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ABSTRACT

The recent growth of blockchain technology has accelerated re-
search on decentralized platforms. Initial such platforms decide on
what should be added to the ledger based on the Proof-of-Work
(PoW) consensus protocol. PoW protocol requires its participants
to perform massive computations and leads to massive energy
wastage. Existing solutions to replace PoW protocol make use of
Proof-of-Stake (PoS) protocol or classical fault-tolerant consensus
protocols. However, the safety of ledger created by these protocols
is at the mercy of the long-term safe-keeping of private keys of
participants subject to long-range attacks. To ameliorate this situa-
tion, we present the design of our novel HybridChain architecture,
which requires each client transaction to undergo two consensus
protocols: a fault-tolerant consensus followed by our novel Power-
of-Collaboration (PoC) protocol. Despite this, we observe that our
HybridChain system outperforms state-of-the-art blockchain sys-
tems yielding up to 2000× higher throughput and 105 times less
energy costs.
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1 INTRODUCTION

The key goal of any blockchain system is to offer its clients a trans-
parent and accountable ledger [67]. This ledger is maintained by
multiple untrusting parties (servers) that add each client transaction
to the ledger in an ordered manner by participating in a malicious
fault-tolerant (mft1) consensus protocol. Initial blockchain systems
such as Bitcoin [54] and Ethereum [76] employed the Proof-of-Work

(PoW) protocol [54, 76], which follows a computation-oriented con-
sensus model. PoW protocol requires all its participants to compete
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1In this paper, we intentionally refrain from the commonly accepted terminology of
Byzantine behavior that carries a negative connotation as noted in [56], We further
adhere to ACM’s D&I policy, and instead of using the traditional phrase. Byzantine
Fault-Tolerant (bft), we use the term Malicious Fault-Tolerant (mft) to refer to proto-
cols that can handle malicious attacks.

toward solving a complex puzzle. Whichever participant solves the
puzzle first, gets to add a new entry (block) to the ledger. However,
PoW protocol is infamous for massive energy wastage [21, 75].

This motivated the blockchain community to adopt two other cat-
egories of protocols: (1) Proof-of-Stake (PoS) protocols and (2) tradi-
tional mft consensus protocols. PoS protocols advocate for a stake-
oriented model where the node with the highest stake (or wealth)
gets to add a new block to the ledger [20, 44]. Traditional mft
protocols advocate for an authenticated communication-oriented

architecture, where each node gets an equal chance to add an entry
to the ledger; agreement on the next block is reached through suc-
cessive rounds of vote exchange [13, 48]. However, both of these
types of protocols suffer from long-range attacks [7, 22]. These long-
range attacks pose unprecedented dangers; a malicious party can
re-write the full history of the ledger.

A key reason why PoS and mft protocols suffer from long-range
attacks is that, in these protocols, adding a new block to the ledger is
computationally inexpensive. Each block added to the ledger is only
digitally signed by the participants. To perform a long-range attack,
the adversary needs to compromise the private keys of the honest
participants. Unsurprisingly, such attacks are common [7, 22] and
using these private keys, the adversary can create its own ledger.

In this paper, we resolve these challenges through our novel Hy-
bridChain design, which offers efficient and tamper-free logging
of client transactions by requiring them to undergo two distinct
consensus protocols: a traditional mft protocol like Pbft, followed
by our novel Power-of-Collaboration (PoC) protocol.2 Although this
may seem redundant at first, it allows HybridChain to prevent
long-range attacks while ensuring high throughput, low latency,
and substantially reduced energy consumption in comparison to
prior attempts [8, 29, 74]. In our HybridChain system, each client
transaction is first ordered with the help of a traditional mft proto-
col, which results in fast commitment and low-latency response for
the clients. Next, this ordered transaction is forwarded to a set of
miners, which run our novel PoC protocol to add the transaction
to the tamper-proof ledger. We refer to this PoC ordering as lazy
settlement because it does not delay the response to the client.

To guarantee a tamper-proof ledger that prevents long-range
attacks, PoC (like PoW) requires miners to solve compute-intensive
puzzles. However, PoC avoids being an energy guzzler by ensuring
that no miner’s work goes to waste. It does so by requiring all the
miners to collaborate to solve the compute-intensive puzzle. This
collaboration also ensures that any malicious miner that wants to
re-write the ledger needs to have more computational power than
the combined power of all the honest parties. Of course, malicious
miners may avoid collaboration, which may momentarily waste
2The sketch of our collaborative consensus idea was presented as an extended abstract
in [14].
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the resources of honest miners. But, we can identify such miners
and penalize them for their malicious behavior.

