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Abstract—We introduce Mysticeti-C, the first DAG-based

Byzantine consensus protocol to achieve the lower bounds of

latency of 3 message rounds. Since Mysticeti-C is built over

DAGs it also achieves high resource efficiency and censorship

resistance. Mysticeti-C achieves this latency improvement

by avoiding explicit certification of the DAG blocks and by

proposing a novel commit rule such that every block can

be committed without delays, resulting in optimal latency in

the steady state and under crash failures. We further extend

Mysticeti-C to Mysticeti-FPC, which incorporates a fast

commit path that achieves even lower latency for transferring

assets. Unlike prior fast commit path protocols, Mysticeti-

FPC minimizes the number of signatures and messages by

weaving the fast path transactions into the DAG. This frees up

resources, which subsequently result in better performance.

We prove the safety and liveness in a Byzantine context.

We evaluate both Mysticeti protocols and compare them

with state-of-the-art consensus and fast path protocols to

demonstrate their low latency and resource efficiency, as

well as their more graceful degradation under crash failures.

Mysticeti-C is the first Byzantine consensus protocol to

achieve WAN latency of 0.5s for consensus commit while

simultaneously maintaining state-of-the-art throughput of

over 200k TPS. Finally, we report on integrating Mysticeti-

C as the consensus protocol into the Sui blockchain [1],

resulting in over 4x latency reduction.

I. Introduction
Several recent blockchains, such as Sui [1], [2], have

adopted consensus protocols based on certified directed
acyclic graphs (DAG) of blocks [3], [4], [5], [6], [7], [8], [9],
[10], [11]. By design, these consensus protocols scale well
in terms of throughput, with a performance of 100k tx/s of
raw transactions and are robust against faults and network
asynchrony [12], [3]. This, however, comes at a high latency
of around 2-3 seconds, which can hinder user experience and
prevent low-latency applications.

Mysticeti-C: the power of uncertified DAGs. Certified
DAGs [6], [3], where each vertex is delivered through consis-
tent broadcast [13], have high latency for three main reasons:
(1) the certification process requires multiple round-trips to

Fig. 1: P50 latency of the Sui blockchain [1] switching from Bullshark (1.9s)
to Mysticeti-C (400ms) on 106 independently run validators

broadcast each block between validators, get signatures, and
re-broadcast certificates. This leads to higher latency than
traditional consensus protocols [14], [15], [16]; (2) blocks
commit on a “per-wave” basis, which means that only once
every two rounds (for Bullshark [4]) there is a chance to
commit. Hence, some blocks have to wait for the wave to
finish increasing the latency of transactions proposed by
the block. This phenomenon is similar to committing big
batches of 2f +1 blocks. Finally, (3) since all certified blocks
need to be signed by a supermajority of validators, signature
generation and verification consume a large amount of CPU
on each validator, which grows with the number of valida-
tors [17], [18]. This burden is particularly heavy for a crash-
recovered validator that typically needs to verify thousands
of signatures when trying to catch up with the rest.

These shortcomings come in stark contrast to the early
protocols for BFT consensus, such as PBFT [16], which
require only 3 message delays to commit (instead of the 6 in
Bullshark) and facilitate the pipeline of proposals to commit
one every round [19]. They, however, require a high number
of authenticated messages to coordinate, which consumes a
lot of resources and results in low throughput. Additionally,
they are fragile to faults and implementation mistakes due to
their complexity, especially the view-change sub-protocols.

This work presents Mysticeti, a family of DAG-based
protocols allowing to safely commit distributed transactions
in a Byzantine setting that focuses on low-latency and low-
CPU operation, achieving the best of both worlds. Mysticeti-
C is a consensus protocol based on a threshold logical
clock [20] DAG of blocks, that commits every block as early
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as it can be decided. Mysticeti-C solves all of the above
challenges as (1) it does not require explicit certificates,
committing blocks within the known lower bound [21] of
3 message rounds, (2) commits every block independently
and does not need to wait for the wave to finish, and (3)
requires a single signature generation and verification per
block, minimizing the CPU overhead.

From a production readiness point of view, the protocol tol-
erates crash failures without any throughput degradation and
minimal latency degradation. It uses a single message type,
the signed block, and a single multi-cast transmission method
between validators, making it easier to understand, imple-
ment, test, and maintain. Mysticeti-C has been adopted by
the Sui blockchain [1] that switched from the state-of-the-
art Bullshark [4] to Mysticeti-C. Figure 1 shows the 80%
latency reduction (from 1.9s to 400 ms) that happened at the
moment of the deployment on a 106 validator network.

Mysticeti-FPC: supporting consensusless transactions.

The power of uncertified DAGs is not limited to consensus
protocols. This work generalizes Mysticeti-C to apply uncer-
tified DAGs to BFT systems that process transactions with-
out or before reaching consensus, such as in FastPay [22],
Zef [23], Astro [24], and Sui [2]. These systems use reliable
broadcast instead of consensus to commit transactions that
only access state controlled by a single party.

The only operating protocol of this kind is Sui Lutris [2],
which powers the open source Sui blockchain (Linera [25]
is under development). Sui combines a consensusless “fast”
path with a black-box certified DAG consensus. This com-
position is generic and leads to low latencies for fast-path
transactions. But it also leads to (1) increased latencies for
transactions requiring the consensus path and overall in-
creased sync latency due to a separate post-consensus check-
point mechanism, and (2) additional signature generation and
verification for transactions to be certified separately. The
latter means that the validator’s CPU is largely devoted to
performing cryptographic operations rather than executing
transactions. To alleviate these challenges, we co-design with
Mysticeti-C a fast path-enabled version called Mysticeti-
FPC, leading to very low-latency commits without the need
to generate an explicit certificate for each transaction. This
new design inherits the benefits of lower latency and lower
CPU utilization.

Contributions. We make the following contributions:
• We present Mysticeti-C, a DAG-based Byzantine con-

sensus algorithm and its proofs of safety and liveness.
Notably, it implements a commit rule where every single
block can be directly committed, significantly reducing
latency even when failures occur. We show it has a low
commit latency and exceeds the throughput of Narwhal-
based consensus. Mysticeti-C is already powering the
Sui blockchain [1] with more than $1.5B of value under
management and 1M Daily Active Accounts.

• We also present Mysticeti-FPC that offers feature par-
ity with Sui Lutris [2], that is, both a fast path and

a consensus path, as well as safe checkpointing and
epoch close mechanisms. We show that Mysticeti-FPC
has a fast path latency comparable with Zef [23] and
Fastpay [22] but higher throughput thanks to lower CPU
utilization and batching.

• We implement and evaluate both protocols on a wide-
area network. We show their performance is supe-
rior to certified DAG-based designs both in consensus
and consensusless modes due to the need for fewer
messages and lower CPU overheads. We also report
the experiences and performance benefits of integrating
Mysticeti-C into a production blockchain.

II. Overview
This paper presents the design of the Mysticeti protocols,

a pair of Byzantine Fault Tolerant (BFT) protocols based on
Directed Acyclic Graphs (DAGs) that aim to achieve high
performance in a partially synchronous network. Mysticeti-
C is a low-latency consensus protocol that commits multiple
blocks per round, while Mysticeti-FPC extends Mysticeti-
C with a fast path for transactions that do not require
consensus.

A. System model, goals, and assumptions

We consider a message-passing system where, in each
epoch, n = 3f + 1 validators process transactions using
the Mysticeti protocols. In every epoch, a computationally
bound adversary can statically corrupt an unknown set of
up to f validators. We call these validators Byzantine and
they can deviate from the protocol arbitrarily. The remaining
validators (at least 2f+1) are honest and follow the protocol
faithfully.

For the description of the protocol, we assume that links
between honest parties are reliable and authenticated. That
is, all messages among honest parties eventually arrive and
a receiver can verify the sender’s identity. The adversary is
computationally bound hence the usual security properties
of cryptographic hash functions, digital signatures, and other
cryptographic primitives hold. Under these assumptions, Sec-
tion V shows that the Mysticeti protocols are safe, in that,
no two correct validators commit inconsistent transactions.

Validators communicate over a partially synchronous net-
work. There exists a time called Global Stabilization Time
(GST) and a finite time bound ∆, such that any message
sent by a party at time x is guaranteed to arrive by time
∆+max{GST, x}. Within periods of synchrony (after GST)
the Mysticeti protocols are also live in that they are guar-
anteed to commit transactions from correct validators.

Following prior work [6], [4], [3] we focus on byzantine
atomic broadcast for Mysticeti. Additionally for Mysticeti-
FPC, we show that the fast-path transactions sub-protocol
satisfies reliable broadcast within an epoch [2], but allows
for recovery of equivocating objects across epochs without
losing safety at the epoch boundaries.

More formally, each validator vk broadcasts messages by
calling r bcastk(m, q), where m is a message and q ∈ N
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is a sequence number. Every validator vi has an output
r deliveri(m, q, vk), where m is a message, q is a sequence
number, and vk is the identity of the validator that called
the corresponding r bcastk(m, q). The reliable broadcast
abstraction guarantees the following properties:

• Agreement: If an honest validator vi outputs
r deliveri(m, q, vk), then every other honest validator
vj eventually outputs r deliverj(m, q, vk).

• Integrity: For each sequence number q ∈ N
and validator vk , an honest validator vi outputs
r deliveri(m, q, vk) at most once regardless of m.

• Validity: If an honest validator vk calls r bcastk(m, q),
then every honest validator vi eventually outputs
r deliveri(m, q, vk).

Additionally, for byzantine atomic broadcast, each hon-
est validator vi can call a bcasti(m, q) and output
a deliveri(m, q, vk). A byzantine atomic broadcast protocol
satisfies reliable broadcast (agreement, integrity, and validity)
as well as:

• Total order: If an honest validator vi outputs
a deliveri(m, q, vk) before a deliveri(m

′, q′, v′k),
then no honest party vj outputs a deliverj(m

′, q′, v′k)
before a deliverj(m, q, vk).

Finally, most prior work on consensusless transactions de-
fines properties as if the protocol runs in a single epoch. This
setting is unrealistic as it cannot accommodate recovering
from equivocation, which is a common benign event for
non-expert users. To this end, we extend all the protocols
to also take as a parameter the epoch number and all
properties should hold within a single epoch. Fortunately,
the definition of reliable broadcast allows the recovery of
liveness for blocked sequence numbers that are equivocated
inside an epoch. Thus, we define equivocation tolerance for
consesusless transactions as follows:

• Equivocation tolerance: If a validator vk concur-
rently called r bcastk(m, q, e) and r bcastk(m

′, q, e)
with m ̸= m′ then the rest of the validators ei-
ther r deliveri(m, q, vk, e), or r deliveri(m

′, q, vk, e), or
there is a subsequent epoch e′ > e where vk is hon-
est, calls r bcastk(m

′′, q, e′) and all honest validators
r deliveri(m

′′, q, vk, e
′),

B. Intuition behind the Mysticeti design

Mysticeti aims to push the latency boundaries of state
machine replication in DAG-based blockchains. Achieving
BFT consensus typically necessitates at least three message
delays [16]1. This underscores the inherent latency sub-
optimality of Narwhal [3], that implements consensus (at
least 3 message delays) on certified DAG blocks, when the
block certification itself adds a further 3 message delays.
Consequently, the first design challenge for Mysticeti is

1While some protocols, such as Zyzzyva [26], operate under optimistic
assumptions, they often prove fragile in scenarios of asynchrony or faults [3],
[12]. Moreover, they are unsuitable for the blockchain environment, charac-
terized by a multitude of unreliable nodes wielding a minor fraction of the
total voting power.

to manage equivocation and ensure data availability [27],
without relying on pre-certification of individual blocks.

