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Abstract. Obelia improves upon structured DAG-based consensus pro-
tocols used in proof-of-stake systems, allowing them to effectively scale to
accommodate hundreds of validators. Obelia implements a two-tier val-
idator system. A core group of high-stake validators that propose blocks
as in current protocols and a larger group of lower-stake auxiliary valida-
tors that occasionally author blocks. Obelia incentivizes auxiliary valida-
tors to assist recovering core validators and integrates seamlessly with
existing protocols. We show that Obelia does not introduce visible over-
head compared to the original protocol, even when scaling to hundreds of
validators, or when a large number of auxiliary validators are unreliable.
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1 Introduction

Blockchains using BFT quorum systems [40, 36, 38] divide time into 24-hour
epochs, during which a committee of about 100 validators, elected through a
Sybil-resistant mechanism [13], often a variant of proof-of-stake [23], operates the
system using a BFT consensus protocol [6, 17, 3]. Their voting power correlates
with their stake, allowing agreement on blocks of client transactions. Recent
advancements in BFT protocols utilize directed acyclic graphs (DAG) [12, 35, 2,
3, 33, 25, 11, 21, 14, 26], achieving high throughput (> 100k tx/s) and robustness
against faults and network asynchrony [18, 12].

However, these consensus protocols limit operation to approximately 100 val-
idators, sidelining many potential participants—often in the hundreds [39]. This
exclusion is a sharp contrast to more traditional blockchains like Bitcoin [29]
and Ethereum [4], which engage all participants, and is responsible of key weak-
nesses of quorum-based blockchains. First, only the subset of the total stake
hold by these validators can be used to decentralize the system and benefit the
blockchain ecosystem. Lower-stake players cannot participate in block propos-
als and typically resort to running full nodes without incentives [22]. Second
the high throughput of DAG-based systems complicates state catch-up for new
or crash-recovering validators, who either strain the committee’s resources or
depend on external unincentivized entities for recovery.
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This paper introduces Obelia, an enhancement to DAG-based consensus that
increases participation by enabling all stakeholders to sporadically author blocks.
It incentivizes these participants to assist recovering validators and integrates
seamlessly with existing protocols. However, developing Obelia involves over-
coming significant challenges. (1) Obelia must avoid all-to-all communications
between stakeholders as their large number makes it impractical. (2) It cannot
rely on a classic BFT assumption for entities that have less stake and thus less
incentive to be reliable. This challenge results from the inherent poor reliability
of these slow-stake entities that can be offline for long periods of time. Obelia
must ensure that all data they contribute to the chain remains available. Where
traditional systems rely on monetary penalties to disincentivise unreliability [19]
by assuming network synchrony, Obelia cannot follow this guidance as it aims
to operate in the weaker asynchronous or partially synchronous network model
of existing quorum-based protocols. (3) The final challenge consists in allowing
these low-stake entities to participate in the consensus without slowing it down,
as this would compromise the major benefit of quorum-based systems.

Obelia addresses these challenges by introducing a two-tier validator sys-
tem. A core group of high-stake validators proposes blocks as in existing proto-
cols, while a larger group of lower-stake auxiliary validators occasionally authors
blocks. Auxiliary validators operate outside the critical path, proposing blocks at
a slower pace and only after obtaining a strong proof of availability for their pre-
disseminated block. Our implementation and evaluation of Obelia demonstrate
that it does not introduce noticeable overhead compared to the original protocol,
even when scaled to hundreds of potentially unreliable auxiliary validators.
Contributions. This paper makes the following contributions:

– We present Obelia, a novel mechanism enhancing DAG-based protocols en-
abling all stakeholders to engage in consensus and incentivizing support for
recovering validators.

– We demonstrate Obelia’s safety and liveness within the same network model
as its underlying quorum-based protocol.

– We implement and evaluate Obelia on a realistic geo-distributed testbed, show-
ing it adds negligible overhead despite a large number of potentially unreliable
low-stake validators.

2 System Overview

We present the settings in which Obelia operates.