In PoW-based systems, as miners constantly compete with each
other to propose the next block, forks of the ledger (and selfish
mining attacks) are common [21, 27]. The frequency of these forks
increases as new miners join the system. As a result, these PoW
systems need to constantly increase the difficulty of solving the
puzzle, which also increases energy consumption. In our Hybrid-
Chain system, the transaction ordering by mft protocol ensures no
forking of the ledger. Further, PoC leverages the mft consensus to
select and commit a solution for the puzzle, which guarantees fixed
energy consumption (except in the case of a technological hardware
change) per transaction.

To prove that our HybridChain system is effective in prac-
tice, we implement it on the NexRes version of ResilientDB [35–
39, 61, 62] and compare its performance against five state-of-the-art
blockchain systems:Hyperledger Fabric [3],Cardano [20],Diem-
BFT [23], Avalanche [63], and Ethereum [76]; these blockchain
systems hold a combined market cap of nearly 200 billion dollars.3
We deploy up to 120 replicas and 120 miners, and our results illus-
trate that HybridChain achieves up to 2000× higher throughput
and consumes up to 105 less energy than the aforementioned sys-
tems. Next, we list our contributions.

• We present the HybridChain architecture that prevents
long-range attacks on the ledger and guarantees fast re-
sponses to the clients.

• We present the PoC protocol, which prevents an honest
miner’s work to go waste and ensures that to re-write the
ledger, a malicious miner needs more resources than the
combined power of honest miners.

• We make novel use of mft consensus protocols to guar-
antee high-throughput and low-latency commitment, to
prevent forks of the ledger and to guarantee fixed energy
consumption for PoC.

2 PRELIMINARIES

We adopt the standard communication and failure model adopted
by most mft protocols [13, 32, 48]. We consider a service S of the
form S = {R,M, C}. The set R consists of nR replicas of which at
most fR can behave arbitrarily. The remaining nR − fR are honest:
they will follow the protocol and remain live. Similarly, the set M
consists of nM miners of which at most fM can act maliciously.
We assign each miner and replica a unique identifier, which can be
obtained by a call to the function id(). The range of these identifiers
are [0, |R |] for replicas and [0, |M|] for miners. We further consider
the existence of a finite set of clients C of which arbitrarilymany can
be malicious. Authenticated communication: replicas/miners
employ standard cryptographic primitives such as Mac and digital
signatures (DS) to sign messages. We denote a message𝑚 signed by
a replica r using DS as ⟨𝑚⟩r. We employ a collision-resistant hash
function hash(·) to map an arbitrary value 𝑣 to a constant-sized
digest hash(𝑣) [43]. Each replica/miner only accepts a message if
it is well-formed.

Anonymity. Existing permissionless blockchains like Bitcoin
support psuedo-anonymity; miners are identified only through their

3https://www.coingecko.com/

public keys, which they may hold many. However, permissioned
blockchains (e.g. DiemBFT), require the identities of replicas to be
known and verified before consensus. HybridChain requires the
identities of replicas to be known and provides miners with same
pseudo-anonymity as Bitcoin (more discussion in § 6).

Guarantees.Weadopt the same partial synchronymodel adopted
in most consensus systems: both mft consensus and PoC mining
guarantees safety in an asynchronous environment where mes-
sages can get lost, delayed or duplicated. However, liveness is only
guaranteed during the periods of synchrony [13, 32, 77]. Addition-
ally, we need to incentivize PoC miners, which requires synchrony
to ensure fairness.
Safety. If two honest replicas r1 and r2 order a transaction 𝑇 at

sequence numbers 𝑘 and 𝑘′, then 𝑘 = 𝑘′.
Liveness. If a client sends a transaction 𝑇 , then it will eventually

receive a response for 𝑇 .
Incentive-compatibility. Nohonestminer is penalized if it solves

its part of the PoW puzzle and the network is undergoing
a period of synchrony.

3 BACKGROUND

Next, we present some necessary background concepts.

3.1 Proof-of-Work Consensus

Initial blockchain applications, such as Bitcoin and Ethereum
employ the PoW consensus to add transactions to the ledger. Prior
to running the PoW protocol, each miner4 m ∈ M selects some
client transactions and packs them in a block. This block includes
a header, which contains: (i) the hash of the previous block, (ii)
the Merkle root of all transactions, (iii) 𝐷 , which determines the
difficulty of the puzzle, and (iv) nonce, the solution of the puzzle,
among other fields [40, 57].

