
Karlsruher Institute of Technology - KIT

Institute for Information Processing

Technology - ITIV

Performance Driven Optimizations

in FPGA Based QAM Systems

Master Thesis

Alberto Sonnino

October 5, 2015

Head of Institute: Prof. Dr.-Ing. Dr. h. c. J. Becker
Prof. Dr.-ing E. Sax
Prof. Dr. rer. nat W. Stork

Supervisors: M. Tech G. Shalina
Dipl.-Ing P. Figuli
Prof. Dr.-Ing. Dr. h. c. J. Becker

Karlsruhe Institut of Technologies

Abstract

The purpose of this Master Thesis is to optimize the performance of high-speed Quadrature Amplitude

Modulation (QAM) implemented on FPGAs by exploiting the advantageous properties of a mixed

time and frequency domain approach.

Quadrature Amplitude Modulation (QAM) conveys two signals by using two sinusoidal carrier waves.

It provides high speed data rate transmission and is widely used in many different today’s applications

like television, Wi-Max and satellite communication due to its arbitrary high spectral efficiency.

The FPGA technology and the primarily role that it is playing in portable and mobile communications

is a matter of much discussions nowadays. Its incomparable cost, flexibility and reconfigurability in

project designing is the first reason of its success.

This paper presents a complete new design approach for a QAM transmitter based on the Xilinx

Virtex 7 FPGA Kit. The issue of the speed optimisation for the filtering operation is covered and

a new technique consisting in the exploitation of mixed-domain to increase parallelism is the main

goal of this work. Xilinx ISim is used for simulations and functional verifications while the Xilinx

ISE 14.7 software ensures the synthesis and the FPGA design implementation.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my tutors Dipl.-Ing P. Figuli and M.

Tech G. Shalina for the continuous support of my Master thesis, for their patience, motivation, and

immense knowledge. their guidance helped me in all the time of research and writing of this thesis.

I could not have imagined having better supervisors and mentors for my Master thesis.

My sincere thanks also goes to my little brother Lorenzo Sonnino who helped me in the development

of program utilities that greatly contributed to the creation of this work.

I also place on record, my sense of gratitude to one and all, who directly or indirectly, have lent their

hand in this venture.

Contents

1 Motivation and Introduction . 1
2 Today’s State-of-the Art . 4
3 Fundamentals . 6

3.1 Fundamentals - QAM Modulation . 6
3.1.1 QAM Modulation - QAM Mapping 6
3.1.2 QAM Modulation - Modulator . 8

3.2 Fundamentals - Fourier Transform . 9
3.2.1 Fourier Transform - Theoretical Concepts 10
3.2.2 Fourier Transform - Convolution Property 11

3.3 Fundamentals - Filter . 11
3.3.1 Filter - Finite Impulse Response Filters 12
3.3.2 Filter - Squared Raised Root Cosine Filter 14

4 Concepts and Methodology . 15
4.1 Concepts and Methodology - Design Strategy 15
4.2 Concepts and Methodology - Conceptual Model 16

5 Implementation . 21
5.1 Implementation - Design Pattern . 21
5.2 Implementation - QAM Mapper . 22
5.3 Implementation - Discrete Fourier Transform 25
5.4 Implementation - SRRC Filter . 30
5.5 Implementation - Modulator . 33
5.6 Implementation - Transmitter . 36

6 Experimental Results . 43
6.1 Experimental Results - Design Precision . 43
6.2 Experimental Results - Design Resources and Performances 44

6.2.1 Design Resources and Performances - DSP & Mults Combination . 44
6.2.2 Design Resources and Performances - Fabric & LUTs Combination 45
6.2.3 Design Resources and Performances - Fabric & Mults Combination 45

7 Conclusion And Further Improvements . 47

Appendices 49
A APPENDIX. Fast Fourier Transform . i
B APPENDIX. Design Precision Analysis . iii

B.1 Design Precision Analysis - DFT and IDFT iii
B.2 Design Precision Analysis - Filter and Modulator vi

List of Tables

1 QAM Mapping - Specifications . 22
2 DFT / IDFT - Specifications . 26
3 Complex Multiplier ports . 29
4 Adder Subtracter ports . 30
5 QAM Mapping - Specifications . 31
6 Multiplier ports . 33
7 Modulator - Specifications . 34
8 Modulator Adder Subtracter ports . 36
9 Transmitter - Specifications . 37

List of Figures

1 Standard Communication Chain . 2
2 Standard QAM transmitter . 3
3 Mixed-domain QAM transmitter . 3
4 State-of-the-art summary chart . 4
5 Mixed-domain QAM transmitter - QAM modulation 6
6 QAM mapping . 7
7 Supported QAM constellations [10] . 7
8 Modulator . 9
9 Mixed-domain QAM transmitter - DFT and IDFT Blocks 10
10 Mixed-domain QAM transmitter - Filter . 12
11 FIR filter diagram . 12
12 SRRC Filter’s coefficients . 14
13 Methodology . 15
14 Mixed-domain QAM transmitter - Conceptual model 16
15 Discrete Fourier Transform (DFT) block - Conceptual model 17
16 Squared Root Raised Cosine (SRRC) filter block - Conceptual model 18
17 Inverse Fast Fourier Transform (IDFT) block - Conceptual model 19
18 Transmitter - Conceptual model . 20
19 Parallel bus packing . 21
20 Implemented parallel system . 21
21 Implemented parallel system - QAM mapping Block 23
22 Implemented parallel system - DFT and IDFT blocks 26
23 Coefficient bus packing . 27
24 Implemented parallel system - Filter block . 31
25 Implemented parallel system - Modulator block . 34
26 Transmitter - Implementation . 38
27 Fourier QAM Modulation (FQM) Utility . 38
28 Transmitter’s precision comparison . 43
29 Transmitter’s error . 43
30 DSP - Mults Resources . 44
31 DSP - Mults Performances . 44
32 Fabric - LUTs Resources . 45
33 Fabric - LUTs Performances . 45
34 Fabric - LUTs Resources . 46
35 Fabric - Mults Performances . 46

i

Master Thesis ITIV, Embedded Systems Group

36 FFT execution (example with N = 8) [14] . ii
37 Test input signal . iii
38 DFT’s precision comparison . iv
39 IDFT’s precision comparison . v
40 Filter precision comparison . vi
41 Modulator precision comparison . vi

ii October 5, 2015

Master Thesis ITIV, Embedded Systems Group

1 Motivation and Introduction

SNR (Signal-to-Noise Ratio) improvements and higher data rates are required by the unraveling
growth in the field of communication technology. This upgrowth has turned the focus towards
modulation techniques which can meet the demands of spectrum efficiency with less Intersymbol
Interference (ISI).

The development in the modulation technique projects M-ary QAM as one of the efficient digital
modulation schemes because of its attractiveness to multiply the data rate for the given bandwidth.
Though higher order modulations grant the boon of supporting higher data rates in the demanding
field of radio communications, the price is paid in terms of SNR to achieve a tolerable Bit Error
Rate (BER).

Hardware Choice

FPGAs (Field Programmable Gate Arrays), due to their incredible configurability and flexibility,
are playing a constantly increasing role in any digital communication environment. Indeed, the
growth of these systems does not only claim for high speed hardware but also for a flexible, low-cost
and standardised environment.

FPGA systems offer the possibility to easily test, modify and update the entire design and imple-
mentation. Towards the projected terabit/s communication in future applications, there are efforts
made in exploiting FPGAs. More specifically, the entire system is implemented on a Xilinx Virtex
7 FPGA kit which is one of the most powerful available FPGAs. However, today, these devices
are clocked below 1GHz and the improvement of performances is a big challenge on all abstraction
layers, from the system architecture down to physical technology.

Modulation Choice

QAM (Quadrature Amplitude Modulation) is widely used in many digital radio communications and
data communications applications. Many forms of QAM are commonly used today for state-of-the
art applications when high data rate are required. Indeed, QAM is a high order form of modulation
able to carry many bits of information per symbol.

By selecting a higher order format of QAM, the data rate increases but, because of the constellation
points getting closer and closer, noise can more easily lead to a misinterpretation of the symbol and
the receiver may confuse two adjacent symbols. For this reason, this thesis considers different QAM
systems, including 8-QAM, 16-QAM, 32-QAM and 64-QAM.

Filter Choice

Filters are one of the most crucial step in the transmission of QAM signals since the band limitation
of the transmitted signals and the Inter Symbol Interferences (ISI) absolutely need to be considered
in any modern communication system.

1 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Finite Impulse Response (FIR) filters can easily be designed to be linear phase and therefore delay
the input signal but don’t distort its phase. In that purpose, the Squared Root Raised Cosine
(SRRC) is one of the most frequently used filter in digital communications thanks to its pulse
shaping characteristic, its matched filter properties and its respect of the Nyquist criteria.

Optimizing and discussing the nature of the filter or the choice its parameters is left to related works
[7, 8] and is not the purpose of this paper: the pursued goal is to speed up its implementation in
such a way that the described filtering process can be generalized to any other kind of filters.

Due to the convolutional form of their impulse response, modern filters cannot be easily parallelized
and constitute a significant speed limitation in digital communication technologies. This barrier can
be overcome by implementing the filtering operation in frequency domain where the convolution
operation becomes a simple multiplication. This fact is the main motivation of this Master Thesis.

Thesis’s Objectives

This Master Thesis focuses on the architecture level and aims at optimizing the performance of
QAM modulators, exploiting the degree of parallelism of the underlying FPGA platform as well as
mixed-domains (time and frequency) where beneficial.

A standard transmitter chain can be modelled as shown in Fig.1 here below. Indeed, the bit generator
produces the input bit stream that is encrypted and encoded (for example, using a Viterbi encoder)
to ensure data security and strength against noise. Next, the stream is clustered and furnished to
the QAM symbol mapper in order to obtain an in-phase and quadrature component. The filter
operation add extra strength against noise by limiting the transmission band and, finally, the signal
is modulated at a given frequency and sent to the channel.

3

Generator

…0101110101011
1011010011100110
011110…

 Encryptor Encoder Smb. mapper Filter Modulator

Decryptor Decoder Smb. demapper

Filter Demodulator

Channel I

III III

V

I

III III

V

+
x

x +

-

+
x

x +

- C0

Z-1 Z-1

C1 C1

+ +

C0

Z-1 Z-1

C1 C1

+ +

Figure 1: Standard Communication Chain

Subsequently, the receiver performs the inverse operations to retrieve the original message. Indeed,
firstly, the demodulation retrieves the signal in baseband and secondly, the other part of the matched
filter is applied to suppress the noise added on the undesired frequency locations and the inverse
QAM mapper regenerates the bit stream from the in-phase and quadrature component. Finally, the
error correcting code operation recovers the orignal message that it then decrypted.

2 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Despite all the block component described above are essential to ensure a good quality commu-
nication, this work focusses only on the QAM symbol mapping, the filtering operation and the
modulation of the transmitter. More specifically, a standard time-domain QAM transmitter can be
modelled as shown in Fig.2.

The first block maps the input

signals using a selected QAM

constellation and outputs the

corresponding real and imagi-

nary QAM symbol.

Next, this complex signal is

filtered and mixed with a car-

rier to achieve the modula-

tion. Detailed explanations of

this process are given in sec-

tion 3.1.2.

2

C0

Z-1 Z-1

C1 CN

+ +

FIR Filter

C0

Z-1 Z-1

C1 C1

+ +

FIR Filter

QAM

in

I

Q
+

x

sin

cos

x +

-

Modulator Re

Im

out

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT Re

Im

Re

Im +
x

sin

cos

x +
-

Modulator Re

Im

out

Figure 2: Standard QAM transmitter

As discussed in section 3.3.1, this standard implementation has the disadvantage to require the
filter input sequentially due to the convolution nature of the filtering process. For that reason, the
filtering operation is the main focus of this work. In order to overcome this inconvenient and process
parallel data, the following mixed-domain structure shown in Fig.3 is considered and explained in
section 3.