Moreover, even if we overcome this initial challenge,
committing only one block every three messages falls short of
the performance potential inherent in DAG-based consensus,
which thrives on processing O(n) blocks per round, one per
validator, to fully utilize network resources. Therefore, a key
objective for Mysticeti is to maximize block commitments
per round to align system tail latency closely with the three-
message delay. However, achieving this presents a more
formidable challenge. Unlike traditional methods that rely
on the recursive and elegant commit rules found in DAG-
based consensus protocols [6], [3], [4], [7], [8], our approach
cannot afford to require sufficient distance between two
potential candidate blocks on the DAG to prevent conflicting
decisions among validators with divergent sub-DAG views.
Implementing such protocols would require at least one gap
round, raising the latency to a minimum of four delays.
Mysticeti is not just a consensus protocol but a class

of protocols facilitating state machine replication. For now,
we only focused on the consensus protocol Mysticeti-
C, but section IV extends it to protocols for consensus-
less agreement with Mysticeti-FPC. The core contribution
of Mysticeti-FPC to prior work is that it is co-designed
with Mysticeti-C instead of being a separate path like in
Sui [2]. This allows us to avoid the need for generating
a majority-signed certificate per transaction, freeing a sig-
nificant amount of network and CPU resources to be used
for actual transactions instead of generating and verifying
certificates [17], [18].

Given ourexperience of deploying DAG-based consensus
protocols [2], there are some design challenges that relate
to engineering. Bullshark [4] requires separate sub-protocols
for managing individual block certification, for exchanging
certified blocks, and for managing the communication of
metadata between nodes. The challenge with Mysticeti is to
design a protocol that has a single message type, the signed
block, and a single network primitive, by which each block
is multi-cast to all other correct validators.

A final point of focus inspired by our deployment is
that crash-faults and struggling nodes are a common occur-
rence and not an exception. This is why we have designed
Mysticeti to be able to tolerate crash-faults with as little
performance degradation as possible.

C. The structure of the Mysticeti DAG

We present the structure of the Mysticeti DAG. Its main
goal is to build an uncertified DAG protocol that provides
the same guarantees as a certified DAG.

The Mysticeti protocols operate in a sequence of logical
rounds. For every round, each honest validator proposes a
unique signed block; Byzantine validators may attempt to
equivocate by sending multiple distinct blocks to different
parties or no block. During a round, validators receive
transactions from users and blocks from other validators and
use them as part of their proposed blocks. A block includes
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Fig. 2: Block (A3, r + 2, ·) (green) may reference blocks from different
validators that support both (A3, r, Lr) (blue) and (A3, r, L′

r) (red) equiv-
ocating blocks. If any of the blocks gathers 2f+1 support, it will be certified,
and we show that at most one may do so.

references to blocks from prior rounds, always starting from
their most recent block, alongside fresh transactions not yet
incorporated indirectly in preceding blocks. Once a block
contains references to at least 2f+1 blocks from the previous
round, the validator signs it and sends it to other validators.

Clients submit transactions to a validator, who subse-
quently incorporates them into their blocks. In the event
that a transaction fails to become finalized within a specified
time frame, the client selects an alternative validator for
resubmission.

Block correctness. A block should include at a minimum
(1) the author A of the block and their signature on the block
contents, (2) a round number r, (3) a list of transactions, and
(4) at least 2f+1 distinct hashes of blocks from the previous
round, along potentially others from all previous rounds. By
convention, the first hash must be to the previous block of A2.
We index each block by the triplet B ≡ (A, r, h), comprised
of the author A, the round r, and the hash h of the block
contents. A block is valid if (1) the signature is valid and A
is part of the validator set, and (2) all hashes point to distinct
valid blocks from previous rounds, the first block links to a
block from A, and within the sequence of past blocks, there
are 2f + 1 blocks from the previous round r − 1.

Identifying DAG patterns. We say that a block B′

supports a past block B ≡ (A, r, h) if, in the depth-first
search performed starting at B′ and recursively following
all blocks in the sequence of blocks hashed, block B is
the first block encountered for validator A at round r.
As Figure 2 illustrates, a block (A3, r + 2, ·) (green) may
reference blocks (A2, r+1, ·) and (A3, r+1, ·) from different
validators that respectively support block (A3, r, Lr) (blue)
and the equivocating block (A3, r, L

′
r) (red). At most one of

these equivocating blocks can gather support from 2f + 1
validators.

Mysticeti-C (Section III) and Mysticeti-FPC (Section IV)
operate by interpreting the structure of the DAG to reach
decisions using a single type of message, the block. They
mainly operate by identifying the following two patterns:

2This rule also helps to guarantee the safety of fast pah transactions upon
epoch change (Section IV-D).

A0

A1

A2

LrA3

r r+1 r+2

(a) Illustration of skip pattern,
blocks (A0, r + 1, ·), (A1, r +
1, ·), (A2, r + 1, ·) do not support
(A3, r, Lr).

Lr

r

A0

A1

A2

A3

r+1 r+2

(b) Illustration of certificate pattern,
block (A0, r + 2, ·) is a certificate
for (A0, r, Lr).

Fig. 3: Illustration of main DAG patterns identified by validators.

1) The skip pattern, illustrated by Figure 3 (left), where at
least 2f + 1 blocks at round r + 1 do not support a
block (A, r, h). Note that there may be multiple or no
proposal for the slot. The skip pattern is identified if for
all proposals, we observe 2f+1 subsequent blocks that
do not support it (or support no proposal).

2) The certificate pattern, illustrated by Figure 3 (right),
where at least 2f + 1 blocks at round r + 1 support

a block B ≡ (A, r, h). We then say that B is certified.
Any subsequent block (illustrated at r+2) that contains
in its history such a pattern is called a certificate for the
block B.

Using these patterns, we obtain certificates implicitly by
interpreting the DAG, and the certification guarantees are
identical to Narwhal [3]. That is, a certified block (2f + 1
support) is available and no other certified block may exist
for the same spot (A, r). This counter intuitively means that
even if A equivocates and one of its blocks is certified, we
process it as being correct – despite the self evident Byzantine
behavior. This does not constitute a problem as we only
commit blocks that belong to the implicitly certified part of
the DAG. We also note that a skip pattern guarantees that a
certificate will never exist for a block, and thus it will never
be part of the implicitly certified DAG and can be safely
skipped.

Liveness intuition. Since we are not using randomization,
we need to rely on timeouts for liveness. Although every
blocks has the potential of being committed directly in 3
message delays we cannot provide liveness for all of them
through timeouts, as this would allow Byzantine validators
to slow down the DAG to the point that every round would
move at the speed of the timeout instead of network speed.

Instead we only provide guaranteed liveness after GST for
one block per round3. We deem this block as the primary
block of the round r and require that validators at r+1 wait
a timeout for it to arrive before disseminating their blocks.
Additionally, if the block is in the view of a validator at r+1

3This can be extended to more blocks but it increases the chance that the
adversary controls one block causing a full delay for the round.
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we further require the validator to wait another timeout for
r + 2 or until there are 2f + 1 votes for the primary block
of r. This guarantees the existence of a certificate over an
honest primary block after GST and provides liveness for
Mysticeti-C.

III. The Mysticeti-C Consensus Protocol
Mysticeti-C is the first DAG-based consensus protocol

that decides blocks in 3 message delays. It achieves this
through foregoing an explicit certification of the blocks and
through treating every block as a first-class block that can
be proposed and decided directly. Additionally, Mysticeti-C
is able to instantly identify and exclude crashed validators,
the most frequent failure case in blockchains in the wild.
A. Proposer slots

Mysticeti-C introduces the concept of proposer slot. A
proposer slot represents a tuple (validator, round) and can
be either empty or contain the validator’s proposal for the
respective round. For instance, in Bullshark [4], there is a
single proposer every two rounds, which results in higher
latencies. Unfortunately, it is not trivial to increase the
number of slots, as the commit rule of Bullshark relies on
the fact that every proposer slot has a link to every other
proposer slot, something that is not possible even if there is
a single proposer per round, let alone n.

We overcome this challenge by introducing multiple states

for each proposer slot, namely: to-commit, to-skip, or unde-
cided. The to-commit state is the equivalent of the decided
state that already exists in the prior work. The most impor-
tant state is the undecided, which forces all subsequent pro-
poser slots to wait, mitigating the risk of non-deterministic
commitments due to network asynchrony without the need
for a buffer round as prior work [6], [3], [4], [7]. Finally,
the to-skip state allows to exclude proposer slots assigned
to crashed validators, thus allowing the subsequent slots to
commit.

The number of proposer slots instantiated per round can
be configured but for systems with few faults it can be set
to n so that every block has a chance to commit in 3 steps.
It can also be dynamically adjusted based on the network
conditions, following a similar deterministic approach to
HammerHead [28] (see Appendix A ). Initially, we establish
a deterministic total order among all pending proposer slots,
aligning with the round ordering. Within a single round, the
ordering may either remain fixed or change per round (e.g.,
round robin). Figure 4 illustrates an example of a Mysticeti
DAG with four validators, (A0, A1, A2, A3), four slots per
round, and a potential proposer slot ordering represented as
(L1a, L1b, L1c, L1d) and (L2a, L2b, L2c, L2d) for the first
and second rounds, respectively. This order resembles a FIFO
queue.

As discussed in Section II-C, validators await the proposal
from the primary validator assigned to the first proposer
slot of round r for up to a predetermined delay ∆ before
generating their own proposal for round r + 1. Section V
shows that this delay ensures the liveness of the protocol.

B. The Mysticeti-C decision rule

This section describes the decision rule of Mysticeti-C
leveraging an example protocol run. Section III-D provides
detailed algorithms. As illustrated by Figure 4a, all proposer
slots are initially in the undecided state. The end goal of
Mysticeti-C is to mark all proposer slots as either to-
commit or to-skip by detecting the DAG patterns presented
in Section II-C. The Mysticeti-C decision rule operates in
three steps:

Step 1: Direct decision rule. Starting with the latest
proposer slot (L6d in Figure 4), the validator applies the
following direct decision rule to attempt to determine the
status of the slot. The validator marks a slot as to-commit
if it observes 2f + 1 commit patterns for that slot, that is, if
it accumulates 2f + 1 distinct implicit certificate blocks for
it (see Section II-C). This is the first key design point for
lowering the latency as we certify blocks while constructing
the DAG by interpreting certificate patterns.