Computing the Merkle root of all transactions requires a miner
m to compute a pairwise hash from the leaf to the root. This Merkle
root helps to verify if a transaction was included to create the
Merkle tree. The main challenge for any PoWminer is to determine
the nonce that solves the complex PoW puzzle, which is essentially
a desired hash of the block (having a specific number of leading
zero bits). For this purpose, the miners iterate through different
nonce values and rehash the block until they reach the desired hash.
Whichever miner discovers a valid nonce first, it gets to propose
the next block to be added to the chain. The difficulty of finding
the nonce is controlled through the system parameter 𝐷 .

PoW Challenges. In blockchain applications running PoW
consensus, forks are a common occurrence; multiple miners may
propose the next block with valid nonces at approximately the
same time. In such a case, the protocol states that each miner would
only accept the first block it receives. This could lead to temporary
branches or forks, all of which have the same previous hash. How-
ever, these applications assume that this condition would resolve
as time passes because the honest miners would stick to the longest
chain—the one with the largest number of blocks. Eventually, all
the shorter forks are discarded, and only the longest chain survives.
Consequently, to reduce the probability of forks, PoW-based appli-
cations periodically increase the difficulty in finding the nonce. As
4In PoW, machines that participate in consensus are referred to as miners.
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Figure 1: Transactional flow in the HybridChain system.

a result, the PoW protocol is often viewed as an energy guzzler: (1)
miners need to perform massive computations to find the nonce,
and (2) only one block is added to the chain (the rest are discarded).

Incentives.Considering energy costs, PoW-based systems award
their miners incentives to act honestly and follow the protocol. Gen-
erally, there are two main sources for the awards: winner’s reward
and transaction fees. The winner’s reward is given to the miner who
successfully adds a new block to the chain, whereas each client
pays a fee for its transaction to be added to the block.

3.2 Proof-of-Stake Consensus

Due to the limitations of the PoW protocol, several recent blockchain
applications have advocated a switch to the PoS consensus proto-
col [20, 31]. In the PoS protocols, participants earn the opportunity
to add the next block to the blockchain based on their invested
stake. Often, the stake is equivalent to a monetary token or cur-
rency. As a result, the higher the stake a miner invests, the greater
are the opportunities it receives to add a block. Once a stakeholder
proposes the next block, all the other participants also sign this
block, which acts like an agreement among the participants.

3.3 Long-range attack: PoS and mft Challenge

Among many other challenges, the key challenge for any PoS-based
application is long-range attacks like posterior corruption [7, 30].
This attack aims to create an alternate history by re-writing the
ledger. To do so, a malicious party tries to compromise the private
keys of the honest parties. Once an adversary has access to the
private keys of honest stakeholders, it can create desirable blocks
and sign themwith the compromised keys. In the following example,
we illustrate a long-range attack.

Example 3.1. Assume a PoS blockchain:𝔅1,𝔅2, ...𝔅𝑘 , ...,𝔅𝑛 . Say
malicious stakeholders have access to the private keys of all the
honest stakeholders and decide to create an alternate ledger, starting
from the 𝑘-th block. Further, these malicious parties can introduce
newer blocks. So, the blockchain at malicious stakeholders looks as
follows: 𝔅1,𝔅2, ...𝔅′

𝑘
, ...,𝔅′

𝑛,𝔅
′
𝑛+1. Any new stakeholder joining

the system cannot distinguish between these two chains, and will
select the longest chain. Similarly, the existing honest stakeholders
will forfeit their chain and switch to the malicious chain.

In hindsight, if the private keys of honest parties are compro-
mised, all the bets are off. A common assumption made by existing
mft and PoS protocols is that malicious parties cannot imperson-

ate honest parties. But, recent security breaches [5, 41] illustrate
that hackers can easily compromise millions of accounts, which in
turn allows malicious parties to impersonate and forge messages

or blocks. Hence, the security of any ledger should not solely rely
on the security of private keys of its administrators.

This highlights an unprecedented fragility in the design of ex-
isting mft and PoS systems: the only proof attached to each block
is the signatures of a majority of participants. As the consensus
mechanism of these protocols is computationally cheap, any mali-
cious party that has access to the private keys of honest parties can
trivially create an alternate ledger or history. This is where PoW-
based systems differ; to rewrite the ledger, a malicious party has to
solve computationally expensive puzzles. Longer the blockchain,
the harder to replace existing blocks with desired blocks; not to
forget that new blocks are being proposed continuously.

Existing attempts to resolve long-range attacks are either unscal-
able or unsecure [7, 25]. We discuss these in § 9.

