the display. Section VII presents designs that incorporate our
nodes within the infrastructure of several semi-permissioned
Blockchains. Limitations of our work and concluding remarks
can be found in Section IX and Section X, respectively. Useful
relations for getting the values of the infinite sums, the proof of
the generalized Parseval’s identity, and the rules for the Θ[n]-
algebra are reported in Appendices A, A, and A, respectively.

II. DISPLAY OF THE EXPRESSION x1a+ x2b+ yab BY
KEEPING SECRET THE CODES a AND b.

A. Background

We recall the Fourier series of the convolution between two
functions ϕ(x) and ψ(x) periodic on (−l, l). Assuming that
ϕ(x) and ψ(x) ∈ L2[−l, l] (ϕ(x) and ψ(x) are square-
integrable in the interval [−l, l]), their respective Fourier
series representations read:

ϕ(x) =
α(0)

2
+

+∞∑
m=1

αm cos
(nπx

l

)
+

+∞∑
m=1

βm sin
(nπx

l

)
ψ(x) =

a(0)

2
+

+∞∑
m=1

am cos
(nπx

l

)
+

+∞∑
m=1

bm sin
(nπx

l

)
where the Fourier coefficients (α(0), αm, βm) and
(a(0), am, bm) (for m = 1, 2, · · ·) are given below:

α(0) =
1

l

∫ l

−l

ϕ(x)dx ; αm =
1

l

∫ l

−l

ϕ(x) cos
(mπx

l

)
dx

βm =
1

l

∫ l

−l

ϕ(x) sin
(mπx

l

)
dx

a(0) =
1

l

∫ l

−l

ψ(x)dx ; am =
1

l

∫ l

−l

ψ(x) cos
(mπx

l

)
dx

bm =
1

l

∫ l

−l

ψ(x) sin
(mπx

l

)
dx

Parseval’s identity holds for f(x) and g(x) [GR14]:(a0α0

2
+

∞∑
m=1

amαm

)
+
(∞∑

m=1

bmβm

)
=

1

l

∫ l

−l

ϕ(x)ψ(x)dx

(1)
We introduce the normalised functions f(x) = η−1/2ϕ(x) and
g(x) = η−1/2ψ(x) with

η =
1

l

∫ l

−l

ϕ(x)ψ(x)dx (2)

For functions f(x) and g(x), the Parseval identity reads:(ã0α̃0

2
+

∞∑
m=1

ãmα̃m

)
+
(∞∑

m=1

b̃mβ̃n

)
= 1 (3)

with {α̃0, α̃n, β̃n} and {ã0, ãn, b̃n} denoting the Fourier co-
efficients of f(x) and g(x), respectively. Parseval’s identity
only applies to two functions. Section IV-A presents our
generalization of Parseval’s identity that applies to an arbitrary
number of functions.
Now, we start by solving the case of two players called Alice
and Bob. To this aim, we choose f(x) = g(x). Furthermore,
for simplicity, we consider an even main function f(x) i.e.,
f(x) = f(−x) (so, β̃m = 0). In this case, Parseval’s identity
reduces to:

α̃2
0

2
+

∞∑
m=1

α̃2
m = 1 and η =

1

l

∫ l

−l

ϕ(x)2dx (4)

In the sequel, in order not to burden the notations the tilde
over the Fourier coefficients will be omitted being understood
that the main functions are normalized. In the following
Subsections, we establish the tasks of Alice and Bob.

B. Tasks of Alice

1) Alice splits her secret code in four parts: x1a = a1 + a2 +
a3 + a4; .
2) Alice choses two musks, by choosing arbitrary pairs of
parameters2 : ω1,m = a1,m + ib1,m and ω(0)

1 = a
(0)
1 + ib

(0)
1 ;

3) Let us call (α(0), αm) the cosine Fourier components
of the main function f(x). We define (α

(0)
1 , α1,m) ≡

(|y|1/2aα(0), |y|1/2aαm);
4) Alice constructs the four hyper-vectors
A

(1)
1 , A

(2)
1 , B

(1)
1 , B

(2)
1 , defined as

A
(1)
1 ≡

{
a1, α

(0)
1 + ω

(0)
1 , α1,m + ω1,m

}
B

(1)
1 ≡

{
a3, α

(0)
1 + iω

(0)
1 , α1,m + iω1,m

}
A

(2)
1 ≡

{
a2, α

(0)
1 − ω

(0)
1 , α1,m − ω1,m

}
B

(2)
1 ≡

{
a4, α

(0)
1 − iω

(0)
1 , α1,m − iω1,m

}
5) Alice sends the hyper-vectors A(1)

1 and A(2)
1 to the node 1

and thenode 2, respectively, and the hyper-vectors B(1)
1 and

B
(2)
1 to the node 3 and nde 4, respectively.

C. Tasks of Bob

1) Bob splits his secret code in four parts: x2b = b1 + b2 +
b3 + b4; .
2) Bob choses two musks, by choosing arbitrary pairs of
parameters3: ω2,m = a2,m + ib2,m and ω(0)

2 = a
(0)
2 + ib

(0)
2 ; .

3) With the cosine Fourier components of the main
function f(x), i.e. (α(0), αm), we define (α

(0)
2 , α2,m) ≡

(|y|1/2bα(0), |y|1/2bαm);
4) Bob constructs the four hyper-vectors
A

(1)
2 , A

(2)
2 , B

(1)
2 , B

(2)
2 , defined as

A
(1)
2 ≡

{
b1, α

(0)
2 + ω

(0)
2 , α2,m + ω2,m

}
B

(1)
2 ≡

{
b3, α

(0)
2 + iω

(0)
2 , α2,m + iω2,m

}
A

(2)
2 ≡

{
b2, α

(0)
2 − ω

(0)
2 , α2,m − ω2,m

}
B

(2)
2 ≡

{
b4, α

(0)
2 − iω

(0)
2 , α2,m − iω2,m

}
5) Bob sends the hyper-vectors A(1)

2 and A
(2)
2 to the node 1

and thenode 2, respectively, and the hyper-vectors B(1)
2 and

B
(2)
2 to the node 3 and node 4, respectively.

2It is convenient to choose ω
(0)
1 = α(0)(a

(0)
1 + ib

(0)
1) and ω1,m = (a1+

ib1)αm.
3It is convenient to choose ω

(0)
2 = α(0)(a

(0)
2 + ib

(0)
2) and ω2,m = (a2+

ib2)αm.

D. Tasks of the Nodes

The four nodes perform the following tasks. Note that the sign
is + if y > 0 and − if y < 0:
Node 1 computes:

(5)
N1 = a1 + b1 ±

(1
8
(α

(0)
1 + ω

(0)
1)(α

(0)
2 + ω

(0)
2)

+
1

4

∞∑
m=1

(α1,m + ω1,m)(α2,m + ω2,m)
)

Node 2 computes

(6)
N2 = a2 + b2 ±

(1
8
((α

(0)
1 − ω

(0)
1)(α

(0)
2 − ω

(0)
2))

+
1

4

∞∑
m=1

((α1,m − ω1,m)(α2,m − ω2,m))
)

Node 3 computes:

(7)
N3 = a3 + b3 ±

(1
8
((α

(0)
1 + iω

(0)
1)(α

(0)
2 + iω

(0)
2))

+
1

4

∞∑
m=1

((α1,m + iω1,m)(α2,m + iω2,m))
)

Node 4 computes:

(8)
N4 = a4 + b4 ±

(1
8
((α

(0)
1 − iω

(0)
1)(α

(0)
2 − iω

(0)
2))

+
1

4

∞∑
m=1

((α1,m − iω1,m)(α2,m − iω2,m))
)

E. Task of the Display

The display shows:

N1 +N2 +N3 +N4 = a1 + a2 + a3 + a4 + b1 + b2 + b3

+ b4 ±
1

2
α
(0)
1 α

(0)
2 ±

∞∑
m=1

α1,mα2,m

= x1a+ x2b+ yab

(9)

due to Parseval’s identity (4). Here, at least three nodes must
not be corrupted. Fig. (3) illustrates the procedure.

