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Abstract. We present Move, a safe and flexible programming language for the Libra Blockchain [1][2].
Move is an executable bytecode language used to implement custom transactions and smart contracts.
The key feature of Move is the ability to define custom resource types with semantics inspired by linear
logic [3]: a resource can never be copied or implicitly discarded, only moved between program storage
locations. These safety guarantees are enforced statically by Move’s type system. Despite these
special protections, resources are ordinary program values — they can be stored in data structures,
passed as arguments to procedures, and so on. First-class resources are a very general concept that
programmers can use not only to implement safe digital assets but also to write correct business
logic for wrapping assets and enforcing access control policies. The safety and expressivity of Move
have enabled us to implement significant parts of the Libra protocol in Move, including Libra coin,
transaction processing, and validator management.

1. Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing
access to knowledge, free communications, and a wide range of lower-cost, more convenient services.
This connectivity has also enabled more people to access the financial ecosystem. Yet, despite this
progress, access to financial services is still limited for those who need it most.

The mission of Libra is to change this state of affairs [1]. In this paper, we present Move, a new
programming language for implementing custom transaction logic and smart contracts in the Libra
protocol [2]. To introduce Move, we:

1. Describe the challenges of representing digital assets on a blockchain (Section 2).

2. Explain how our design for Move addresses these challenges (Section 3).

3. Give an example-oriented overview of Move’s key features and programming model (Section 4).

4. Dig into the technical details of the language and virtual machine design (Section 5, Section 6,
and Appendix A).

5. Conclude by summarizing the progress we have made on Move, describing our plans for lan-
guage evolution, and outlining our roadmap for supporting third-party Move code on the Libra
Blockchain (Section 7).

∗ The authors work at Calibra, a subsidiary of Facebook, Inc., and contribute this paper to the Libra Association
under a Creative Commons Attribution 4.0 International License.
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Audience. This paper is intended for two different audiences:

• Programming language researchers who may not be familiar with blockchain systems. We
encourage this audience to read the paper from cover-to-cover, but we warn that we may
sometimes refer to blockchain concepts without providing enough context for an unfamiliar
reader. Reading [2] before diving into this paper will help, but it is not necessary.

• Blockchain developers who may not be familiar with programming languages research but are
interested in learning about the Move language. We encourage this audience to begin with
Section 3. We caution that Section 5, Section 6, and Appendix A contain some programming
language terminology and formalization that may be unfamiliar.

2. Managing Digital Assets on a Blockchain

We will begin by briefly explaining a blockchain at an abstract level to help the reader understand the
role played by a “blockchain programming language” like Move. This discussion intentionally omits
many important details of a blockchain system in order to focus on the features that are relevant
from a language perspective.

2.1. An Abstract View of a Blockchain

A blockchain is a replicated state machine [4][5]. Replicators in the system are known as validators.
Users of the system send transactions to validators. Each validator understands how to execute a
transaction to transition its internal state machine from the current state to a new state.

Validators leverage their shared understanding of transaction execution to follow a consensus protocol
for collectively defining and maintaining the replicated state. If

• the validators start from the same initial state, and

• the validators agree on what the next transaction should be, and

• executing a transaction produces a deterministic state transition,

then the validators will also agree on what the next state is. Repeatedly applying this scheme allows
the validators to process transactions while continuing to agree on the current state.

Note that the consensus protocol and the state transition components are not sensitive to each other’s
implementation details. As long as the consensus protocol ensures a total order among transactions
and the state transition scheme is deterministic, the components can interact in harmony.

2.2. Encoding Digital Assets in an Open System

The role of a blockchain programming language like Move is to decide how transitions and state are
represented. To support a rich financial infrastructure, the state of the Libra Blockchain must be
able to encode the owners of digital assets at a given point in time. Additionally, state transitions
should allow the transfer of assets.

There is one other consideration that must inform the design of a blockchain programming language.
Like other public blockchains, the Libra Blockchain is an open system. Anyone can view the current
blockchain state or submit transactions to a validator (i.e., propose state transitions). Traditionally,
software for managing digital assets (e.g., banking software) operates in a closed system with special
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administrative controls. In a public blockchain, all participants are on equal footing. A participant
can propose any state transition she likes, yet not all state transitions should be allowed by the
system. For example, Alice is free to propose a state transition that transfers assets owned by Bob.
The state transition function must be able to recognize that this state transition is invalid and reject
it.

It is challenging to choose a representation of transitions and state that encodes ownership of digital
assets in an open software system. In particular, there are two properties of physical assets that are
difficult to encode in digital assets:

• Scarcity. The supply of assets in the system should be controlled. Duplicating existing assets
should be prohibited, and creating new assets should be a privileged operation.

• Access control. A participant in the system should be able to protect her assets with access
control policies.

To build intuition, we will see how these problems arise during a series of strawman proposals for the
representation of state transitions. We will assume a blockchain that tracks a single digital asset called
a StrawCoin. The blockchain state G is structured as a key-value store that maps user identities
(represented with cryptographic public keys) to natural number values that encode the StrawCoin
held by each user. A proposal consists of a transaction script that will be evaluated using the given
evaluation rule, producing an update to apply to the global state. We will write G[𝐾] := 𝑛 to denote
updating the natural number stored at key 𝐾 in the global blockchain state with the value 𝑛.

The goal of each proposal is to design a system that is expressive enough to allow Alice to send
StrawCoin to Bob, yet constrained enough to prevent any user from violating the scarcity or access
control properties. The proposals do not attempt to address security issues such as replay attacks [6]
that are important, but unrelated to our discussion about scarcity and access control.

Scarcity. The simplest possible proposal is to directly encode the update to the state in the trans-
action script:

Transaction Script Format Evaluation Rule

⟨𝐾, 𝑛⟩ G[𝐾] := 𝑛

This representation can encode sending StrawCoin from Alice to Bob. But it has several serious
problems. For one, this proposal does not enforce the scarcity of StrawCoin. Alice can give herself
as many StrawCoin as she pleases “out of thin air” by sending the transaction ⟨Alice, 100⟩. Thus,
the StrawCoin that Alice sends to Bob are effectively worthless because Bob could just as easily have
created those coins for himself.

Scarcity is an important property of valuable physical assets. A rare metal like gold is naturally scarce,
but there is no inherent physical scarcity in digital assets. A digital asset encoded as some sequence
of bytes, such as G[Alice] → 10, is no physically harder to produce or copy than another sequence of
bytes, such as G[Alice] → 100. Instead, the evaluation rule must enforce scarcity programmatically.

Let’s consider a second proposal that takes scarcity into account:

Transaction Script Format Evaluation Rule

⟨𝐾𝑎, 𝑛, 𝐾𝑏⟩ if G[𝐾𝑎] ≥ 𝑛 then
G[𝐾𝑎] := G[𝐾𝑎] - 𝑛
G[𝐾𝑏] := G[𝐾𝑏] + 𝑛
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Under this scheme, the transaction script specifies both the public key 𝐾𝑎 of the sender, Alice, and the
public key 𝐾𝑏 of the recipient, Bob. The evaluation rule now checks that the number of StrawCoin
stored under 𝐾𝑎 is at least 𝑛 before performing any update. If the check succeeds, the evaluation rule
subtracts 𝑛 from the StrawCoin stored under the sender’s key and adds 𝑛1 to the StrawCoin stored
under the recipient’s key. Under this scheme, executing a valid transaction script enforces scarcity
by conserving the number of StrawCoin in the system. Alice can no longer create StrawCoin out of
thin air — she can only give Bob StrawCoin debited from her account.