2.1 Validators selection

Obelia introduces the distinction between core validators and auxiliary valida-
tors. Core validators are the validators that continuously operate the consensus
protocol and process transactions. In contrast, auxiliary validators participate
sporadically while maintaining a copy of the DAG generated by core validators.
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Both core and auxiliary validators are selected using a sybil-resistant mech-
anism [13], typically based on proof-of-stake [23]. Core validators are chosen
similarly to existing quorum-based blockchains, consisting of roughly the 100
entities with the highest stake or those meeting specific criteria, such as owning
a minimum percentage of the total stake [40]. Auxiliary validators include all
other stakeholding entities not in the core group, typically numbering in the
several hundreds [39], significantly surpassing the number of core validators. In
practice, we expect current full nodes to operate as auxiliary validators.

2.2 System and threat model

Obelia assumes a computationally bounded adversary, ensuring the security of
cryptographic properties such as hash functions and digital signatures. It oper-
ates as a message-passing system where core and auxiliary validators collectively
hold n = nc+na units of stake [32], with nc held by core validators and na held by
auxiliary validators. Each unit of stake represents one “identity” [13], while each
unit held by a core validator signifies one “unit of voting power” in the consen-
sus system [28, 40]. This model aligns with deployed quorum-based blockchains,
where core validators possess the majority of total stake (nc ≫ na) [40, 36, 38].
Obelia makes the following assumptions for core and auxiliary validators:

Core validators. Obelia works with existing DAG-based consensus protocols,
inheriting their assumptions. Specifically, it requires that nc ≥ 3f + 1, where f
is the maximum number of Byzantine core validators that may deviate from the
protocol. The remaining stake is held by honest core validators who adhere to
the protocol. There are no additional assumptions about the network model, core
validators operate in the same setting as the underlying DAG-based consensus
protocol. Note that most deployed DAG-based consensus protocols are partially
synchronous [15], while some blockchains consider asynchronous protocols [28].
Under these assumptions, Section 3.3 demonstrates that a DAG-based protocol
enhanced with Obelia is safe, meaning no two correct validators can commit
conflicting transactions.

Auxiliary validators. For auxiliary validators, Obelia adopts a relaxed model
due to their lower stake and reduced incentives for resource dedication and reli-
ability. It assumes that at least ta ≤ na units of stake are consistently held by
honest and active auxiliary validators, regardless of the total number of auxil-
iary validators. The parameter ta can be adjusted to balance system liveness (see
Section 3.3) against the minimum participation of auxiliary validators. Auxiliary
validators do not communicate with one another and only occasionally communi-
cate with core validators over an asynchronous network. Section 3.3 shows that,
under these assumptions, a DAG-based protocol enhanced with Obelia is live,
ensuring that honest validators eventually commit transactions. Importantly, if
the assumptions concerning auxiliary validators fail, safety remains guaranteed.
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2.3 Design goals and challenges

Beyond ensuring safety and liveness within the same network model as the under-
lying consensus protocol, Obelia achieves several design goals (discussed in Sec-
tion 3): Increased participation (G1): It allows all entities holding stake to
author blocks in the consensus protocol, rather than limiting participation to the
top 100 validators. Incentivized synchronizer helpers (G2): Obelia lever-
ages auxiliary validators to assist slow or recovering core validators in catching
up to the latest state. This approach incentivizes auxiliary validators to function
as full nodes, storing and providing the DAG state to core validators to facil-
itate synchronization. Generic design (G3): The design of Obelia is directly
applicable to a wide range of structured DAG-based consensus protocols.

Obelia also has performance goals that we demonstrate empirically in Sec-
tion 4: Negligible overhead (G4): Obelia introduces minimal overhead, al-
lowing the system to progress at the same speed as the underlying consensus
protocol. Scalability (G5): Obelia scales effectively with the number of auxil-
iary validators. Fault tolerance (G6): Obelia maintains robust performance,
remaining visibly unaffected by the presence of crashed auxiliary validators.

To achieve these goals, Obelia overcomes several challenges: (Challenge 1):
Obelia cannot implement an all-to-all communication design due to the imprac-
tical number of auxiliary validators. (Challenge 2): Obelia cannot expect the
classic BFT assumption to hold for these entities as they have less stake and thus
less incentive to be reliable and prone to remain offline for long periods of time.
(Challenge 3): Auxiliary validators must participate in the consensus without
causing delays, as this would undermine the key advantage of quorum-based
systems. They thus cannot take actions that impact the critical path.