F. Example: Expr = 3a+ 5b− 9ab

Let us apply the procedure to a concrete example where
(x1, x2, y) = (3, 5, 9). This triad of numbers is shown publicly.
We suppose that the secret codes of Alice and Bob are
(a, b) = (2.2, 4.1), so the value of the expression shown by
the display is Expr = −54.08. First, we have to choose
the main function f(x). We choose, for example, f(x) =(
1 + sin(2πτ)

2πτ

)−1/2

cos(πτx/L). So, the Fourier coefficients read

α(0) = 2

(
1 +

sin(2πτ)

2πτ

)−1/2
sin(πτ)

πτ
(10)

α(m) = α(0)τ2
(−1)m

τ2 −m2

Fig. 3. Display of the expression x1a+x2b+yab by keeping secret the code a and b. This procedure allows showing publicly the expression by keeping
secret the codes of Alice and Bob. In this case, at least three nodes must not be corrupted

If the system chooses, for example, τ = 1/6, we get

α(0) = 6

√
2

3
√
3π + 2π2

(11)

αm = 6

√
2

3
√
3π + 2π2

(−1)m

1− 36m2

It is useful to take into account the following identity [GR14]4

∞∑
m=1

(αm)2 =
−36 + 3

√
3π + 2π2

π(3
√
3 + 2π)

1) Tasks of Alice: Alice possesses the code a = 2.2. She
splits her ode in four pieces a1 = 3.3 ; a2 = 1.65 a3 =
1.32 ; a4 = 0.33 and chooses the following masks

ω
(0)
1 = α(0)(7 + 9i) ; ω1 = (2 + 11i)αm

2) Tasks of Bob: Bob possesses the code a = 4.1. He splits
his code in four pieces b1 = 3.41667 ; b2 = 2.05 b3 =
5.125 ; b4 = 9.90833 and chooses the following masks

ω
(0)
2 = α(0)(5 + 3i) ; ω2 = (4 + 8i)αm

3) Tasks of the Nodes: The nodes perform the following
tasks:
Node 1:

(12)

N1=a1+b1 −
1

8
(α

(0)
1 +ω

(0)
1)(α

(0)
2 +ω

(0)
2)

+
1

4

∞∑
m=1

(α1,m+ω1,m)(α2,m + ω2,m)

=3.3+3.41667−1/8(α(0))2(13.6+9i)(17.3+3i)

−1/4(8.6+11i)(16.3+8i)

∞∑
m=1

(αm)2

4Useful relations for getting the values of the infinite sums can be found
in Appendix A.

Node 2:

(13)

N2

= a2+b2−

(
1

8
((α

(0)
1 −ω(0)

1)(α
(0)
2 − ω

(0)
2))

+
1

4

∞∑
m=1

((α1,m−ω1,m)(α2,m−ω2,m))

)
= 11.1887 + 16.153i

Node 3:

(14)

N3

=a3+b3−

(
1

8
((α

(0)
1 +iω

(0)
1)(α

(0)
2 +iω

(0)
2))

+
1

4

∞∑
m=1

((α1,m+iω1,m)(α2,m+iω2,m))

)
= 20.7616− 13.2477i

Node 4:

(15)

N4

=a4+b4−

(
1

8
((α

(0)
1 −iω(0)

1)(α
(0)
2 −iω(0)

2))

+
1

4

∞∑
m=1

((α1,m−iω1,m)(α2,m−iω2,m))

)
= −40.7457 + 46.2424i

4) Tasks of the Display: The display shows publicly:

Expr = N1 +N2 +N3 +N4 = −54.08 + 7.10543 · 10−15i

due to Parseval’s identity (4).

III. SHOWING A GENERAL MATHEMATICAL EXPRESSION
BY KEEPING SECRET THE CODES a AND b

It is easy to convince ourselves that the method of the
masks may successfully be applied to get a wide variety
of mathematical expressions, by keeping secret the code of
the players and without having to resort to any mathematical
approximation. For example, it is possible to get the value of

Expr. = arctan log sin(a2 + 3ab− 4/b)

without having to approximate it with polynomial interpola-
tions (or another kind of interpolations). The strategy is to
mask the terms and ask the Display to show the value of the
mathematical expression. In the above case, 3 terms must be
masked through the use of 3 masks, one provided by player
a and two provided by player b, for getting the expressions:

arg. = a2 + 3ab− 4/bi

and request that the display publicly shows the value of the
final expression:

Expr. = arctan log sin(arg.)

Of course, the above considerations apply to any mathematical
expression, of the type:

Expr. = f(arg.)

where f is a publicly visible function. However, in several
practical applications, it is not possible to dispose of the exact
mathematical expression of a variable, but only a discrete set
of experimental sampling of it. In these cases, the method of
the mask functions can still be successfully used. The musk-
technique is able to evaluate the following expression, by
keeping secret the codes a and b:

Expr. = w1(a) + w2(b) +

m,m′∑
r,p=0

crpgr(a)hp(b) (16)

where w1, w2, gr and hp are functions and m and m′ (finite)
integers, respectively. clp are constant coefficients. In this
case, both Alice and Bob have to split functions w1, and
w2 into two parts and they have to construct m and m′

mask functions, respectively. As known, any regular function
defined between −1 and +1 can be approximated, with high
precision, considering only a few terms of the Chebyshev
polynomials. This observation allows to approximate any
cryptographic expression with the first (no more than, let’s say
the first nine) polynomials of Chebyshev and, then, to apply the
musk-functions technique to the expression obtained with the
Chebyshev polynomials. Note that the accurate convergence
of the Chebyshev polynomials is guaranteed in the interval of
the type −l and +l (if the polynomials are orthonormalized).
l is an arbitrary parameter that does not participate in the
encryption procedure. So, it may be chooses l = 1. Thanks
to Chebyshev polynomials, the general expression may be
brought into the form (16). This will be more precise in the
forthcoming sections.

A. Properties and Theorems on the Chebyshev Polynomials

It is useful to recall the two main properties and theorems
on the Chebyshev Polynomials5.
A) Properties of the Chebyshev polynomials
i) The Chebyshev polynomials Tm(x) form a complete or-
thogonal system.
ii) The Chebyshev series converges to Ψ(x) if the function
is piecewise smooth and continuous. The smoothness require-
ment can be relaxed in most cases – as long as there are a
finite number of discontinuities in Ψ(x) and its derivatives.
iii) At a discontinuity, the series will converge to the average
of the right and left limits.
B) Theorems on the Chebyshev polynomials
Theorem 1: Accuracy
If we want polynomial interpolating a function f at m + 1
points xs in the interval [−1, 1] to be as accurate as possible,
then we should choose the data xs so that they are the zeros of
the Chebyshev polynomial Tm+1(x). More specifically, If the
nodes xs are chosen as the roots of the Chebyshev polynomial
Tm+1(x)

xs = cos

(
2s+ 1

2m+ 2
π

)
; (s = 0, 1 . . . ,m)

then the error term for polynomial interpolation using the
nodes xs is

E(x) = |f(x)− P (x)|≤ 1

2m(m+ 1)!
max(−1≤t≤1)|fm+1(t)|

Moreover, this is the best upper bound we can achieve by
varying the choice of xs.
Theorem 2: Convergence
The Chebyshev Numerical Method is best with the Rate of
Convergence.
The different numerical methods have different rates of con-
vergence. And the rate of convergence is a very important issue
in the solution of polynomial and transcendental equations
because the rate of convergence of any numerical method
determines the speed of the approximation to the solution
of the problem. The following table shows the comparison
of the rate of convergence. Among Secant, Regula-Falsi and
Newton-Raphson which are based on 1st-degree equations
Newton-Raphson has a good rate of convergence i.e. 2. Among
Muller and Chebyshev methods, which are based on 2nd degree
equations, Chebyshev is best with the rate of convergence of 3.
Table I compares the rate of convergence of various methods.