2

C0

Z-1 Z-1

C1 CN

+ +

FIR Filter

C0

Z-1 Z-1

C1 C1

+ +

FIR Filter

QAM

in

I

Q
+

x

sin

cos

x +

-

Modulator Re

Im

out

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT Re

Im

Re

Im +
x

sin

cos

x +
-

Modulator Re

Im

out

Figure 3: Mixed-domain QAM transmitter

This paper starts describing the current state-of-art QAM communication technologies. Then, the
fundamental concepts for a good understanding of this thesis are derived and each block of the dia-
gram illustrated in Fig.3 is discussed in details. The next section focusses on the theoretical aspects
and on the methodology used to implement the modulator. Finally, this report ends by illustrating
a hardware implementation and the experimental results of the realised QAM transmitter.

3 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

2 Today’s State-of-the Art

This section is devoted to the current state-of-the-art in the target domain. More specifically, other
works in the same field as this paper are investigated in order to high-line the today’s top technology.
Fig.4 displays a qualitative chart summarising the research.

In 2003, Yongbin Wu and Yousef R. Shayan from the Concordia University (Canada) developed an
implementation of high-speed transceiver Quadrature Amplitude Modulation (QAM) using a Xilinx
Virtex II Field Programmable Gate Array (FPGA). They targeted only the 64-QAM format but
they embedded the mixers inside the FPGAs board instead of relying on analog electronic for this
process. Moreover, the filter selected for their implementation is a FIR filter, exactly as the one
implemented in this project. Although their technology is pretty old compared to today’s FPGAs,
they could reach a top frequency of 55 MHz [1].

Seven years later, in 2010, three researchers from the University of Hanoi (Vietnam), Xuan-Thang
Vu, Nguyen Anh Duc and Trinh Anh Vu, built a similar system and published a complete 16-QAM
scheme implemented on two Xilinx Virtex IV FPGA board, one for the receiver and one for the
transmitter. Their implementation was realised using the Xilinx System Generator (Sysgen) and
they achieved a top frequency of 111.11 MHz [2]. This very same year, Vadim Smolyakov, Dimpesh
Patel, Mahdi Shabany and P. Glenn Gulak developed a 64-QAM receiver based on a Xilinx Virtex
V FPGA kit operating at a maximum frequency of 125 MHz [3].

In 2012, those results were improved by Siqiang Ma and Yong’en Chen from the University of
Shanghai. They built a modular QAM transmitter working with 16-QAM, 32-Q1M, 64-QAM, 128-
QAM or 256-QAM at 128.6 MHz. Their implementation was based on a Xilinx Virtex IV kit and
they also used a FIR filter [4].

The next year, a collaboration between

the University of Paderborn (Germany)

and the Bielefeld University (Germany)

published 16-QAM based transceiver

working at 625 MHz on a Xilinx Virtex VI

board. However, their very high clock fre-

quency comes at the price of a low preci-

sion. Indeed, they worked on a 6-bit data

bus due to the limitation imposed by their

Digital to Analog Converter (DAC) [5].

The last presented state-of-the-art result

was made this year by three engineers of

the company E2v Semiconductors (based

in U.K.). Exploiting the powerful Xilinx Figure 4: State-of-the-art summary chart

4 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Virtex VI FPGA, they built a 256-QAM transceiver operating at 750MHz. Nevertheless, this im-
pressive result is attenuated by the fact that their system doesn’t comprise a filter [6].

As a final note, it has to be mentioned that much better results have been obtained with ASIC
technologies or multi-FPGA systems. However, those systems are not considered because this work
focuses on single FPGA implementations.

5 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

3 Fundamentals

As shown in Fig.3 of section 1, the implemented system comprises a QAM symbol mapper, a Fourier
transformer to send the signal in the frequency domain, a SRRC filter, an indirect Fourier transform
block to retrieve the signal in time domain and, finally, a modulator. In the following subsections,
the fundamentals of this system are inspected block by block.

3.1 Fundamentals - QAM Modulation

Quadrature Amplitude Modulation (QAM) allows to send two modulated signals into a single chan-
nel. Here below, Fig.5 illustrates the QAM modulation processing blocks.

Im

Re

4

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT Re

Im

Re

Im +
x

sin

cos

x +
-

Modulator Re

Im

out

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT Re

Im

Re

Im +
x

sin

cos

x +
-

Modulator

out

Figure 5: Mixed-domain QAM transmitter - QAM modulation

The targeted mixed-domain QAM transmitter uses two blocks in order to achieve QAM modulation,
one at the beginning of the processing chain and one at the end. In this section, the appellation
QAM mapper and modulator designate the former and the latter block, respectively.

3.1.1 QAM Modulation - QAM Mapping

As in many modulation schemes, QAM can efficiently be represented using a constellation diagram.
The constellation diagrams show the different positions for the states within different forms of QAM.

Many of those diagrams are possibles but this thesis implements the standard rectangular constel-
lation in which the points are arranged in a square grid with equal vertical and horizontal spacing.
In addition to require less overhead implementation, the rectangular constellation is the simplest
and therefore, it is the only one considered by this paper.

QAM Formats

Multiple forms of QAM are possible and some of the more common forms include 16-QAM, 32-QAM,
64-QAM, 128-QAM, and 256-QAM [9]. More generally, we call these forms M-QAM formats where
M denotes the number of points on the constellation, i.e. the number of distinct states that can

6 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

exist. Each symbol of the M-QAM constellation contains exactly log2(M) bits and, by consequences,
the first operation performed on the input stream is its clusterization into the log2(M) bits and its
mapping into the constellation.

Fig.6 shows the QAM mapping block of the mixed-domain QAM modulator introduced in section
1 (Fig.6a) together with a 16-QAM constellation (Fig.6b).

Among the many available QAM

format orders, the 16-QAM is pre-

ferred due to its relatively low

dense constellation, which is there-

fore the default transmitter operat-

ing mode. Indeed, the faster data

rates and higher levels of spectral

efficiency offered by higher order

format come at the price of a lower

resistance to noise and higher Inter

Symbol Interferences (ISI).

6

QAM

in

I

Q

+
x

sin

cos

x +
-

Modulator Re

Im

out

0010 0110

0011 0111

0001 0101

0000 0100

1101 1001

1100 1000

1110 1010

1111 1011

Q

I

cos

sin

+

-
LO

90° X

X

+

Re

Im

out

(a) QAM mapper block (b) 16-QAM constellation [10]

Figure 6: QAM mapping

This is due to the fact that the order of the modulation increases with the number of points on the
QAM constellation diagram and therefore, the receiver may fail more likely to distinguish them at
the reception.

In order to achieve the highest level of modularity, the implement system support 8-QAM, 16-QAM,
32-QAM and 64-QAM. Moreover, the discussion can be easily extended to higher QAM orders. Here
below, Fig.7 illustrates the constellation scheme used for the other supported formats.

(a) 8-QAM constellation (b) 32-QAM constellation (c) 64-QAM constellation

Figure 7: Supported QAM constellations [10]

7 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Gray Code

There are many ways to associate a symbol (composed of 4 bits, in the case of 16-QAM) to a given
constellation position. Certainly, the gray code is the most common choice [11] .

Gray code aims to code the symbols in such a way that every symbol will have exactly one bit
difference with each of his neighbours. This allow to reduce the erroneous symbol decision to one bit
error and, therefore, improve the SNR of the system. For easy reference, the 16-QAM constellation
of Fig. 6b as well as the constellations shown in Fig.7 display gray coded symbols.

Output Assignment

Once the input stream is clustered in the log2(M) bits and mapped to the constellation, two outputs
are produced, respectively the In-phase (I) and the Quadrature (Q) components (see Fig.6a).

This output assignment can be done by hardcoding each symbol to the corresponding I and Q value.
For example, observing the Fig.7b, the corresponding In-phase and Quadrature components of the
32-QAM symbol [01101] are I = −5d and Q = −3d.

Nevertheless, for QAM formats possessing an even number of bits log2(M) per symbol, the following
cleaner mapping technique is applicable.

Let’s consider a 4-bit cluster [b3 b2 b1 b0]; i.e., for the 16-QAM modulation, the mapping is
defined in the following way:

[b3︸︷︷︸
I1

b2︸︷︷︸
Q1

b1︸︷︷︸
I2

b0︸︷︷︸
I2

] ⇒ I = {I1, I2} and Q = {Q1,Q2}

In other words, if we consider the following example vector [1011], the in-phase and quadrature
components are I = {1, 1} and Q = {0, 1}, respectively.

Finally, a finite value is associated to each possible I and Q as follows:

00 ⇒ d

01 ⇒ 3d

10 ⇒ −d
11 ⇒ −3d

where 3d is the highest filter value (see section 3.3.1). This discussion can be easily extended to
all other order QAM formats possessing an even number of bits per symbol and is exploited in the
implication of the system in section 5.2.

3.1.2 QAM Modulation - Modulator

The modulated wave is output by the modulator block shown in Fig.8a at the end of the transmitter.

8 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

First, the I input1 is multiplied by the cosine function generated at a fixed frequency f0 by a local
oscillator. Similarly, the Q component is multiplied by a 90◦ shifted LO signal, which result in a
sine wave.

The purpose of this operation is

to obtain two orthogonal carriers.

Finally, those two terms are sub-

tracted to result in the output of

the transmitter. This procedure is

illustrated by the diagram depicted

in Fig.8b.

In order to avoid aliasing, the car-

riers have to resampled at leat at

twice the carrier’s frequency.

6

QAM

in

I

Q

+
x

sin

cos

x +
-

Modulator Re

Im

out

0010 0110

0011 0111

0001 0101

0000 0100

1101 1001

1100 1000

1110 1010

1111 1011

Q

I

cos

sin

+

-
LO

90° X

X

+

Re

Im

out

(a) Modulator block

6

QAM

in

I

Q

+
x

sin

cos

x +
-

Modulator Re

Im

out

0010 0110

0011 0111

0001 0101

0000 0100

1101 1001

1100 1000

1110 1010

1111 1011

Q

I

cos

sin

+

-
LO

90° X

X

+

Re

Im

out

(b) Modulator scheme

Figure 8: Modulator

Eq.(1) describes mathematically the operation performed by the modulator.

out(t) = R
{

[I(t) + iQ(t)]e2πf0t
}

= I(t) cos(2πf0t)−Q(t) sin(2πf0t) (1)

At the receiver, the modulated signals can be demodulated using a coherent demodulator but the
demodulation operation won’t be discussed in this section since the receiver is not part of this work.
Interested readers can find additional information concerning QAM demodulation in reference [12].

3.2 Fundamentals - Fourier Transform

The fourier transform is the key element of this mixed-domain modulator. More specifically, the I
and Q components generated by the QAM mapping block are transferred in the Fourier domain,
where they are filtered. After the filtering operation, the components are taken back in the time
domain.

The next two subsections are dedicated to the explanation of these blocks. First, the underlying
theoretical concepts necessary to understand the Fourier domain and the transfer between this
domain and the time domain are set. Next, the main property making this transform an useful
asset for filtering operations is illustrated in details.

Here below, Fig.9 shows the two blocks performing this operation. The first, called DFT, sends the
signals to the Fourier domain, while the second, named IDFT, take them back.

1 Note that for clarity the I and Q components are sometimes represented on figures by the Re and Im symbols,

respectively.

9 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Re

Im

Re

Im

Re

Im Im

Re

Im
H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT Re

+
x

sin

cos

x +
-

Modulator

out

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IFDFT Re

Im
+

x

sin

cos

x +
-

Modulator

out

Figure 9: Mixed-domain QAM transmitter - DFT and IDFT Blocks

3.2.1 Fourier Transform - Theoretical Concepts

Fourier transform’s theory can be widely discussed and interpreted but only the fundamental con-
cepts necessary to a good understanding of the implemented system will be summarized in this
section.

Time and Frequency Domain

The Fourier transform decomposes a signal into the multiples frequencies that make it up, an alter-
native representation made of sines and cosines. Indeed, Fourier’s theory shows that any waveform,
no matter what it describes in the universe, is just the sum of simple sinusoids of different frequen-
cies. Therefore, the Fourier Transform (FT) is the mathematical tool that deconstructs the signal
into its sinusoidal components and, similarly, the Inverse Fourier Transform (IFT) is the tool to
reverse it [13].