4 HYBRIDCHAIN ARCHITECTURE

Owing to the long-range attacks on PoS and mft blockchains and
energy wastage by PoW blockchains, we present ourHybridChain
design, which requires each client transaction to undergo two con-
sensuses before it is written to the ledger. The two consensus pro-
tocols are run in a pipelined manner, which facilitates processing
multiple client transactions at the same time.

We use Figure 1 to illustrate the transactional flow in our Hy-
bridChain system. Each client sends its transaction to the repli-
cas participating in a mft protocol like Pbft, PoE [35], and Hot-
Stuff [77]. Once the replicas receive a client transaction, they run
a mft consensus protocol to order this request (commitment phase).
Periodically, miners fetch the next committed transaction from the
replicas. Following this, the miners collaboratively run our PoC
consensus protocol to add this transaction to the next block in the
ledger. This requires finding a valid nonce, which they forward to
the replicas. Once replicas have agreed on the nonce, the miners
fetch the nonce and add the block to the ledger (settlement phase).
This design offers following appealing properties:

(G1) Tamper-proof ledger. HybridChain protects the ledger
against long-range attacks like posterior corruption.

(G2) High throughput and low latency. Like mft and PoS
protocols, HybridChain offers clients high throughput and low
latency processing; clients receive responses to their transactions
once they are committed by mft replicas.

(G3) No forks and selfish mining attacks. HybridChain
prevents forking of the ledger and selfish mining by malicious
miners; miners run PoC on committed blocks.

(G4) Minimal energy costs. Unlike PoW, HybridChain ex-
pends minimal energy and wastes fewer resource as PoC miners
collaborate to solve the compute-intensive puzzle. Further, mft
consensus stabilizes the difficulty of the PoC computations.

Next, we discuss our HybridChain system assuming no attacks
(good case). Later, we explain how we handle malicious attacks.

4.1 Client Request and Transaction Ordering

The first step in ourHybridChain architecture is to order incoming
client transactions. We term this step as commitment phase because
it gives the client a guarantee that eventually its transaction will be
written to the ledger. To drive the commitment phase, we ensure
that each transaction undergoes a traditional mft consensus. We
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Client-role (used by client 𝑐) :
1: event 𝑐 wants to process a transaction𝑇 do

2: Sends ⟨𝑇 ⟩𝑐 to the primary p.
3: event 𝑐 receives 𝑞 := Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑟 ) messages from fR + 1 replicas such that:

(1) each message 𝑞 is well-formed and is sent by a distinct replica r ∈ R.
(2) all the messages are identical.

do

4: Considers𝑇 executed, with result 𝑟 , as the 𝑘-th transaction.

Figure 2: HybridChain client protocol.

rely on traditional mft protocols because these protocols : (1) gen-
erate a single order for all the transactions, and (2) do not require
replicas to compete, which prevents the forking of the chain.

For the commitment phase, our HybridChain system can

adopt any mft protocol. In this paper, we employ the Pbft [13]
protocol as all the othermft protocols follow the consensus dictated
by Pbft [32, 48, 77]. Pbft follows the primary-backup model where
one replica is designated as the primary while other replicas act
as backups. Each consensus is led by the primary of the current
view. In the case the primary is malicious, view-change takes place
to replace the primary. When the primary is honest, Pbft requires
three phases to reach consensus on a client transaction. We term
this as civil execution and we explain these phases next.

Client Request. A client 𝑐 that wants to process a transaction
𝑇 creates a request ⟨𝑇 ⟩𝑐 and sends it to the primary replica of
the view 𝑣 . The client 𝑐 uses DS to sign this message and adds a
monotonically increasing timestamp to this message. In Figure 2,
we present the client algorithm.

Pre-prepare. When the primary replica p receives a well-formed
client request 𝑚 := ⟨𝑇 ⟩𝑐 , it assigns 𝑚 a sequence number 𝑘 and
sends a Prepreparemessage to all the replicas (refer to Figure 3 for
algorithm run by replicas). This Preprepare message also includes
a digest hash(𝑚) of𝑚, which is used in future communication to
save space. During this phase, it is sufficient for the primary to
sign the messages using Mac. When a replica r ∈ R receives a
well-formed Preprepare message from the primary p of view 𝑣 , it
agrees to support the order 𝑘 for 𝑚 if it has not agreed to order
another request at sequence number 𝑘 . The replica r shows its
support by broadcasting a Prepare message.

Prepare.When a replica r receives identical Prepare messages
from 2fR + 1 distinct replicas (can count its own message), it marks
the request𝑚 as prepared and broadcasts a Commit message. In
HybridChain, we require each replica r to use DS to sign the
Commit message.