Access control. Though the second proposal addresses the scarcity issue, it still has a problem:
Bob can send transactions that spend StrawCoin belonging to Alice. For example, nothing in the
evaluation rule will stop Bob from sending the transaction ⟨Alice, 100, Bob⟩. We can address this by
adding an access control mechanism based on digital signatures:

Transaction Script Format Evaluation Rule

𝑆𝐾𝑎
(⟨𝐾𝑎, 𝑛, 𝐾𝑏⟩) if verify_sig(𝑆𝐾𝑎

(⟨𝐾𝑎, 𝑛, 𝐾𝑏⟩)) && G[𝐾𝑎] ≥ 𝑛 then
G[𝐾𝑎] := G[𝐾𝑎] - 𝑛
G[𝐾𝑏] := G[𝐾𝑏] + 𝑛

This scheme requires Alice to sign the transaction script with her private key. We write 𝑆𝐾(𝑚) for
signing the message 𝑚 using the private key paired with public key 𝐾. The evaluation rule uses the
verify_sig function to check the signature against Alice’s public key 𝐾𝑎. If the signature does not
verify, no update is performed. This new rule solves the problem with the previous proposal by using
the unforgeability of digital signatures to prevent Alice from debiting StrawCoin from any account
other than her own.

As an aside, notice that there was effectively no need for an evaluation rule in the first strawman pro-
posal — the proposed state update was applied directly to the key-value store. But as we progressed
through the proposals, a clear separation between the preconditions for performing the update and
the update itself has emerged. The evaluation rule decides both whether to perform an update and
what update to perform by evaluating the script. This separation is fundamental because enforcing
access control and scarcity policies inevitably requires some form of evaluation — the user proposes
a state change, and computation must be performed to determine whether the state change conforms
to the policy. In an open system, the participants cannot be trusted to enforce the policies off-chain
and submit direct updates to the state (as in the first proposal). Instead, the access control policies
must be enforced on-chain by the evaluation rule.

2.3. Existing Blockchain Languages

StrawCoin is a toy language, but it attempts to capture the essence of the Bitcoin Script [7][8] and
Ethereum Virtual Machine bytecode [9] languages (particularly the latter). Though these languages
are more sophisticated than StrawCoin, they face many of the same problems:

1. Indirect representation of assets. An asset is encoded using an integer, but an integer
value is not the same thing as an asset. In fact, there is no type or value that represents
Bitcoin/Ether/StrawCoin! This makes it awkward and error-prone to write programs that use
assets. Patterns such as passing assets into/out of procedures or storing assets in data structures
require special language support.

1 For simplicity, we will ignore the possibility of integer overflow here.
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2. Scarcity is not extensible. The language only represents one scarce asset. In addition,
the scarcity protections are hardcoded directly in the language semantics. A programmer that
wishes to create a custom asset must carefully reimplement scarcity with no support from the
language.

3. Access control is not flexible. The only access control policy the model enforces is the
signature scheme based on the public key. Like the scarcity protections, the access control
policy is deeply embedded in the language semantics. It is not obvious how to extend the
language to allow programmers to define custom access control policies.

Bitcoin Script. Bitcoin Script has a simple and elegant design that focuses on expressing custom
access control policies for spending Bitcoin. The global state consists of a set of unspent transaction
output (UTXOs). A Bitcoin Script program provides inputs (e.g., digital signatures) that satisfy the
access control policies for the old UTXOs it consumes and specifies custom access control policies for
the new UTXOs it creates. Because Bitcoin Script includes powerful instructions for digital signature
checking (including multisignature [10] support), programmers can encode a rich variety of access
control policies.

However, the expressivity of Bitcoin Script is fundamentally limited. Programmers cannot define
custom datatypes (and, consequently, custom assets) or procedures, and the language is not Turing-
complete. It is possible for cooperating parties to perform some richer computation via complex
multi-transaction protocols [11] or informally define custom assets via “colored coins” [12][13]. How-
ever, these schemes work by pushing complexity outside the language and, thus, do not enable true
extensibility.

Ethereum Virtual Machine bytecode. Ethereum is a ground-breaking system that demonstrates
how to use blockchain systems for more than just payments. Ethereum Virtual Machine (EVM)
bytecode programmers can publish smart contracts [14] that interact with assets such as Ether and
define new assets using a Turing-complete language. The EVM supports many features that Bitcoin
Script does not, such as user-defined procedures, virtual calls, loops, and data structures.

However, the expressivity of the EVM has opened the door to expensive programming mistakes. Like
StrawCoin, the Ether currency has a special status in the language and is implemented in a way
that enforces scarcity. But implementers of custom assets (e.g., via the ERC20 [15] standard) do not
inherit these protections (as described in (2)) — they must be careful not to introduce bugs that
allow duplication, reuse, or loss of assets. This is challenging due to the combination of the indirect
representation problem described in (1) and the highly dynamic behavior of the EVM. In particular,
transferring Ether to a smart contract involves dynamic dispatch, which has led to a new class of bugs
known as re-entrancy vulnerabilities [16]. High-profile exploits, such as the DAO attack [17] and the
Parity Wallet hack [18], have allowed attackers to steal millions of dollars worth of cryptocurrency.

3. Move Design Goals

The Libra mission is to enable a simple global currency and financial infrastructure that empowers
billions of people [1]. The Move language is designed to provide a safe, programmable foundation
upon which this vision can be built. Move must be able to express the Libra currency and governance
rules in a precise, understandable, and verifiable manner. In the longer term, Move must be capable
of encoding the rich variety of assets and corresponding business logic that make up a financial
infrastructure.

To satisfy these requirements, we designed Move with four key goals in mind: first-class assets,
flexibility, safety, and verifiability.
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3.1. First-Class Resources

Blockchain systems let users write programs that directly interact with digital assets. As we discussed
in Section 2.2, digital assets have special characteristics that distinguish them from the values tradi-
tionally used in programming, such as booleans, integers, and strings. A robust and elegant approach
to programming with assets requires a representation that preserves these characteristics.

The key feature of Move is the ability to define custom resource types with semantics inspired by linear
logic [3]: a resource can never be copied or implicitly discarded, only moved between program storage
locations. These safety guarantees are enforced statically by Move’s type system. Despite these
special protections, resources are ordinary program values — they can be stored in data structures,
passed as arguments to procedures, and so on. First-class resources are a very general concept that
programmers can use not only to implement safe digital assets but also to write correct business logic
for wrapping assets and enforcing access control policies.

Libra coin itself is implemented as an ordinary Move resource with no special status in the language.
Since a Libra coin represents real-world assets managed by the Libra reserve [19], Move must allow
resources to be created (e.g., when new real-world assets enter the Libra reserve), modified (e.g.,
when the digital asset changes ownership), and destroyed (e.g., when the physical assets backing
the digital asset are sold). Move programmers can protect access to these critical operations with
modules. Move modules are similar to smart contracts in other blockchain languages. A module
declares resource types and procedures that encode the rules for creating, destroying, and updating its
declared resources. Modules can invoke procedures declared by other modules and use types declared
by other modules. However, modules enforce strong data abstraction — a type is transparent inside
its declaring module and opaque outside of it. Furthermore, critical operations on a resource type T
may only be performed inside the module that defines T.

3.2. Flexibility

Move adds flexibility to Libra via transaction scripts. Each Libra transaction includes a transaction
script that is effectively the main procedure of the transaction. A transaction script is a single
procedure that contains arbitrary Move code, which allows customizable transactions. A script can
invoke multiple procedures of modules published in the blockchain and perform local computation on
the results. This means that scripts can perform either expressive one-off behaviors (such as paying
a specific set of recipients) or reusable behaviors (by invoking a single procedure that encapsulates
the reusable logic)2.