Figure 4b illustrates the direct decision rule applied to
L4d, which is marked as to-commit in just 3 messages
due to the presence of 2f + 1 commit patterns. The first
message delay is the proposal block; the second message
delay is the block(s) supporting and voting/certification; and
the third message delay is the block(s) certifying serving
as acknowledgment/commitment. The direct decision rule
marks a slot as to-skip if it observes a skip pattern for that
slot. That is for any proposal for the slot (there may be
multiple due to potential equivocation) it observes 2f + 1
blocks that do not support it or support no proposal. Figure 4c
demonstrates the direct decision rule applied to L4a, which
is marked as to-skip due to the presence of a skip pattern.

Promptly marking slots as to-skip is the second key

design point that contributes to the reduction of undecided
slots following crash-failures and allows Mysticeti-C to
tolerate crash-faults virtually for free.

If the direct decision rule fails to mark a slot as either
to-commit or to-skip, the slot remains undecided and the
validator resorts to the indirect decision rule presented in
step 2 below. During normal operations, however, we expect
the direct decision rule to succeed and to only resort to the
indirect decision rule during periods of asynchrony or under
attacks.

Step 2: Indirect decision rule. If the direct decision rule
fails to determine the slot, the validator resorts to the indirect
decision rule to attempt to reach a decision for the slot. This
rule operates in two stages. It initially searches for an anchor,
which is defined as the first slot with the round number
(r′ > r + 2) that is already marked as either undecided or
to-commit4. Figure 4d and Figure 4e respectively illustrate
the anchor of L2c (marked as undecided) and the anchor of
L1d (marked as to-commit).

4This section assumes a fixed distance of 3 rounds between a proposer
slot which is the minimum secure distance. Section III-D generalize this rule
to a variable distance and discusses its tradeoffs.
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(a) All proposers are initially undecided.
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(b) Direct decision rule: L4d is to-commit.
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(c) Direct decision rule: L4a is to-skip.
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(d) Indirect decision rule: L2c is undecided. Its
anchor (L5a) is undecided, we cannot deter-
mine the status of L2c yet.
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(e) Indirect decision rule: L1d is to-commit.
Its anchor (L4b) is to-commit and there’s a
certified link from L4b to L1d.
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(f) Indirect decision rule: L1b is to-skip. Its
anchor (L4b) is to-commit and no certified link
(only two links in round 2) from L4b to L1b.

Fig. 4: Example application of the Mysticeti-C decision rule with four validators (A0, A1, A2, A3) and four proposer slots per round.

If the anchor is marked as undecided the validator marks
the slot as undecided (Figure 4d). Conversely, if the anchor
is marked as to-commit, the validator marks the slot either
as to-commit if the anchor causally references a certificate
pattern over the slot or as to-skip in the absence of a
certificate pattern. Figure 4e illustrates the indirect decision
rule applied to L1d, which is marked as to-commit due to
the presence of a certificate pattern linking L4b to L1d. On
the other hand, Figure 4 demonstrates the indirect decision
rule applied to L1b, which is marked as to-skip due to the
absence of a certificate pattern linking L4b to L1b.

This is the third key design point contributing to the
safety of Mysticeti-C without the need for links between
proposers. Namely, instead of forcing a direct happened-
before relationship between proposer slots, we take advan-
tage of the predefined total ordering of proposer slots to
ensure that any decision is recursively carried forward such
that no matter the commit pattern, the commit decisions are
deterministic.

Step 3: Commit sequence. After processing all slots, the
validator derives an ordered sequence of slots. Subsequently,
the validator iterates over that sequence, committing all slots
marked as to-commit and skipping all slots marked as to-
skip. This iteration continues until the first undecided slot
is encountered. Section V demonstrates that this commit
sequence is safe and that eventually all slots will be classified
as either to-commit or to-skip. In the example depicted
in Figure 4, the commit sequence is L1a, L1c, L1d, L2a.
Appendix A provides a detailed walkthrough of the decision
rule applied to the example DAG of Figure 4.

This is the final key design point of Mysticeti-C; unlike

prior work that commits everything the moment a decision
rule exists, Mysticeti-C applies some backpressure through
undecided slots to preserve safety. This, however, does not
harm performance, as these undecided slots would have not
even existed as possible commit candidates in prior designs.
C. Choosing the number of proposer slots

The example presented by Figure 4 assumes a number of
proposer slots per round equal to the committee size. While
this choice offers the best latency under normal conditions,
it may impact performance during periods of extreme asyn-
chrony or under Byzantine attack.

In these cases, the probability that the direct decision rule
fails to classify a proposer slot increases when some proposer
slots are slow or equivocate. This forces the validator to resort
to the indirect decision rule more often. As a result, there can
be an increase in the number of undecided slots, which in
turn delays the commit sequence. Figure 4 illustrates this
example through the classification of L2c and L1b as un-
decided, preventing the exemplified protocol execution from
immediately committing L2d, L3b, L3c, L3d, L4b, L4c, and L4d,
which would have been possible under ideal conditions. This
is nevertheless an extreme case of the adversary controlling
the network and some validators only to slow down the
system without any actual profit. After a decade of running
blockchains in the wild, this is not something that has been
witnessed, as attackers tend to attack in order to break safety
and not liveness.

Nevertheless, in order to mitigate it we use Hammer-
Head [28] in order to select 2f + 1 leaders that are best
performing as candidate leaders. This strikes a good balance
as it does not increase the median latency and only increases
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Algorithm 1 Helper functions
1: procedure GetProposerBlock(w)
2: rproposer ← ProposerRound(w)
3: id← GetPredefinedProposer(rproposer)
4: if ∃b ∈ DAG[rproposer] s.t. b.author = id then return b

5: return ⊥

6: procedure GetFirstVotingBlocks(w)
7: rvoting ← ProposerRound(w) + 1
8: return DAG[rvoting ]

9: procedure GetDecisionBlocks(w)
10: rdecision ← DecisionRound(w)
11: return DAG[rdecision]

12: procedure Link(bold, bnew)
13: return exists a sequence of k ∈ N blocks b1, . . . , bk s.t. b1 =

bold, bk = bnew and ∀j ∈ [2, k] : bj ∈
⋃

r≥1 DAG[r] ∧ bj−1 ∈
bj .parents

14: procedure IsVote(bvote, bproposer)
15: function SupportedBlock(b, id, r)
16: if r ≥ b.round then return ⊥
17: for b′ ∈ b.parents do

18: if (b′.author, b′.round) = (id, r) then return b′

19: res← SupportedBlock(b′, id, r)
20: if res ̸=⊥ then return res

21: return ⊥
22: (id, r)← (bproposer.author, bproposer.round)
23: return SupportedBlock(bvote, id, r) = bproposer

24: procedure IsCert(bcert, bproposer)
25: res← |{b ∈ bcert.parents : IsVote(b, bproposer)}|
26: return res ≥ 2f + 1

27: procedure SkippedProposer(w)
28: rproposer ← ProposerRound(w)
29: id← GetPredefinedProposer(rproposer)
30: B ← GetFirstVotingBlocks(w)
31: res← |{b ∈ B s.t. ∀b′ ∈ b.parents : b′.author ̸= id}|
32: return res ≥ 2f + 1

33: procedure SupportedProposer(w)
34: bproposer ← GetProposerBlock(w)
35: B ← GetDecisionBlocks(w)
36: if |{b′ ∈ B : IsCert(b′, bproposer)}| ≥ 2f + 1 then

37: return bproposer

38: return ⊥

39: procedure CertifiedLink(banchor, bproposer)
40: w ← WaveNumber(bproposer.round)
41: B ← GetDecisionBlocks(w)
42: return ∃b ∈ B s.t. IsCert(b, bproposer) & Link(b, banchor)

the expected latency by 1
3 of a delay. Section III-D provides

detailed Mysticeti-C algorithms that allow the number of
proposer slots per round to be configurable.

D. Mysticeti-C Algorithms

This section presents the detailed algorithms of Mysticeti-
C. It can be skipped if a high-level understanding is sufficient.

Algorithm 1 provides base utility functions common to
many DAG-based consensus protocols [3], [6], [4]. The func-
tion PredefinedProposer(·) of Algorithm 2 is a determinist
leader election function, such as round robin. Mysticeti-C
has one type of message; the block and its validity rules

Algorithm 2 DirectDecider Algorithm
1: waveLength ▷ Defaults to 3
2: roundOffset
3: proposerOffset

4: procedure TryDirectDecide(w)
5: if SkippedProposer(w) then return Skip(w)

6: bproposer ← SupportedProposer(w)
7: if bproposer ̸=⊥ then return Commit(bproposer)
8: return ⊥

9: procedure WaveNumber(r)
10: return (r − roundOffset)/waveLength

11: procedure ProposerRound(w)
12: return w ∗ waveLength+ roundOffset

13: procedure DecisionRound(w)
14: return w∗waveLength+waveLength−1+roundOffset

15: procedure GetPredefinedProposer(w)
16: rproposer ← ProposerRound(w)
17: return PredefinedProposer(rproposer + ProposerOffset)

Algorithm 3 Mysticeti-C
1: committeeSize
2: waveLength ▷ Defaults to 3
3: numOfProposers ▷ Set to 2 in Section VII

4: procedure TryDecide(rcommitted, rhighest)
5: sequence← [ ]
6: for r ∈ [rhighest down to rcommitted + 1] do
7: for l ∈ [numOfProposers− 1 down to 0] do
8: i← r % waveLength
9: c← DirectDecider(waveLength, i, l)

10: w ← c.WaveNumber(r)
11: if c.ProposerRound(w) ̸= r then continue
12: status← c.TryDirectDecide(w)
13: if status =⊥ then

14: status← TryIndirectDecide(c, w, sequence)

15: sequence← status||sequence
16: decided← [ ]
17: for status ∈ sequence do

18: if status =⊥ then break
19: decided← decided||status
20: return decided

21: procedure TryIndirectDecide(c, w, sequence)
22: rdecision ← c.DecisionRound(w)
23: anchors← [s ∈ sequence s.t. rdecision < s.round]
24: for a ∈ anchors do

25: if a =⊥ then return ⊥
26: if a = Commit(banchor) then

27: bproposer ← c.GetProposerBlock(w)
28: if c.CertifiedLink(banchor, bproposer) then

29: return Commit(bproposer)
30: else

31: return Skip(w)

32: return ⊥

are described in Section II-C. Every node simply proposes
blocks for every round, and the validity rules make sure this
happens at a beneficial pace.

Algorithm 3 presents the Mysticeti-C algorithm that
is run every time a valid block is received. Mysticeti-
C is instantiated with the following parameters:. (1) The
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committee size committeeSize. (2) The wavelength
wave lenght, which the description of Section III as-
sumes to always equal 3. A larger wavelength parameter
increases the probability of observing a certificate pattern
(Section II-C) over proposer slots during periods of asyn-
chrony but increases the median latency during periods of
network synchrony. (3) The number of proposer slots per
round, which the example depicted by Figure 4 of Section III
assumes to equal the committee size.