The apellation time-domain graph designates the signal’s changes over time. In contrast, after
applying the Fourier transform, the signal is lying in the Fourier domain and is represented by a
frequency-domain graph.

Mathematically, for a given time-domain signal f(t), it’s corresponding Fourier representation in
the frequency domain is given by F (w) in Eq.2 here below:

F (w) =

∫ ∞
−∞

f(t)e−wit dt (2)

where w denotes the signal pulsation. Correspondingly, the inverse Fourier transform to take back
the signal F (w) from the frequency domain into the time-domain signal f(t) is derived as follows:

f(t) =
1

2π

∫ ∞
−∞

F (w)ewit dw (3)

10 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Discrete Fourier Transform (DFT)

When a continuous signal is not available and a finit list of equally spaced samples of a signal have
to be considered, the Discrete Fourier Transform (DFT) is used instead of the Fourier Transform
described above. More specifically, the discrete Fourier transform converts the discrete signal into
the list of coefficients of a finite combination of complex sinusoids, ordered by their frequencies, that
have those same sample values. Eqs.(4) and (5) define the DFT equivalently to Eqs.(2) and (3).

X[k] =
∑N−1

0 x[n]e−2πikn/N k ∈ Z (4)

x[n] =
1

N

∑N−1
0 X[k]e2πikn/N n ∈ Z (5)

Despite the fact that performing the DFT for a large number of inputs N requires numerous oper-
ations, Appendix A briefly explains an algorithm, called FFT, to perform it efficiently.

3.2.2 Fourier Transform - Convolution Property

The interest of this concept is the observation that linear operations performed in one domain (time
or frequency) have corresponding operations in the other domain, that are sometimes easier to per-
form. More specifically, the convolution operation in time domain, becomes a simple multiplication
in frequency domain. Therefore, denoting F the Fourier transform operation and, considering two
given time-domain function f and g, the following equivalences hold:

F{f > g} = F{f} · F{g}
= G · F (6)

where the operators ′>′ and ′·′ denote the convolution and multiplication, respectively. Then,
applying the inverse Fourier transform F−1 on both side of Eq.(6), we obtain:

f > g = F−1{F{f} · F{g}}
= F−1{G · F} (7)

3.3 Fundamentals - Filter

Since more and more channels and high data rates are required for today’s communications, the
channel’s bandwidth has to be narrowed down but this causes the current symbol to overlapp with
the previous one, which create ISI. In that purpose, a filter respecting the Nyquist criteria (and then
ensuring zero ISI) is essential.

Therefore, this last part of the Fundamentals section describes the filtering operation, which is the
most delicate operation of this transmitter and the reason of the mixed-domain utilisation.

Many different sorts of filters are available but Finite Impulse Response (FIR) filters are preferred
in this work. Indeed, FIR filters can easily be designed to be linear phase and therefore delay the
input signal but don’t distort its phase.

11 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The next subsection is dedicated to the theoretical explanation of this kind of filters. Subsequently,
this section ends explaining the filter chosen for the described QAM transmitter: the Squared Raised
Root Cosine (SRRC) filter. As usual, Fig.10 here below high-line the blocks targeted in the following
discussion.

Im

Re

Im

Re

6

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

H0 H1 HN-1

X0
X1

XN-1

Y0
Y1

YN-1

x x

x

FIR Filter

QAM

in

I

Q f[n] F(z)

DFT

f[n] F(z)

IDFT

+
x

sin

cos

x +
-

Modulator Re

Im

out

Figure 10: Mixed-domain QAM transmitter - Filter

3.3.1 Filter - Finite Impulse Response Filters

The appellation Finite Impulse Response Filter comes from the fact that the impulse response of
this kind of filters reaches zero in a finite amount of time, contrarily to the other class of filters
called infinite Impulse Response Filters (IIR).

Fig.11 shows a standard FIR filter implementation di-

agram. First, the input is multiplied by the first filter

coefficient c0. Secondly, the signal is delayed and mul-

tiplied with the next coefficient. This second procedure

is repeated (N−1) times (where N is the filter’s order).

Finally, all the multiplication results are summed up to

produce the output signal.

6

QAM

in

I

Q

+
x

sin

cos

x +
-

Modulator Re

Im

out

0010 0110

0011 0111

0001 0101

0000 0100

1101 1001

1100 1000

1110 1010

1111 1011

Q

I

cos

sin

+

-
LO

90° X

X

+

Re

Im

out

Z-1

C1

+ + +

Z-1 Z-1

C0 C2 CN

y[n]

x[n]

Figure 11: FIR filter diagram

The design of the FIR filter implemented in this work is done by finding the coefficients and filter
order that meet certain specifications but this won’t be discussed in this paper. Indeed, the filters
parameters comes directly from [7].

Mathematical Description

As said above, the impulse response h[n] of FIR filters have non zero values only on a given time
duration and can therefore be modelled as follows:

h[n] =
N∑
i=0

c[i] · δ[n− i] =

{
ci for 0 < i < N
0 for otherwise

(8)

12 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Therefore, a FIR filters of order N is mathematically described as in Eq.(9) here below.

y[n] =
∞∑

i=−∞
h[i] · x[n− i]

=
N∑
i=0

c[i] · x[n− i] (9)

= (x> c)[n]

where x[n], y[n] and ci (with i ∈ [0, N]) are respectively the input, the output and the filter’s
coefficients.

Properties

FIR filters are preferred in this work over the other filter class (the IIR filters) because of their
numerous advantages.

First of all, in the case of a FIR filter, the same rounding error appears in every iteration because
of the absence of feedback. Therefore, the total error doesn’t sum up over each cycle. Secondly, the
output of a FIR filter is a sum of a finite number of finite multiples of the input and by consequences,
cannot be grater than a fixed multiple of the input value. This ensures the filter stability. And,
finally, the last advantageous property of FIR filters is their ability to be designed with linear phase
and therefore, they delay the input signal but don’t distort its phase.

For completeness, it has to me mentioned that the main drawback of FIR filters respect to IIR
filters is the considerable amount of computation power required to realized a FIR filter with similar
characteristics to an IIR.

Fourier Analysis

The filtering operation in time-domain is given below,

y[n] = x[n] > h[n] (10)

Accordingly to Eq.(7) of section 3.2.1, this operation can be transposed in the frequency domain
using the convolution-multiplication symmetry and simply becomes:

Y [k] = X[k] ·H[k] (11)

where X, Y and H are the Fourier transform of the input, output and filter’s impulse response,
respectively. Additionally, observing Eq.(8), we can easily derive the impulse response H of a FIR
filter of order N as follow:

H[k] = c[k] · δ[k] =

{
ck for 0 < k < N
0 for otherwise

(12)

The major interest of a mixed domain transmitter is now evident. Implementing Eq.(11) is much
simpler than Eq.(10) and, most importantly, Eq.(11) is parallelizable, while the other is not.

13 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

3.3.2 Filter - Squared Raised Root Cosine Filter

Matched filters are the optimal linear filter that maximize the SNR in the presence of additive
stochastic noise. It works by correlating the received signal with a known template (the expected
version of the received signal). Therefore, this kind of filters is used to detect an expected signal
and distinguish it from background noises, which is exactly our objective.

More specifically, the chosen matched filter implemented in this paper is the Squared Raised Root
Cosine (SRRC) Filter because it is a good compromise between high spectral efficiency and low ISI.
Its main goal is to limit the transmitted signal into a defined part of the channel (pulse shaping) in
order to prevent interferences with adjacent channels.

The filter is design to achieve a fast decay of sidelobes in the impulse response, narrow transition
band, great minimum stopband attenuation, efficient bandwidth utilization and low cost. Unfortu-
nately, improving one of these characteristics will degrade the other one. The specific design of the
filter is then realized by balancing the above features by properly choosing the following parameters:
oversampling factor, roll-off factor, truncation length [7].

The filter parameters of the selected SRRC filters are directly taken from [7] and are summarized
in the table here below. As said in section 3.1.1, the QAM mapping output value 3d equals c5 =
0.54098593171027443.

c0 = 0.022507907903927645 c6 = 0.3076724792547561

c1 = 0.028298439380057477 c7 = -0.037500771921555154

c2 = -0.076801948979409798 c8 = -0.076801948979409798

c3 = -0.037500771921555154 c9 = 0.028298439380057477

c4 = 0.3076724792547561 c10 = 0.022507907903927645

c5 = 0.54098593171027443

Figure 12: SRRC Filter’s coefficients

14 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

4 Concepts and Methodology

This section explains the behaviour of the realised transmitter as well as the methodology applied
in this work.

First, the strategy applied during the whole project is summarised in a few main steps. Then, the
conception of every block constituting the system is explained one by one and finally, an overview
of the project’s simulation is described.

4.1 Concepts and Methodology - Design Strategy

The design strategy adopted during this project can be separated in two main steps. The first step
in the conception of this work was the construction of a single channel (without any parallelisation)
mixed-domain modulator. In the following sections, the term simple transmitter refers to such
design. The second main step was the migration to a parallel modulator.

Both of these main steps are divided in a conceptual reference MATLAB simulation phase, a hard-
ware system building phase and an optimization phase (see Fig.13).

• MATLAB model : In order to deeply understand the be-

haviour of the system, a complete MATLAB model has

been developed. The first purpose of this model was to

give an idea of the expected behaviour of the system.

The second purpose was to compare the hardware re-

sults with the reference MATLAB model to prove its

functionality.

Each block constituting the system was first realised in

MATLAB using the physical and mathematical funda-

mentals explained in section 3.

12

1.  Simple Transmitter
1.  MATLAB model
2.  Hardware implementation
3.  Optimization

2.  Parallel Transmitter
1.  MATLAB model
2.  Hardware implementation
3.  Optimization

Figure 13: Methodology

• Hardware implementation: The second step is to transpose the MATLAB model into a working
hardware system described in Verilog. The good functioning and the precision of this system
could be easily tested by comparing the output of each block with the MATLAB model2.

• Optimization: The third step is the optimisation of the hardware model by analysing the logic
requirements as well as the IP core configurations.

The focus of this system is to implement the filter in the frequency domain. In addition, since
the parallel transmitter requires the filter coefficients, the DFT coefficients and the carriers to be
entered by the user through a file, the Java program FQM Utility has been developed in order to
auto-generate those files. This program is explained in section 5.6.

2The MATLAB model is considered as perfectly precise. In other words, all MATLAB internal rounding errors are

ignored.

15 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

4.2 Concepts and Methodology - Conceptual Model

The conceptual design is explained in this section through the reference MATLAB model since it
defines the ideal and expected system’s behaviour while the next section is entirely dedicated to the
hardware implemented system.

The realised single channel MATLAB model can be depicted as shown in Fig.14. This section aims
to explain this conceptual model and to show its results3.

X 90°

Modulator

FIR Filter

FIR Filter

QAM

in

I

Q

DFT

out

00
01
10
11

d
3d
-d
-3d

3d = c5
N-bit frame

xn xk

IDFT

N-bit frame

xk xn

c0 = 0.022507907
c1= 0.028298439
c2= - 0.07620194

ci

X

ci

X

+

-
LO +

X

c3 = - 0.03750077
c4= 0.307673479
c5= 0.540985931

Carriers’s frequency f0

 order 10

 order 10

Figure 14: Mixed-domain QAM transmitter - Conceptual model

The input stream goes first through the QAM block in order to generate I and Q components
following a selected QAM mapping scheme. This step is not simulated by the conceptual model
because of its simplicity. Indeed, the MATLAB model receives as input randomly generated I and
Q values.