3 The Obelia Design

We present the design of Obelia and argue its properties defined in Section 2.3.

3.1 DAG-based consensus protocols

DAG-based consensus protocols operate in logical rounds. In each round, every
honest (core) validator creates a unique signed vertex. Byzantine validators may
attempt to equivocate by producing conflicting vertices [20] or may abstain alto-
gether. During each round, validators collect user transactions and vertices from
other validators to construct their next vertex. Each vertex must reference a min-
imum number of vertices from the previous round (typically 2f + 1 [12, 35, 3])
and adds fresh transactions that do not appear in preceding vertices.

Algorithm 1 (ignore orange for now) outlines the operations of these valida-
tors, aligning with nearly all existing structured DAG-based consensus proto-
cols [12, 35, 34, 2, 3, 20, 16, 42, 33, 25, 26, 11, 21, 10, 9, 8] and all DAG-based
systems that have been deployed in production environments [12, 35, 3, 41].

When a core validator receives a new vertex v, it invokes ProcessCoreVertex(v)
(Line 4). The validator first downloads v’s causal history (Line 5) and verifies
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Algorithm 1 Core Validator

1: T ← { } ▷ Buffer client transactions
2: Dc ← { } ▷ DAG of core vertices
3: Da ← { } ▷ DAG of auxiliary vertices

4: procedure ProcessCoreVertex(v)
5: SyncCoreAncestors(v,Dc)
6: SyncAuxAncestors(v,Da)
7: require ValidCoreVertex(v,Dc)
8: AddToDag(v,Dc)
9: L← OrderNewLeaders(Dc)
10: if L ̸=⊥ then
11: C ← Linearize(L,Dc, Da)
12: OutputToApplication(C)

13: TryAdvance( )

14: procedure TryAdvance( )

15: v′ ← TryNewCoreVertex(T,Dc, Da)
16: if v′ =⊥ then return
17: AddToDag(v′, Dc)
18: SendToCoreValidators(v′)

19: procedure ProcessAuxProposal(p)
20: SyncCoreAncestors(v,Dc)
21: require ValidAuxProposal(v,Dc)
22: σp ← Sign(p)
23: ReplyBack(σp)

24: procedure ProcessAuxVertex(v)
25: DownloadCoreAncestors(v,Dc)
26: require ValidAuxVertex(v,Dc)
27: AddToDag(v,Da)
28: TryAdvance( )

Algorithm 2 Auxiliary Validator
1: T ← { } ▷ Buffer client transactions
2: Dc ← { } ▷ DAG of core vertices

3: procedure TryAdvance( )
4: p← TryNewProposal(T,Dc)
5: if p =⊥ then return
6: {σ(p,i)} ← SendToCoreValidators(p)
7: v′ ← AssembleCertificate({σ(p,i)})
8: SendToCoreValidators(v′)

v for validity (Line 7), which typically involves checking signatures, validating
parent vertex references, and ensuring syntactical correctness. A valid v is then
added to the local DAG view of the validator (Line 8).

Next, the validator checks if the new vertex triggers any commits. It de-
rives a set of leader vertices either deterministically (in partially synchronous
protocols [35, 34, 3]) or by reconstructing a global perfect coin [1] (in asyn-
chronous protocols [12, 21]). Using a protocol-specific decision rule, it analyzes
DAG patterns to establish a total order among the leaders (Line 9). If this yields
a non-empty sequence, the validator linearizes the DAG into a sequence of ver-
tices C that it outputs to the application layer (Line 11). This linearization step
uses a deterministic function like depth-first search over the sub-DAG defined
by each leader in the sequence [20, 12, 35].

To advance the round, the validator attempts to create a new vertex v′

through TryAdvance( ) (Line 14). This succeeds if the validator possesses
enough vertices from the previous round and, in partially synchronous pro-
tocols, enough leader vertices or if a timeout has occurred. If successful, the
validator adds v′ to its local DAG view and broadcasts it to the other valida-
tors (Line 17). Creating a vertex may involve reliable or consistent broadcast-
ing [20, 12, 35, 34, 2], a best-effort broadcast [3, 21], or a hybrid of both [25, 11].
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Fig. 1: Example of Obelia execution with 4 core validators and ta = 2.