B. Interpolation of a General Expression Expr.(a, b) with the
Chebyshev Polynomials

Let Expr.(a, b) = w1(a) + w2(b) + Φ(a, b) be a general
function of two variables a and b. We may interpolate this
expression by proceeding in the following manner:

5A deep and exhaustive analysis on the Chebyshev polynomials can be
found, for instance, in [MH02].

Method Based on Equation Rate of Convergence

Secant 1st degree 1.618
Regula-Falsi 1st degree 1
Newton-Raphson 1st degree 2
Muller 2st degree 1.84
Chebyshev 2st degree 3

TABLE I
RATE OF CONVERGENCE OF VARIOUS METHODS

i) We develop the expression Φ(a, b) in terms of Chebyshev
polynomials Tr(x) with respect to the variable a:

Φ(a, b) ≃
m∑
r=0

Tr(a)cr(b)

ii) Successively, we develop the expressions cr(b) in terms of
Chebyshev polynomials Tp(x) with respect to the variable b:

cr(b) ≃
m′∑
p=0

crpTp(b)

Finally, we get

Expr. ≃ w1(a) + w2(b) +

m,m′∑
r,p=0

crpTr(a)Tp(b) (17)

which is of the same form as Eq. (16). To sum up, the main
conclusions of our analysis are:
a) Theorems 1) and 2) ensure the best accuracy - by quanti-
fying the error - and the best rate of convergence;
b) The previous development can trivially be extended when
the expression depends on n variables.

IV. MATHEMATICAL FRAMEWORK FOR TREATING THE
CASE OF MULTIPLE USERS

In the previous Sections, we solved the problem for the case
of two users. Unfortunately, the adopted procedure does not
trivially extend to the case of n users (with n > 2). This is
due to the following two drawbacks:
a) Parseval’s identity traditionally applies only to two func-
tions. In this case, the mathematical expression of this identity
is invariant under the permutation of the two functions; in
other words, the two functions are indistinguishable each with
the other. However, the problem arises when the users are
more than two: if we apply this identity in a simple sequential
manner, the functions will no longer be indistinguishable from
each other. What we need is to derive an expression equivalent
to Eq. (1), which applies for n ≥ 2 functions. In this way,
the property of indistinguishability among functions will be
preserved. Concretely, we need to derive the expression for the
normalisation coefficient η that generalises Eq. (2) for n ≥ 2
functions, so that Parseval’s identity for normalised functions
can be cast into the form (3). This task will be accomplished
in the next Section.
b) The second obstacle is due to the fact that the algebra
of complex numbers, which we used to treat the case n =
2, turns out to be inadequate when there are more than two

users. Indeed, for n > 2 the additive masks no longer cancel
each other leading to an erroneous final result. We may easily
convince ourselves on this by noticing that for n = 2 the masks
cancel each with other because i2 = −1, while for n > 2
(n = 4, for example) we have in = +1 for n = 4ι, with ι
denoting a natural number. In this latter case, the masks instead
of canceling each other add up! This issue will be overcome
by introducing an appropriate algebra, referred to as Theta
algebra, which has the property to allow the cancellation of
the masks for n ≥ 2, thus providing the correct final result
(see the forthcoming Subsection).

A. Generalisation of Parseval’s identity for n functions
In this section, we present the generalization of Parseval’s

identity for the Fourier series applicable to n inputs. Here, we
will limit ourselves only to enunciating the theorem, delegating
the proof of the theorem in Appendix A. With the n main
functions ϕ(j)(x), with (j = 1, · · · , n), we construct out n
even functions and n odd functions:

ϕ(j)c (x) ≡ 1

2

(
ϕ(j)(x) + ϕ(j)(−x)

)
ϕ(j)s (x) ≡ 1

2

(
ϕ(j)(x)− ϕ(j)(−x)

)
(18)

with (j = 1, 2, · · ·). We also introduce the convolution opera-
tion (⋆) between two functions ϕ(x) and ψ(x):

(ϕ ⋆ ψ)(x) =
1

l

∫ l

−l

ϕ(t)ψ(x− t)dt

and the integral transform (∧) of a function ϕ(x) by a kernel
function of two variable K(x, t), defined as:

(ϕ ∧K)(x) =
1

l

∫ l

−l

ϕ(t)K(x, t)dt with

K(x, t) =

∞∑
m=1

cos
(mπ
l
x
)
sin
(mπ
l
t
)

=
sin(πt/l)

2(cos(πx/l)− cos(πt/l))

Note that the Kernel K(x, t) should be intended in a distri-
bution sense [Die18]. Let us now consider n inputs (main
functions) with the Fourier representations

(19)

ϕ(j)(x) =
α
(j)
0

2
+

+∞∑
m=1

α(j)
m cos

(mπx
l

)
+

+∞∑
m=1

β(j)
m sin

(mπx
l

)
with j

= 1, 2, · · · , n
We introduce the following three constants

C =
1

l

∫ l

−l

ϕ(n)c (x)Input1C(x)dx (20)

Se =
1

l

∫ l

−l

(ϕ(n−1)
s ⋆ ϕ(n)s)(x)Input1Se

(x)dx

So = −1

l

∫ l

−l

(ϕ(n)s ∧K)(x)Input1So(x)dx

where functions Input1(x) are defined as

(21)Input1C(x) ≡ ((· · · (((ϕ(1)c ⋆ ϕ(2)c) ⋆ ϕ(3)c) ⋆ ϕ(4)c) ⋆ · · ·)
⋆ ϕ(n−1)

c)(x)

(22)Input1Se
(x) ≡ ((ϕ(1)s ⋆ ϕ(2)s) ⋆ (ϕ(3)s ⋆ ϕ(4)s) ⋆ · · ·

⋆ (ϕ(n−3)
s ⋆ ϕ(n−2)

s))(x)

(23)Input1So
(x) ≡ ((ϕ(1)s ⋆ ϕ(2)s) ⋆ (ϕ(3)s ⋆ ϕ(4)s) ⋆ · · ·

⋆ (ϕ(n−2)
s ⋆ ϕ(n−1)

s))(x)

Eq. (20) may conveniently be cast into the form (see Ap-
pendix (A)):

C =
1

2
Πn

j=1α
(j)
0 +

∞∑
m=1

(Πn
j=1α

(j)
m)

Sκ =

∞∑
m=1

(Πn
j=1β

(j)
m) with

Sκ =

{
Se if n=even number
So if n=odd number

Hence, the generalised Parseval’s identity for n inputs ϕ(j)(x)
(with j = 1, 2, · · · , n) reads:

C+ Sκ (24)

=
1

2
Πn

j=1α
(j)
0 +

∞∑
m=1

(Πn
j=1α

(j)
m) +

∞∑
m=1

(Πn
j=1β

(j)
m)

with Sκ =

{
Se if n=even number
So if n=odd number

Hence, the normalisation constant η is given by

η = (C+ Sκ)−1/n with Sκ =

{
Se if n=even number
So if n=odd number

(25)
and the normalised main functions f (j)(x) read

f (j)(x) = ηϕ(j)(x) with j = 1, 2, · · · , n (26)

If we use the main functions f (j)(x) the generalised Parseval’s
identity reads

1

2
Πn

j=1α̃
(j)
0 +

∞∑
m=1

(Πn
j=1α̃

(j)
m) +

∞∑
m=1

(Πn
j=1β̃

(j)
m) = 1 (27)

with α̃(j)
0 , α̃(j)

m , and β̃(j)
m denoting the Fourier coefficients of

f (j)(x). As we can see, users in the generalized Parseval’s
identity are indistinguishable from each other. The schemes
of calculation of the coefficients C, Se, and So are illustrated
in Figure 4, 5 and 6, respectively.