In addition to these two values, the system also requires the filter’s coefficients ci, that are furnished
through a file4 to the program. Depending on the number of filter’s coefficients n, the DFT size has
to be computed as the minimum power of two above n. Event though the DFT does not require the
transform length to be a power of two, the FFT does (see appendix A) and, since this project has
been build to be used with FFT cores (as explained in sections 5.6 and 7), this additional design
constraint has been imposed. The DFT coefficients have also to be generated and provided through
a file. The two last model’s requirement are the sine and cosine carriers values. Those functions
could certainly be easily generated by MATLAB but importing them as it is done by the FPGA
design massively simplifies the synchronisation between the conceptual model and the hardware
implementation. Further explanations are given in section 5.

3It is to note that rescaling operations are executed at the output of some block but won’t be discussed in this

section since it does not affect the system’s behaviour. See section 5 for further explanations.
4As previously mentioned, the filter’s coefficient file, the DFT’s coefficient file and the carriers file are auto-generated

by the Java program FQM Utility.

16 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The next paragraphs illustrate in details the behaviour of the DFT, FIR Filter and IDFT blocks,
respectively. Finally, the last paragraph summarises the model by displaying all the signals appearing
in each data bus in order to give to the reader a general view on the system.

Discrete Fourier Transform (DFT)

The Discrete Fourier Transform (DFT) block receives as input the I and Q values mapped by the
QAM block and outputs the result of their Fourier Transform. In this section, since the system has
been simulated with an order 10 filter, the DFT size is the minimum power of two above 11, that is
24 = 16.

Fig.15 shows eighty samples of five different waves. The two waves on the left are the I and Q input
values and the two on the right are the real and imaginary DFT’s output.

19

DFT

N-bit frame

xn xk

Figure 15: Discrete Fourier Transform (DFT) block - Conceptual model

The fifth graph (in the upper middle of the figure) shows the DFT power output computed as

power =
√
xk2re + xk2im (13)

where xkre and xkim are respectively the DFT’s real and imaginary output.

17 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Squared Root Raised Cosine (SRRC) Filter

This second paragraph illustrates the Squared Root Raised Cosine (SRRC) filter behaviour similarly
to the previous paragraph. As mentioned above, the filter’s coefficients ci are also taken as input
constants and are therefore not displayed as wave signal in Fig.16.

Indeed, the reference filter’s coefficients considered for this simulation are give in Tab.12 of section
3.3.2 and are displayed on the top and bottom of the FIR filter blocks of Fig.14 (note that the
filter’s coefficients are symmetric and therefore only the first six coefficients are shown in the figure).
Nevertheless, in the pursuit of modularity, the system is design to implement any order of any type
of FIR filter (see section 5.6 for further explanations).

The filter coefficients have to be padded with zeros in order to have as many coefficients as DFT
outputs. In this case, since the DFT size is 16 and we have 11 filter coefficients, 5 zeros have to be
added before filtering.

Again, the two waves on the left of Fig.16 are the inputs of the target block and the two signals on
right are its outputs. It is to notice that the filter’s inputs are exactly the DFT’s output described
in the previous paragraph. Finally, a formula similar to Eq.(13) is used to compute the filter output
power which is displayed on the middle of the figure.

20

FIR Filter

FIR Filter
ci

X

ci

X

 order 10

 order 10

Figure 16: Squared Root Raised Cosine (SRRC) filter block - Conceptual model

18 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The filter’s power wave shows a typical pulse shaping behaviour. Indeed, all the signal is concentrated
in a portion of the spectrum. We can also observe the relative abrupt transition and the low side
lobes of the chosen SRRC filter.

A similar note can be made when observing the filter’s output respect to its input. Remembering
that the input waves are in the frequency domain, it can be noticed that only some frequencies are
kept (where the peak are localised) and all the other are attenuated or suppressed.

Inverse Discrete Fourier Transform (IDFT)

The Inverse Discrete Fourier Transform (IDFT) block operates similarly to the DFT block described
above. Its inputs are the filter’s output and the five graphs on Fig.17 are the filter’s inputs, the
IDFT power, the real IDFT output and the imaginary IDFT output. As a final note, the IDFT’s
outputs look familiar due to its multiple oscillations recalling a time-domain behaviour.

21

IDFT

N-bit frame

xk xn

Figure 17: Inverse Fast Fourier Transform (IDFT) block - Conceptual model

The next step is to modulate those waves by mixing them with cosinusöıdal carriers in order to be
able to transmit them centred around a given frequency f0. The next paragraph shows the result
of such operation.

19 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Summary

This last paragraph of the Concepts and Methodology section aims to summarise the desired be-
haviour of the simple mixed-domain transmitter by displaying a typical wave signal for each data
bus.

First, a bit stream is entered into the system and the QAM mapping block generates the I and
Q signal5.Secondly, the samples are sent into the frequency domain by the DFT block. Then, the
filtering operation is applied and the signal is taken back in the time domain by the IDFT block.

Finally, the modulator block receives the time-domain real and imaginary samples and performs the
operation described by Eq.(1) of section 3.1.2. As mentioned before, the sine and cosine waves are
actually consider as inputs in the MATLAB file but Fig.18 still displays a LO inside the modulator
to high-line the system behaviour.

X 90°

Modulator

FIR Filter

FIR Filter

QAM

in

I

Q

DFT

out

00
01
10
11

d
3d
-d
-3d

3d = c5
N-bit frame

xn xk

IDFT

N-bit frame

xk xn

c0 = 0.022507907
c1= 0.028298439
c2= - 0.07620194

ci

X

ci

X

+

-
LO +

X

c3 = - 0.03750077
c4= 0.307673479
c5= 0.540985931

Carriers’s frequency f0

 order 10

 order 10

22

X 90°

Modulator 16

16

16
16

FIR Filter

FIR Filter

QAM

in

I

Q

FFT

out
4

16

00
01
10
11

d
3d
-d
-3d

3d = c5
16-bit frame

16

xn xk

16 IFFT

16

16-bit frame

16

xk xn
16

c0 = 0.022507907
c1= 0.028298439
c2= - 0.07620194

ci

X

16

ci

X

cos

+

-
LO +

X 16

16

16

c3 = - 0.03750077
c4= 0.307673479
c5= 0.540985931

f0 = 100 MHz

 order 11

 order 11

0001101010 …

Figure 18: Transmitter - Conceptual model

Observing the output of the transmitter on the right most graph, we notice its familiarity with a
standard time-domain modulated wave.

5As mentioned above, this block is not simulated in MATLAB due to its simplicity but is still depicted in Fig.18

to overview the behaviour of the complete system.

20 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

5 Implementation

This section is entirely dedicated to the hardware implementation of the QAM transmitter. This
section starts by stating the general design pattern and then explains as clearly as possible all the
implemented Verilog module. The first explains the implementation of the QAM mapper while the
second is dedicated to the DFT and IDFT modules. The third illustrates the modulator and finally,
the last part of this section explain the transmitter module; i.e. the top module coordinating all the
others.

More specifically, the illustration of each part is divided into four paragraphs. First, a table illustrates
the block’s parameters, its input and output ports, as well as the IP cores and dependencies required
by the module. The second paragraphs explains in details the module’s implementation and the
third focuses on some major aspects of the Verilog code. Finally, the last section is dedicated to the
IP core configuration and block’s dependencies.

5.1 Implementation - Design Pattern

The implementation of the parallel transmitter is entirely done by using handwritten Verilog code,
Xilinx IP cores and auto-generated Verilog modules (using the Java FQM Utility, see section 5.6).

Despite the parallelism, the designed module’s

ports are still very similar to the simple trans-

mitter. Indeed, all the parallel inputs and out-

puts are packed into the same bus as shown in

Fig.19, where each datai is a 16-bit bus

16

dataN-1 dataN-2 data0

N-1 N-2 N-3 1 0

Figure 19: Parallel bus packing

Again, this section explains in details the implementation of the system depicted in Fig.20 block by
block using the pattern introduced in the beginning of section 5.

mult

mult

modulator.v

mult

add
4096 4096

comb.
logic

add

com. mult

mult
64

12

255

in

I

Q

dft.v

out 255 N = 16
W = 16
FORMAT = 4

255 255

255

255

qam.v

comb.
logic

xk_im

xk_re

4096
255

srrc_filter.v

Y_re

Y_im sn_im

sn_re
255

255

clk

reset seq.
logic

tvalid

transmitter.v

16

last

4096

N = 16
add

4096 4096

comb.
logic

add

com. mult

idft.v

255

4096

255
4096

N = 16 N = 16 N = 16 255

add

dft_coeff.v
filter_coeff.v 255 carriers.v

255

255

Figure 20: Implemented parallel system

21 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

5.2 Implementation - QAM Mapper

The first block performs the QAM mapping operation. It receives a N clustered input bit stream
and delivers the N corresponding in-phase and quadrature QAM mapped signal.

Specifications

qam.v − Receives N packed input buses of W bits and outputs N W-bit in-phase and

quadrature packed QAM mapped signals.

Latency -

Parameters N Number of parallel inputs

W Bus width

FORMAT QAM order

Inputs in Clustered input stream

last Last constellation point

Outputs I In-phase component

Q Quadrature component

IP Cores -

Dependencies qam8.v Manage the 8-QAM modulation

qam16.v Manage the 16-QAM modulation

qam32.v Manage the 32-QAM modulation

qam64.v Manage the 64-QAM modulation

Table 1: QAM Mapping - Specifications

Module Explanations

In order to achieve the highest level of modularity for each block, this module can receive an arbitrary
width input bus. This has the advantage of allowing the block to be easily used in another design.

22 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

However, due to the IP core implementation constraints, the transmitter bus width is fixed to 16-bit.

This module, shown in Fig.21, is set up using the three Verilog parameters N, W and FORMAT. Re-
spectively, the first indicates the number of parallel inputs, the second defines the bus width and
the third sets up the QAM modulation format.

I

255

Q

comb.
logic add

mult

modulator.v

mult

add
4096 4096

comb.
logic

add

com. mult

mult

64

13

in

dft.v

out 255 N = 16
W = 16
FORMAT = 4

255 255

255

255

qam.v

comb.
logic

xk_im

xk_re

4096

255

srrc_filter.v

Y_re

Y_im sn_im

sn_re

255

255

clk

reset
seq.
logic

tvalid

transmitter.v

16

last

4096

N = 16
add

4096 4096

add

com. mult

idft.v

255

4096

255
4096

N = 16 N = 16 N = 16 255

dft_coeff.v
filter_coeff.v 255 carriers.v

mult

255

255

Figure 21: Implemented parallel system - QAM mapping Block

The available modulation formats are 8-QAM, 16-QAM (default), 32-QAM and 64-QAM. It’s to
note that the width of the input bus in depends on the specified modulation format (Fig.21 displays
the default input size; i.e. 4 ∗ 16 = 64). Indeed, the input stream has to be cluttered by sets of
3, 4, 5, or 6 bits depending on the selected format (see section 3.1 for further explanations about
the QAM cluster’s width). Certainly, more modulation formats could have been implemented as
128-QAM or 256-QAM but their implementation would be similar the the already implemented
units and doesn’t add any additional interest to this paper.

Hardware Code

This paragraph illustrates the Verilog code implementing the QAM-mapping module. This module
is extremely simple because the complexity is equally distributed between all its dependencies.

As shown here below, the main goal of this unit is to select the appropriate QAM format by analysing
the FORMAT parameter and by generating the corresponding dependency.

1 /***
2 * QAM Mapping

3 ***/

4 generate // generate only the required module

5 case(FORMAT)

6 3'b011: // 8−QAM
7 qam8 #(

23 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

8 .N(N), // Number of parallel inputs

9 .W(W) // Bus Witdh

10) qam8 isnt(

11 .in(in), // Clustered input stream

12 .last(last), // Last constellation point

13 .I(I), // In−phase component

14 .Q(Q) // Quadrature component

15);

16 3'b100: qam16 #(N, W) qam16 isnt(in, last, I, Q); // 16−QAM
17 3'b101: qam32 #(N, W) qam32 isnt(in, last, I, Q); // 32−QAM
18 3'b110: qam64 #(N, W) qam64 isnt(in, last, I, Q); // 64−QAM
19 default: // unsupported or undefined QAM format

20 begin assign I = 'bx; assign Q = 'bx; end

21 endcase

22 endgenerate

23 /***/

If the format is unrecognised, the modules don’t generate any dependencies and simply outputs
undefined signals.