Move modules enable a different kind of flexibility via safe, yet flexible code composition. At a high
level, the relationship between modules/resources/procedures in Move is similar to the relationship
between classes/objects/methods in object-oriented programming. However, there are important
differences — a Move module can declare multiple resource types (or zero resource types), and Move
procedures have no notion of a self or this value. Move modules are most similar to a limited
version of ML-style modules [20].

3.3. Safety

Move must reject programs that do not satisfy key properties, such as resource safety, type safety,
and memory safety. How can we choose an executable representation that will ensure that every

2 By contrast, Ethereum transactions only support the second use-case — they are constrained to invoking a single
smart contract method.
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program executed on the blockchain satisfies these properties? Two possible approaches are: (a) use
a high-level programming language with a compiler that checks these properties, or (b) use low-level
untyped assembly and perform these safety checks at runtime.

Move takes an approach between these two extremes. The executable format of Move is a typed
bytecode that is higher-level than assembly yet lower-level than a source language. The bytecode is
checked on-chain for resource, type, and memory safety by a bytecode verifier3 and then executed
directly by a bytecode interpreter. This choice allows Move to provide safety guarantees typically
associated with a source language, but without adding the source compiler to the trusted computing
base or the cost of compilation to the critical path for transaction execution.

3.4. Verifiability

Ideally, we would check every safety property of Move programs via on-chain bytecode analysis or
runtime checks. Unfortunately, this is not feasible. We must carefully weigh the importance and
generality of a safety guarantee against the computational cost and added protocol complexity of
enforcing the guarantee with on-chain verification.

Our approach is to perform as much lightweight on-chain verification of key safety properties as
possible, but design the Move language to support advanced off-chain static verification tools. We
have made several design decisions that make Move more amenable to static verification than most
general-purpose languages:

1. No dynamic dispatch. The target of each call site can be statically determined. This makes
it easy for verification tools to reason precisely about the effects of a procedure call without
performing a complex call graph construction analysis.

2. Limited mutability. Every mutation to a Move value occurs through a reference. References
are temporary values that must be created and destroyed within the confines of a single transac-
tion script. Move’s bytecode verifier uses a “borrow checking” scheme similar to Rust to ensure
that at most one mutable reference to a value exists at any point in time. In addition, the
language ensures that global storage is always a tree instead of an arbitrary graph. This allows
verification tools to modularize reasoning about the effects of a write operation.

3. Modularity. Move modules enforce data abstraction and localize critical operations on re-
sources. The encapsulation enabled by a module combined with the protections enforced by
the Move type system ensures that the properties established for a module’s types cannot be
violated by code outside the module. We expect this design to enable exhaustive functional ver-
ification of important module invariants by looking at a module in isolation without considering
its clients.

Static verification tools can leverage these properties of Move to accurately and efficiently check
both for the absence of runtime failures (e.g., integer overflow) and for important program-specific
functional correctness properties (e.g., the resources locked in a payment channel can eventually be
claimed by a participant). We share more detail about our plans for functional verification in Sec-
tion 7.

3 This design is similar to the load-time bytecode verification performed by the Java Virtual Machine [21] and Common
Language Runtime [22].
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4. Move Overview

We introduce the basics of Move by walking through the transaction script and module involved in a
simple peer-to-peer payment. The module is a simplified version of the actual Libra coin implementa-
tion. The example transaction script demonstrates that a malicious or careless programmer outside
the module cannot violate the key safety invariants of the module’s resources. The example module
shows how to implement a resource that leverages strong data abstraction to establish and maintain
these invariants.

The code snippets in this section are written in a variant of the Move intermediate representation
(IR). Move IR is high-level enough to write human-readable code, yet low-level enough to have a
direct translation to Move bytecode. We present code in the IR because the stack-based Move
bytecode would be more difficult to read, and we are currently designing a Move source language (see
Section 7). We note that all of the safety guarantees provided by the Move type system are checked
at the bytecode level before executing the code.

4.1. Peer-to-Peer Payment Transaction Script

public main(payee: address, amount: u64) {
let coin: 0x0.Currency.Coin = 0x0.Currency.withdraw_from_sender(copy(amount));
0x0.Currency.deposit(copy(payee), move(coin));

}

This script takes two inputs: the account address of the payment’s recipient and an unsigned integer
that represents the number of coins to be transferred to the recipient. The effect of executing this
script is straightforward: amount coins will be transferred from the transaction sender to payee. This
happens in two steps. In the first step, the sender invokes a procedure named withdraw_from_sender
from the module stored at 0x0.Currency. As we will explain in Section 4.2, 0x0 is the account
address4 where the module is stored and Currency is the name of the module. The value coin
returned by this procedure is a resource value whose type is 0x0.Currency.Coin. In the second step,
the sender transfers the funds to payee by moving the coin resource value into the 0x0.Currency
module’s deposit procedure.

This example is interesting because it is quite delicate. Move’s type system will reject small variants of
the same code that would lead to bad behavior. In particular, the type system ensures that resources
can never be duplicated, reused, or lost. For example, the following three changes to the script would
be rejected by the type system:

Duplicating currency by changing move(coin) to copy(coin). Note that each usage of a
variable in the example is wrapped in either copy() or move(). Move, following Rust and C++,
implements move semantics. Each read of a Move variable x must specify whether the usage moves
x’s value out of the variable (rendering x unavailable) or copies the value (leaving x available for
continued use). Unrestricted values like u64 and address can be both copied and moved. But
resource values can only be moved. Attempting to duplicate a resource value (e.g., using copy(coin)
in the example above) will cause an error at bytecode verification time.

Reusing currency by writing move(coin) twice. Adding the line
0x0.Currency.deposit(copy(some_other_payee), move(coin)) to the example above would let
the sender “spend” coin twice — the first time with payee and the second with some_other_payee.
This undesirable behavior would not be possible with a physical asset. Fortunately, Move will reject

4 Addresses are 256-bit values that we abbreviate as 0x0, 0x1, etc., for convenience.
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this program. The variable coin becomes unavailable after the first move, and the second move will
trigger a bytecode verification error.

Losing currency by neglecting to move(coin). The Move language implements linear [3][23]
resources that must be moved exactly once5. Failing to move a resource (e.g., by deleting the
line that contains move(coin) in the example above) will trigger a bytecode verification error. This
protects Move programmers from accidentally — or intentionally — losing track of the resource.
These guarantees go beyond what is possible for physical assets like paper currency.

We use the term resource safety to describe the guarantees that Move resources can never be copied,
reused, or lost. These guarantees are quite powerful because Move programmers can implement
custom resources that also enjoy these protections. As we mentioned in Section 3.1, even the Libra
currency is implemented as a custom resource with no special status in the Move language.

4.2. CurrencyModule

In this section, we will show how the implementation of the Currency module used in the example
above leverages resource safety to implement a secure fungible asset. We will begin by explaining a
bit about the blockchain environment in which Move code runs.

Primer: Move execution model. As we explained in Section 3.2, Move has two different kinds
of programs: transaction scripts, like the example outlined in Section 4.1 and modules, such as the
Currency module that we will present shortly. Transaction scripts like the example are included
in each user-submitted transaction and invoke procedures of a module to update the global state.
Executing a transaction script is all-or-nothing — either execution completes successfully, and all of
the writes performed by the script are committed to global storage, or execution terminates with an
error (e.g., due to a failed assertion or out-of-gas error), and nothing is committed. A transaction
script is a single-use piece of code — after its execution, it cannot be invoked again by other transaction
scripts or modules.