The entry point of this algorithm is the procedure
TryDecide(·) (Line 4). It operates by instantiating a Di-
rect Decider (Algorithm 2) for each possible proposer
slot in each round that applies the direct decision rule
(Line 9). Each Direct Decider instance is instantiated with
a round offset roundOffset = r and a proposer offset
proposerOffset = l, such that each instance operates
over a unique proposer slot. These instances try to apply
the direct decision rule to their proposer slot by calling
the procedure TryDirectDecide(·) (Line 12). If the direct
decision rule fails, Algorithm 3 resorts to the indirect decision
rule (Line 14). The algorithm returns the commit sequence.

IV. The Mysticeti-FPC fast path protocol
For workloads necessitating consensus, the Mysticeti-C

protocol successfully achieves a low latency bound. However,
popular workloads [29] such as asset transfers, payments
or NFT minting, can be finalized before consensus, through
and even lower latency fast path. This section presents
Mysticeti-FPC that extends the consensus protocol with
such consensusless transactions.

A. Embedding a fast path into the DAG

The real-world deployment of such hybrid blockchains,
exemplified by Sui [2], [1], capitalizes on the insight that
certain objects, like coins, solely access state controlled
by a single party and need not undergo consensus. These
objects can be finalized through a fast path utilizing reliable
broadcast. Such objects are classified as having an owned

object type as opposed to the traditional shared object type.
Transactions that exclusively involve owned objects as inputs
are called fast path transactions. Two transactions conflict if
they take as input the same owned object.

In Mysticeti-FPC validators include transactions, and ex-
plicitly vote for causally past transactions, in their blocks. A
validator includes a transaction T in its block if it does not
conflict with any other transaction for which the validator
has previously voted. This is also an implicit vote for the
transaction. Other validators, include explicit votes for T in
a block B if: (i) T is present in the causal history of B;
and (ii) T does not conflict with any other already voted on
transaction. In our implementation (Section VI), we denote
the vote for a transaction T appearing in block B at position
i as the tuple (B, i). Once T has 2f + 1 votes from distinct
validators, we call T certified. It is a guarantee that no two
conflicting transaction will be certified in the same epoch.
This is the basis of the fast path safety. Transaction T

is finalized when either (i) there exists 2f + 1 validators
supporting a certificate over T , even before a Mysticeti-
C commit, or (ii) Mysticeti-C commits through consensus a
block that contains a certificate over T in its causal history
(see Section IV-B).

In contrast to previous approaches [2], [22], [30], [24], the
fast path in Mysticeti-FPC is integrated within the DAG
structure itself. This eliminates the need for additional proto-
col messages and for validators to individually sign each fast-
path transaction. Instead, a validator’s fast path votes are em-
bedded within its signed blocks, which are already produced
as part of the consensus protocol. Consequently, in addition
to the block contents of Mysticeti-C, blocks in Mysticeti-
FPC also incorporate explicit votes for transactions involving
at least one owned object input. This deep embedding in
the DAG additionally simplifies checkpoints [2] as it does
not require an external sub-protocol to collect all fast-path
transactions that have been finalized. Instead, Mysticeti-
FPC simply defines checkpoints as the set of finalized fast
path transactions referenced by the causal history of each
Mysticeti-C commit. These can then be used to make sure
that all validators have the same state for an epoch change.

To summarize, Mysticeti-FPC offers several advantages
compared to prior work: (i) A reduction in the number of
signature generation and verification operations alleviating
the compute bottleneck. (ii) Elimination of a separate post-
consensus checkpointing mechanism, resulting in reduced
synchronization latency, as the consensus commits them-
selves serve as checkpoints. (iii) Simplification of the epoch
close mechanism, as we examine next.

B. Execution and finality

Similarly to Sui [2], Mysticeti-FPC introduces the distinc-
tion between fast path execution and fast path finality. The
former refers to the moment when a transaction is executed
by a validator, the execution effects are known, and the
validator can execute subsequent transactions over the same
object. The latter signifies when a transaction is considered
final, ensuring persistence across epoch boundaries and val-
idator reconfigurations.

Fast path execution. A validator can safely execute a fast
path transaction once it observes blocks from 2f +1 valida-
tors that include a vote for the transaction. Due to quorum
intersection, no correct validator will ever execute conflicting
fast path transactions. Figure 5 illustrates a DAG pattern en-
abling the validator to safely execute fast path transactions T1

and T3. The blocks (A0, r, ·) contain the fast path transactions
T1, T3, and T6, while the blocks (A0, r+ 1, ·), (A1, r+ 1, ·),
and (A2, r + 1, ·) support (A0, r, Lr) and explicitly vote for
T1 and T3 (but not for T6

5). Upon observing these blocks, the
validator can safely execute T1 and T3. Note that Mysticeti-
FPC transaction execution can be extremely low-latency,

5Transaction T6 may conflict with another transaction for which the
validator already voted.
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Fig. 5: Illustration fast path transaction execution. The blocks (A0, r, ·) con-
tain the fast path transactions T1, T3, and T6. Blocks (A0, r+1, ·), (A1, r+
1, ·), (A2, r + 1, ·) support (A0, r, Lr) and explicitly vote for T1 and T3

(but not T6). Upon observing these blocks, the validator can safely execute
T1 and T3.

r
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A2
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Payload

owned:  T1
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owned: T3
shared: T4
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r+3 r+n
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Fig. 6: Illustration of the scenario where transactions T1 and T3 are
executed by validator A3 at round r + 2 but no other validator observes
sufficient votes to execute those transactions, and validator A3 reverts their
execution upon epoch change.

requiring only a single round of communication, as opposed
to the 2 rounds required by related work [2], [22], [24], [30].
Fast path finality. Transactions executed by some honest
validators can still be reverted since there is no guaran-
tee that other validators will eventually observe sufficient
evidence to execute the transaction. For instance, Figure 6
illustrates a scenario where transactions T1 and T3 are
executed by validator A3 at round r + 3, but no proposals
from that validators are included into the DAG for rest of the
epoch, possibly due to network asynchrony. Consequently,
no other validator observes sufficient evidence to execute
those transactions, and validator A3 reverts their execution
upon epoch change. Note that reverting execution is a
straightforward operation and already supported by the Sui
protocol, the only blockchain deploying a fast path.

To ensure that the effects of a fast path transaction endure
across epoch boundaries and validator reconfiguration, it
must be finalized. A fast path transaction is finalized when
the validator observes either (1) 2f + 1 certificate patterns
over the block proposing the transaction (as detailed in
Section II-C), each containing 2f+1 votes for the transaction,
or (2) a single certificate pattern over the block proposing the
transaction, which includes 2f + 1 votes for the transaction
and is referenced in the causal history of a block committed
by the consensus protocol. Figure 7 illustrates these two

r+2r
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Payload

owned:  T1
shared: T2
owned: T3
shared: T4
shared: T5
owned: T6

Vote

owned:  T1
owned: T3

r+1

(a) Transactions T1 and T3 proposed by (A0, r, ·) are finalized at round
r+2 upon observing the 2f +1 certificate pattern defined by (A0, r+2, ·),
(A1, r + 2, ·), and (A3, r + 2, ·), referencing the 2f + 1 blocks (A0, r, ·),
(A1, r, ·), and (A3, r, ·) that explicitly vote for T1 and T3.

Consensus

r

A0

A1

A2

A3

Payload

owned:  T1
shared: T2
owned: T3
shared: T4
shared: T5
owned: T6

r+2

Vote

owned:  T1
owned: T3

(b) Transactions T1 and T3 proposed by (A0, r, ·) are finalized after consensus
upon committing block (A1, r+ 2, ·). This block defines a certificate pattern
over (A0, r, ·) that contains (A0, r + 1, ·), (A1, r + 1, ·), and (A3, r + 1, ·)
that vote for T1 and T3.

Fig. 7: Illustration of the two fast path transaction finalization scenarios.

possible finality pattern for fast path transactions T1 and T3.
The finality of a fast-path transaction across epochs is

proven by Theorem 5 of Section V. Additionally, Section IV-C
outlines how Mysticeti-FPC accommodates transactions
containing both owned object and non-owned object inputs.

C. Mixed-objects transactions

Mysticeti-FPC allows for transactions that contain both
owned-object and non-owned-object inputs. Such transac-
tions are called mixed-objects transactions. Validators execute
and finalize these transactions upon observing (1) blocks from
2f +1 validators that include a vote for the transaction, and
(2) a block committed by the consensus protocol referencing
these blocks in its causal history.

Figure 8 provides an example illustrating the finalization
of a mixed-object transaction. This mechanism intuitively
operates in two steps: first, it “locks” the owned-object inputs,
and then sequences this lock to prevent the execution of
potentially conflicting owned-object transactions. The safety
of this approach is guaranteed by Theorem 6 of Section V.

D. Epoch change and reconfiguration

As mentioned in Section III, quorum-based blockchains
typically operate in epochs, allowing validators to join and
leave the system at epoch boundaries. Moreover, epoch
boundaries serve as natural boundaries for protocols with
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shared: T4
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Fig. 8: Illustration of a mixed-objects transaction T5 that contains both
owned-object inputs and non-owned-object inputs. T5 is proposed as part
of (A0, r, ·). Blocks (A0, r1, ·), (A1, r + 1, ·), and (A3, r + 2, ·) vote for
T5. The validator can execute and finalize T5 once block (A3, r + 2, ·) is
committed by the consensus protocol.

a consensusless path to “unlock” transactions that have lost
liveness due to equivocation from the client [2], [31]. This
committee reconfiguration process must uphold a critical
safety property: transactions finalized in an epoch should
persist across subsequent epochs. In other words, transac-
tions finalized in the current epoch should not conflict with
transactions committed in future epochs. This holds trivially
for consensus protocols which is why we omit the epoch
change for Mysticeti-C.

The Mysticeti-FPC epoch-change protocol. The safety
of reconfiguration is ensured by including all finalized trans-
actions from the current epoch into the causal history of
the epoch’s final commit, which also acts as the initial
state for the succeeding epoch. Guaranteeing reconfiguration
safety is straightforward in systems mandating consensus for
all transactions, such as Mysticeti-C, owing to the total
ordering property inherent in consensus. A deterministic
consensus commit C sets the boundary between epochs e
and e+1. This makes sure that all transactions completed in
epoch e are included in and come before commit C .

However, designing reconfiguration mechanisms for sys-
tems with a consensusless fast path, like Mysticeti-FPC,
presents non-trivial challenges. There is a race between fi-
nalized transactions being incorporated into consensus com-
mits and new transactions being finalized by the fast path.
Trivially closing the epoch may result in the final commit
of the epoch failing to encompass all transactions finalized
by the fast path, thereby violating the safety property of
reconfiguration.

To solve this challenge, Mysticeti-FPC introduces an
overriding bit called the epoch-change bit in all its blocks.
When this bit is set to 1 (default set to 0), it signifies
that blocks referencing these votes do not contribute to the
finalization of fast path transaction, irrespective of its causal
history. Effectively, this epoch-change bit allows for the pause
of the consensusless fast path of Mysticeti-FPC near the end
of the epoch, mitigating the race condition highlighted above.