Fig. 4. Illustration of the algorithm for calculating constant C. n − 2

convolution operations are performed sequentially starting from ϕ
(1)
c (x) to

ϕ
(n−1)
c (x) i.e. until we get only one function. This latter function has to

be integrated with ϕ
(n)
c (x). Note that, due to the commutative property, the

order of the input functions is not relevant in the convolution operations.

B. The Θ[n]-Algebra

We have already noted that the algebra of complex numbers
is not adequate to solve the problem when the number of users
is greater than two. Indeed, it is easily checked that in case of
multiple users we are unable to make the masks disappear, and
this is because, according to the algebra of complex numbers,
we have

+1 = i4 = i8 = i12 = ... and − i = i3 = i7 = i11 = ...

So, by raising the imaginary number i to powers of integers,
we follow the path illustrated in Figure 7. Our masks must
then be constructed by using an algebra where the imaginary
number i is replaced by another number, let’s call it ζ(1),
satisfying the identities

−1 = ζ(2) = ζ(4) = ζ(6) = ...

and + i = ζ(1) = ζ(3) = ζ(5) = ζ(7) = ...

In other terms, we would need to follow the path shown in
Figure 28.
This algebra is referred to as the Θ[n]-algebra and ζ(n) ≡
EvalT[Θ[n]] with EvalT[Θ[n]] denoting the numerical evalu-
ation of Θ[n]. All of this will be specified in the following
Subsection.

C. Rules of the Θ[n]-algebra

In the previous section we introduced Θ[n] and the symbol
EvalT[Θ[n]]. More precisely,
a) The Theta-algebra is an algebraic structure that deals with
elements denoted by Θ[n] and is equipped by an operation
denoted by ∗;

Fig. 5. Illustration of the algorithm for calculating constant Se. If n is an
even number, we pair up two by two the n−2 input functions and we perform
n− 3 convolution operations between each pair. We iterate this process until
there remains only one final function. This latter function is finally integrated
with the convolution operation between the function ϕ

(n−1)
s and ϕ

(n)
s [i.e.,

(ϕ
(n−1)
s ⋆ϕ

(n)
s)(x)]. Due to the commutative property, the order of the input

functions is not relevant in the convolution operations.

b) Θ[n] is an abstract symbol satisfying a finite set of axioms
reported in Appendix A;
c) EvalT[Θ[n]] is a command that assigns a complex number
to mathematical expressions involving Θ[n] according to the
definition shown in Appendix A.
For easy reference, and in order not to burden the reading of
the work, here we report only the main algorithms for Θ[n]

and EvalT[Θ[n]] In fact, these are the main rules we need to
perform our calculations. In Appendix A we can find a more
complete set of rules to be satisfied by Θ[n] and EvalT[Θ[n]]
with some examples of calculation.

Θ[1] ∗Θ[1] ∗Θ[1] ∗ · · · ∗Θ[1] ≡ Θ[n] (n times)

Θ[m] ∗Θ[n] = Θ[n] ∗Θ[m] = Θ[m+n] (28)

(29)

EvalT[Θ[n]]

≡ cos
(π
4
(3 + (−1)n)

)
+ i sin

(π
4
(3 + (−1)n)

)

(30)

(EvalT[Θ[n]])m

≡ cos
(mπ

4
(3 + (−1)n)

)
+ i sin

(mπ
4

(3 + (−1)n)
)

Fig. 6. Illustration of the algorithm for calculating constant So. If n is an
odd number, we pair up two by two the n−1 input functions and we perform
n− 3 convolution operations between each pair. We iterate this process until
there remains only one final function is finally integrated. This latter function
has to be integrated with function (ϕ

(n)
s ∧K(x))(x). Due to the commutative

property, the order of the input functions is not relevant in the convolution
operations.

Hence, as desired

EvalT[Θ[n]] = −1 if n is an even number

EvalT[Θ[n]] = +i if n is an odd number

V. DISPLAY OF THE EXPRESSION
∑n

j=1 xjaj + yΠn
j=1aj

BY KEEPING SECRET THE CODES aj

We are now in a position to solve our problem for n users.
First of all, without compromising the participants’ privacy, we
choose the same function for all users (i.e., ϕ(j)(x) = ϕ(x)
∀j) where ϕ(x) is an even function i.e., ϕ(x) = ϕ(−x). In
this case, we have Se = So = 0 and the generalized Parseval’s
identity reads6:

αn
0

2
+

∞∑
m=1

αn
m = 1 and η = C−1/n (31)

with α0 and αm denoting the Fourier coefficients of f(x).
So, the main function reads f(x) = C−1/nϕ(x). We define
(α(0)

j , αj,m) ≡ (|y|1/najα0, |y|1/najαm) with j = 1, · · · , n.

A. Tasks of the Users

1) Users split their secret codes in four parts: xjaj = a
(1)
j +

a
(2)
j + a

(3)
j + a

(4)
j ;

2) Users chose the masks ωj,m = aj,m + Θ[1]bj,m; ω̂j,m =

Θ[1]aj,m− bj,m; ω(0)
j = a

(0)
j +Θ[1]b

(0)
j and ω̂(0)

j = Θ[1]a
(0)
j −

b
(0)
j with j = 1, · · · , n. ω(0)

j , ωj , ω̂(0)
j and ω̂j are numbers

6In order not to burden the notations, the tilde over the Fourier coefficients
has been omitted.

Fig. 7. The path is followed in the complex plane by raising to power the imaginary number i.

Fig. 8. Path in the complex plane obtained by raising ζ(1) to a power.

arbitrarily chosen by the users. Note that is convenient to
choose ω(0)

j = α(0)(a
(0)
j + Θ[1]b

(0)
j), ω̂(0)

j = α(0)(Θ[1]a
(0)
j −

b
(0)
j), ωj,m = (aj +Θ[1]bj)αm, and ω̂j,m = (Θ[1]aj − bj)αm.

3) Users construct the four hyper-vectors A(1)
j , A

(2)
j , A

(3)
j , A

(4)
j

defined as

A
(1)
j ≡

{
a
(1)
j , α

(0)
j +ω

(0)
j , αj,m+ωj,m

}
A

(3)
j ≡

{
a
(3)
j , α

(0)
j +ω̂

(0)
j , αj,m+ω̂j,m

}
A

(2)
j ≡

{
a
(2)
j , α

(0)
j −ω(0)

j , αj,m−ωj,m

}
A

(4)
j ≡

{
a
(4)
j , α

(0)
j −ω̂(0)

j , αj,m−ω̂j,m

}

4) Users send the hyper-vectors A(1)
j and A(2)

j to the Node 1
and the Node 2, respectively, and the hyper-vectors A3

j and
A4

j to the Node 3 and Node 4, respectively.