By contrast, a module is a long-lived piece of code published in the global state. The module name
0x0.Currency used in the example above contains the account address 0x0 where the module code
is published. The global state is structured as a map from account addresses to accounts.

0x0

modules/Currency

0x0.Currency.Coin	{	…	}

modules/MyModule1

	0x1.MyModule.T	{	…	}	

	0x0.Currency.Coin	{	…	}

	0x0.Currency.Coin	{	…	}

0x1 0x2

modules/MyModule3

modules/MyModule2

Figure 1: A example global state with three accounts.

Each account can contain zero or more modules (depicted as rectangles) and one or more resource val-
ues (depicted as cylinders). For example, the account at address 0x0 contains a module 0x0.Currency
and a resource value of type 0x0.Currency.Coin. The account at address 0x1 has two resources and
one module; the account at address 0x2 has two modules and a single resource value.

5 This is similar to Rust, which implements affine resources that can be moved at most once.
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Accounts can contain at most one resource value of a given type and at most one module with a given
name. The account at address 0x0 would not be allowed to contain an additional 0x0.Currency.Coin
resource or another module named Currency. However, the account at address 0x1 could add a
module named Currency. In that case, 0x0 could also hold a resource of type 0x1.Currency.Coin.
0x0.Currency.Coin and 0x1.Currency.Coin are distinct types that cannot be used interchangeably;
the address of the declaring module is part of the type.

Note that allowing at most a single resource of a given type in an account is not restrictive. This
design provides a predictable storage schema for top-level account values. Programmers can still hold
multiple instances of a given resource type in an account by defining a custom wrapper resource (e.g.,
resource TwoCoins { c1: 0x0.Currency.Coin, c2: 0x0.Currency.Coin }).

Declaring the Coin resource. Having explained how modules fit into the Move execution model,
we are finally ready to look inside the Currency module:

module Currency {
resource Coin { value: u64 }
// ...

}

This code declares a module named Currency and a resource type named Coin that is managed by the
module. A Coin is a struct type with a single field value of type u64 (a 64-bit unsigned integer). The
structure of Coin is opaque outside of the Currency module. Other modules and transaction scripts
can only write or reference the value field via the public procedures exposed by the module. Similarly,
only the procedures of the Currency module can create or destroy values of type Coin. This scheme
enables strong data abstraction — module authors have complete control over the access, creation,
and destruction of their declared resources. Outside of the API exposed by the Currency module,
the only operation another module can perform on a Coin is a move. Resource safety prohibits other
modules from copying, destroying, or double-moving resources.

Implementing deposit. Let’s investigate how the Currency.deposit procedure invoked by the
transaction script in the previous section works:

public deposit(payee: address, to_deposit: Coin) {
let to_deposit_value: u64 = Unpack<Coin>(move(to_deposit));
let coin_ref: &mut Coin = BorrowGlobal<Coin>(move(payee));
let coin_value_ref: &mut u64 = &mut move(coin_ref).value;
let coin_value: u64 = *move(coin_value_ref);
*move(coin_value_ref) = move(coin_value) + move(to_deposit_value);

}

At a high level, this procedure takes a Coin resource as input and combines it with the Coin resource
stored in the payee’s account. It accomplishes this by:

1. Destroying the input Coin and recording its value.

2. Acquiring a reference to the unique Coin resource stored under the payee’s account.

3. Incrementing the value of payee’s Coin by the value of the Coin passed to the procedure.

There are some aspects of the low-level mechanics of this procedure that are worth explaining. The
Coin resource bound to to_deposit is owned by the deposit procedure. To invoke the procedure,
the caller needs to move the Coin bound to to_deposit into the callee (which will prevent the caller
from reusing it).
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The Unpack procedure invoked at the first line is one of several module builtins for operating on the
types declared by a module. Unpack<T> is the only way to delete a resource of type T. It takes a
resource of type T as input, destroys it, and returns the values bound to the fields of the resource.
Module builtins like Unpack can only be used on the resources declared in the current module. In the
case of Unpack, this constraint prevents other code from destroying a Coin, which, in turn, allows the
Currency module to set a custom precondition on the destruction of Coin resources (e.g., it could
choose only to allow the destruction of zero-valued Coins).

The BorrowGlobal procedure invoked on the third line is also a module builtin. BorrowGlobal<T>
takes an address as input and returns a reference to the unique instance of T published under that
address6. This means that the type of coin_ref in the code above is &mut Coin — a mutable
reference to a Coin resource, not Coin — which is an owned Coin resource. The next line moves
the reference value bound to coin_ref in order to acquire a reference coin_value_ref to the Coin’s
value field. The final lines of the procedure read the previous value of the payee’s Coin resource and
mutate coin_value_ref to reflect the amount deposited7.

We note that the Move type system cannot catch all implementation mistakes inside the module. For
example, the type system will not ensure that the total value of all Coins in existence is preserved
by a call to deposit. If the programmer made the mistake of writing *move(coin_value_ref) = 1
+ move(coin_value) + move(to_deposit_value) on the final line, the type system would accept
the code without question. This suggests a clear division of responsibilities: it is the programmer’s
job to establish proper safety invariants for Coin inside the confines of the module, and it is the type
system’s job to ensure that clients of Coin outside the module cannot violate these invariants.

Implementing withdraw_from_sender. In the implementation above, depositing funds via the
deposit procedure does not require any authorization — deposit can be called by anyone. By
contrast, withdrawing from an account must be protected by an access control policy that grants
exclusive privileges to the owner of the Currency resource. Let us see how the withdraw_from_sender
procedure called by our peer-to-peer payment transaction script implements this authorization:

public withdraw_from_sender(amount: u64): Coin {
let transaction_sender_address: address = GetTxnSenderAddress();
let coin_ref: &mut Coin = BorrowGlobal<Coin>(move(transaction_sender_address));
let coin_value_ref: &mut u64 = &mut move(coin_ref).value;
let coin_value: u64 = *move(coin_value_ref);
RejectUnless(copy(coin_value) >= copy(amount));
*move(coin_value_ref) = move(coin_value) - copy(amount);
let new_coin: Coin = Pack<Coin>(move(amount));
return move(new_coin);

}

This procedure is almost the inverse of deposit, but not quite. It:

1. Acquires a reference to the unique resource of type Coin published under the sender’s account.

2. Decreases the value of the referenced Coin by the input amount.

3. Creates and returns a new Coin with value amount.

The access control check performed by this procedure is somewhat subtle. The deposit procedure
allows the caller to specify the address passed to BorrowGlobal, but withdraw_from_sender can only
pass the address returned by GetTxnSenderAddress. This procedure is one of several transaction

6 If no instance of T exists under the given address, then the builtin will fail.
7 If the addition on the final line results in an integer overflow, it will trigger a runtime error.
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builtins that allow Move code to read data from the transaction that is currently being executed. The
Move virtual machine authenticates the sender address before the transaction is executed. Using the
BorrowGlobal builtin in this way ensures that that the sender of a transaction can only withdraw
funds from her own Coin resource.

Like all module builtins, BorrowGlobal<Coin> can only be invoked inside the module that declares
Coin. If the Currency module does not expose a procedure that returns the result of BorrowGlobal,
there is no way for code outside of the Currency module to get a reference to a Coin resource
published in global storage.

Before decreasing the value of the transaction sender’s Coin resource, the procedure asserts that
the value of the coin is greater than or equal to the input formal amount using the RejectUnless
instruction. This ensures that the sender cannot withdraw more than she has. If this check fails,
execution of the current transaction script halts and none of the operations it performed will be
applied to the global state.