Epoch change starts at a predefined commit, often signaled
by a higher-layer logic (e.g., a smart contract) indicating the

readiness of the new committee to take charge. Once an
honest validator detects the commencement of epoch change,
it ceases to include transactions and to cast votes for any
fast-path transactions. Subsequently, it sets the epoch-change
bit to 1 in all its future blocks for the current epoch. Fur-
thermore, while the validator continues to progress through
rounds and participate in consensus, it stop processing and
finalizing fast-path transactions. Upon committing blocks
from 2f + 1 validators with the epoch-change bit set via
the consensus path, the epoch is considered closed.

Once the epoch ends, any validator participating the com-
mittee of the next epoch may unlock fast-path transactions
that were blocked due to client equivocations. These trans-
actions can then receive fresh votes in subsequent epochs.
Security intuition. The epoch-change mechanism ensures
that transactions finalized in an epoch (including on the fast
path before consensus) persist across all subsequent epochs,
a critical safety property (more formally in Theorem 5).
Informally, by committing 2f + 1 blocks with the epoch-
change bit set, we guarantee that every transaction finalized
via the fast-path would have a certificate as part of the
causal history of the epoch-change commit (due to a quorum
intersection argument). Consequently, all validators process
the certificate before they end of the epoch and persist
execution results across epochs.

The liveness of Mysticeti-FPC directly depends on the
liveness of Mysticeti-C. Informally, if the epoch is long
enough, a non-conflicting transaction will gather sufficient
votes, and then be certified by 2f +1 blocks with the epoch-
change bit unset. Which in turn ensures that it will be in-
cluded in a commit and persisted across epochs. Section V-B
formally proves the safety and liveness of Mysticeti-FPC.

V. Mysticeti Security
We argue the security of Mysticeti-C and Mysticeti-FPC

under the Byzantine assumption presented in Section II.

A. Security of Mysticeti-C

This section argues the safety, liveness, and integrity of
Mysticeti-C.
Safety of Mysticeti-C. A validator vk broadcasts messages
calling a bcastk(b, r), where b is a block signed by validator
vk and r is the block’s round number, i.e., r = b.round.
Every validator vi has an output a deliveri(b, b.round, vk),
where vk is the author of b and the validator that called the
corresponding a bcastk(b, b.round).

Lemma 1. If at a round x, 2f + 1 blocks from distinct

authorities certify a block B, then all blocks at future rounds

(> x) will link to a certificate for B from round x.

Proof. Each block links to 2f + 1 blocks from the previous
round. For the sake of contradiction, assume that a block
in round r(> x) does not link to a certificate from round
x. If r = x + 1, by the standard quorum intersection
argument, a correct validator equivocated in round x, which
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is a contradiction. Similarly, if r > x + 1, by the standard
quorum intersection argument, a correct validator’s block in
round r−1 does not link to its own block in round x, which
is also a contradiction.

Lemma 2. If a correct validator commits some block in a slot

s, then no correct validator decides to directly skip the slot s.

Proof. A validator X decides to directly skip a slot s if
there is no support during the support rounds for any
block corresponding to s. If another validator committed
some block b for slot s, at least f + 1 correct validators
supported b. By the quorum intersection argument, X must
have observed at least one validator supporting B, which is
a contradiction.

Lemma 3. If a correct validator directly commits some block

in a slot s, then no correct validator decides to skip s.

Proof. For the sake of contradiction, assume that a correct
validator X directly commits block b in slot s while another
correct validator Y decides to skip the slot. Y can decide to
skip the slot s in one of two ways: (a) Y directly skipped
s because there was no support during the support rounds
for any block corresponding to s, or (b) Y skipped s during
the recursive commits triggered by a direct commit of a later
slot.

Case (a). Direct contradiction of Lemma 2.
Case (b). Let block b′ denote the proposer block, committed

during the recursive indirect commits, that allowed Y to
decide s as skipped. Due to the commit rule, the round
number of b′ is greater than the decision round of s, and
b′ does not link to a certificate for b. Since X committed
b, there are 2f + 1 certificates for b in its decision round,
leading to a contradiction due to Lemma 1.

Lemma 4. For any slot s ≡ (v, r), a correct validator never

supports two distinct block proposals from validator v in round

r across all of its blocks.

Proof. By definition, a block can only support at most a single
proposal for a particular slot s. Block support is calculated
through a depth-first traversal of the referenced blocks, such
that the first block corresponding to s encountered during the
traversal is supported. Since a correct validator first includes
a reference to its own block from the previous round, once a
correct validator supports a certain block for s, it continues
to support the same block in all of its future blocks.

Lemma 5. For any slot, at most a single block will ever be

certified, i.e. gather a quorum (2f + 1) of support.

Proof. For contradiction’s sake, assume that two distinct
block proposals for a slot gather a quorum of support. By the
standard quorum intersection argument, a correct validator
supports two distinct blocks for the same slot, which is a
contradiction of the proved Lemma 4.

As a result of Lemma 5, we get the following corollary:

Corollary 1. No two correct validators commit distinct blocks

for the same slot.

Lemma 6. All correct validators have a consistent state for

each slot, i.e. if two validators have decided the state of a slot,

then both either commit the same block or skip the slot.

Proof. Let [xi]
n
i=0 and [yi]

m
i=0 denote the state of the slots

for two correct validators X and Y , such that n and m are
respectively the indices of the highest committed slot. WLOG
n ≤ m. Any slot decided by X higher than n are direct skips
and are therefore consistent with Y due to Lemma 2. We now
prove, by induction, statement P (i) for 0 ≤ i ≤ n: if X and
Y both decide the slot i, then both either commit the same
block or skip the slot.

Base Case: i = n. X directly commits slot i, the highest
committed slot for X . From Lemma 3, if Y decides slot i,
then it must also commit slot i. By Corollary 1, Y commits
the same block.

Assuming P (i) is true for k + 1 ≤ i ≤ n, we now prove
P (k). Similar to the base case, if one validator decides to
directly commit a block in slot k, then the other validator, if
it also decides slot k, decides to commit the same block. If
one validator decides to directly skip slot k, then the other
validator, if it also decides slot k, decides to skip due to
Lemma 2. We now analyze the only remaining case where X
and Y indirectly decide the slot k. Let k′ denote the first slot
> k with a round number higher than the decision round
of k. There exist slots kx(≥ k′) and ky(≥ k′) such that X
commits block bx in kx while skipping all slots in [k′, kx)]
and Y commits block by in ky while deciding to skip all
slots in [k′, ky)]. As kx ≤ n, it follows from the induction
hypothesis that kx = ky and bx = by = b. Since the indirect
decision of X and Y for slot k depends entirely on the causal
history of the same block b, both validators decide the slot
k identically.

Lemma 7. All correct validators commit a consistent sequence

of proposer blocks (i.e., the committed proposer sequence of one

correct validator is a prefix of another’s).

Proof. The committed sequence of proposer blocks is noth-
ing but the sequence of committed blocks before the first
undecided slot. The statement is then a direct implication of
Lemma 6.

Theorem 1 (Total Order). Mysticeti-C satisfies the total order

property of Byzantine Atomic Broadcast.

Proof. Correct validators deliver blocks by using an iden-
tical deterministic algorithm to order the causal history of
committed proposer blocks. Since a correct validator has all
the causal histories of a block when the block is added to
its DAG, and the sequence of committed proposer blocks of
one validator is a prefix of another’s (Lemma 7), all correct
validators deliver a consistent sequence of blocks, i.e., the
sequence of blocks delivered from one validator is a prefix
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of the sequence delivered by any other validator. The total
order property of BAB immediately follows.

Liveness of Mysticeti-C. We show the liveness of
Mysticeti-C under partial synchrony (Section II).

Lemma 8 (Round-Synchronization). After GST all honest

parties will enter the same round within ∆.

Proof. After GST all messages sent before GST deliver within
∆. This means that if r is the highest round any honest
validator proposed a block for before GST, then every hon-
est validator will receive the block proposal of the honest
validator at GST +∆ and also enter r.

Lemma 9 (Leader-Proposal). After GST an honest proposer’s

proposal will get votes from every honest validator.

Proof. After GST if an honest validator enters wave w, then
it has to broadcast the last block of wave w − 1. Within
∆ the honest proposer (and every other honest party) will
receive the block and adopt the parents, being able to also
enter wave w as they are all synchronized (Lemma 8). Then
the honest proposer will directly propose its block. Since the
timeout is set to 2 ·∆ the proposer’s block of wave w will
arrive before the first honest validator times out hence, every
honest validator will vote for the proposer.

Lemma 10 (Sufficient Votes). After GST all honest validators

will create a certificate for the honest proposer.

Proof. By Lemma 9 all honest validators will vote for an
honest proposer after GST. For an honest validator to propose
a block at the decision round it needs to (a) get the proposal
of the proposer and (b) have 2f + 1 parents. All honest
validators receive the proposer proposal within ∆ since the
proposer is honest. Additionally once a honest validator
advances to the decision round all honest validators will
receive its block proposal and adopt the parents within ∆.
Consequently, by construction, honest validators wait for 2·∆
before giving up the certificate creation and will receive the
votes from all honest validators witnessing a certificate

Lemma 11. The round-robin schedule of proposers in Mys-

ticeti ensures that in any window of 3f + 3 rounds, there

are three consecutive rounds with honest primary proposers. A

primary proposer is the proposer of the first slot of a round.

Proof. There are 3f + 1 groups of three consecutive rounds.
Due to the round-robin schedule, each of the honest val-
idators must be the primary proposer in exactly 3 of these
groups. As there are 2f + 1 honest validators, due to the
pigeonhole principle, one group must contain ⌈ 3∗(2f+1)

3f+1 ⌉ =
3 honest proposers.

Lemma 12. After GST any undecided slot eventually gets

decided.

Proof. Let there be an undecided slot s in round r. After
GST, due to Lemma 11, there will eventually be an honest
proposer for the first slots s0, s1 and s2 of rounds k, k + 1

and k + 2 respectively, where k > r. By Lemma 10, the
honest proposer’s blocks will have 2f +1 certificates and be
scheduled for a commit. We now prove that by induction,
all slots in round ≤ k − 1 get decided. In the base case, any
undecided slots in rounds k−3, k−2 or k−1 get decided by
the commits in slots s0, s1 and s2 respectively, as they are the
first slots higher than the respective decision rounds. For the
induction step, any undecided slot s in round x ≤ k− 4 also
gets decided since s0 is higher than the decision round of x
and there are no undecided slots between s and s0 (induction
hypothesis).

Theorem 2 (Consensus Liveness). After GST the proposal of

an honest proposer will commit.

Proof. By Lemma 10 there will be 2f + 1 certificates for
the proposer, one per honest party. By the code an honest
validator tries to commit the proposer for every block they
get so eventually they will get the 2f + 1 certificates. The
validator schedules the block to be committed. By Lemma 12,
all prior undecided blocks will eventually be decided, and the
validator will deliver the honest proposer’s block.

Theorem 3 (Agreement). Mysticeti-C satisfies the agreement

property of Byzantine Atomic Broadcast.