B. Tasks of the Nodes

The four nodes perform the following tasks. Note that the
sign is + if y > 0 and − if y < 0:

Node 1 computes:

N1

≡
n∑

j=1

a
(1)
j

±

(
1

8
Π̂n

j=1(α
(0)
j +ω

(0)
j)+

1

4

∞∑
m=1

Π̂n
j=1(αj,m+ωj,m)

)
(32)

Node 2 computes:

N2

≡
n∑

j=1

a
(2)
j

±

(
1

8
Π̂n

j=1(α
(0)
j −ω(0)

j)+
1

4

∞∑
m=1

Π̂n
j=1(αj,m−ωj,m)

)
(33)

Node 3 computes:

N3

≡
n∑

j=1

a
(3)
j

±

(
1

8
Π̂n

j=1(α
(0)
j + ω̂

(0)
j)+

1

4

∞∑
m=1

Π̂n
j=1(αj,m+ ω̂j,m)

)
(34)

Node 4 computes:

N4

≡
n∑

j=1

a
(4)
j

±

(
1

8
Π̂n

j=1(α
(0)
j − ω̂(0)

j)+
1

4

∞∑
m=1

Π̂n
j=1(αj,m− ω̂j,m)

)
(35)

C. Task of the Display

The display computes:

S = N1 +N2 +N3 +N4

The display shows:

EvalT[S] =

n∑
j=1

xjaj + yΠn
j=1aj

due to the generalized Parseval’s identity (31). Note that to
perform the operations, the Display takes into account the
identities EvalT[Θ[2m]] = −1 and EvalT[Θ[2m−1]] = +i.
The privacy of the participants is guaranteed if at least three
nodes are not corrupted. Figure 9 shows the procedure.

VI. DISPLAY OF THE EXPRESSION
∑n

j=1 xjaj + yΠn
j=1aj

BY USING N = 3f + 1 NODES

At this stage, we have solved the problem for n users,
using 4 nodes. Participants’ privacy is guaranteed that at least
three nodes are not corrupted. However, requiring that three
out of four nodes must not be corrupted is a quite restrictive
constraint. This drawback can easily be overcome by using
multiple nodes, say N = 3f + 1 with f denoting a natural
number. The problem is solved if we can establish an algorithm
that guarantees participants’ privacy without modifying the
constraint on the number of nodes that must not be corrupted.
In other words, the number of nodes that are not to be
corrupted must be 3 and must not depend on f . We shall
solve this problem using 3f + 1 nodes, grouped in different
4 categories, with the constraint that at least three nodes (and
no more than three) belonging to three different categories
must not be corrupted and at list one node, belonging to
the second level of computation, is not corrupted. Firstly, it
is convenient to account for all the quantities entered in the
algorithm by a unique index, say ι, that can take only natural
numbers (i.e., ι = 0, 1, 2, · · ·). We group the 3f+1 nodes in 4
different categories. Let us denote with κ the number of nodes

in each category. If the total nodes is N = 3f + 1, we have
κ = 3(f − 1)/4. Hence, in terms of ι:

f = 1 + 4ι

κ = 3ι

N = 4(1 + 3ι) with ι = 0, 1, 2, · · ·

A. Tasks of the Users

1) Users split the codes in 12ι parts: xjaj = a
(1)
j + a

(2)
j +

· · ·+ a
(12ι)
j ;

2) Each user (j) chooses:
2a) κ positive supplementary masks: λ(0,s)j , µ(0,s)

j , ν(0,s)j , and
σ
(0,s)
j with s = 1, · · · , κ;

2b) κ positive supplementary multiplicative masks: λ(s)j , µ(s)
j ,

ν
(s)
j , and σ(s)

j with s = 1, · · · , κ;
3) Users form the hyper-vectors A(1)−A(κ), B(κ+1)−B(2κ),
C(2κ+1) − C(3κ), and D(3κ+1) −B(4κ);
(4) Users send the encrypted codes to the nodes.

B. Tasks of the Nodes in the Categories

The N = 4(1 + 3ι) nodes are grouped in 4 categories A, B,
C, and D built as follows:
A = CATEGORY 1
Category A receives:

A(1) ≡
{
S(1) =

n∑
j=1

a
(1)
j ,

PA(0,1) = Π̂n
j=1(α

(0)
j λ

(0,1)
j +ω

(0)
j λ

(0,1)
j)1/κ,

PA(1) = Π̂n
j=1(αj,mλ

(1)
j + ωj,mλ

(1)
j)1/κ

}
· · ·

A(κ−1) ≡
{
S(κ−1) =

n∑
j=1

a
(κ−1)
j ,

PA(0,κ−1) = Π̂n
j=1(α

(0)
j λ

(0,κ−1)
j + ω

(0)
j λ

(0,κ−1)
j)1/κ

PA(κ−1) = Π̂n
j=1(αj,mλ

(κ−1)
j + ωj,mλ

(κ−1)
j)1/κ

}

A(κ) ≡
{
S(κ) =

n∑
j=1

a
(κ)
j ,

PA(0) = Π̂n
j=1(α

(0)
j λ̃

(0)
j + ω

(0)
j λ̃

(0)
j)1/κ,

PA = Π̂n
j=1(αj,mλ̃j + ωj,mλ̃j)

1/κ
}

B = CATEGORY 2
Category B receives:

B(1) ≡
{
S(κ+1) =

n∑
j=1

a
(κ+1)
j ,

PB(0,1) = Π̂n
j=1(α

(0)
j µ

(0,1)
j − ω

(0)
j µ

(0,1)
j)1/κ,

PB(κ) = Π̂n
j=1(αj,mµ

(1)
j − ωj,mµ

(1)
j)1/κ

}

Fig. 9. Display of the expression
∑n

j=1 xjaj + yΠn
j=1aj by keeping secret the codes aj .

· · ·

B(κ−1) ≡
{
S(2κ−1) =

n∑
j=1

a
(2κ−1)
j ,

PB(0,κ−1) = Π̂n
j=1(α

(0)
j µ

(0,κ−1)
j − ω

(0)
j µ

(0,κ−1)
j)1/κ,

PB(κ−1) = Π̂n
j=1(αj,mµ

(κ−1)
j − ωj,mµ

(κ−1)
j)1/κ

}

B(κ) ≡
{
S(2κ) =

n∑
j=1

a
(2κ)
j ,

PB(0) = Π̂n
j=1(α

(0)
j µ̃

(0)
j − ω

(0)
j µ̃

(0)
j)1/κ,

PB = Π̂n
j=1(αj,mµ̃j − ωj,mµ̃j)

1/κ
}

C = CATEGORY 3 Category C receives:

C(1) ≡
{
S(2κ+1) =

n∑
j=1

a
(2κ)
j ,

PC(0,1) = Π̂n
j=1(α

(0)
j ν

(0,1)
j + ω̂

(0)
j ν

(0,1)
j)1/κ,

PC(1) = Π̂n
j=1(αj,mν

(1)
j + ω̂j,mν

(1)
j)1/κ

}
· · ·

C(κ−1) ≡
{
S(3κ−1) =

n∑
j=1

a
(3κ−1)
j ,

PC(0,κ−1) = Π̂n
j=1(α

(0)
j ν

(0,κ−1)
j + ω̂

(0)
j ν

(0,κ−1)
j)1/κ,

PC(κ−1) = Π̂n
j=1(αj,mν

(κ−1)
j + ω̂j,mν

(κ−1)
j)1/κ

}

C(κ) ≡
{
S(3κ) =

n∑
j=1

a
(3κ)
j ,

PC(0) = Π̂n
j=1(α

(0)
j ν̃

(0)
j + ω̂

(0)
j ν̃

(0)
j)1/κ,

PC = Π̂n
j=1(αj,mν̃j + ω̂j,mν̃j)

1/κ
}

D = CATEGORY 4 Category D receives:

D(1) ≡
{
S(3κ+1) =

n∑
j=1

a
(3κ)
j ,

PD(0,1) = Π̂n
j=1(α

(0)
j σ

(0,1)
j − ω̂

(0)
j σ

(0,1)
j)1/κ,

PD(1) = Π̂n
j=1αj,m(σ

(1)
j − ω̂j,mσ

(1)
j)1/κ

}
· · ·

D(κ−1) ≡
{
S(4κ−1) =

n∑
j=1

a
(4κ−1)
j ,

PD(0,κ−1) = Π̂n
j=1(α

(0)
j σ

(0,κ−1)
j − ω̂

(0)
j σ

(0,κ−1)
j)1/κ,

PD(κ−1) = Π̂n
j=1(αj,mσ

(κ−1)
j − ω̂j,mσ

(κ−1)
j)1/κ

}

D(κ) ≡
{
S(4κ) =

n∑
j=1

a
(4κ)
j ,

PD(0) = Π̂n
j=1(α

(0)
j σ̃

(0)
j − ω̂

(0)
j σ̃

(0)
j)1/κ,

PD = Π̂n
j=1(αj,mσ̃j − ω̂j,mσ̃j)