Commit.When r receives identicalCommitmessages from 2fR +
1 replicas, it marks𝑚 as committed. If r has executed all requests
with a sequence number less than 𝑘 , it executes 𝑚 and sends a
Response message to the client, which includes the result of ex-
ecution 𝑟 . The client 𝑐 marks ⟨𝑇 ⟩𝑐 as committed when it receives
identical Response messages from at least fR + 1 replicas.

4.2 Chain Communication: IDA

Post Pbft consensus on𝑚, each replica r runs the Information Dis-
persal Algorithm (IDA) [60] to encode the committed transaction.
We use the IDA algorithm for the following two reasons:

(1) To reliably transmit the committed message between the
replicas and miners despite up to fR malicious replicas.

(2) As IDA splits a message into multiple parts, and we require
each replica to communicate only one of these parts per miner, the

Primary-role (running at the primary node p) :
1: event p receives

• 𝑚 := ⟨𝑇 ⟩𝑐 from client 𝑐 , or
• 𝑚 := ⟨NonceFind(𝑏, 𝜂 ) ⟩m from miner m.

do

2: Calculate digest Δ := hash(𝑚) .
3: Broadcast Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘 ) to all replicas (order at sequence 𝑘).

4: event p receives a certificate signed by fM + 1 distinct miners
• 𝑚 := ⟨Penalty(M𝑚𝑎𝑙 , 𝑏, r,ℭ) ⟩m messages, or
• 𝑚 := ⟨Shift(𝑏, r,ℭ) ⟩m messages.

5: Verify the certificate ℭ. do
6: Follow Line 2.

Non-Primary role (running at a replicas r ∈ R) :
7: event r receives Preprepare(⟨𝑇 ⟩𝑐 ,Δ, 𝑘 ) from p such that:

(1) message is well-formed, and r did not accept a 𝑘-th proposal from p.
do

8: Broadcast Prepare(Δ, 𝑘 ) to all nodes in R.

All replicas role (running at each replica r (primary or non-primary)) :
9: event r receives Prepare(Δ, 𝑘 ) messages from 2fR + 1 replicas such that:

(1) each message is well-formed and is sent by a distinct node, r∗ ∈ R.
do

10: Broadcast ⟨Commit(Δ, 𝑘 ) ⟩r to all nodes in R.

11: event r receives ⟨Commit(Δ, 𝑘 ) ⟩r messages from 2fR + 1 replicas such that:
(1) each message is well-formed and is sent by a distinct node, r∗ ∈ R.

do

12: if r has executed transaction with sequence number 𝑘 − 1 ∧ 𝑘 > 0 then
13: Execute𝑇 as the 𝑘-th transaction.
14: Let 𝑟 be the result of execution of𝑇 (if there is any result).
15: Send𝑚′ = Response(⟨𝑇 ⟩𝑐 , 𝑘, 𝑟 ) to 𝑐 .
16: 𝑚′

𝑖
:= Run function IDA-split(𝑚′

, 𝑖), where 𝑖 is this replica’s identifier.
17: else

18: Place𝑇 in queue for execution.

19: function IDA-split (message:𝑚′ , identifier: 𝑖)
20: Run IDA scheme (2fM + 1, fM + 1) on𝑚′ .
21: Let the resulting parts be𝑚′

1,𝑚
′
2, ...,𝑚

′
𝑞 , ...,𝑚

′
2fM+1 .

22: Return𝑚′
𝑞 such that 𝑞 = 𝑖 mod nM .

Figure 3: HybridChain replica protocol.

communication complexity of this phase becomes linear (conserves
the bandwidth); though IDA is computationally expensive.

For this work, we use the IDA scheme (2fM + 1, fM + 1). As-
sume that a replica r represents the committed transaction as
𝑚′ := Committed(𝑘,𝑚, 𝑟 ). Each replica r runs the IDA algorithm
to split𝑚′ into 2fM + 1 parts (encodings). Let us denote these parts
as𝑚′

1,𝑚
′
2, ...,𝑚

′
𝑞, ...,𝑚

′
2fM+1. We require each 𝑖-th replica r𝑖 to be

responsible for the 𝑞-th part𝑚′
𝑞 (𝑞 = 𝑖 mod nM ). We illustrate this

process in Figure 3, Lines 19 to 22.
Periodically, each miner m in setM sends a message to all the

replicas in R to send their respective parts. Once m receives any of
the distinct fM +1 parts, it can use them to reconstruct the message
𝑚′. Hence, the IDA scheme (2fM + 1, fM + 1) requires each miner
to wait for only fM + 1 parts to recover the message.