Finally, the procedure decreases the value of the sender’s Coin by amount and creates a new Coin
resource using the inverse of Unpack — the Pack module builtin. Pack<T> creates a new resource
of type T. Like Unpack<T>, Pack<T> can only be invoked inside the declaring module of resource T.
Here, Pack is used to create a resource new_coin of type Coin and move it to the caller. The caller
now owns this Coin resource and can move it wherever she likes. In our example transaction script
in Section 4.1, the caller chooses to deposit the Coin into the payee’s account.

5. The Move Language

In this section, we present a semi-formal description of the Move language, bytecode verifier, and
virtual machine. Appendix A lays out all of these components in full detail, but without any accom-
panying prose. Our discussion here will use excerpts from the appendix and occasionally refer to
symbols defined there.

Global state.

Σ ∈ GlobalState = AccountAddress ⇀ Account
Account = (StructID ⇀ Resource) × (ModuleName ⇀ Module)

The goal of Move is to enable programmers to define global blockchain state and securely implement
operations for updating global state. As we explained in Section 4.2, the global state is organized as
a partial map from addresses to accounts. Accounts contain both resource data values and module
code values. Different resources in an account must have distinct identifiers. Different modules in an
account must have distinct names.

Modules.

Module = ModuleName × (StructName ⇀ StructDecl)
× (ProcedureName ⇀ ProcedureDecl)

ModuleID = AccountAddress × ModuleName
StructID = ModuleID × StructName
StructDecl = Kind × (FieldName ⇀ NonReferenceType)

A module consists of a name, struct declarations (including resources, as we will explain shortly), and
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procedure declarations. Code can refer to a published module using a unique identifier consisting of
the module’s account address and the module’s name. The module identifier serves as a namespace
that qualifies the identifiers of its struct types and procedures for code outside of the module.

Move modules enable strong data abstraction. The procedures of a module encode rules for creating,
writing, and destroying the types declared by the module. Types are transparent inside their declaring
module and opaque outside. Move modules can also enforce preconditions for publishing a resource
under an account via the MoveToSender instruction, acquiring a reference to a resource under an
account via the BorrowGlobal instruction, and removing a resource from an account via the MoveFrom
instruction.

Modules give Move programmers the flexibility to define rich access control policies for resources. For
example, a module can define a resource type that can only be destroyed when its f field is zero, or
a resource that can only be published under certain account addresses.

Types.

PrimitiveType = AccountAddress ∪ Bool ∪ UnsignedInt64 ∪ Bytes
StructType = StructID × Kind
𝒯 ⊆ NonReferenceType = StructType ∪ PrimitiveType
Type ::= 𝒯 | &mut 𝒯 | & 𝒯

Move supports primitive types, including booleans, 64-bit unsigned integers, 256-bit account ad-
dresses, and fixed-size byte arrays. A struct is a user-defined type declared by a module. A struct
type is designated as a resource by tagging it with a resource kind. All other types, including non-
resource struct types and primitive types, are called unrestricted types.

A variable of resource type is a resource variable; a variable of unrestricted type is an unrestricted
variable. The bytecode verifier enforces restrictions on resource variables and struct fields of type
resource. A resource variable cannot be copied and must always be moved. Both a resource variable
and a struct field of resource type cannot be reassigned — doing so would destroy the resource
value previously held in the storage location. In addition, a reference to a resource type cannot be
dereferenced, since this would produce a copy of the underlying resource. By contrast, unrestricted
types can be copied, reassigned, and dereferenced.

Finally, an unrestricted struct type may not contain a field with a resource type. This restriction
ensures that (a) copying an unrestricted struct does not result in the copying of a nested resource,
and (b) reassigning an unrestricted struct does not result in the destruction of a nested resource.

A reference type may either be mutable or immutable; writes through immutable references are
disallowed. The bytecode verifier performs reference safety checks that enforce these rules along with
the restrictions on resource types (see Section 5.2).

Values.

Resource = FieldName ⇀ Value
Struct = FieldName ⇀ UnrestrictedValue
UnrestrictedValue = Struct ∪ PrimitiveValue
𝑣 ∈ Value = Resource ∪ UnrestrictedValue
𝑔 ∈ GlobalResourceKey = AccountAddress × StructID
𝑎𝑝 ∈ AccessPath ::= 𝑥 | 𝑔 | 𝑎𝑝 . 𝑓
𝑟 ∈ RuntimeValue ::= 𝑣 | ref 𝑎𝑝
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In addition to structs and primitive values, Move also supports reference values. References are
different from other Move values because they are transient. The bytecode verifier does not allow
fields of reference type. This means that a reference must be created during the execution of a
transaction script and released before the end of that transaction script.

The restriction on the shape of struct values ensures the global state is always a tree instead of an
arbitrary graph. Each storage location in the state tree can be canonically represented using its access
path [24] — a path from a root in the storage tree (either a local variable 𝑥 or global resource key 𝑔)
to a descendant node marked by a sequence of field identifiers 𝑓 .

The language allows references to primitive values and structs, but not to other references. Move
programmers can acquire references to local variables with the BorrowLoc instruction, to fields of
structs with the BorrowField instruction, and to resources published under an account with the
BorrowGlobal instruction. The latter two constructs can only be used on struct types declared
inside the current module.

Procedures and transaction scripts.

ProcedureSig = Visibility × (VarName ⇀ Type) × Type∗

ProcedureDecl = ProcedureSig × (VarName ⇀ Type) × [Instrℓ]
ℓ=𝑖
ℓ=0

Visibility ::= public | internal
ℓ ∈ InstrIndex = UnsignedInt64
TransactionScript = ProcedureDecl
ProcedureID = ModuleID × ProcedureSig

A procedure signature consists of visibility, typed formal parameters, and return types. A procedure
declaration contains a signature, typed local variables, and an array of bytecode instructions. Proce-
dure visibility may be either public or internal. Internal procedures can only be invoked by other
procedures in the same module. Public procedures can be invoked by any module or transaction
script.

The blockchain state is updated by a transaction script that can invoke public procedures of any
module that is currently published under an account. A transaction script is simply a procedure
declaration with no associated module.

A procedure can be uniquely identified by its module identifier and its signature. The Call bytecode
instruction requires a unique procedure ID as input. This ensures that all procedure calls in Move are
statically determined — there are no function pointers or virtual calls. In addition, the dependency
relationship among modules is acyclic by construction. A module can only depend on modules
that were published earlier in the linear transaction history. The combination of an acyclic module
dependency graph and the absence of dynamic dispatch enforces a strong execution invariant: all
stack frames belonging to procedures in a module must be contiguous. Thus, there is no equivalent
of the re-entrancy [16] issues of Ethereum smart contracts in Move modules.

In the rest of this section, we introduce bytecode operations and their semantics (Section 5.1) and
describe the static analysis that the bytecode verifier performs before allowing module code to be
executed or stored (Section 5.2).
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5.1. Bytecode Interpreter

𝜎 ∈ InterpreterState = ValueStack × CallStack × GlobalRefCount × GasUnits
𝑣𝑠𝑡𝑘 ∈ ValueStack ::= [] | 𝑟 :: 𝑣𝑠𝑡𝑘
𝑐𝑠𝑡𝑘 ∈ CallStack ::= [] | 𝑐 :: 𝑐𝑠𝑡𝑘
𝑐 ∈ CallStackFrame = Locals × ProcedureID × InstrIndex
Locals = VarName ⇀ RuntimeValue

Move bytecode instructions are executed by a stack-based interpreter similar to the Common Lan-
guage Runtime [22] and Java Virtual Machine [21]. An instruction consumes operands from the stack
and pushes results onto the stack. Instructions may also move and copy values to/from the local
variables of the current procedure (including formal parameters).