3.2 Vertex creation rule and commit rule

We present the protocol for auxiliary validators and the modifications made to
the core validator protocol, using Figure 1 as an example. We denote vertices
using the notation v(author, round), where author represents the validator that
authored the vertex and round indicates the round number.
Auxiliary validators. Auxiliary validators operate as full nodes, downloading
the DAG generated by core validators while also collecting client transactions.
Algorithm 2 illustrates their protocol. Each auxiliary validator composes a signed
proposal containing client transactions and hash references to at least 2f + 1
vertices created by core validators for a past round3. They then send it to the
core validators who check their validity and reply with a counter signature.
The auxiliary validator then assembles a vertex, made up of the 2f +1 counter-
signatures, and rebroadcasts it to all core validators. For example, va(auxi, R+2)
references the vertices from round R+1 created by core validators core2, core3,
and core4. This design choice solves challenge 1 by forgoing communication
between auxiliary validators and effectively leveraging the core validators as
communication layer and to obtain a proof of availability for their data.
Core validators. Algorithm 1 shows the modifications to the core validator’s
protocol in orange. Core validators execute ProcessAuxProposal(p) to vali-
date, download the causal history, and counter-sign an auxiliary validator’s pro-
posal p. Since p references 2f + 1 core validator vertices, this verification allows
core validators to synchronize any potentially missing vertices from the author
of p. This protocol incentivizes auxiliary validators to collaborate, as inclusion
of their vertices in the final commit sequence grants them a share of vertex re-
wards [4]. The function ProcessAuxVertices(va) shows how core validators
process a vertex va (that is, a proposal p counter-signed by 2f + 1 core valida-
tors). Core validators add this vertex to a new map, Da, which will later be
merged into the DAG Dc operated by core validators. This design choice solves
challenge 2 by ensuring that malicious or unreliable auxiliary validators cannot
3 Auxiliary vertices referencing core vertices too far in the past are not included in

the final commit sequence, as they will be pruned by garbage collection [12].
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affect the protocol once they delivered their vertex to a core validator. Since a
correctly signed auxiliary vertex indicates that at least 2f + 1 core validators
possess its data and causal history, the proposed data from auxiliary validators
remains highly available despite their potential unreliability.

Next, we modify the vertex creation rules: every fixed number of rounds,
the core validator leader(s) (e.g., L3 in Figure 1) must reference vertices from
auxiliary validators with a joint stake totaling at least ta (see Section 2.2). In
the figure, L3 references va(auxi, R + 2) and va(auxk, R). This design solves
challenge 3 by allowing auxiliary validators to participate in the consensus
without slowing it down. It ensures that auxiliary validators can asynchronously
create vertices at a slower pace than core validators, without impacting the
critical path, while still maintaining minimal required participation.

Auxiliary vertices are essentially treated as weak links [20], with core valida-
tors required to download them before processing a vertex. Auxiliary vertices are
not used to establish the order of committed leaders but are included during the
linearization step (Line 11). Designing Obelia to operate only at the lineariza-
tion layer makes it compatible with nearly all DAG-based protocols: while leader
ordering algorithms vary across protocols, linearization is a common procedure.
The validator linearizes the vertices within the sub-DAG defined by each leader
vertex through any deterministic procedure, such as a depth-first search [20]. If
a vertex has already been linearized by a previous leader, the validator omits.
Each leader is processed sequentially, ensuring all vertices appear in the final
commit sequence in a deterministic order based on their causal dependencies.

In the example shown in Figure 1, the sequence of committed leaders (output
from Algorithm 1) is ([L1, L2, L3]). L1 does not define any sub-DAG (the process
begins at round R), so only L1 is added to the commit sequence. L2 defines a
sub-DAG of the green vertices, which are linearly ordered, as e.g., vc(core1, R+
1), vc(core2, R), vc(core3, R), vc(core2, R + 1), vc(core3, R + 1), and L2. While
processing L3, which defines the sub-DAG of both blue and orange vertices,
the validator collects and linearizes all such vertices. As a result, although the
original DAG might have excluded the core orange vertices (vc(core4, R) and
vc(core4, R+1)) and would have omitted the auxiliary vertices (va(auxi, R+2)
and va(auxk, R)), Obelia guarantees their inclusion in the final commit sequence.
This inclusion helps core validator core3 to synchronize parts of the DAG that
were potential missing from its local view.