4.3 Collaborative Mining

As stated previously, the miners in set M periodically fetch the
next committed transactions from the Pbft replicas. They do so, to
reliably append these committed transactions to the ledger; without
securely appending the transactions, they can be subject to long-
range attacks and rollbacked.

In our HybridChain system, to add transactions to the ledger,
we require miners to participate in our PoC consensus protocol.
Like PoW, our PoC protocol expects computational proofs to be
associated with every transaction added to the ledger. However,
unlike PoW, miners participating in the PoC consensus do not
compete with each other because they work on transactions that
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covers and broadcasts to Pbft for commitment. Eventually,

all miners fetch the nonce.

have been been ordered bymft consensus. Instead, they collaborate,
which significantly reduces energy consumption. PoC supports
collaboration by dividing the PoW hash computation into nM
disjoint sub-problems and requires each miner to work on a distinct
predetermined sub-problem. Assume S is the solution space for
a PoW hash computation; the set of numbers a miner has to try
to find a valid nonce. In our PoC protocol, without the loss of
generality, we divide the solution space S into nM equal slices,
{S1,S2, · · · SnM }, such that:

S1 ∩ S2 ∩ · · · ∩ SnM = ∅ and S1 ∪ S2 ∪ · · · ∪ SnM = S
Our PoC protocol assigns slice S1 to miner m1, S2 to m2, and S𝑖 to
m𝑖 , 𝑖 ∈ [1, nM ]. As each miner is working on a reduced solution
space, so if a PoW miner takes time 𝜏 to find a valid nonce on the
solution space S, then in PoC, if all the miners are honest, the time
required to find the nonce is O( 𝜏

nM
). Consequently, PoC leads to

reduced energy consumption.

4.4 PoC Protocol Steps

From an outside view, it seems that our PoC protocol works in
rounds, and within each round, each miner attempts to find a valid
nonce in its slice. In the rest of this section, we assume that the
solution space S can be deterministically divided into nM disjoint
equal slices by each miner. For example, in Figure 4, the solution
space S = [0, 5] is divided into nM = 3 slices; the slices are:
S1 = [0, 1], S2 = [2, 3], and S3 = [4, 5].

Transaction Communication. As stated in Section 4.2, peri-
odically, each miner in M queries the Pbft replicas for the next
committed transactions. Prior works have illustrated that to re-
duce consensus costs, mft protocols batch a set of transactions
and run consensus on this batch. In our HybridChain system, we
also employ batching and assume that in each round of Pbft con-
sensus, each replica commits a batch of transactions (the number
of transactions in a batch is a fixed system parameter). Similarly,
each committed batch has a monotonically increasing sequence
number: 𝑘, 𝑘 + 1, 𝑘 + 2, ... Each Pbft replica runs the IDA scheme
on a committed batch. Each miner m ∈ M asks the Pbft replicas
to send their parts for the next committed batch; if (𝑘 − 1)-th batch
was the last batch that m received, then m asks Pbft replicas for
𝑘-th batch (refer to Figure 6, Lines 1 to 3).

Block Creation.When a miner m has a valid nonce (𝜂) for the
block ordered at sequence 𝑘 − 1 (Figure 6, Line 15), it initiates cre-
ation of the 𝑘-th block by picking up the next 𝜎 committed batches
it received from Pbft replicas (Figure 6, Line 22). Specifically, in
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replicas can run consensus on batches of transaction (say

each batch has 100 transactions). PoC miners aggregate 𝜎

committed batches in a single block (say 𝜎 = 2) to mine.

PoC, eachmined block includes 𝜎 > 0 committed batches. The
value of 𝜎 is a protocol parameter. Permitting each mined block to
include 𝜎 batches helps to reduce the mining costs. Moreover, as
each miner receives committed batches, aggregating consecutive
batches together in a single block does not affect safety. In Figure 5,
we illustrate the difference between Pbft batches and PoC blocks.

As each mined block includes the Merkle root of all the transac-
tions, PoC miners generate the Merkle root of 𝜎 batches. This task
is easy to compute as we expect each committed batch to include
the Merkle root of its transactions. So, the Merkle root of a PoC
block is generated after hashing the Merkle roots of 𝜎 batches.

The only thing remaining is slice discovery. We assume that each
miner is deterministically assigned a slice (§6.1). Specifically, the
𝑖-th miner m𝑖 knows that a total of nM miners are participating in
the PoC protocol. It uses this information to creates nM slices and
assigns itself the 𝑖-th slice S𝑖 (Figure 6, Line 43).