1/κ
}

Masks λj , µj ,νj , and σj λ
(0,s)
j , λ(s)j , etc. are real numbers

different from zero and the variable with the tilde stands for
the inverse of the variable, i.e.,

λj λ̃j = 1 ; µj µ̃j = 1 ; νj ν̃j = 1 ;

σj σ̃j = 1 ; λj
(0,s)λ̃

(0,s)
j = 1 etc. (j = 1, · · · , n)

Moreover,

λ̃
(0)
j ≡ Πκ−1

s=1 λ̃
(0,s)
j , µ̃

(0)
j ≡ Πκ−1

s=1 µ̃
(0,s)
j

ν̃
(0)
j ≡ Πκ−1

s=1 ν̃
(0,s)
j , σ̃

(0)
j ≡ Πκ−1

s=1 σ̃
(0,s)
j

λ̃j ≡ Πκ−1
s=1 λ̃

(s)
j , µ̃j ≡ Πκ−1

s=1 µ̃
(s)
j

ν̃j ≡ Πκ−1
s=1 ν̃

(s)
j , σ̃j ≡ Πκ−1

s=1 σ̃
(s)
j ∀j

C. Tasks of the Nodes N1, N2, N3 and N4

The nodes in the four categories perform the following tasks.
Note that the sign is + if y > 0 and − if y < 0:
N1 computes:

N1

=

κ∑
s=1

S(s)

±
(
1

8
PA(0) ·Πκ−1

s=1PA
(0,s) +

1

4
PA ·Πκ−1

s=1PA
(s)

)
(36)

N2 computes:

N2

=

2κ∑
s=κ+1

S(s)

±
(
1

8
PB(0) ·Πκ−1

s=1PB
(0,s) +

1

4
PB ·Πκ−1

s=1PB
(s)

)
(37)

N3 computes:

N3

=

3κ∑
s=2κ+1

S(s)

±
(
1

8
PC(0) ·Πκ−1

s=1PC
(0,s) +

1

4
PC ·Πκ−1

s=1PC
(s)

)
(38)

N4 computes:

N4

=

4κ∑
s=3κ+1

S(s)

±
(
1

8
PD(0) ·Πκ−1

s=1PD
(0,s) +

1

4
PD ·Πκ−1

s=1PD
(s)

)
(39)

To perform calculations, the nodes use rule vi) of the Θ[n]-
algebra, shown in Appendix A.

D. Task of the Display

The display computes: S = N1 +N2 +N3 +N4 and shows
publicly
EvalT[S] =

∑n
j=1 xjaj + yΠn

j=1aj .
due to the generalized Parseval’s identity (31). The privacy of
the participants is guaranteed if at least three nodes belonging
to three different categories are not corrupted. Figure 10
illustrates the procedure.

E. Considerations

To ensure the participants’ privacy we have to impose the
condition that at least three nodes, belonging to three different
categories, are not corrupted. However, if we want to ensure
that also the particular contribution of the addition or the
multiplication to the final expression cannot be detected, we
are bound to add that at least one of the four nodes Node 1,
Node 2, Node 3 and Node 4 is not corrupted. Of course, in
the second level of calculation, instead of 4 nodes we may add
an arbitrary number of nodes without changing the restriction
that at least one of these nodes must not be corrupted.

VII. PRACTICAL CONSIDERATIONS

The designs described in the previous sections rely on nodes
on the side to compute mathematical expressions. In this sec-
tion, we present designs that incorporate our nodes within the
infrastructure of a number of semi-permissioned Blockchains.
This enables the execution of our protocol as a side effect of
the normal system operations, taking no additional dependency
on extra authorities. It remains an open problem how to embed
our protocol into permissionless systems [Nak08], [Woo17],
based on proof of work or stake. These systems have a
highly dynamic set of authorities maintaining the state of their
blockchains, which cannot readily be mapped into the nodes
of our system.

Integration of our system into Hyperledger
Fabric [Cac16]—an example of permissioned blockchain
platform—is straightforward. Fabric contracts run on private
sets of computation authorities—and use the Fabric protocols
for cross-contract calls [Woo17]. In this setting, our computing
nodes can coincide with the Fabric smart contract authorities.
Upon a contract set up, they assign nodes into the different
categories and then compute mathematical expressions when
authorized by the contract. To compute these expressions, the
nodes maintain a number of secret values (see Section II)
along with their traditional signing key needed for the normal
system operations. Integrating our system into blockchains
has obvious advantages over traditional smart contracts
capable of only evaluating expression over public inputs—as
currently present in the Hyperledger. In other words, our
system can augment the capabilities of any permissioned
blockchain to enable computations over secret inputs.
The threshold trust assumption—namely that integrity and
availability are guaranteed under the corruption of a subset
of authorities [Cac16] is preserved, but need to consider the
different categories of our nodes.

Fig. 10. Display of the expression
∑n

j=1 xjaj + yΠn
j=1aj by using N = 3f + 1 nodes

We can also naturally embed our system into sharded scal-
able blockchains, as exemplified by Chainspace [ABSB+18].
In these systems, transactions are distributed and executed on
‘shards’ of authorities, whose membership and public keys are
known. Our computing nodes can naturally coincide with the
authorities within a shard—a special object in Chainspace can
signal to them to perform a private computation (rather than
the default public computations). The authorities then attach
their output to the transaction they are processing anyway. The
trust assumptions of sharded blockchains naturally compose
with the requirements of our computing nodes: each shard
simply contains a node of every one of our four categories.

VIII. RELATED WORKS

There are two main constructions of multiparty protocols:
circuit garbling and secret-sharing. Circuit garbling involves
encrypting keys in a specific order to simulate a circuit
evaluation [AIK14]; secret-sharing based protocol (as the one
described in this paper) breaks the inputs among all nodes
who use their shares to evaluate some function through local
computations [BDOZ11], [DZ13], [NNOB12], [LPSY15].

SPDZ [DPSZ12] is one of the most notorious secret-sharing
based multiparty computation protocols scaling to an arbitrary
number of users; SPDZ is secure against active adversaries
using MACs to verify the integrity of computations, and
does not require any kind of trusted third parties; it requires
however expensive somewhat homomorphic encryption (SHE)
to generate the triples used to compute multiplication of
secrets. SPDZ2 [DKL+13] offers various improvements to the
offline phase of SPDZ and allows the MACs to be checked
without revealing their key, thus allowing the MAC to be

re-used after it is checked. Mascot [KOS16] uses oblivious
transfer rather than SHE to further improve performances of
the offline phase and generate triples.

The literature following SPDZ mainly improves the of-
fline phase, while our system innovates on both the offline
and online phases. Most multiparty protocols for arithmetic
circuits based on secret-sharing that scale to an arbitrary
number of users is based on the algebra introduced by Donald
Beaver [Bea91]. They thus require triples to compute the
multiplication of secrets and impose communication between
nodes during the online phase; their online latency, therefore,
increases with the number of multiplications to evaluate. Our
system comes with a different trade-off: our nodes do not
communicate during the online phase and thus enjoy constant
(and low) online latency in the size of the circuit, at the cost of
not supporting the composition of operations (see Section IX).
Established secret-sharing protocols face a trade-off between
security and online latency—adding nodes improves security
but increases latency. Our protocol forgoes this trade-off since
multiplications do not require communication between the
nodes.