Proof. If a correct validator outputs a deliveri(b, r, vk), then
it must have committed a sequence of proposer blocks
L = l0, l1...ln such that the deterministic algorithm to deliver
blocks from the sequence L delivers block b. Another correct
validator Y that has not delivered b will eventually see a
proposal b′ from an honest proposer in round r′ > r as per
the proposer schedule of Mysticeti-C. Due to Theorem 2,
after GST, Y will commit the proposer’s block b′. Due to
Lemma 7, Y will also commit the proposer sequence L before
committing b′. Since Y follows an identical deterministic al-
gorithm as X to deliver blocks from the committed sequence
of proposer blocks, it also delivers b′ eventually.

Integrity of Mysticeti-C. Mysticeti-C guarantees in-
tegrity by construction.

Theorem 4 (Integrity). Mysticeti-C satisfies the integrity

property of Byzantine Atomic Broadcast.

Proof. The algorithm linearizing the causal history of a
committed proposer block removes any block with dupli-
cate sequence numbers before delivering the sequence of
blocks.

B. Security of Mysticeti-FPC

We argue the safety and liveness of Mysticeti-FPC.

Theorem 5 (Epoch close safety). Transactions finalized in an

epoch continue to persist in all subsequent epochs.

Proof. It is sufficient to prove that all fast-path transactions
that are considered final have one certifying block committed
in the current epoch. For contradiction’s sake, assume that
the epoch closed before any certifying block for a finalized
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transaction tx could be committed. For the epoch to close,
blocks from 2f + 1 validators with the epoch-change bit set
must be committed. Since tx is finalized, 2f + 1 validators,
by definition, publish a block that certifies the transaction.
By quorum intersection, one honest validator v published a
block B1 in round r1 certifying transaction tx, whereas a
block B2 in round r2 from v with epoch-change bit set must
have been committed. All blocks published by v in rounds
≥ r2 also have the epoch-change bit set. Because blocks with
the epoch-change bit set, by definition, do not certify any
transaction, B1 is necessarily published in an earlier round
than that of B2 (i.e. r1 < r2). B1 is therefore contained in
the causal history of B2, and must also have been committed,
which is a contradiction.

Theorem 6 (Mysticeti-FPC Safety). An honest validator in

Mysticeti-FPC never finalizes two conflicting transactions.

Proof. Transactions that have an owned object as input
require votes from 2f + 1 validators to be finalized. If two
conflicting fast paths are finalized, an honest validator must
have voted for both transactions (by quorum intersection),
hence a contradiction. Using a similar argument, a fast
path transaction does not conflict with a consensus path
transaction, as the consensus path in Mysticeti-FPC finalizes
a transaction with an owned object input only if it has votes
from 2f + 1 validators.

Theorem 7 (Fast-Path Liveness). An honest fast-path trans-

action will commit after GST.

The proof is the same as consistent broadcast. We do it
after GST assuming the epoch does not end. If the epoch has
infinite length then we can convert all references to ∆ with
“eventually” and the proof will work in asynchrony.

Proof. An honest validator will submit a fast-path transaction
that does not have equivocation. As a result, all honest
validators will receive it after ∆ and vote. These votes will
appear in the DAG after at most 4 ·∆ since any round has at
most duration of timeout+∆ = 3 ·∆. In the next round, every
honest validator will reference the 2f+1 votes in their DAG
and execute.

Theorem 8 (Equivocation-Tolerence). If a faulty validator vk
concurrently called r bcastk(m, q, e) and r bcastk(m

′, q, e)
with m ̸= m′

then the rest of the validators either

r deliveri(m, q, vk, e), or r deliveri(m
′, q, vk, e), or there

is a subsequent epoch e′ > e where vk is hon-

est, calls r bcastk(m
′′, q, e′) and all honest validators

r deliveri(m
′′, q, vk, e

′),

Proof. For the case that validators r deliveri(m
′, q, vk, e) it

is a direct result of Theorem 7. Otherwise, from the code of
the epoch change when the epoch ends all validators forget
the locks they have taken on messages without certificates.
As a result in a future epoch e′ where vk is honest and
does not equivocate it will be able to commit m again from
Thereon 7.

VI. Implementation
We implement a networked multi-core Mysticeti val-

idator in Rust. It uses tokio [32] for asynchronous net-
working, utilizing TCP sockets for communication without
relying on any RPC frameworks. For cryptographic opera-
tions, we use ed25519-consensus [33] for asymmetric
cryptography and blake2 [34] for cryptographic hashing.
To ensure data persistence and crash recovery, integrate a
Write-Ahead Log (WAL), seamlessly tailored to our specific
requirements. We have intentionally avoided key-value stores
like RocksDB [35] to eliminate associated overhead and
periodic compaction penalties. Our implementation optimizes
I/O operations by employing vectored writes [36] for efficient
multi-buffer writes in a single syscall. For reading the WAL,
we make use of memory-mapped files while carefully mini-
mizing redundant data copying and serialization. We use the
minibytes [37] crates to efficiently work with memory-
mapped file buffers without unsafe code.

While all network communications in our implementa-
tion are asynchronous, the core consensus code runs syn-
chronously in a dedicated thread. This approach facilitates
rigorous testing, mitigates race conditions, and allows for
targeted profiling of this critical code path.

In addition to regular unit tests, we have two supple-
mentary testing utilities. First, we developed a simulation
layer that replicates the functionality of the tokio runtime
and TCP networking. This simulated network accurately
simulates real-world WAN latencies, while our tokio runtime
simulator employs a discrete event simulation approach to
mimic the passage of time. Utilizing this simulator, we can
test a wide range of scenarios on a single machine and
accurately estimate resulting latencies. It’s worth noting
that we’ve found these simulated latencies, such as commit
latency, to closely mirror those observed in real-world cluster
testing, provided that the cross-validator latency distribution
in the simulated network is correctly configured. Second,
we created an a command-line utility (called ‘orchestra-
tor’) designed to deploy real-world clusters of Mysticeti
with machines distributed across the globe. The simulator
has proven indispensable in identifying correctness defects,
while the orchestrator has been instrumental in pinpointing
performance bottlenecks. We open-source our Mysticeti
implementation, its simulator, and orchestration utilities6.

VII. Evaluation
We evaluate the throughput and latency of Mysticeti

through experiments on AWS to show its performance im-
provements over the state-of-the-art.

Despite the large number of BFT consensus protocols [11],
[9], [38], [39], [8], [7], [5], [10], [40], [41], we opt to com-
pare Mysticeti-C with vanilla HotStuff [42], HotStuff-over-
Narwhal (called Narwhal-HotStuff ) [3], and Bullshark [4].
We select these protocols for the availability of open-source
implementations and detailed benchmarking scripts, their

6https://github.com/asonnino/mysticeti/tree/paper (commit 96fd831)
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similarity to Mysticeti, and their adoption in real-world
deployments. We specifically select the Jolteon [14] variant
of HotStuff as it has been adopted by Flow [43], Diem [44],
Aptos [45], and Monad [46]. We also select the Narwhal-
HotStuff variant as it operates on a structured DAG as
Mysticeti and is the most performant variant of HotStuff.
We finally select Bullshark as it is a performant DAG-based
protocol adopted by the Sui blockchain [1], [2], Aleo [47], and
Fleek [48]. We evaluate the Narwhal-based systems (that is,
Narwhal-HotStuff and Bullshark) in their default 1 worker
configuration. We also evaluate the fast path Mysticeti-FPC
against Zef [23] (in its default configuration, with 10 shards),
which is the state-of-the-art fast path protocol that serves as
the foundation for the Linera blockchain [25].

Throughout our evaluation, we particularly aim to demon-
strate the following claims. C1: Mysticeti-C has higher
throughput and drastically lower latency than the baseline
state-of-the-art protocols. C2: Mysticeti-C has a similar
throughput to the baseline protocols but maintains sub-
second latencies when operating in the presence of crash
faults. C3: Mysticeti-FPC maintains the same latency as
the baseline state-of-the-art consensus-less protocol but with
drastically higher throughput.

Note that evaluating BFT protocols in the presence of
Byzantine faults is an open research question [49], and state-
of-the-art evidence relies on formal proofs of safety and
liveness (which we present in Section V). While there is a
need to robustly tolerate Byzantine faults, we note that they
are rare in observed delegated proof of stake blockchains, as
compared to crash faults that are very common.

A. Experimental setup

We deploy a Mysticeti testbed on AWS, using
m5d.8xlarge instances across 13 different AWS re-
gions: N. Virginia (us-east-1), Oregon (us-west-2), Canada
(ca-central-1), Frankfurt (eu-central-1), Ireland (eu-west-1),
London (eu-west-2), Paris (eu-west-3), Stockholm (eu-north-
1), Mumbai (ap-south-1), Singapore (ap-southeast-1), Syd-
ney (ap-southeast-2), Tokyo (ap-northeast-1), and Seoul (ap-
northeast-2) . Validators are distributed across those regions
as equally as possible. Each machine provides 10Gbps of
bandwidth, 32 virtual CPUs (16 physical cores) on a 2.5GHz
Intel Xeon Platinum 8175, 128GB memory, and runs Linux
Ubuntu server 22.04. We select these machines because
they provide decent performance, are in the price range of
‘commodity servers’, and are the same instance types used
by our baselines.

Mysticeti can employ more than one slot per round to
mitigate the performance impact of crash faults and commit
more blocks per round, but if the proposer slot behaves
in a Byzantine manner, it can still manipulate their slot to
remain undecided, resulting in similar latency effects as an
unmasked crash fault. Therefore, we have chosen to have
two proposer slots per round as an effective compromise
for our experiments. To implement the partial synchrony

assumption, validators wait up to 1 second to receive a
proposal from the first proposer slot of the previous round.

In the following graphs, each data point is the average
latency and the error bars represent one standard deviation
(error bars are sometimes too small to be visible on the
graph). We instantiate several geo-distributed benchmark
clients within each validator submitting transactions at a
fixed rate for a duration of several minutes. We experimen-
tally increase the load of transactions sent to the systems, and
record the throughput and latency of commits. As a result,
all plots illustrate the ‘stead state’ latency of all systems
under low load, as well as the maximal throughput they can
serve after which latency grows quickly. Transactions in the
benchmarks are arbitrary and contain 512 bytes. The ping
latency between the validators varies from 50ms to 250ms.

When referring to latency, we mean the time elapsed
from when the client submits the transaction to when the
transaction is committed by the validators. When referring to
throughput, we mean the number of committed transactions
over the duration of the run. ?? provides a tutorial to
reproduce our experiments.

B. Benchmark in ideal conditions

Figure 9 illustrates the Latency (seconds) - Throughput
(Transactions per second, TPS) relationship for Mysticeti-
C and other consensus protocols, for a small deployment of
10 validators and a larger deployment of 50 validators. The
systems run in ideal conditions, without faults.