Nonce Discovery. Once a miner knows its slice, it starts nonce
discovery (Figure 6, Line 44). We assume that each miner m knows
the characteristics of the expected hash (the number of leading
zeroes). The miner m uses this hash information to search in its
slice for any value that yields the desirable hash. This process may
require m to iterate over all the possible values in its slice.

Reliable Submission. Once a miner m computes the expected
hash, it creates a message NonceFind, which includes the discov-
ered nonce, and broadcasts this message to all the miners (Figure 6,
Line 47). When a miner receives a NonceFind message, it stops its
timers and broadcast to all the replicas in Pbft (Figure 6, Lines 51-
53). When the primary replica p receives NonceFind message it
creates a transaction that assumes a NonceFindmessage as its data
(Figure 3, Line 1). Next, p initiates Pbft consensus on this nonce
transaction. This nonce transaction is like any other transaction,
and once committed, miners acquire it using IDA.

Chain Append. When a miner m𝑖 receives the valid nonce for
the 𝜎-th block from the Pbft replicas, m𝑖 appends this block to
its local blockchain and terminates nonce discovery for the 𝜎-th
block (Figure 6, Lines 14-16). A note-worthy observation of our
PoC protocol is that if the miner with the slice containing the valid
nonce is honest, then our PoC protocol finishes after a single round
of nonce discovery. Post nonce discovery, eachminer starts working
on the next block to be added to the chain.

MultipleNonces. It is possible that two ormoreminersmay find
valid nonces that compute the expected hash; minersm𝑖 andm𝑗 may
both discover a valid nonce in their respective slices. In such a case,
we ensure that all the miners select the same nonce. This is trivially
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Miner-role (running at the miner m with identifier 𝑖) :
1: event m wants to fetch next committed batches do
2: if 𝑘 − 1 was sequence of the last fetched transaction (or batch) from replicas then
3: Ask replicas in R to send their parts for next 𝜎 committed batches starting from 𝑘 .

4: event m receives fR + 1 parts for 𝑘-th committed batch do

5: Regenerate𝑚′ using IDA recovery scheme (2fM + 1, fM + 1) on𝑚′ .
6: Run function PenaltyCheck(𝑚′

).
7: Run function NonceCheck(𝑚′

).
8: Run function SliceCheck(𝑚′

).

9: function PenaltyCheck (message:𝑚′)
10: if𝑚′ includes committed set of miners (M𝑚𝑎𝑙 ) to be penalized then

11: Calculate penalty based on shift round r.
12: Deduct tokens from the accounts of miners in M𝑚𝑎𝑙 .

13: function NonceCheck (message:𝑚′)
14: if𝑚′ includes a committed nonce 𝜂 for block 𝑏 then

15: if 𝜂 is valid then

16: Add 𝜂 to block 𝑏 and terminate PoC mining for 𝑏 .
17: if Shift round r > 0 then

18: S𝑖 := Slice which contains 𝜂.
19: M𝑚𝑎𝑙 = {m𝑖 }, where 𝑖 = ( 𝑗 + 𝑙 − 1) mod nM , 𝑙 ∈ [1, r]
20: Broadcast ⟨Penalty(M𝑚𝑎𝑙 , 𝑏, r) ⟩m to all miners.
21: Add rewards to accounts of all miners.
22: Run function NewMine().
23: else

24: Add miner who sent this invalid nonce to M𝑚𝑎𝑙 .
25: Broadcast ⟨Penalty(M𝑚𝑎𝑙 , 𝑏, r) ⟩m to all miners.

26: function SliceCheck (message:𝑚′)
27: if𝑚′ includes a committed certificate ℭ for 𝑏-th block then

28: if Shift round r = fM then

29: Terminate PoC mining for 𝑏-th block.
30: Run function NewMine().
31: else

32: r + +.
33: Reset timer 𝛿 .
34: if Last mined slice S𝑖 then
35: 𝑖 = (𝑖 + 1) mod nM .
36: Run function FindNonce(S𝑖 ).

37: function NewMine ()
38: if 𝑘 − 1 was the sequence of last committed batch in the previously mined block 𝑏 − 1 then
39: if m has 𝜎 committed batches starting from sequence 𝑘 then

40: Create block 𝑏 such that it includes these 𝜎 batches.
41: If no nonce found for block 𝑏 − 1, then create a merged block.
42: Set shift round r = 0 and start a timer 𝛿 .
43: S𝑖 := Initial slice assigned to m.
44: Run function FindNonce(S𝑖 ).