The bytecode interpreter supports procedure calls. Input values passed to the callee and output values
returned to the caller are also communicated via the stack. First, the caller pushes the arguments to
a procedure onto the stack. Next, the caller invokes the Call instruction, which creates a new call
stack frame for the callee and loads the pushed values into the callee’s local variables. Finally, the
bytecode interpreter begins executing the bytecode instructions of the callee procedure.

The execution of bytecode proceeds by executing operations in sequence unless there is a branch
operation that causes a jump to a statically determined offset in the current procedure. When the
callee wishes to return, it pushes the return values onto the stack and invokes the Return instruction.
Control is then returned to the caller, which finds the output values on the stack.

Execution of Move programs is metered in a manner similar to the EVM [9]. Each bytecode instruction
has an associated gas unit cost, and any transaction to be executed must include a gas unit budget.
The interpreter tracks the gas units remaining during execution and halts with an error if the amount
remaining reaches zero.

We considered both a register-based and a stack-based bytecode interpreter and found that a stack
machine with typed locals is a very natural fit for the resource semantics of Move. The low-level
mechanics of moving values back and forth between local variables, the stack, and caller/callee pairs
closely mirror the high-level intention of a Move program. A stack machine with no locals would be
much more verbose, and a register machine would make it more complex to move resources across
procedure boundaries.

Instructions. Move supports six broad categories of bytecode instructions:

• Operations such as CopyLoc/MoveLoc for copying/moving data from local variables to the stack,
and StoreLoc for moving data from the stack to local variables.

• Operations on typed stack values such as pushing constants onto the stack, and arith-
metic/logical operations on stack operands.

• Module builtins such as Pack and Unpack for creating/destroying the module’s declared types,
MoveToSender/MoveFrom for publishing/unpublishing the module’s types under an account,
and BorrowField for acquiring a reference to a field of one of the module’s types.

• Reference-related instructions such as ReadRef for reading references, WriteRef for writing
references, ReleaseRef for destroying a reference, and FreezeRef for converting a mutable
reference into an immutable reference.

• Control-flow operations such as conditional branching and calling/returning from a procedure.
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• Blockchain-specific builtin operations such as getting the address of the sender of a transaction
script and creating a new account.

Appendix A gives a complete list of Move bytecode instructions. Move also provides cryptographic
primitives such as sha3, but these are implemented as modules in the standard library rather than
as bytecode instructions. In these standard library modules, the procedures are declared as native,
and the procedure bodies are provided by the Move VM. Only the VM can define new native pro-
cedures, which means that these cryptographic primitives could instead be implemented as ordinary
bytecode instructions. However, native procedures are convenient because the VM can rely on the
existing mechanisms for invoking a procedure instead of reimplementing the calling convention for
each cryptographic primitive.

5.2. Bytecode Verifier

𝐶 ∈ Code = TransactionScript ∪ Module
𝑧 ∈ VerificationResult ::= ok | stack_err | type_err | reference_err | …
𝐶 ⇝ 𝑧 bytecode verification

The goal of the bytecode verifier is to statically enforce safety properties for any module submitted for
publication and any transaction script submitted for execution. No Move program can be published
or executed without passing through the bytecode verifier.

The bytecode verifier enforces general safety properties that must hold for any well-formed Move
program. We aim to develop a separate offline verifier for program-specific properties in future work
(see Section 7).

The binary format of a Move module or transaction script encodes a collection of tables of entities,
such as constants, type signatures, struct definitions, and procedure definitions. The checks performed
by the verifier fall into three categories:

• Structural checks to ensure that the bytecode tables are well-formed. These checks discover
errors such as illegal table indices, duplicate table entries, and illegal type signatures such as a
reference to a reference.

• Semantic checks on procedure bodies. These checks detect errors such as incorrect procedure
arguments, dangling references, and duplicating a resource.

• Linking uses of struct types and procedure signatures against their declaring modules. These
checks detect errors such as illegally invoking an internal procedure and using a procedure
identifier that does not match its declaration.

In the rest of this section, we will describe the phases of semantic verification and linking.

Control-flow graph construction. The verifier constructs a control-flow graph by decomposing
the instruction sequence into a collection of basic blocks (note that these are unrelated to the “blocks”
of transactions in a blockchain). Each basic block contains a contiguous sequence of instructions;
the set of all instructions is partitioned among the blocks. Each basic block ends with a branch or
return instruction. The decomposition guarantees that branch targets land only at the beginning of
some basic block. The decomposition also attempts to ensure that the generated blocks are maximal.
However, the soundness of the bytecode verifier does not depend on maximality.

Stack balance checking. Stack balance checking ensures that a callee cannot access stack locations
that belong to callers. The execution of a basic block happens in the context of an array of local
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variables and a stack. The parameters of the procedure are a prefix of the array of local variables.
Passing arguments and return values across procedure calls is done via the stack. When a procedure
starts executing, its arguments are already loaded into its parameters. Suppose the stack height is
n when a procedure starts executing. Valid bytecode must satisfy the invariant that when execution
reaches the end of a basic block, the stack height is n. The verifier ensures this by analyzing each
basic block separately and calculating the effect of each instruction on the stack height. It checks
that the height does not go below n, and is n at the basic block exit. The one exception is a block
that ends in a Return instruction, where the height must be n+m (where m is the number of values
returned by the procedure).

Type checking. The second phase of the verifier checks that each instruction and procedure (includ-
ing both builtin procedures and user-defined procedures) is invoked with arguments of appropriate
types. The operands of an instruction are values located either in a local variable or on the stack.
The types of local variables of a procedure are already provided in the bytecode. However, the types
of stack values are inferred. This inference and the type checking of each operation is done separately
for each basic block. Since the stack height at the beginning of each basic block is n and does not go
below n during the execution of the block, we only need to model the suffix of the stack starting at n
for type checking the block instructions. We model this suffix using a stack of types on which types
are pushed and popped as the instruction sequence in a basic block is processed. The type stack and
the statically known types of local variables are sufficient to type check each bytecode instruction.

Kind checking. The verifier enforces resource safety via the following additional checks during the
type checking phase:

• Resources cannot be duplicated: CopyLoc is not used on a local variable of kind resource, and
ReadRef is not used on a stack value whose type is a reference to a value of kind resource.

• Resources cannot be destroyed: PopUnrestricted is not used on a stack location of kind
resource, StoreLoc is not used on a local variable that already holds a resource, and WriteRef
is not performed on a reference to a value of kind resource.

• Resources must be used: When a procedure returns, no local variables may hold a resource
value, and the callee’s segment of the evaluation stack must only hold the return values of the
procedure.

A non-resource struct type cannot have a field of kind resource, so these checks cannot be subverted
by (e.g.) copying a non-resource struct with a resource field.

Resources cannot be destroyed by a program execution that halts with an error. As we explained
in Section 4.2, no state changes produced by partial execution of a transaction script will ever be
committed to the global state. This means that resources sitting on the stack or in local variables at
the time of a runtime failure will (effectively) return to wherever they were before execution of the
transaction began.

In principle, a resource could be made unreachable by a nonterminating program execution. However,
the gas metering scheme described in Section 5.1 ensures that execution of a Move program always
terminates. An execution that runs out of gas halts with an error, which will not result in the loss of
a resource (as we explained above).

Reference checking. The safety of references is checked using a combination of static and dynamic
analyses. The static analysis uses borrow checking in a manner similar to the Rust type system, but
performed at the bytecode level instead of at the source code level. These reference checks ensure
two strong properties:

• All references point to allocated storage (i.e., there are no dangling references).
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• All references have safe read and write access. References are either shared (with no write
access and liberal read access) or exclusive (with limited read and write access).