At a steady state of 50k to 400k TPS for both network
sizes Mysticeti-C exhibits sub-second latency, a factor 2x-
3x lower than the fastest protocols, namely HotStuff, and
Narwhal-HotStuff. Bullshark uses a certified DAG and worker
architecture and is over 3x slower in terms of latency
compared with Mysticeti-C for low system loads. In terms
of throughput, both Mysticeti-C networks scale extremely
well and achieves a throughput of over 300k-400k TPS before
the latency reaches 1s, that is, well lower than the latency
of state-of-the-art systems. This illustrates that the single-
host throughput efficiency of Mysticeti-C is higher than for
previous designs. Note that current real-world blockchains
combined7 process fewer than 100M transactions per day,
equivalent to about 1.2k TPS, well within the steady state
low-latency parameter space for Mysticeti-C, without any
further scaling strategies.

These observations validate our claim C1 showing that
Mysticeti-C has higher throughput and drastically lower
latency than the baseline state-of-the-art protocols.

Throughout these benchmarks, the the CPU utilization
of the validators remains below 10% and the validators
consumes less than 15GB of memory (when experiencing the
highest load of 400k tx/s).

C. Benchmark with faults

Figure 10 illustrates the performance of HotStuff, Narwhal-
HotStuff, Bullshark, and Mysticeti-C when a committee of

7Estimates from https://app.artemis.xyz/comparables
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Fig. 9: Throughput-Latency graph comparing Mysticeti-C performance with state-of-the-art consensus protocols.
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Fig. 11: Throughput - Latency comparison the for fast path commits
between Mysticeti-FPC and Zef

10 parties suffers 0 to 3 crash faults (the maximum that
can be tolerated in this setting). HotStuff suffers a massive
degradation in both throughput and latency. With 3 faults,
the throughput of HotStuff drops to a few hundred TPS
and its latency exceeds 15s. Narwhal-HotStuff, Bullshark, and
Mysticeti-C maintain a good level of throughput: the under-
lying DAG continues collecting and disseminating transac-
tions despite the faults. Narwhal-HotStuff and Bullshark can
process about 70k TPS in about 8-10 seconds. In contrast,
Mysticeti-C can process the same load while maintaining
sub-second latency. This improvement is due to the ability
of Mysticeti to operate with multiple leaders per round.
Mysticeti-C thus demonstrates a 15-20x latency improve-
ment compared to the baseline state-of-the-art protocols.

These observations validate our claim C2 showing that
Mysticeti-C handles similar throughput to the state-of-the-
art but with sub-second latency despite crash faults.

D. Benchmark of the fast path

Figure 11 illustrates the Latency - Throughput of fast path
commits for Mysticeti-FPC, compared with Zef [23] when

deployed without privacy protections8. Both systems run in
ideal conditions, without faults. We observe that for low loads
both protocols have a comparable latency of around 0.25s.
However, as the load increases a Zef host has to verify and
produce an increasing number of signatures, proportional to
the throughput times the number of validators. As a result
throughput tops at 20k TPS for a small Zef network and 7K
TPS for a larger network, at a latency of 0.5s. Mysticeti-FPC
avoids the need for individual signature verification for each
transaction. At a low load, its latency is similar to Zef at 0.25s.
However, as the load increases Mysticeti-FPC can process
many more messages on a single host, namely 175k TPS for
a small network and 80K for a larger network, at a latency of
less than 0.5s. This is a single host throughput improvement
of 8x-10x compared with Zef. We acknowledge that the Zef
design can scale by adding additional hosts per validator,
and sharding. However, this leads to additional hardware cost
meaning that Mysticeti-FPC is an order of magnitude more
resource efficient for the same latency.

We thus validate our claim C3 showing that Mysticeti-
FPC offers the same latency as state-of-the-art consensus-less
protocols but with significantly higher throughput.

VIII. Mysticeti in Production
We collaborated with the Sui team to integrate Mysticeti-

C into the Sui blockchain as a replacement for Bullshark [4],
which it used for consensus (Figure 1).

There are a number of reasons why Sui is a good fit for us-
ing Mysticeti-C. First, Sui maintains a fixed committee con-
sensus during each epoch, which does not require Mysticeti-
C to support unscheduled reconfiguration, allowing for a
drop in replacement of the consensus component. Secondly,
Byzantine behavior in Sui is handled through shifts in stake
delegation between epochs. Thus, the priority is to maintain
performance under frequent crash faults, as is the case with
Mysticeti-C. Byzantine faults need to be handled safely, but
it is not critical to maintain extremely high performance
while doing so, since they are rare. In the past year, no
Byzantine faults involving equivocation have been observed
on the Sui mainnet.
Code adaptations. To ensure seamless integration with the
existing Sui codebase, we undertook a series of adaptations.
We improved system resilience through the addition of new

8Zef can also be instantiated to leverage the Coconut threshold credentials
system [50] to provide privacy guarantees at the cost of performance.
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unit tests, crash recovery mechanisms, and bulk synchro-
nization. We further integrated into Mysticeti-C key Sui
features, such as a timestamp service [51] (detailed in Ap-
pendix B), facilitating compatibility and interoperability with
the higher-level smart contract layer. Finally, we integrated
HammerHead [28], adding proposer reputation, to further
enhance stability and performance.
From prototype to production. The roadmap spans from
the initial experimentation on the prototype code to a
production-ready version of Mysticeti-C deployed in Sui.

Explorations on how to integrate Mysticeti-C started
in November 2023, with experimentation on the prototype
code (Section VI) and an exploration of which existing Sui
code components could be reused. We reached a significant
milestone in February 2024: deploying a production-ready
version of Mysticeti-C onto the geo-distributed private test
environment. Initial testing was conducted on a testbeds
comprised of 137 validators with voting power that emulated
the distribution observed on the Sui mainnet. We run stress
tests that simulate typical blockchain traffic, ranging from
100 to 6,000 transactions per second.

While the deployment went smoothly, the system’s la-
tency profile initially did not meet expectations. Although
Mysticeti-C had sub-second P50 latency, it has noticeably
higher tail latency and jitters. We discovered several con-
tributing factors including inefficient synchronization of un-
evenly broadcasted blocks, and significant degradation under
high CPU utilization in the QUIC networking implementation
we used. The synchronization issue was not noticeable in the
current Sui blockchain due to the higher latency of Bullshark.
In an effort to address these challenges, we improved the
fault tolerance and effectiveness of block synchronization.
Also we migrated to TCP networking for node-to-node
communication, with streaming of proposed blocks.

Thorough testing is essential to gain confidence before
the deployment of Mysticeti-C into the Sui mainnet. First,
we developed and open-sourced a Domain-Specific Language
(DSL) to swiftly construct Mysticeti’s DAG 9 under various
scenarios, which simplifies the creation of diverse DAG
structures such as missing proposers, and diverse selection
of block ancestors. Also we used the deterministic simulated
testing framework built for the Sui project to randomly
inject network faults, network latency jitters and thread
delays to Mysticeti-C. The system was verified to maintain
safety and liveness under these randomly injected failures. In
addition, many experiments with Mysticeti-C were carried
out over the private testnet environment with high generated
load, and sometimes down validators. We made sure the
system stay live and latency growth is expected under these
conditions.

When deploying Mysticeti-C to Sui staging environ-
ments, the environments alternated between running Bull-
shark, the existing consensus protocol, and Mysticeti-C with
each epoch. Devnet epochs last 1 hour, while testnet epochs

9https://github.com/MystenLabs/sui/pull/16436

Protocols Committee Size TPS P50 Latency P95 Latency

Bullshark 137 5,000 2,890ms 4,600ms
Mysticeti-C 137 5,000 650ms 975ms

TABLE I: Comparison of production performance: bullshark vs.
Mysticeti-C deployment within Sui with 137 validators (with equal voting
power). Both systems are subjected to a load of 5,000 TPS and observed a
sustained throughput of 5,000 TPS. All benchmarks ran for many hours.

last 24 hours. This method ensures that both consensus
protocols get test coverage in the staging environments, and
provides reassurance that protocol upgrades can be executed
smoothly upon transitioning to the mainnet. Moreover, it
allows for performance comparison between the consensus
protocols under the same environment. Sui mainnet valida-
tors operated by independent entities voted to switch to
Mysticeti-C on July 25th, 2024 PST.
Performance assessment. The performance results depicted
in Table I are provided by the Sui team. Measurements are
obtained from a private deployment on Vultr [52], utilizing
vbm-24c-256gb-amd instances deployed on 9 different
regions: Amsterdam, Frankfurt, Paris, Los Angeles, San Jose
(California), Newark (New York), Tokyo, New Delhi, and
Johannesburg. Each machine provides 25Gbps of bandwidth,
48 virtual CPUs (24 physical cores) on a 2.85GHz AMD EPYC
7443P, 256GB memory, and runs Linux Ubuntu server 24.04.
The partially synchronous assumption is implemented by
mandating validators to wait an additional 250ms for the
block of the anchor slot of the previous round after receiving
2f + 1 proposals from that previous round.

Sui equipped with the production-ready implementation
of Mysticeti-C demonstrates superior latency compared to
when equipped with the production-ready implementation
of Bullshark, with p50 and p95 latency of 650ms and 975ms
for 137 validators, respectively. In contrast, Sui equipped
with Bullshark exhibits a p50 and p95 latency of 2.89s and
4.6s for the same configuration. The measurements are taken
while both systems run in their steady-state, with a load
of 5,000 transactions per second (and exhibiting an equal
throughout) for multiple hours. These results demonstrate the
substantial latency improvements – of over 4x – brought to
the blockchain when swapping Bullshark for Mysticeti-C.

IX. Related Work
Mysticeti is a family of protocols designed to support

next-generation distributed ledgers [53], [54], [55], [56].
To this end, its goal is to capture as wide a range of
distributed ledgers as possible whether consensus-based or
consensus-less. The pioneer on hybrid distributed ledgers is
the Sui Lutris blockchain [2] which has been productionized
by Sui [1]. However, the design of Sui Lutris focuses on
providing a glue between the two distinct use-cases of
consensus-based and consensus-less distributed ledgers, or
in the production code a glue of FastPay [22] and Bull-
shark [4]. This design process of starting with the to-be-
glued components and ending in a final system has led to
significant inefficiencies such as multiple rebroadcasting of
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the same data as well as signature verification costs. Unlike
Sui Lutris, Mysticeti is designed from first principles and as
a result shows a potential halving of the latency, matching
the lower bounds of PBFT [16] for consensus and Reliable
Broadcast [57], [13] for consensusless distributed ledgers with
equivocation tolerance.

We already discussed the core benefits of Mysticeti-FPC
in terms of much lower CPU cost. In addition, it inherits
the ability to change epochs, reconfigure the validator set,
and tolerate equivocations from Sui Lutris. These benefits can
also be used to embed other broadcast-based protocols like
FastPay [22], Astro [24], and Zef [23], to improve privacy.

In terms of consensus, the most recent DagRider [6],
Narwhal-Tusk [3], Bullshark [4] were the inspiration for
using a structured DAG and defining a safe commit rule
on it. However, they all use a DAG of certified blocks
which increases both latency and implementation complex-
ity. Although at first glance, certification seems to benefit
adversarial cases where nodes can advance the DAG with-
out needing to synchronize, our production experience of
Bullshark [4] has shown that this benefit is negated right
after consensus is finished and executing transactions starts
(which requires all dependencies to be already executed).
As a result, the certification benefits only Byzantine Atomic
Broadcast protocols but not if used for the common case
of powering a State Machine Replication system (e.g., a
blockchain). Mysticeti uses instead a DAG of signed but
not certified blocks, reducing latency significantly being the
fastest DAG-based SMR to date.