Cores Configuration and Dependencies

Since this module don’t use any IP cores, this paragraph is entirely dedicated to the dependencies
of the block. As mentioned in the previous paragraph, all the responsibilities are delegated to
the block’s dependencies. Indeed, the Verilog modules QAM8, QAM16, QAM32 and QAM64 handle the
8-QAM, 16-QAM, 32-QAM and 64-QAM modulation by its own.

The code below only illustrates the implementation of the 16-QAM format but the discussion can
be extended to the other QAM modules. The signals p1 and last represent respectively the first
and the last constellation point. For an easier understanding, this code has to be read in parallel
with Fig.6b and the 16-QAM explanation given in section 3.1.1.

1 /***
2 * 16−QAM Mapping

3 ***/

4 genvar i;

5 generate for(i=0; i < N; i=i+1)

6 always@(*) begin

7 case({in[4*i+3],in[4*i+1]}) // assign I value

8 2'b00: I[W*i+(W−1):W*i] = p1;

9 2'b01: I[W*i+(W−1):W*i] = last;

10 2'b10: I[W*i+(W−1):W*i] = −p1;
11 2'b11: I[W*i+(W−1):W*i] = −last;
12 default: I[W*i+(W−1):W*i] = 'dx;

13 endcase

24 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

14 case({in[4*i+2],in[4*i]}) // assign Q value

15 2'b00: Q[W*i+(W−1):W*i] = p1;

16 2'b01: Q[W*i+(W−1):W*i] = last;

17 2'b10: Q[W*i+(W−1):W*i] = −p1;
18 2'b11: Q[W*i+(W−1):W*i] = −last;
19 default: Q[W*i+(W−1):W*i] = 'dx;

20 endcase

21 end

22 endgenerate

23 /***/

This code is extremely simple since it consists in purely combinatorial logic. Nevertheless, the
generate loop allows to easily meet the modulatory specification by repeating the code for each one
of the parallel input N and to pack the date shown in Fig.19.

5.3 Implementation - Discrete Fourier Transform

This section is probably the most complex of the chapter. It is dedicated to the blocks performing
the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). Those
blocks are described in the same section because of their enormous similarity. The DFT block
(resp. IDFT block) receives a signal in the time domain (resp. frequency domain) and outputs its
corresponding transformation in the frequency domain (resp. time domain).

Specifications

dft.v / idft.v − Receives N 16-bit packed input busses and outputs N 16-bit packed busses

corresponding to the input’s tranform.

Latency 4 cycles

Parameters N The transform length

Inputs clk Clock

reset Reset

xn re DFT real input

xn im DFT imaginary input

ccos Cosine DFT coefficients

csin Sine DFT coefficients

25 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Outputs xk re DFT real output

xk im DFT imaginary output

IP Cores Complex Multilier Version 5.0

Adder Subtracter Version 11.2

Dependencies -

Table 2: DFT / IDFT - Specifications

Module Explanations

The only input parameter of this module is N that can be either viewed as the transform length or
the number of parallel input busses.

Indeed, the signals precision is fixed to 16 bits because the IP cores require this information to
be manually hardcoded inside the Xilinx configuration interface and therefore, cannot be changed
programmatically.

In addition to the clock and the reset signal, this module requires the time domain complex input
separated in its real (xn re) and imaginary (xn im) part. Moreover, the cosine and sine coefficients
weight (respectively called ccos and csin) to apply during the transformation process have also to
be provided. Fig.22 high-lines the DFT and IDFT block implementation.

Q

255

mult

add

mult

modulator.v

mult

64

17

in

I

out
N = 16
W = 16
FORMAT = 4

255

qam.v

comb.
logic

xk_im

xk_re

srrc_filter.v

Y_re

Y_im sn_im

sn_re

255

255

clk

reset
seq.
logic

tvalid

transmitter.v

16

last
add

4096

comb.
logic

add

com. mult

idft.v

255

255
4096

N = 16 N = 16 N = 16 255

dft_coeff.v
filter_coeff.v 255 carriers.v

mult

add
4096

add

com. mult

4096

N = 16

dft.v

255

comb.
logic

255

4096

4096 4096

4096

255
255

255 255

255

Figure 22: Implemented parallel system - DFT and IDFT blocks

26 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The coefficients have to be provided using the

reverse packed pattern respect that the mod-

ule’s port. In order words, as shown in Fig.23,

the first data set comes at position N − 1, the

second comes at position N − 2, etc.

16

dataN-1 dataN-2 data0

N-1 N-2 N-3 1 0

Figure 23: Coefficient bus packing

Unfortunately, the FFT Xilinx IP core used for the single channel transmitter requires a serial input
and mandatorily delivers a serial output and, by consequence, cannot be used in the parallel design.
Therefore, in order to achieve the aimed parallelisation, the DFT had to be completely implemented
assembling adders and multipliers6. More specifically, Eq.(4) of section 3.2.1 has been implemented
in hardware. First, all the product (x[n]e−2πikn/N) are computed and stored locally. Afterwards,
the products are summed up to complete the equation. This process is implemented N time, to
compute each X[k].

An other alternative could have been to implement this equation using N Multiply and Accumulate
(MAC) logic cores (one for each X[k]) in order to spare adders and multipliers. However, once
more, the Xlinx MAC IP Core requires a serial input and has a latency depending on the number
of terms N. By consequence, the transmitter latency would have depended on the number of input
parameters, which is the reason that this option has not been considered.

As a final note, it is to remark that both the DFT and IDFT blocks rescale the output by 2−17 to
fit in the desired 16-bit bus and avoid the possible overflow due to the 33-bit result produced by the
complex multipliers.

Hardware Code

This paragraph illustrate the Verilog code implementing the DFT module. The IDFT module
doesn’t deserve its own explanation due to its similarity with the DFT7.

As shown here below, the code is composed of two generate loops: the inner one loops over each
input n and the outer one loops to generate to output results k.

1 genvar k,n,i;

2 generate

3 for(k=0; k < N; k=k+1) begin

4 // Compute complex products

5 for(n=0; n < N; n=n+1) begin

6 complex mult complex mult fft inst (

7 .aclk(clk), // input aclk

8 .aresetn(˜reset), // input aresetn

6Nevertheless, after discussion with the Xilinx development team, it has been certified that the next version of the

core will allow parallel inputs and outputs due to the huge demand in that area.
7Indeed, the unique difference between these two modules is the minus sign placed in front of the sine coefficients

provided to the complex multipliers.

27 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

9 .s axis a tvalid(1'b1), // input s axis a tvalid

10 .s axis a tdata({
11 xn im[16*n+(16−1):16*n],// DFT imaginary input

12 xn re[16*n+(16−1):16*n] // DFT real input

13 }),
14 .s axis b tvalid(1'b1), // input s axis b tvalid

15 .s axis b tdata({ // Sine and cosin DFT coefficients

16 −csin[16*(N−1−n)+(16−1)+N*16*(N−1−k):16*(N−1−n)+N*16*(N−1−k)],
17 ccos[16*(N−1−n)+(16−1)+N*16*(N−1−k):16*(N−1−n)+N*16*(N−1−k)]
18 }),
19 .s axis ctrl tvalid(1'b1), // input s axis ctrl tvalid

20 .s axis ctrl tdata(8'b0), // input [7 : 0] s axis ctrl tdata

21 .m axis dout tvalid(), // output m axis dout tvalid

22 .m axis dout tdata({
23 t im[16*n+(16−1)+N*16*k:16*n+N*16*k], // DFT imaginary output

24 t re[16*n+(16−1)+N*16*k:16*n+N*16*k] // DFT real output

25 })
26);

27 end

The first operation performed by the DFT module is to multiply the inputs with the corresponding
trigonometric coefficients. All the produced results are stored in two temporary signals called t re

or t im depending on their real or imaginary nature.

Secondly, the temporary results are added two by two in oder to produce the DFT sums. The final
output can be found on each N − 2 last positions of the signals a re and a im.

1 // Sum up complex products

2 adder fft adder fft inst re (

3 .a(t re[16*0+(16−1)+N*16*k:16*0+N*16*k]), // input [15 : 0] a

4 .b(t re[16*1+(16−1)+N*16*k:16*1+N*16*k]), // input [15 : 0] b

5 .sclr(reset), // input sclr

6 .s(a re[16*0+(16−1)+N*16*k:16*0+N*16*k]) // output [15 : 0] s

7);

8 adder fft adder fft inst im (

9 .a(t im[16*0+(16−1)+N*16*k:16*0+N*16*k]), // input [15 : 0] a

10 .b(t im[16*1+(16−1)+N*16*k:16*1+N*16*k]), // input [15 : 0] b

11 .sclr(reset), // input sclr

12 .s(a im[16*0+(16−1)+N*16*k:16*0+N*16*k]) // output [15 : 0] s

13);

14 for(i=2; i < N; i=i+1) begin

15 adder fft adder fft inst re loop (

16 .a(t re[16*i+(16−1)+N*16*k:16*i+N*16*k]), // input [15 : 0] a

17 .b(a re[16*(i−2)+(16−1)+N*16*k:16*(i−2)+N*16*k]), // input [15 : 0] b

18 .sclr(reset), // input sclr

28 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

19 .s(a re[16*(i−1)+(16−1)+N*16*k:16*(i−1)+N*16*k]) // output [15 : 0] s

20);

21 adder fft adder fft inst im loop (

22 .a(t im[16*i+(16−1)+N*16*k:16*i+N*16*k]), // input [15 : 0] a

23 .b(a im[16*(i−2)+(16−1)+N*16*k:16*(i−2)+N*16*k]), // input [15 : 0] b

24 .sclr(reset), // input sclr

25 .s(a im[16*(i−1)+(16−1)+N*16*k:16*(i−1)+N*16*k]) // output [15 : 0] s

26);

27 end

As a final remark, the small mask is applied to the output to delete the the first four output caused
by the complex multipliers latency.

Cores Configuration and Dependencies

Contrarily to the previous block, the DFT and the IDFT blocks don’t have any dependencies but
take advantage of two Xilinx IP cores: the Complex Multiplier v5.0 and the Adder Subtracter

v11.2. The Complex Multiplier v5.0 core is used N2 times and is configured to work with 16-bit
inputs. Tab.3 here below summarizes the core’s ports.

dft.v / idft.v − Complex Multiplier v5.0

Latency 4 cycles

Inputs aclk Clock

aresetn Negative reset

s axis a tvalid Valid flag for first input

s axis a tdata First input (imaginary and real part)

s axis b tvalid Valid flag for first input

s axis b data Second input (imaginary and real part)

s axis ctrl tvalid Valid flag for control input

s axis ctrl tdata Control Signal

Outputs m axis dout tvalid Valid flag for output

m axis dout tdata Output (imaginary and real part)

Table 3: Complex Multiplier ports

29 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

After performance’s analysis, both cores have been configured to prefer Mults or DSP before fabric
(see section 6). The symmetric rounding option allows to rescale the output to 16 bits instead of
33. This is done by entering a byte of zeros in the s axis ctrl tdata core’s input. Since this core
implements the AXI4-Stream compliant, the real and imaginary part of all inputs and outputs are
concatenated in the same bus, starting by the imaginary part.

The Adder Subtracter v11.2 core is used 2N(N − 1) times and is configured to work in adder
mode with 16-bit inputs. This fair amount of core’s instances is required by the fact that both the
imaginary and the real part have to be processed. Because these additions need to be synchronised,
the core is manually configured to have zero latency. Tab.4 here below summarizes the core’s ports.
Two processing options are available: DSP48 or Fabric. Both options will be analysed in section 6.

dft.v / idft.v − Adder Subtracter v11.2

Latency -

Inputs a First input

b Second First input

sclr Synchronous clear

Outputs s Output

Table 4: Adder Subtracter ports

5.4 Implementation - SRRC Filter

This block filter the signal in frequency domain by using the mathematical property described by
Eq.(7) in section 3.2.1.