To ensure that these properties hold for references into global storage created via BorrowGlobal, the
bytecode interpreter performs lightweight dynamic reference counting. The interpreter tracks the
number of outstanding references to each published resource. It uses this information to halt with
an error if a global resource is borrowed or moved while references to that resource still exist.

This reference checking scheme has many novel features and will be a topic of a separate paper.

Linking with global state.

𝐷 ∈ Dependencies = StructType∗ × ProcedureID∗

deps ∈ Code → Dependencies computing dependencies
𝑙 ∈ LinkingResult ::= success | fail
⟨𝐷, Σ⟩ ↪ 𝑙 linking dependencies with global state

During bytecode verification, the verifier assumes that the external struct types and procedure ID’s
used by the current code unit exist and are represented faithfully. The linking step checks this
assumption by reading the struct and procedure declarations from the global state Σ and ensuring
that the declarations match their usage. Specifically, the linker checks that the following declarations
in the global state match their usage in the current code unit:

• Struct declarations (name and kind).
• Procedure signatures (name, visibility, formal parameter types, and return types).

6. Move Virtual Machine: Putting It All Together

𝑇 ∈ Transaction = TransactionScript × PrimitiveValue∗ × Module∗

×AccountAddress × GasUnits …
𝐵 ∈ Block = Transaction∗ × …
𝐸 ∈ TransactionEffect = AccountAddress ⇀ Account
apply ∈ (GlobalState × TransactionEffect) updating global state

→ GlobalState
⟨𝑇 , 𝐸, Σ⟩ ⇓ 𝐸′ transaction evaluation
⟨𝐵, Σ⟩ ⇓ 𝐸 block evaluation

The role of the Move virtual machine is to execute a block 𝐵 of transactions from a global state
Σ and produce a transaction effect 𝐸 representing modifications to the global state. The effect 𝐸
can then be applied to Σ to generate the state Σ′ resulting from the execution of 𝐵. Separating the
effects from the actual state update allows the VM to implement transactional semantics in the case
of execution failures.

Intuitively, the transaction effect denotes the update to the global state at a subset of the accounts. A
transaction effect has the same structure as the global state: it is a partial map from account addresses
to accounts, which contain canonically-serialized representations of Move modules and resource values.
The canonical serialization implements a language-independent 1-1 function from a Move module or
resource to a byte array.
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To execute the block 𝐵 from state Σ𝑖−1, the VM fetches a transaction 𝑇𝑖 from 𝐵, processes it to
produce an effect 𝐸𝑖, then applies 𝐸𝑖 to Σ𝑖−1 to produce a state Σ𝑖 to use as the initial state for the
next transaction in the block. The effect of the entire block is the ordered composition of the effects
of each transaction in the block.

Each transaction is processed according to a workflow that includes steps such as verifying the
bytecode in the transaction and checking the signature of the transaction sender. The entire workflow
for executing a single transaction is explained in more detail in [2].

Today, transactions in a block are executed sequentially by the VM, but the Move language has been
designed to support parallel execution. In principle, executing a transaction could produce a set of
reads as well as a set of write effects 𝐸. Each transaction in the block could be speculatively executed
in parallel and re-executed only if its read/write set conflicts with another transaction in the block.
Checking for conflicts is straightforward because Move’s tree memory model allows us to uniquely
identify a global memory cell using its access path. We will explore speculative execution schemes in
the future if virtual machine performance becomes a bottleneck for the Libra Blockchain.

7. What's Next for Move

So far, we have designed and implemented the following components of Move:

• A programming model suitable for blockchain execution.

• A bytecode language that fits this programmable model.

• A module system for implementing libraries with both strong data abstraction and access
control.

• A virtual machine consisting of a serializer/deserializer, bytecode verifier, and bytecode inter-
preter.

Despite this progress, there is a long road ahead. We conclude by discussing some immediate next
steps and longer-term plans for Move.

Implementing core Libra Blockchain functionality. We will use Move to implement the core
functionality in the Libra Blockchain: accounts, Libra coin, Libra reserve management, validator
node addition and removal, collecting and distributing transaction fees, cold wallets, etc. This work
is already in progress.

New language features. We will add parametric polymorphism (generics), collections, and events
to the Move language. Parametric polymorphism will not undermine Move’s existing safety and
verifiability guarantees. Our design adds type parameters with kind (i.e, resource or unrestricted)
constraints to procedure and structs in a manner similar to [25].

In addition, we will develop a trusted mechanism for versioning and updating Move modules, trans-
action scripts, and published resources.

Improved developer experience. The Move IR was developed as a testing tool for the Move
bytecode verifier and virtual machine. To exercise these components, the IR compiler must inten-
tionally produce bad bytecode that will be (e.g.) be rejected by the bytecode verifier. This means
that although the IR is suitable for prototyping Move programs, it is not particularly user-friendly.
To make Move more attractive for third-party development, we will both improve the IR and work
toward developing an ergonomic Move source language.
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Formal specification and verification. We will create a logical specification language and auto-
mated formal verification tool that leverage Move’s verification-friendly design (see Section 3.4). The
verification toolchain will check program-specific functional correctness properties that go beyond the
safety guarantees enforced by the Move bytecode verifier (Section 5.2). Our initial focus is to specify
and verify the modules that implement the core functionality of the Libra Blockchain.

Our longer-term goal is to promote a culture of correctness in which users will look to the formal
specification of a module to understand its functionality. Ideally, no Move programmer will be willing
to interact with a module unless it has a comprehensive formal specification and has been verified
to meet to that specification. However, achieving this goal will present several technical and social
challenges. Verification tools should be precise and intuitive. Specifications must be modular and
reusable, yet readable enough to serve as useful documentation of the module’s behavior.

Support third-party Move modules. We will develop a path to third-party module publishing.
Creating a good experience for both Libra users and third-party developers is a significant challenge.
First, opening the door to general applications must not affect the usability of the system for core
payment scenarios and associated financial applications. Second, we want to avoid the reputational
risk that scams, speculation, and buggy software present. Building an open system while encouraging
high software quality is a difficult problem. Steps such as creating a marketplace for high-assurance
modules and providing effective tools for verifying Move code will help.
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A. Move Language Reference

In this appendix, we present the structure of programs and state in the Move bytecode language.

Identifiers

𝑛 ∈ StructName
𝑓 ∈ FieldName
𝑥 ∈ VarName
ProcedureName
ModuleName

Types and Kinds

𝑎 ∈ AccountAddress
𝑏 ∈ Bool
𝑢 ∈ UnsignedInt64
⃗𝑏 ∈ Bytes

Kind ::= resource | unrestricted
ModuleID = AccountAddress × ModuleName
StructID = ModuleID × StructName
StructType = StructID × Kind
PrimitiveType = AccountAddress ∪ Bool ∪ UnsignedInt64 ∪ Bytes
𝒯 ⊆ NonReferenceType = StructType ∪ PrimitiveType
Type ::= 𝒯 | &mut 𝒯 | & 𝒯

Values

Resource = FieldName ⇀ Value
Struct = FieldName ⇀ UnrestrictedValue
PrimitiveValue ::= 𝑎 | 𝑏 | 𝑢 | ⃗𝑏
UnrestrictedValue = Struct ∪ PrimitiveValue
𝑣 ∈ Value = Resource ∪ UnrestrictedValue
𝑔 ∈ GlobalResourceKey = AccountAddress × StructID
𝑎𝑝 ∈ AccessPath ::= 𝑥 | 𝑔 | 𝑎𝑝 . 𝑓
𝑟 ∈ RuntimeValue ::= 𝑣 | ref 𝑎𝑝