IX. LIMITATIONS AND FUTURE WORK

Our system has several limitations that are beyond the scope
of this work and deferred to future work. We do not support
the composition of operations. That is, while most estab-
lished scheme [DPSZ12], [DKL+13], [KOS16] can evaluate
expressions like (a + b)(c + d) with two additions and one
multiplication, we need to distribute the operation and evaluate
(ac+ ad+ bc+ bd). We also defer future work adapting our

scheme to withstand active adversaries, potentially adapting
the MAC-based approach introduced by SPDZ [DPSZ12].
As we have seen, as an example of a solution, for the case of
3f + 1 nodes we have proposed a protocol that includes four
categories with the addition of 4 nodes in the second level
of calculation. We have imposed the condition that at least
three nodes, belonging to three different categories, are not
corrupted and that at least one of the nodes belonging to the
second level of calculation is not corrupted. This is one of the
ways to solve the problem, but we imagine that simpler and
less restrictive protocols may be proposed. This too will be
the subject of future work.

X. DISCUSSION

This work aims to solve the following problem: Propose
a method able to show publicly a general mathematical ex-
pression while keeping the players’ codes secret. The problem
has been solved by using the so-called Masks’ method. In
short, this method consists in hiding the codes of the players
within the parameters of the functions and being able to show
only the numerical value taken by the mathematical expression
by using the (generalized) Parseval identity. The problem
has been solved by using the method of additive masks and
by applying the Θ[n] algebra. Calculations are simplified by
choosing an even main function f(x). The codes remain secret
if at least three out of four nodes are not corrupted. The
values of a general mathematical expression are obtained by
using interpolating polynomials. When a given function Expr.
is replaced by Chebyshev interpolating polynomials, thanks to
theorem 1, we can minimize the error, until reaching the ”level
of precision” allowed by the computers, using a sufficiently
high number of polynomials. Moreover, theorem 2 guarantees
that Chebyshev method is the best among the other methods
based on the 2nd degree of equations as its convergence
rate is equal to 3. It is worth noting that the Chebyshev
polynomials method is particularly convenient also in physical
or engineering applications where the exact mathematical
expression Expr. is not known, but only the (experimental)
values that Expr. takes in the nodes are known.
For treating simply the case of 3f + 1 nodes, we adopted the
method of multiplicative secondary masks that, for simplicity,
may be arbitrary positive real numbers. Even in this case,
calculations are simplified by choosing an even main function
f(x). The nodes are organized in four categories, each of
which contains κ nodes. The nodes are labeled by the index ι,
which takes natural numbers ι = 0, 1, 2, · · ·. So, the numbers
of nodes are N = 4 + 12ι, f = 1 + 4ι and each category
contains κ = 3ι nodes. Hence, the total number of nodes is
the nodes contained in the four categories plus 4. The simplest
case corresponds to ι = 0, i.e., the categories are empty.
The participants’ privacy is guaranteed if at least three nodes
belonging to three different categories are not corrupted and
one node belonging to the second level of calculation is not
corrupted. In this case, no one can determine the codes of the
players: the nodes are not able to determine the codes of the

users and the users are not able to determine the codes of the
other users.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ACKNOWLEDGEMENTS

We thank George Danezis and Ioannis Psaras for helpful
suggestions on the early manuscript and valuable advice.

REFERENCES

[ABSB+18] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave
Hrycyszyn, and George Danezis. Chainspace: A Sharded
Smart Contracts Platform. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How
to garble arithmetic circuits. SIAM Journal on Computing,
43(2):905–929, 2014.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah
Zakarias. Semi-homomorphic encryption and multiparty com-
putation. In Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques, 2011.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Proceedings of Crypto, 1991.

[Cac16] Christian Cachin. Architecture of the hyperledger blockchain
fabric. In Workshop on Distributed Cryptocurrencies and
Consensus Ledgers, 2016.

[Die18] Andreas Dieckmann. Collection of Infinite Product and Se-
ries. http://www-elsa.physik.uni-bonn.de/∼dieckman/InfProd/
InfProd.html, 2018.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P Smart. Practical covertly secure
MPC for dishonest majority–or: breaking the SPDZ limits.
In Proceedings of the European Symposium on Research in
Computer Security, 2013.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryp-
tion. In Proceedings of Crypto, 2012.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure
computation of boolean circuits using preprocessing. In Pro-
ceedings of the Theory of Cryptography Conference, 2013.

[GR14] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik.
Table of integrals, series, and products. Academic press, 2014.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
faster malicious arithmetic secure computation with oblivious
transfer. In Proceedings of the SIGSAC Conference on Computer
and Communications Security, 2016.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay
Yanai. Efficient constant round multi-party computation com-
bining BMR and SPDZ. In Proceedings of Crypto, 2015.

[MH02] John C Mason and David C Handscomb. Chebyshev polynomi-
als. Chapman and Hall/CRC, 2002.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Decentralized Business Review, page 21260, 2008.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi,
and Sai Sheshank Burra. A new approach to practical active-
secure two-party computation. In Proceedings of Crypto, 2012.

[Son19] Alberto Sonnino. Fmpc: Secure multiparty computation
from fourier series and parseval’s identity. arXiv preprint
arXiv:1912.02583, 2019.

[Woo17] Gavin Wood. Ethereum: A secure decentralised generalised
transaction ledger eip-150 revision. ”http://gavwood.com/paper.
pdf”, 2016 (visited August 9, 2017).

APPENDIX
∞∑

m =1

(−1)m

m2 − τ2

=
1

2τ2

(
1− πτ

sin(πτ)

)
;

∞∑
m=1

1

m2 − τ2

=
1

2τ2
(1− πτ cot(πτ))

(40)

The sum of powers of these expressions may be obtained by
performing the derivatives with respect to parameter τ e.g.,

∞∑
m=1

1

(m2 − τ2)2
= − 1

2τ4
+
π sin(2πτ) + 2π2τ

8τ3 sin2(πτ)

If, for example, we chose f(x) = η−1/n cos(πτx/l) with η =
C−1, then

α(0) = 2η−1/n sin(πτ)

πτ
and α(m) = α(0)τ2

(−1)m

τ2 −m2

For n = 2 we get

η = 1 +
sin(2πτ)

2πτ

f(x) =

(
1 +

sin(2πτ)

2πτ

)−1/2

cos(πτx/l)

α(0) = 2

(
1 +

sin(2πτ)

2πτ

)−1/2
sin(πτ)

πτ

α(m) = α(0)τ2
(−1)m

τ2 −m2

In this Section, we prove the validity of the generalized
Parseval’s identity given by Eq. (25). To this aim, let us first
consider the constant C defined in Eq. (20) and the cosine
main functions defined in Eq. (18). The convolution operation
between two cosine main functions ϕ

(κ1)
c (x) and ϕ

(κ2)
c (x),

with κ1 and κ2 integer numbers subject to the conditions
1 ≤ κ1, κ2 ≤ n ; κ1 ̸= κ2, reads

(ϕ(κ1)
c ⋆ϕ(κ2)

c)(x) =
1

2
α
(κ1)
0 α

(κ2)
0 +

∞∑
m=1

α(κ1)
m α(κ2)

m cos
(mπ
l
x
)

The convolution operation between this function and another
cosine main function, say ϕ

(κ3)
c (x) with κ3 integer number

subject to the conditions 1 ≤ κ3 ≤ n ; κ3 ̸= κ1 ̸= κ2, gives

((ϕ(κ1)
c ⋆ ϕ(κ2)

c) ⋆ ϕ(κ3)
c)(x)

=
1

2
α
(κ1)
0 α

(κ2)
0 α

(κ3)
0 +

∞∑
m=1

α(κ1)
m α(κ2)

m α(κ3)
m cos

(mπ
l
x
)

(41)

Hence, by performing n − 2 convolution operations, sequen-
tially, starting from ϕ