Specifications

srrc filter.v − Performs a parallel filtering operation in frequency domain from the given

complex inputs and filter coefficients.

30 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Latency 4 cycles

Parameters N Number of parallel inputs

Inputs clk Clock

reset Reset

X re Real inputs

X im Imaginary inputs

H Filter coefficients

Outputs Y re Real outputs

Y im Imaginary outputs

IP Cores Multiplier Version 11.2

Dependencies -

Table 5: QAM Mapping - Specifications

Module Explanations

Exactly as the previous blocks, this module is set up through the unique parameter N defining the
number of parallel inputs. As usual, Fig.24 here below recall the filter block inside the design.

255

I

Q

comb.
logic add

mult

modulator.v

mult

add
4096 4096

comb.
logic

add

com. mult

mult

64

16

in

dft.v

out
N = 16
W = 16
FORMAT = 4

255

qam.v

comb.
logic

xk_im

xk_re

4096

srrc_filter.v

Y_re

Y_im sn_im

sn_re
255

255

clk

reset
seq.
logic

tvalid

transmitter.v

16

last

4096

N = 16
add

4096 4096

add

com. mult

idft.v

255

4096

255
4096

N = 16 N = 16 N = 16 255

dft_coeff.v
filter_coeff.v

255 carriers.v

mult

255
255

255

255

255

255

255

Figure 24: Implemented parallel system - Filter block

31 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The implementation is very straightforward, all signals are presented in their packed format and the
coefficients have to be provided following the inverse packed pattern, identically to the trigonometric
coefficients of the DFT and IDFT.

Similarly to the Complex multiplier core, the Multiplier cores rescale the output by 2−16 to fit
in the desired 16-bit bus and avoid the possible overflow due to the standard 32-bit result.

Hardware Code

This paragraph illustrates the Verilog code implementing the filter module. This module is very
simple as everything is handled by the Xilinx IP cores.

As shown here below, a generate loop is applied over each real and imaginary input to multiply it
by the corresponding filter coefficient.

1 /***
2 * Filter and Resize by 2*(−16)
3 ***/

4 genvar i;

5 generate

6 for(i=0; i < N; i=i+1) begin

7 mult mult filter inst re (

8 .clk(clk), // input clk

9 .a(X re[16*i+(16−1):16*i]), // input [15 : 0] a

10 .b(H[16*(N−1−i)+(16−1):16*(N−1−i)]), // input [15 : 0] b

11 .sclr(reset), // input sclr

12 .p(Y re[16*i+(16−1):16*i]) // output [15 : 0] p

13);

14 mult mult filter inst im (

15 .clk(clk), // input clk

16 .a(X im[16*i+(16−1):16*i]), // input [15 : 0] a

17 .b(H[16*(N−1−i)+(16−1):16*(N−1−i)]), // input [15 : 0] b

18 .sclr(reset), // input sclr

19 .p(Y im[16*i+(16−1):16*i]) // output [15 : 0] p

20);

21 end

22 endgenerate

23 /***/

Cores Configuration and Dependencies

The only core in this block is the Multiplier v11.2. Because of the need to process real and
imaginary inputs, 2N core’s instances are needed. Again, Tab.6 here below summarizes the core’s
ports.

32 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

srrc filter.v − Multiplier v11.2

Latency 4 cycles

Inputs clk Clock

a First First input

b Second First input

sclr Synchronous clear

Outputs p Output

Table 6: Multiplier ports

The core is configures to receive 16-bit inputs and to produce 16-bit symmetrically rounded outputs.
Moreover, this core allows the user to select if the multiplication has to occurs through Mults or
LUTs. As usual, both options are analysed in section 6.

5.5 Implementation - Modulator

The modulator performs the operation described by Eq.(1) of section 3.1.2: it multiplies the real
input by the cosine carrier and the imaginary input by the sine carrier, then those product are
subtracted.

Specifications

modulator.v − Modulate the N 16-bit inputs packed in parallel by the provided carriers

and output N 16-bit modulated output packed.

Latency 5 cycles

Parameters N Number of parallel inputs

33 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Inputs clk Clock

reset Reset

I Real inputs

Q Imaginary inputs

cos In-phase carrier

sin Quadrature carrier

Outputs dout Output

IP Cores Multiplier Version 11.2

Adder Subtracter Version 11.2

Dependencies -

Table 7: Modulator - Specifications

Module Explanations

The module is parametrised with the usual parameter N defining the number of parallel inputs and
is depicted in Fig.25. Since, it uses the same multipliers as the SRRC filter, the discussion about
the precision and the rescaling remains the same.

mult

mult

255

I

Q

comb.
logic add

modulator.v

mult

add
4096 4096

comb.
logic

add

com. mult

mult
64

15

in

dft.v

out
N = 16
W = 16
FORMAT = 4

255 255

255

255

qam.v

comb.
logic

xk_im

xk_re

4096
255

srrc_filter.v

Y_re

Y_im sn_im

sn_re

255

255

clk

reset
seq.
logic

tvalid

transmitter.v

16

last

4096

N = 16
add

4096 4096

add

com. mult

idft.v

255

4096

255
4096

N = 16 N = 16 N = 16 255

dft_coeff.v
filter_coeff.v 255 carriers.v

255

255
255

Figure 25: Implemented parallel system - Modulator block

34 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Again, all signals are presented in their packed format and the carriers have to be provided following
the inverse packed pattern, identically to the trigonometric coefficients of the DFT / IDFT and to
the filter’s coefficients.

Hardware Code

The Verilog code implementing this module exactly the same as the filter, except that the adder

subtracter core is instantiated in order to subtract the two multiplier’s outputs. Again, a generate
loop ensure the process of all the inputs in parallel.

1 /***
2 * Multiplier and Subtracter − Rescaling 2ˆ(−16)
3 ***/

4 genvar i;

5 generate

6 for(i=0; i < N; i=i+1) begin

7 // Multiplier

8 mult mult mod inst re (

9 .clk(clk), // input clk

10 .a(I[16*i+(16−1):16*i]), // input [15 : 0] a

11 .b(cos[16*(N−1−i)+(16−1):16*(N−1−i)]), // input [15 : 0] b

12 .sclr(reset), // input sclr

13 .p(p1[16*i+(16−1):16*i]) // output [15 : 0] p

14);

15 mult mult mod inst im (

16 .clk(clk), // input clk

17 .a(Q[16*i+(16−1):16*i]), // input [15 : 0] a

18 .b(sin[16*(N−1−i)+(16−1):16*(N−1−i)]), // input [15 : 0] b

19 .sclr(reset), // input sclr

20 .p(p2[16*i+(16−1):16*i]) // output [15 : 0] p

21);

22 // Subtracter

23 Subtracter Subtracter mod inst (

24 .a(p1[16*i+(16−1):16*i]), // input [15 : 0] a

25 .b(p2[16*i+(16−1):16*i]), // input [15 : 0] b

26 .clk(clk), // input clk

27 .sclr(reset), // input sclr

28 .s(dout[16*i+(16−1):16*i]) // output [15 : 0] s

29);

30 end

31 endgenerate

32 /***/

35 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Cores Configuration and Dependencies

The two cores instantiated in this module are previously used the Multiplier v11.2 and Adder

Subtracter v11.2. The multiplier configuration is exactly the same as in the filter module and is
therefore not discussed in this paragraph.

Nevertheless, the Adder Subtracter core is not configured in the same way as it is in the DFT /
IDFT module. Indeed, in addition to be configured as subtracter instead as adder, since there is
no more needs for synchronisation, the core latency is automatically set to two clock cycle in the
pursuit of performance’s optimization. As usual, Tab.8 here below summarizes the ports of this
core.

modulator.v − Adder Subtracter v11.2

Latency 2 cycles

Inputs clk Clock

a First First input

b Second First input

sclr Synchronous clear

Outputs p Output

Table 8: Modulator Adder Subtracter ports

observing the hardware code of the previous section, we notice that 2N Multiplier cores and N
Adder Subtracter cores are needed.

5.6 Implementation - Transmitter

This last module called Transmitter is the top entity of the design. It assembles all the previously
described blocks. By consequence, even though this module doesn’t directly possess any IP cores,
it needs as dependencies all the previously blocks as well as the the filter’s coefficients, the DFT’s
coefficient and the carriers.

This last part of the section is slightly different from the other because in addition to describer the
module as usual, it also explains step by step how the design can be used by an adequately informed
the user.

36 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Specifications

transmitter.v − Receives N 16-bit packed inputs and output N 16-bit QAM modulated

packed waves.

Latency 17 cycles

Parameters N Number of parallel inputs

FORMAT QAM order

Inputs clk Clock

reset Reset

in Clustered input stream

Outputs tvalid Output’s valid flag

out Output

IP Cores -

Dependencies qam.v QAM module

dft.v DFT module

srrc filter.v SRRC filter module

idft.v IDFT module

modulator.v Modulator module

dft coeff.v DFT / IDFT coefficients

filter coeff.v Filter coefficients

carriers.v Carriers

Table 9: Transmitter - Specifications

Module Explanations

Two input parameters define the behaviour of the transmitter. The first parameter is N, representing
the number of parallel inputs and the second is FORMAT to specify the desired modulation format

37 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

among the four available QAM formats (see section 5.2). Fig.26 shows an abstract view of the
system focussing on its input and output ports. The inputs are the clock, the reset signal and the
clustered binary stream.

As mentioned before, the input stream has to be clus-

tered by the number of bits defined by the Verilog pa-

rameter FORMAT. In other words, if a 16-QAM modu-

lation is desired, the user needs to specify FORMAT=4

and enter N bit streams, clustered by 4 and packed in

a single bus of width (FORMAT*N).

The outputs are the modulated signal, delivered in his

packed representation and the tvalid flag, indicating

when the output data are valid. The output width is

(16*N) since the signal precision is fixed to 16 bits.

18

1.  Simple Transmitter
1.  MATLAB model
2.  Hardware implementation
3.  Optimization

2.  Parallel Transmitter
1.  MATLAB model
2.  Hardware implementation
3.  Optimization

Transmitter
clock

tvalid

out reset

in

N
FORMAT

Figure 26: Transmitter - Implementa-

tion

In order to use the design properly, the user should start by running the Java application FQM
Utility (see Fig.27).

Figure 27: Fourier QAM Modulation (FQM) Utility

First, the desired filter coefficients have to entered in table on the left. Fifteen rows are displayed
by defaults but if more that fifteen coefficients are needed, the “+” button on the bottom of the
table adds extra rows. Only the filled rows are considered; i.e. all the empty rows are considered
inexistent. The “-” button suppresses a selected row.

38 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Secondly, the carrier frequency has to be entered in Hertz in the text field on the top right of the
interface.

The information field on the bottom right of the interface updates the entered parameters in real
time. The first row indicates the system precision and the second indicates the number of filter
coefficients entered as well as the number of zeros that will be padded in order to reach N; i.e.the
smallest power of two greater than the number of coefficients. The third line represents N, which is
then the DFT size8 or the number of parallel inputs. Then, the carrier’s frequency is displayed and,
finally, the last lines of the info field are the Verilog units that will be generated.

Afterwards, to run the transmitter design, the user must include those three files into the project,
and run the top module transmitter.v with the same parameter N as displayed by the FQM Utility

and with the desired FORMAT parameter.

Hardware Code

The following code instantiates the three units (dft coeff.v, filter coeff.v, carriers.v) gen-
erated by the FQM Utilities.

1 /***
2 * Config.

3 ***/

4 // Load DFT Coefficients

5 dft coeff dft coeff inst(

6 .ccos(ccos), // Cosine DFT coefficients

7 .csin(csin) // Sine DFT coefficients

8);

9 // Load filter coefficients

10 filter coeff filter coeff inst(

11 .H(H), // Filter coefficients

12 .H max(H max) // Highest filter coefficient

13);

14 // Load carriers

15 carriers carriers inst(

16 .clk(clk), // Clock

17 .reset(reset | (˜|{sn re,sn im})), // Reset

18 .cos(cos), // Cosine carrier

19 .sin(sin) // Sine carrier

20);

21 /***/

8Event if the DFT algorithm doesn’t require the number of inputs to be a power of two, the FFT does (see appendix

A). As mentioned before, Xilinx will soon provide the next generation of the FFT IP core able to process parallel data

and therefore, this design is built to include this core as soon as it is distributed.