Cordial Miners [58] has also proposed a similar DAG-
structure to Mysticeti-C. However, their Blocklace detects
and excludes equivocating miners so that it can eventually
converge when there is no misbehavior. Its expected latency
is additionally higher than Mysticeti-C as it only commits
one proposed block per wave (3 rounds) and it lacks an
implementation for us to do some more direct comparison10.
Mysticeti in comparison has additionally shown how to
integrate a fast path as well as how to commit most of
the blocks with an expected latency of 3 rounds. The subse-
quent concurrent work on Flash [59] also discussed how to
leverage a blocklace/DAG to allow for payments akin to the
Mysticeti-FPC fast path, but without integrating it with a
consensus path for complex transactions. Motorway [60] uses
a consensus protocol based on ‘data lanes’, a relaxed notion
of a DAG where replicas independently and concurrently dis-
seminate data. Consensus is achieved over metadata through
any black-box consensus mechanism, leveraging these data
lanes as a data dissemination layer. This approach follows the
spirit of Narwhal-HotStuff [3], with the added benefit of in-
creased performance by eliminating the need for validators to
progress in strict DAG rounds. Unfortunately, this approach

10The Cordial Miners manuscript publicly available during Mysticeti’s
development considered a single certificate pattern to be a sufficient condi-
tion to commit a block. This is not safe. As we saw in our proofs, there is
a need for 2f + 1 blocks certify a block to safely commit it. The published
version of the work, that appeared concurrently to this work, fixes this issue.

also increases significantly the engineering complexity and
foregoes the robustness properties that structured DAG-based
protocols have.

As far as the Mysticeti-C commit rule is concerned,
the first proposal of having a pipelined and multi-proposer
version for quorum-based consensus comes from Multi-
Paxos [61]. This work has been studied extensively as well as
extended to multiple directions [62], [63], [64]. However, it
only addresses crash and omission faults. The core idea can
directly be transferred to Byzantine faults as PBFT [16] uses a
similar structure to Paxos, and we can see its adoption in Mir-
BFT [65]. Blockmania [66] as well as Schett & Danezis [67]
further develop the idea for DAG-based consensus, and the
recent work Shoal [5] has applied it to certified DAGs
with recursive commit rules [4]. Mysticeti’s commit rule
is the next evolution, extending pipelining into uncertified
recursive DAGs in order to achieve simultaneously the lowest
latency possible (3 message rounds, according to [21]) as well
as the high throughput and censorship resistance of DAGs.

Notably, Narwhal-based designs use a worker-primary
architecture to increase throughput. Mysticeti-C can be
adapted to this architecture, by acting as a primary for
any number of workers in case additional throughput is
needed. Additionally, Shoal and HammerHead [28] propose
leader reputation protocols inspired by Carousel [68]. Our
production implementation of Mysticeti-C adopts these
designs to select more reliable proposers (Section VIII), but
for liveness, it would need to adopt a proposer slot rotation
schedule where slots remain static for 3 rounds.

Previous consensus protocols such as Hashgraph [69] also
use a DAG of signed but not certified blocks: however, they
use DAGs that are not structured as threshold clocks [20]
making their proofs of safety very complex and leaving sev-
eral open questions regarding practical implementations [3].
Fino [11] generalizes the commit rule of Bullshark to an
unstructured certified DAG. BBCA-ledger [10] interweave
together a novel low-latency happy path based on a variant
of Byzantine Consistent Broadcast and Bullshark as a high-
throughput DAG-based fallback path.

Notably, Mysticeti-C works in only 3 message com-
munication rounds, which matches PBFT, and is optimal
latency [70], [71] without the use of optimistic methods
like Zyzzyva [26]. This is lower than the state-of-the-art
Jolteon [14] currently deployed in multiple blockchains [43],
[15], [45], [46]. The reason is that these protocols focus
on linear communication complexity, whereas Mysticeti-
C embraces its cubic cost and amortizes it using the DAG
structure as first proposed by Dag-Rider and Narwhal.

X. Conclusion
We introduce Mysticeti-C, a threshold clock-based Byzan-

tine consensus protocol with the lowest WAN latency of 0.5s
and the ability to process over 200k TPS at this latency for
single-host nodes, far exceeding the needs of blockchains
today (which consume in total about 1.2k TPS). We addi-
tionally present Mysticeti-FPC, a fast path protocol achieves
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even lower latency at 0.25s but with over 8x better resource
efficiency compared with protocols with explicit certificates.
Despite being designed in a BFT setting, both Mysticeti pro-
tocols efficiently handle crash faults using multiple proposer
slots per round, implemented through a novel decision rule.

We leave several explorations for the future. For use
cases requiring higher throughput, we note that Mysticeti-
C can be augmented with workers, in a similar way to Tusk
and Bullshark. This would allow it to scale without known
bounds, at the cost of additional latency (a round trip) to
coordinate workers and primaries. An alternative approach
would be to run multiple Mysticeti-C instances in parallel,
something we feel is under-explored but inspired us to have
explicit votes in Mysticeti-FPC. The structure of Mysticeti-
FPC has all nodes timestamping transactions through their
votes and may be useful for implementing MEV protections.

Finally, we note that as the latency of consensus under
low load shrinks (now 0.5s) the latency advantages of the
fast path diminish. It is an open industrial question whether
use cases that require low latency justify the complexity of
dual path systems going forward, as the latency gap closes.
It is also an open question whether the worker-primary
architecture employed by Narwhal-based designs is useful
today since a single worker throughput by far exceeds the
capacity needed by blockchains, and does so at a lower
latency. This may change in the future as more capacity is
needed.
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Appendix A
Example of Mysticeti-C Execution

This section completes Section III by providing a step-
by-step example of a Mysticeti-C execution by leveraging
Figure 4a of Section III. This figure illustrates an example
of a Mysticeti DAG with four validators, (A0, A1, A2, A3),
four slots per round. Initially, all proposers are marked as
undecided.

Slots classification. The validator applies the direct decision
rule starting with the latest slots, L6d, L6c, L6b, L6a, L5d, L5c,
L5b, L5a (in that order), but fails to determine their status due
to the absence of both a skip pattern and a certificate pattern.
They thus remain undecided.

The direct decision rule then successfully marks L4d as to-
commit due to the presence of 2f + 1 certificate patterns,
colored in green in Figure 4b. This reasoning is then applied
successively to L4c and L4b, also marked as to-commit.
Figure 4c then demonstrates the direct decision rule applied
to L4a, resulting in its classification as to-skip due to the
presence of a skip pattern. Continuing with L3d, L3c, L3b,
and L2d, the direct decision rule categorizes them all as to-
commit, similar to L4d, L4c, L4b.

Moving to L2c, Figure 4d shows the direct decision rule
failing to classify it. Lacking both a skip and certificate
pattern, the validator resorts to the indirect decision rule.
It first identifies the anchor of L2c, which is the block with
the lowest rank and round number r′ such that (r′ > r+2)
and that is marked as either undecided or to-commit. In this
case, L2c’s anchor is L5a. Since L5a is undecided, L2c remains
so as well. The same reasoning is applied to L2b which is also
marked undecided. Proceeding with L2a, the direct decision
rule marks it as to-commit.
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However, the direct decision rule cannot classify L1d.
Consequently, Figure 4e demonstrates the application of the
indirect decision rule to L1d, with L4b as its anchor (note that
L4a is marked to-skip and thus cannot be an anchor). Since
L4b is marked to-commit, and L1d has a certificate pattern
linking to its anchor, L1d is marked to-commit.

After marking L1c as to-commit in the same way as L1d,
the validator analyzes L1b. Since the direct decision rule
cannot decide it, the indirect decision rule is applied with
L4a as its anchor. Unlike L1d, there’s no certified link from
L4a to L1b, resulting in L1b being marked to-skip (Figure 4).
Finally, L1a is marked to-commit via the direct decision rule.
Commit sequence. With as many proposers as possible
classified as either to-commit or to-skip, the validator can
establish the commit sequence. Beginning with the lowest
slot, it outputs slots marked as to-commit while skipping
those marked to-skip, halting once an undecided slot is
encountered. The resulting commit sequence is L1a, L1c, L1d,
L2a. Eventually, the DAG will progress and the slot L5a will
be classified either as to-commit or to-skip, allowing the
validator to classify L2c and all subsequent slots.
Choosing the number of proposer slots. The example
presented by Figure 4 assumes a number of proposer slots per
round equal to the committee size. While this choice offers
the best latency under normal conditions, it may impact
performance during periods of extreme asynchrony or under
Byzantine attack. In these cases, the probability that the
direct decision rule fails to classify a proposer slot increases
when some proposer slots are slow or equivocate. This forces
the validator to resort to the indirect decision rule more often.
A practical mitigation could be to dynamically adjust the
number of proposer slots per round based on the network’s
observed behavior. This would allow the system to maintain
low latency during periods of synchrony while increasing the
probability of observing certificate patterns during periods
of asynchrony. To ensure all validators interpret the DAG
consistently, the number of proposer slots per round should
be agreed upon by all validators. This can be achieved by
updating the number of proposers slots per round at commit
boundaries, following a similar deterministic approach to
HammerHead [28]

Appendix B
Exposing Commit Timestamps

As mentioned in Section VIII, the production-ready imple-
mentation of Mysticeti-C is equipped to expose timestamps
to the higher application layer. Each Mysticeti-C block
contains both the timestamp of its proposal and its commit.
Validators incorporate their current time in each block they
propose. Upon receiving a block, its timestamp undergoes
validation by ensuring that the included time is greater than
or equal to the timestamps of its parent blocks; otherwise,
the block is rejected as invalid. Honest validators will only
consider blocks as parents of their proposal if they possess
past timestamps with respect to their local time, while if a

block arrives with a future timestamp, a validator must wait
before including or rejecting it.

Consequently, if a Byzantine validator introduces a block
too far into the future, it will be rejected. To mitigate
the small variations in the local clocks of validators, our
implementation suspends the block in memory for a brief
duration if its timestamp is only slightly ahead of the current
local time.

When Mysticeti-C outputs a commit, it associates a
timestamp with this action, termed a commit timestamp.
The commit timestamp is defined as the maximum of the
timestamp(s) of the proposer block(s) of such commit and
the timestamp of the previous commit. Therefore, Mysticeti-
C commit timestamps ensure monotonic increase. It’s es-
sential to include the commit timestamp of the previous
commit in this maximum calculation because successive
committed blocks are not necessarily linked by a parent-child
relationship, thus unable to guarantee monotonicity. This
contrasts with timestamp mechanisms in existing DAG-based
consensus protocols, which lack a proposer every round and
can thus ensure that each committed block references the
previous committed block [3], [6], [4].
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