(1)
c (x) to ϕ(n−1)

c (x) we get

((· · · (((ϕ(1)c ⋆ ϕ(2)c) ⋆ ϕ(3)c) ⋆ ϕ(4)c) ⋆ · · ·) ⋆ ϕ(n−1)
c)(x)

≡ Input1C(x)

=
1

2
Πn−1

j=1α
(j)
0 +

∞∑
m=1

Πn−1
j=1α

(j)
m cos

(mπ
l
x
)

By integrating Eq. (42) with ϕ(n)c (x), we finally have

(42)
C =

1

l

∫ l

−l

ϕ(n)c (x)Input1C(x)dx

=
1

2
Πn

j=1α
(j)
0 +

∞∑
m=1

Πn
j=1α

(j)
m

If we now perform the convolution operation between two sine
main functions defined in Eq. (18), say ϕ(κ1)

s (x) and ϕ(κ2)
s (x)

with κ1 and κ2 integer numbers subject to the conditions 1 ≤
κ1, κ2 ≤ n ; κ1 ̸= κ2, we get

(ϕ(κ1)
s ⋆ ϕ(κ2)

s)(x) = −
∞∑

m=1

β(κ1)
m β(κ2)

m cos
(mπ
l
x
)

Hence, if n is an even number, we may pair up two by two
n− 2 input functions and we may perform n− 3 convolution
operations between each pair by getting

((ϕ(1)s ⋆ ϕ(2)s) ⋆ (ϕ(3)s ⋆ ϕ(4)s) ⋆ · · · ⋆ (ϕ(n−3)
s ⋆ ϕ(n−2)

s))(x)

≡ Input1Se
(x)

Input1Se(x) = −
∞∑

m=1

Πn−2
j=1 β

(j)
m cos

(mπ
l
x
)

Since

(ϕ(n−1)
s ⋆ ϕ(n)s)(x) = −

∞∑
m=1

β(n−1)
m β(n)

m cos
(mπ
l
x
)

we finally obtain

(43)
Se =

1

l

∫ l

−l

(ϕ(n−1)
s ⋆ ϕ(n)s)(x)Input1Se

(x)dx

=

∞∑
m=1

Πn
j=1β

(j)
m

Similarly, if n is an odd number, firstly we note that

(ϕ(n)s ∧K)(x) =

∞∑
m=1

β(n)
m cos

(mπ
l
x
)

Since

((ϕ(1)s ⋆ ϕ(2)s) ⋆ (ϕ(3)s ⋆ ϕ(4)s) ⋆ · · · ⋆ (ϕ(n−2)
s ⋆ ϕ(n−1)

s))(x)

≡ Input1So
(x)

= −
∞∑

m=1

Πn−1
j=1 β

(j)
m cos

(mπ
l
x
)

we finally get

So = −1

l

∫ l

−l

(ϕ(n)s ∧K)(x)Input1So
(x)dx =

∞∑
m=1

Πn
j=1β

(j)
m

(44)
Adding Eq. (42) to Eq. (43) (if n is an even number), or
adding Eq. (42) to Eq. (44) (if n is an odd number), we obtain

the generalised Parseval’s identity for n inputs ϕ(j)(x) (with
j = 1, 2, · · · , n)

C+ Sκ (45)

=
1

2
Πn

j=1α
(j)
0 +

∞∑
m=1

(Πn
j=1α

(j)
m) +

∞∑
m=1

(Πn
j=1β

(j)
m) with

Sκ =

{
Se if n=even number
So if n=odd number

This theorem allows computing the normalization constant η:

η = (C+ Sκ)−1/n

and the normalised main functions f (j)(x) read

f (j)(x) = ηϕ(j)(x) with j = 1, 2, · · · , n

If we use the main functions f (j)(x) the generalised Parseval’s
identity reads

1

2
Πn

j=1α̃
(j)
0 +

∞∑
m=1

(Πn
j=1α̃

(j)
m) +

∞∑
m=1

(Πn
j=1β̃

(j)
m) = 1 (46)

with α̃(j)
0 , α̃(j)

m , and β̃(j)
m denoting the Fourier coefficients of

f (j)(x). The schemes of calculation for coefficients C, Se and
So are illustrated in Figure 4, 5, and 6, respectively.
- Θ[n] algebra
i)

Θ[1] ∗Θ[1] ∗Θ[1] ∗ · · · ∗Θ[1] ≡ Θ[n] (n times);

Π̂n
j=1hi ≡ h1 ∗ h2 ∗ · · · ∗ hn (47)

ii)

Θ[n] ∗ 1 = 1 ∗Θ[n] = Θ[n];

Θ[n] ∗ 0 = 0 ∗Θ[n] = 0 (48)

iii)

(49)
Θ[m] ∗ (Θ[n] ∗Θ[κ]) = (Θ[m] ∗Θ[n]) ∗Θ[κ]

= Θ[m] ∗Θ[n] ∗Θ[κ]

= Θ[m+n+κ]

with m, n and k denoting positive natural numbers.
iv)

(50)Θ[m] ∗Θ[n] = Θ[n] ∗Θ[m]

= Θ[m+n]; (Θ[n])m ≡ Θ[nm]

v)

Θ[n] ∗ (x+ y) = Θ[n] ∗ x+Θ[n] ∗ y
= Θ[n]x+Θ[n]y = xΘ[n] + yΘ[n] (x ∗ y ≡ xy) (51)

with x and y denoting two complex numbers.
vi)

(52)
(
(x1 + x2Θ

[n])
1/κ
)κ

≡ x1 + x2Θ
[n]

with x1, x2 denoting numbers and κ is a real number,
respectively.

- The command EvalT[. . .]

vii)

(53)
EvalT[Θ[n]]

≡ exp
(π
4
(3 + (−1)n)

)
with n denoting positive natural numbers.
viii)

(54)
(EvalT[Θ[n]])m

≡ exp
(mπ

4
(3 + (−1)n)

)
with m denoting a number
ix)

(55)EvalT[f(x1,Θ
[n]) + g(x2,Θ

[n])]

≡ f(x1,EvalT[Θ
[n]]) + g(x2,EvalT[Θ

[n]])

with x1 and x2 denoting numbers.
x)

(56)EvalT[f(x1,Θ
[n])g(x2,Θ

[n])]

≡ f(x1,EvalT[Θ
[n]])g(x2,EvalT[Θ

[n]])

with f and g denoting general functions
with x, y denoting numbers.
xi)

(57)EvalT[f(x, (Θ[n])y)] ≡ f(x,EvalT[Θ[ny]]

The basic rule is to perform the operation ∗ first and then apply
the command EvalT [...] by taking into account the properties
i) - x) above.

- Identities and Differences
(EvalT[Θ[2n−1]])2 = EvalT[Θ[2m]] = −1

with m and n denoting integer numbers.

(58)EvalT[Θ[n]]EvalT[Θ[m]] ̸= EvalT[Θ[n+m]]

(59)(EvalT[Θ[n]])y ̸= EvalT[Θ[ny]]

(60)EvalT[f(x1,Θ
[n]) ∗ g(x2,Θ

[n])]

̸= EvalT[f(x1,Θ
[n])]EvalT[g(x2,Θ

[n])]

- Examples

(61)(x1 + iΘ[1]y1) ∗ (x2 + iΘ[2]y2)

= x1x2 + iΘ[1]x2y1 + iΘ[2]x1y2 −Θ[3]y1y2

with x1, x2, y1, and y2 denoting numbers.

(62)
EvalT[(x1 + iΘ[1]y1) ∗ (x2 + iΘ[2]y2)]

= EvalT[x1x2 + iΘ[1]x2y1 + iΘ[2]x1y2 −Θ[3]y1y2]

= x1x2 − x2y1 − i(x1y2 + y1y2)