39 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Next, all the previously discussed unit are instantiated and despite being repetitif, the code below
clearly shows the the connection between them. For easy understanding, this code has to be read
in parallel with Fig.20 given in the beginning of this section.

1 /***
2 * QAM mapping

3 ***/

4 QAM #(

5 .N(N), // Number of parallel inputs

6 .W(16), // Bus Witdh

7 .FORMAT(FORMAT) // QAM order

8) QAM isnt(

9 .in(in), // Clustered input stream

10 .last(H max), // Last constellation point

11 .I(I), // In−phase component

12 .Q(Q) // Quadrature component

13);

14

15

16 /***
17 * DFT

18 ***/

19 dft #(

20 .N(N) // Transform length

21) dft inst(

22 .clk(clk), // Clock

23 .reset(reset), // Reset

24 .xn re(I), // DFT real input

25 .xn im(Q), // DFT imaginary input

26 .ccos(ccos), // Cosine DFT coefficients

27 .csin(csin), // Sine DFT coefficients

28 .xk re(xk re), // DFT real input

29 .xk im(xk im) // DFT imaginary input

30);

31

32

33 /***
34 * SRRC filter

35 ***/

36 SRRC filter #(

37 .N(N) // Number of parallel inputs

38) SRRC filter inst (

39 .clk(clk), // Clock

40 .reset(reset), // Reset

40 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

41 .H(H), // Filter coefficients

42 .X re(xk re), // Filter's real input

43 .X im(xk im), // Filter's imaginary input

44 .Y re(Y re), // Filter's real output

45 .Y im(Y im) // Filter's imaginary output

46);

47

48

49 /***
50 * IDFT

51 ***/

52 idft #(

53 .N(N) // Transform length

54) idft inst(

55 .clk(clk), // Clock

56 .reset(reset), // Reset

57 .xn re(Y re), // DFT real input

58 .xn im(Y im), // DFT imaginary input

59 .ccos(ccos), // Cosine DFT coefficients

60 .csin(csin), // Sine DFT coefficients

61 .xk re(sn re), // DFT real input

62 .xk im(sn im) // DFT imaginary input

63);

64

65

66 /***
67 * Modulator

68 ***/

69 modulator #(

70 .N(N) // Number of parallel inputs

71) modulator inst (

72 .clk(clk), // Clock

73 .reset(reset), // Reset

74 .I(sn re), // In−phase input

75 .Q(sn im), // In−Quadrature input

76 .sin(sin), // In−phase carrier

77 .cos(cos), // Quadrature carrier

78 .dout(out) // Output

79);

80 /***/

41 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

Cores Configuration and Dependencies

Since the transmitter unit doesn’t posses any IP cores and almost all the dependencies consist in
the previous blocks, the only units explained in this paragraph are the modules auto-generated by
the Java program.

Nevertheless, going through the multiples dependencies of this block, we can compute the total
number of IP cores used by the complete system: this design requires 2N2 Complex Multiplier,
4N2 − 2N Adder Subtracter and 4N Multipliers.

The modules dft coeff.v and filter coeff.v are pretty simple while they consist in outputting
hardcoded values. Nevertheless, the module carriers is a little more complex since it contains the
trigonometric carriers and has to output them synchronously with the data flow. The Verilog code
below shows an example of a this unit generated for a carrier frequency of 100Hz and N=16.

1 // log2(400 / 16) = 5

2 reg [4:0] count;

3

4 always@(posedge clk, posedge reset)

5 if(reset | (count == 'd24)) count <= 'd0;

6 else count <= count + 'd1;

7

8 always@(count, reset)

9 case(count)

10 5'd0: begin

11 cos = 256'b010000000000000000 ...

12 sin = 256'b0000000000000000000 ...

13 end

14 5'd1: begin

15 cos = 256'b001111011111110100111101101110...

16 sin = 256'b000011111110101100010000111...

17 end

18

19 ...

20 endcase

In this particular case, the number of sample is (4 ∗ 100 mod 16) = 400. Each clock cycle, (16*N)
packed trigonometric carriers are output and once the period is over, the counter is reinitialised.

As explained in section 3.1.2, the sampling rate has to be at least twice the carrier’s frequency.
Nevertheless, in this implementation, the number of samples is computed to be the smallest number
being four time the carrier’s frequency and divisible by N. This property is primary to satisfy the
Nyquist criterion and ensure continuity when the period is repeated, since N samples have to be
processed each clock cycle.

42 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

6 Experimental Results

This last section is devoted to the experimental results obtained from the parallel QAM transmitter’s
implementation described in the previous sections.

This section starts by comparing the obtained modulator’s output with the MATLAB reference
simulation described in section 4.2. As explained in section 5, diverse design choices have to be
made while configuring the IP cores. More specifically, the Adder Subtracter cores have to be
configured to used either the FPGA fabric or the DSP and, the Multiplier IP cores offer a similar
choice between Mults or LUTs. Therefore, the last part of this section investigates the all the
pertinent configuration possibilities.

6.1 Experimental Results - Design Precision

This section aims to compare the transmitter’s output data with the reference MATLAB model in
order to observe the system’s precision. As mentioned before, the MATLAB simulation is considered
as perfect in this work; i.e. all the internal MATLAB rounding errors are ignored.

Considering a set of 16 parallel random inputs, Fig.28 here below displays the amplitude of the
system’s output computed by MATLAB and by the implemented transmitter. Both results are
plotted on the same graph but only one curved is visible due to their proximity. However, zooming
on the plot, we can still observe a small error. In that purpose, Fig.29 is then devoted to plot this
error as an absolute value9.

samples
8.8 9 9.2 9.4

am
pl
itu
de

125

126

127

128

129

130

131

132

133 Data

26

zoom

Figure 28: Transmitter’s precision comparison Figure 29: Transmitter’s error

From these figures, we can deduce that the implemented system has less than 1% of error respect to
the MATLAB model. For completeness, many other sets of random input samples have been tested
and the precision still appears to be very similar to the one exposed above.

9It would have been more appropriate to plot the error in relative value but unfortunately, due to the numerous

zeros, such a plot would have present singularities.

43 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

For further analysis, appendix B presents a comparison between the MATLAB reference model and
the realised system for each block of the system.

6.2 Experimental Results - Design Resources and Performances

All the simulations in this section have been made by selecting the parameter N=16 and a carrier
frequency of 100Hz. Certainly, multiple other simulations could have been easily made but since
the place and route’s time exceeds thirty hours, they are not part of this work.

This section starts by showing the resources requirements and the performances reached by the
optimization of the QAM system configuring the adders in order to use DSP instead of the fabric
and the multipliers in order to use Mults instead of LUTs. Secondly, the combination Fabric - LUTs
is inspected and finally, the configuration Fabric - Mults is analysed.

6.2.1 Design Resources and Performances - DSP & Mults Combination

Fig.31 plots the performances achieved when all adders are configured to use DSPs instead of the
fabric and Mults instead of LUTs, respect to the entered time constraints.

We can observe that the maximum achievable clock frequency after the place and route operation is
28.57 MHz, which is pretty low. Moreover, after the synthesis, the best achievable clock frequency
is only 28.77 MHz.

Slice Registers 5%

Slice LUTs 1%

LUTs Used as Logic 1%

Occupied Slices 14 %

Unused Flip Flop 6%

Unused LUTs 82%

Fully Used LUT-FF pairs 11%

Bounded IOBs 46%

BUFG-BUFGCTRLs 6%

DSP48E1s 92%

Figure 30: DSP - Mults Resources Figure 31: DSP - Mults Performances

It is therefore clear that selecting the DSP option in the adder’s configuration utility is not optimal.
This can be explained observing Tab.30. Indeed, the 10th row of this table shows that 92% of the
DSP48E1 block are used. This certainly causes a problem for an optimal place and route operation

44 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

and therefore, the design results very slow10. Indeed, routing such a huge amount of DSP48E1
requires much effort.

The above simulations have been made with all the supported QAM format but since those modules
don’t require many resources and are mainly combinatorial, the results stay identical.

6.2.2 Design Resources and Performances - Fabric & LUTs Combination

Similarly, to the previous section, Fig.33 displays the system’s performances when all multipliers
use LUTs instead of Mults. Since the use of DSP inside the adders appeared very inefficient in this
design, the Fabric has been used instead.

Slice Registers 8%

Slice LUTs 12%

LUTs Used as Logic 11%

Occupied Slices 22 %

Unused Flip Flop 22%

Unused LUTs 33%

Fully Used LUT-FF pairs 44%

Bounded IOBs 46%

BUFG-BUFGCTRLs 6%

DSP48E1s 54%

Figure 32: Fabric - LUTs Resources Figure 33: Fabric - LUTs Performances

This result is far better than the previous one. Indeed, the best achievable clock frequency after
synthesis is 62.26MHz. However, after the place and route operation, this speed drops to 58.82
MHz.

Similarly to the previous experiment, is has been found out that the QAM format doesn’t change
significantly the experimental results.

6.2.3 Design Resources and Performances - Fabric & Mults Combination

Finally, the best results are obtained by configuring the adders in order to use the fabric and the
multipliers to use the Mults. For that reason, this section contains deeper explanation regarding
the designed system.

10It is to note that the resources utilisation shown in Tab.31 slightly vary from with the time constraints. However,

only the resources of the optimal design in term of performances are presented.

45 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

At first sight, a speed of 62.59MHz is achievable after the logic synthesis and the place and route
allows the clock to reach exactly 62.5MHz. This results is slightly better than the previous case.

Nevertheless, since the systems receive N=16 par-

allel inputs, the effective reached speed is exactly:

16 ∗ 62.5 = 1GHz

From this observation, since each M-QAM for-

mat’s symbol contains log2(M) bits, we can de-

rive the throughput for each one of the supported

modulation formats:

8−QAM : 3 ∗ 16 ∗ 62.5 = 3Gb/s

16−QAM : 4 ∗ 16 ∗ 62.5 = 4Gb/s

32−QAM : 5 ∗ 16 ∗ 62.5 = 5Gb/s

64−QAM : 6 ∗ 16 ∗ 62.5 = 6Gb/s

Slice Registers 5%

Slice LUTs 7%

LUTs Used as Logic 6%

Occupied Slices 17%

Unused Flip Flop 28%

Unused LUTs 51%

Fully Used LUT-FF pairs 19%

Bounded IOBs 46%

BUFG-BUFGCTRLs 6%

DSP48E1s 57%

Figure 34: Fabric - LUTs Resources

From the information displayed in Tab.34, we observe that the simulated design with N=16 requires
more than 50% of the DSP48E1s logic units. Therefore, running a place and route with N=32 will
mandatorily fail.

Finally, Fig.35 displays the maximum achievable clock speed respect to the entered time constraints
for the optimised design and consists in the final result of this work.

Figure 35: Fabric - Mults Performances

46 October 5, 2015

Master Thesis ITIV, Embedded Systems Group

7 Conclusion And Further Improvements

This paper described a complete new way to optimise the performance of high-speed Quadrature
Amplitude Modulation (QAM) implemented on FPGAs by exploiting the advantageous properties
of a mixed time and frequency domain approach.

In this Work

While standard transmitters operating entirely in time domain need to process serial data due to the
convolutional nature of the filtering operation, this mixed-domain transmitter has the theoretical
capability to work with an arbitrary number of parallel inputs N .

The design has been simulated, synthesised, routed and tested on a Xilinx Virtex 7 FPGA kit with
a precision of 16 bits, for N = 16 parallel inputs and for multiple QAM formats; i.e. 8-QAM,
16-QAM, 32-QAM and 64-QAM. However, the concept can be generalised to more parallel inputs
and other modulation formats.