Global State

Σ ∈ GlobalState = AccountAddress ⇀ Account
Account = (StructID ⇀ Resource) × (ModuleName ⇀ Module)
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Modules and Transaction Scripts

Module = ModuleName × (StructName ⇀ StructDecl)
× (ProcedureName ⇀ ProcedureDecl)

TransactionScript = ProcedureDecl
StructDecl = Kind × (FieldName ⇀ NonReferenceType)
ProcedureSig = Visibility × (VarName ⇀ Type) × Type∗

ProcedureDecl = ProcedureSig × (VarName ⇀ Type) × [Instrℓ]
ℓ=𝑖
ℓ=0

Visibility ::= public | internal
ℓ ∈ InstrIndex = UnsignedInt64

Interpreter State

𝜎 ∈ InterpreterState = ValueStack × CallStack × GlobalRefCount × GasUnits
𝑣𝑠𝑡𝑘 ∈ ValueStack ::= [] | 𝑟 :: 𝑣𝑠𝑡𝑘
𝑐𝑠𝑡𝑘 ∈ CallStack ::= [] | 𝑐 :: 𝑐𝑠𝑡𝑘
𝑐 ∈ CallStackFrame = Locals × ProcedureID × InstrIndex
Locals = VarName ⇀ RuntimeValue
𝑝 ∈ ProcedureID = ModuleID × ProcedureSig
GlobalRefCount = GlobalResourceKey ⇀ UnsignedInt64
GasUnits = UnsignedInt64

Evaluation

𝑇 ∈ Transaction = TransactionScript × PrimitiveValue∗ × Module∗

×AccountAddress × GasUnits …
𝐵 ∈ Block = Transaction∗ × …
𝐸 ∈ TransactionEffect = AccountAddress ⇀ Account
apply ∈ (GlobalState × TransactionEffect) updating global state

→ GlobalState
⟨𝐵, Σ⟩ ⇓ 𝐸 block evaluation
⟨𝑇 , 𝐸, Σ⟩ ⇓ 𝐸′ transaction evaluation
⟨𝜎, 𝐸, Σ⟩ ⇓ 𝜎′, 𝐸′ interpreter state evaluation

Verification

𝐶 ∈ Code = TransactionScript ∪ Module
𝑧 ∈ VerificationResult ::= ok | stack_err | type_err | reference_err | …
𝐶 ⇝ 𝑧 bytecode verification

𝐷 ∈ Dependencies = StructType∗ × ProcedureID∗

deps ∈ Code → Dependencies computing dependencies
𝑙 ∈ LinkingResult ::= success | fail
⟨𝐷, Σ⟩ ↪ 𝑙 linking dependencies with global state
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Instructions † indicates an instruction whose execution may fail at runtime

LocalInstr ::=
MoveLoc< 𝑥 > Push value stored in 𝑥 on the stack. 𝑥 is now unavailable.

| CopyLoc< 𝑥 > Push value stored in 𝑥 on the stack.
| StoreLoc< 𝑥 > Pop the stack and store the result in 𝑥. 𝑥 is now available.
| BorrowLoc< 𝑥 > Create a reference to the value stored in 𝑥 and push it on the stack.
ReferenceInstr ::=

ReadRef Pop 𝑟 and push ∗𝑟 on the stack.
| WriteRef Pop two values 𝑣 and 𝑟, perform the write ∗𝑟 = 𝑣.
| ReleaseRef Pop 𝑟 and decrement the appropriate refcount if 𝑟 is a global reference.
| FreezeRef Pop mutable reference 𝑟, push immutable reference to the same value.
CallInstr ::=

Call< 𝑝 > Pop arguments 𝑟∗, load into 𝑝’s formals 𝑥∗, transfer control to 𝑝.
| Return Return control to the previous frame in the call stack.
ModuleBuiltinInstr ::=

Pack< 𝑛 > Pop arguments 𝑣∗, create struct of type 𝑛 with 𝑓𝑖: 𝑣𝑖, push it on the stack.
| Unpack< 𝑛 > Pop struct of type 𝑛 from the stack and push its field values 𝑣∗ on the stack.
| BorrowField< 𝑓 > Pop reference to a struct and push a reference to field 𝑓 of the struct.
| MoveToSender< 𝑛 >† Pop resource of type 𝑛 and publish it under the sender’s address.
| MoveFrom< 𝑛 >† Pop address 𝑎, remove resource of type 𝑛 from 𝑎, push it.
| BorrowGlobal< 𝑛 >† Pop address 𝑎, push a reference to the resource of type 𝑛 under 𝑎.
| Exists< 𝑛 > Pop address 𝑎, push bool encoding “a resource of type 𝑛 exists under 𝑎”.
TxnBuiltinInstr ::=

GetGasRemaining Push u64 representing remaining gas unit budget.
| GetTxnSequenceNumber Push u64 encoding the transaction’s sequence number.
| GetTxnPublicKey Push byte array encoding the transaction sender’s public key.
| GetTxnSenderAddress Push address encoding the sender of the transaction.
| GetTxnMaxGasUnits Push u64 representing the initial gas unit budget.
| GetTxnGasUnitPrice Push u64 representing the Libra coin per gas unit price.
SpecialInstr ::=

PopUnrestricted Pop a non-resource value.
| RejectUnless† Pop bool 𝑏 and u64 𝑢, fail with error code 𝑢 if 𝑏 is false.
| CreateAccount† Pop address 𝑎, create a LibraAccount.T under 𝑎.
ConstantInstr ::=

LoadTrue Push true on the stack.
| LoadFalse Push false on the stack.
| LoadU64< 𝑢 > Push the u64 𝑢 on the stack.
| LoadAddress< 𝑎 > Push the address 𝑎 on the stack.
| LoadBytes< ⃗𝑏 > Push the byte array ⃗𝑏 on the stack.
StackInstr ::=

Not Pop boolean 𝑏 and push ¬𝑏.
| Add† Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 + 𝑢2. Fail on overflow.
| Sub† Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 - 𝑢2. Fail on underflow.
| Mul† Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 × 𝑢2. Fail on overflow.
| Div† Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 ÷ 𝑢2. Fail if 𝑢2 is zero.
| Mod† Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 mod 𝑢2. Fail if 𝑢2 is zero.
| BitOr Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 | 𝑢2.
| BitAnd Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 & 𝑢2.
| Xor Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 ⊕ 𝑢2.
| Lt Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 < 𝑢2.
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Instructions † indicates an instruction whose execution may fail at runtime

| Gt Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 > 𝑢2.
| Le Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 ≤ 𝑢2.
| Ge Pop two u64’s 𝑢1 and 𝑢2 and push 𝑢1 ≥ 𝑢2.
| Or Pop two booleans 𝑏1 and 𝑏2 and push 𝑏1 ∨ 𝑏2.
| And Pop two booleans 𝑏1 and 𝑏2 and push 𝑏1 ∧ 𝑏2.
| Eq Pop two values 𝑟1 and 𝑟2 and push 𝑟1 = 𝑟2.
| Neq Pop two values 𝑟1 and 𝑟2 and push 𝑟1 ≠ 𝑟2.
ControlFlowInstr ::=

Branch< ℓ > Jump to instruction index ℓ in the current procedure.
| BranchIfTrue< ℓ > Pop boolean, jump to instruction index ℓ in the current procedure if true.
| BranchIfFalse< ℓ > Pop boolean, jump to instruction index ℓ in the current procedure if false.
Instr =

LocalInstr
∪ ReferenceInstr
∪ CallInstr
∪ ModuleBuiltinInstr
∪ TxnBuiltinInstr
∪ SpecialInstr
∪ ConstantInstr
∪ StackInstr
∪ ControlFlowInstr
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