3.3 Security analysis

Algorithm 1 shows that Obelia modifies the original consensus protocols only in
three places: (1) Line 6 (to sync auxiliary vertices’ ancestors), (2) Line 11 (the
linearization layer), and (3) Line 15 (proposing a new vertex).

Safety. Obelia does not alter the way the underlying protocol commits leaders,
ensuring safety as long as DAG linearization (Line 11) is deterministic, as is
typical in existing DAG-based protocols. Safety holds regardless of the number
of honest auxiliary validators.
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Fig. 2: Comparative evaluation of Mysticeti (10 and 50 validators) and Obelia (10 core
+ 50 auxiliary validators, 50 core + 200 auxiliary validators). Left: throughput-latency
graph. Right: Latency zoom at 50k tx/s.

Liveness. Obelia maintains liveness under the same network model as the base
protocol by ensuring (1) core validators can synchronize missing auxiliary ver-
tices (Line 6), (2) the DAG linearization terminates (Line 11), and (3) core
validators can eventually create new vertices (Line 15). Point (1) holds as core
validators only reference certified auxiliary vertices, guaranteeing at least f + 1
honest validators hold them [5]. Point (2) is satisfied as auxiliary vertices are
linearized like core ones. Point (3) follows from the assumption that at least
ta auxiliary validators are honest (which we assume in Section 2.2), ensuring at
least 2f+1 core validators successfully call ProcessAuxProposal(·) (Line 19)
and ProcessAuxVertex(·) (Line 24) which update their local DAGs with new
auxiliary vertices, allowing the creation of new core vertices.

4 Implementation and Evaluation

We implement4 Obelia as a fork of Mysticeti [3] and evaluate it on a geo-
distributed AWS testbed. We use the same setup as the Mysticeti paper [3]5
and only test for loads up to 50k tx/s to limit costs. We set ta = 10% (Sec-
tion 2.2) and auxiliary validators propose blocks every few seconds. We use the
notation M-X to indicate Mysticeti running with X validators, and O-X-Y to
indicate Obelia running with X core validators and Y auxiliary validators.

Figure 2 shows that all system configurations maintain a latency of approx-
imately 400ms when processing loads of either 10k tx/s or 50 tx/s. Notably,
regardless of the committee size, there is no statistical difference between Mys-
ticeti in its barebone configuration and when equipped with Obelia, confirming
our claim G4 (from Section 2.3) that Obelia introduces negligible overhead.
Additionally, Figure 2 demonstrates that Obelia can scale to 200 auxiliary val-
idators, thus validating our scalability claim G5. Lastly, Figure 2 (orange lines)
illustrates that even a large number (up to 190) of crashed auxiliary validators
do not noticeably impact protocol performance, supporting our claim G6.

4 https://github.com/asonnino/mysticeti/tree/obelia (commit fe74642)
5 13 different AWS regions; m5.8xlarge instances (with 32 vCPUs, 128GB RAM, and

10Gbps network); 512 bytes transactions; each data point is the average latency and
error bar represent one stdev; benchmarks run for multiple minutes under fixed load.

https://github.com/asonnino/mysticeti/tree/obelia
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5 Discussion and Related Work

Obelia conceptually aligns with IOTA’s open writing access [7, 27, 37] where
all validators have writing privileges, and a “leader” validates blocks. Obelia
however operates fundamentally differently, as it is designed as an add-on for
existing quorum-based blockchains. It draws inspiration from DagRider’s weak
links [20], which include older blocks not required for leader selection (although
for different reasons than Obelia), and Narwhal’s vertex-creation rule [12], which
ensures vertex availability before inclusion in the DAG. Future work include the
analysis of Obelia where auxiliary validators operated under the sleepy model [31]
to explore potential improvements in censorship resistance; whether auxiliary
validators can enhance the protocol’s safety for clients who trade latency, as
in OFlex [24, 30]; and whether they can aid in fork recovery when more than
f Byzantine core validators are present. Lastly, we leave as future work the
incentive analysis and its impact on the relationship between nc and na (nc < na,
nc > na, or nc ≈ na).

Acknowledgments. This work is supported by Mysten Labs. We thank Srivatsan
Sridhar for his feedback on the paper and discussions on future work.
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