After a long place and route operation, a top frequency of 62.5 MHz has been reached while pro-
cessing 16 parallel inputs with a carrier frequency of 100 Hz. Therefore, this implementation offers
an effective speed of exactly 1 GHz. This result is remarkable when compared to the current state-
of-the-art for the target technology. In particular, when comparing this modulator with the work
referenced in [5] reaching 625 MHz but completely deprived of modularity or the system realised
this year by E2v Semiconductors achieving 750 MHz but without filter.

In addition to the high achieved performances, the realised system is extremely generic. Indeed, an
arbitrary number of filter coefficients can be considered and the number of parallel inputs N as well
as the QAM modulation format are initially choose by the user though the core parametrisation.

Next Works

Nevertheless, the results achieved in this work are only preliminaries. Indeed, multiples way could
optimise and improve the current system.

First of all, the Discrete Fourier Transform (DFT) can be replaced by the Fast Fourier Transform
(FFT), as depicted in appendix A. More specifically, a deep improvement could consist either in
implementing a FFT core or in waiting for the new Xilinx FFT IP core. Nevertheless, even if
replacing the DFT by the FFT is a huge improvement for large input sizes N , this system has been
tested for a relative small number of parallel inputs (N = 16) and therefore, in this particular case,
the FFT wouldn’t improve the performances dramatically.

Secondly, the current system uses 57% of the DSP48E1s when ran with N = 16 and, by consequence,
it cannot work for much larger N . Therefore, a possible further optimization could consist in
reducing the amount of DSP48E1s used by the design.

Finally, a further optimised system could support other QAM (and non-QAM) modulation formats.

47 October 5, 2015

Appendices

49

Master Thesis ITIV, Embedded Systems Group

A APPENDIX. Fast Fourier Transform

This first appendix illustrates an algorithm to efficiently perform the DFT operation. Even though
many algorithms to implement the Fourier Transform exists, the most preferred and generally used
is called Fast Fourier Transform (FFT). FFT is an algorithm to efficiently implement the Discrete
Fourier Transformation (see section 3.2.1). Indeed, the computational complexity of DFT is O(N2)
while FFT has a complexity of O(Nlog2(N)).

FFT exploits the the symmetry of the exponent e−j2πkn/N (see Eq.(4)) and aims to build smaller
DFT from a big one. In that purpose, considering N = 2m (with m ∈ N) and defining

WN = e−j2π/N (14)

we can separate x[n] into an even and an odd-indexed subsequence as follows:

X[k] =
N−1∑
0

x[n]W kn
N (15)

=
∑
neven

x[n]W kn
N +

∑
nodd

x[n]W kn
N (16)

Next, we define even and odd indices as 2r and r = 2r + 1, respectively (r = 0, 1, . . . , N/2− 1) and
we rewrite Eq.(21) as:

X[k] =

N/2−1∑
r=0

x[2r]W
k(2r)
N +

N/2−1∑
r=0

x[2r + 1]W
k(2r+1)
N (17)

=

N/2−1∑
r=0

x[2r](W 2
N)kr +W k

N

N/2−1∑
r=0

x[2r + 1](W 2
N)kr (18)

Finally, noticing that

W 2
N = e−j2π/(N/2) = WN/2 (19)

we obtain:

X[k] =

N/2−1∑
r=0

x[2r](WN/2)
kr

︸ ︷︷ ︸
Xe[k]

+W k
N

N/2−1∑
r=0

x[2r + 1](WN/2)
kr

︸ ︷︷ ︸
Xo[k]

(20)

= Xe[k] +W k
NXo[k] (21)

where Xe[k] and Xo[k] are respectively the N/2 DFT of the even and the odd samples. Therefore,
Eq.(21) express X[k] as the sum of two N/2 points DFT.

i October 5, 2015

Master Thesis ITIV, Embedded Systems Group

The DFT has now been split

in two, the next step is then

continuing to split the DFT

for p = log2(N) times. Fig.36

depict an example of Fast

Fourier Transform execution

for the particular case of N =

8 [14]. It is to note that the

time-domain inputs has to be

inserted in bit reversed order.

To take back the signal from

the frequency domain to the

time-domain, the reverse algo-

rithm can be applied. Figure 36: FFT execution (example with N = 8) [14]

This last algorithm is called Inverse Fast Fourier Transform (IFFT) and its derivation is not explained
because of its similarity with the FFT algorithm.

ii October 5, 2015

Master Thesis ITIV, Embedded Systems Group

B APPENDIX. Design Precision Analysis

This appendix displays some graphs comparing the reference MATLAB simulation with the actual
implemented system in the goal of proving the precision of the realised modulator. All graphs have
been generated considering the filter coefficients given in Tab.12 of section 3.3.2, a carrier frequency
of 100 Hz and the set of 16 random parallel inputs being mapped as shown here below.

(a) I test compnent (b) Q test compnent

Figure 37: Test input signal

This appendix is divided in two parts. The first part illustrates the precision of the Discrete Fourier
Transform (DFT) and Indirect Discrete Fourier Transform (IDFT) blocks while the second is devoted
to the filter’s and modulator’s precision.

B.1 Design Precision Analysis - DFT and IDFT

This first section of the appendix presents the amplitude of the DFT’s and IDFT’s output computed
through MATLAB and through the implemented transmitter in Figs.38 and 39, respectively. Each
of these figures is divided into six plots.

The upper two are dedicated to the real part. Both the reference MATALB result and the hardware
system’s result are plotted on the same graph and shown in the figure on the left. However, only one
curved is visible in these figures due the graph’s proximity. For that reason, the figure on the right
presents a zoom of the main peak of the function in order to visually discriminate the curves. The
two graphs in the middle have exactly the same purpose of the two upper but handle the imaginary
part. Again, the graph on the left plots both the MATLAB and the data values on the same figure
and, the right plot zooms on it. Finally, the two lower plots are the magnitude of the error; i. e.
the difference in absolute value between the reference MATLAB simulation and the implemented
hardware system.

iii October 5, 2015

Master Thesis ITIV, Embedded Systems Group

(a) DFT’s real part (b) DFT’s real part - Zoom

(c) DFT’s imaginary part (d) DFT’s imaginary part - Zoom

(e) DFT’s real part error (f) DFT’s imag. part error

Figure 38: DFT’s precision comparison

iv October 5, 2015

Master Thesis ITIV, Embedded Systems Group

(a) IDFT’s real part (b) IDFT’s real part - Zoom

(c) IDFT’s imaginary part (d) IDFT’s imaginary part - Zoom

(e) IDFT’s real part error (f) IDFT’s imag. part error

Figure 39: IDFT’s precision comparison

v October 5, 2015

Master Thesis ITIV, Embedded Systems Group

B.2 Design Precision Analysis - Filter and Modulator

This last part of the appendix is dedicated to the precision’s illustration of the filter and the mod-
ulator blocks. Fig.40 shows the filter’s real and imaginary part while Fig.41 shows the modulator’s
output. Once more, the very high system’s precision causes the curves to be almost indistinguishable.

The fact that the filter operation is realised in the Fourier domain (see section 4), implies that this
block is only composed of multipliers. Therefore the block’s precision is exactly the same as the
precision of the Xilinx IP core Multiplier v11.2 implementing it and its analysis is beyond the
scope of this work. For that reason, a zoomed versions of the filter’s graphs is not provided.

(a) Filter real part (b) Filter imaginary part

Figure 40: Filter precision comparison

(a) Modulator output (b) Modulator output - Zoom

Figure 41: Modulator precision comparison

vi October 5, 2015

Bibliography

[1] Yongbin Wu and Yousef R. Shayan,
Implementation of High-Speed Multi-Level QAM Modems Based On Xiilnx Virtex-II FPGA,
Departement of Electrical and Computer Engineering
Concordia University, Montreal, Quebec, Canada

[2] Xuan-Thang Vu, Nguyen Anh Duc and Trinh Anh Vu,
16-QAM Transmitter and Receiver Design Based on FPGA,
Electronics &Telecommunication Faculty
Hanoi University of Technology, Hanoi, Vietnam

[3] Vadim Smolyakov, Dimpesh Patel, Mahdi Shabany and P. Glenn Gulak,
A WiMAX/LTE Compliant FPGA Implementation of a High-Throughput Low-Complexity
4x4 64-QAM Soft MIMO Receiver,
Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada

[4] Siqiang MA and Yong’en CHEN,
FPGA Implementation of High-throughput Complex Adaptive Equalizer for QAM Receiver,
Communication Software and ASIC Design Center
Tongji University, Shanghai, China

[5] A. Al-Bermani, C. Wordehoff, O. Jana, K. Puntsria, M. F. Panhwara, U. Ruckert and R.
Noé,
The Influence of Laser Phase noise on Carrier Phase Estimation of a Real- Time 16-QAM
Transmission with FPGA Based Coherent Receiver,
University of Paderborn, Paderborn, Germany and Bielefeld University, Bielefeld, Germany

[6] M. Stackler, A. Glascott-Jones, N. Chantier,
A high speed transmission system using QAM and direct conversion with high bandwidth
converters,
E2v Semiconductors

[7] Shalina Percy George Ford, Peter Figuli and Juergen Becker,
Parametric Design Space Exploration for Optimizing QAM Based High-speed Communica-
tion,
IEEE/CIC International Conference on Communications in China, 2015

Master Thesis ITIV, Embedded Systems Group

[8] M. Ferrario, A. Spalvieri and R.Valtolina,
Design of transmit fir filters for fdm data transmission systems,
Communications, IEEE Transactions on, vol. 52, no. 2, Feb 2004

[9] Ian Poole,
Comparison of 8-QAM, 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM, Types,
Radio-Electronics,
http://www.radio-electronics.com/info/rf-technology-design/quadrature-amplitude-
modulation-qam/8qam-16qam-32qam-64qam-128qam-256qam.php

[10] NI AWR Design Environment 12,
Visual System Simulator System Block Catalog,
2015

[11] Online Electrical Engineering,
Gray Code — Binary to Gray Code and that to Binary Conversion,
http://www.electrical4u.com/gray-code-binary-to-gray-code-and-that-to-binary-conversion/

[12] Ravindra H. Sharma, Dr. Kiritkumar R. Bhatt,
A Review on Implementation of QAM on FPGA,
International Journal of Innovative Research in Computer and Communication Engineering
on Vol. 3, Issue 3, March 2015

[13] P.J. Bevel,
The Fourier Transform,
Copyright 2010 TheFourierTransform.com,
http://www.thefouriertransform.com

[14] Douglas L. Jones,
Decimation-in-time (DIT) Radix-2 FFT,
http://cnx.org/contents/ce67266a-1851-47e4-8bfc-82eb447212b4@7/Decimation-in-time-
DIT-Radix-2

October 5, 2015

	Motivation and Introduction
	Today's State-of-the Art
	Fundamentals
	Fundamentals - QAM Modulation
	QAM Modulation - QAM Mapping
	QAM Modulation - Modulator

	Fundamentals - Fourier Transform
	Fourier Transform - Theoretical Concepts
	 Fourier Transform - Convolution Property

	Fundamentals - Filter
	Filter - Finite Impulse Response Filters
	Filter - Squared Raised Root Cosine Filter

	Concepts and Methodology
	Concepts and Methodology - Design Strategy
	Concepts and Methodology - Conceptual Model

	Implementation
	Implementation - Design Pattern
	Implementation - QAM Mapper
	Implementation - Discrete Fourier Transform
	Implementation - SRRC Filter
	Implementation - Modulator
	Implementation - Transmitter

	Experimental Results
	Experimental Results - Design Precision
	Experimental Results - Design Resources and Performances
	Design Resources and Performances - DSP & Mults Combination
	Design Resources and Performances - Fabric & LUTs Combination
	Design Resources and Performances - Fabric & Mults Combination

	Conclusion And Further Improvements
	Appendices
	APPENDIX. Fast Fourier Transform
	APPENDIX. Design Precision Analysis
	Design Precision Analysis - DFT and IDFT
	Design Precision Analysis - Filter and Modulator