45: function FindNonce (slice: S𝑖 )
46: Miner m tried to find a valid nonce 𝜂 in slice S𝑖 .
47: if m finds 𝜂 then

48: m broadcast ⟨NonceFind(𝑏, 𝜂 ) ⟩m to all miners.

49: event Timer 𝛿 expires while finding nonce for block 𝑏 do

50: m sends ⟨Shift(𝑏, r) ⟩m to all miners.

51: event m receives ⟨NonceFind(𝑏,𝜂 ) ⟩m from a miners do
52: Verify the nonce and stop the Timer 𝛿 .
53: m sends ⟨NonceFind(𝑏,𝜂 ) ⟩m to all replicas in R.

54: event m receives ⟨Shift(𝑏, r) ⟩m from fM + 1 distinct miners do
55: Create the certificate ℭ that includes fM + 1 Shift messages.
56: m sends ⟨Shift(𝑏, r,ℭ) ⟩m to all replicas in R.

57: event m receives ⟨Penalty(M𝑚𝑎𝑙 , 𝑏, r) ⟩m from fM + 1 distinct miners do
58: Create the certificate ℭ that includes fM + 1 Penalty messages.
59: m sends ⟨Penalty(𝑏, r,ℭ) ⟩m to all replicas in R.

Figure 6: HybridChain miner protocol.

achieved in our HybridChain system as miners only receive the
committed nonce transaction from Pbft replicas. Specifically, the
primary pwill choose a nonce and initiate consensus on that nonce;
other nonces will be ignored. Note: only one nonce per block will
get successfully committed by 2fR + 1 replicas.

4.5 Rewards

As PoW-based systems need to incentivize their miners for their
computational resources, we also need to reward the PoC miners.

However, in PoW systems, miners compete with each other to
propose the next block. As a result, only the first miner to propose
the next block receives the rewards while resources spent by other
miners go to waste without any compensation. In contrast, our
PoC protocol avoids this resource wastage by requiring miners
to collaborate. Further, PoC ensures that each honest miner gets
rewarded for its efforts; rewards are distributed among miners.

If ^ is the reward for a miner to find a valid nonce in PoW
protocol, then in our PoC protocol, each 𝑖-th miner m𝑖 receives a
reward ^𝑖 proportional to the size of its slice S𝑖 .

^𝑖 =
|S𝑖 |
|S | ∗ ^

Like PoW, in PoC, at the time of block creation, each miner in
M adds nM transactions to the block (includes them in the Merkle
root). These nM transactions help to deterministically divide the
reward among the miners; 𝑖-th transaction adds the reward ^𝑖 to
the account of miner m𝑖 . Hence, when the miner m𝑖 has access
to the valid nonce, its block already includes all the transaction.
Including the reward transactions in the block does not imply their
execution. Once a miner has access to the valid nonce, it executes
the nM transactions to update all accounts (Figure 6, Line 21).

Reward Economics. In Section 3.1, we briefly discussed the
source of miner rewards. Specifically, miner rewards are composed
of transaction fees and winner’s reward. Existing blockchain appli-
cations like Bitcoin [54] advocate the generation of a token (cryp-
tocurrency) that acts as the winner’s reward. We skip diving into
the crypto-economics of token generation. However, the general
idea behind this token is that it is a monetary compensation for the
computational resources spent by the winning miner. Hence, we
focus on the transaction fees, which are paid by each client that
wants its transactions to be processed.5

5 MALICIOUS ATTACKS

Like any mft system, ourHybridChain system also aims to thwart
attacks from malicious miners and replicas. Following is the main
list of possible malicious attacks on our system:

(A1) Primary prevents consensus on a client transaction.
(A2) Primary equivocates transactions or nonces.
(A3) Miner does not participate in the PoC protocol.
(A4) Miner sends invalid nonce to Pbft replicas.
(A5) Long-range attacks.
To resolve Attacks (A1) and (A2), we employ the view change

protocol provided by the Pbft protocol [13]. To resolve Attack (A3),
we use our novel slice shifting protocol and prevent Attack (A4)
by severely penalizing the malicious miner. We also show that
HybridChain implicitly guards against Attack (A5). To prevent
flooding attacks, we follow prior works [15, 16] and assume that the
replicas andminers use one-to-one virtual communication channels,
which can be disconnected.

5.1 Slice Shifting

The task of PoC miners is to reliably append the transactions com-
mitted by Pbft replicas to the ledger. As each miner is trying to find
a valid nonce in its slice, an honest miner cannot make progress

5Systems like Ethereum [76] set the maximum allowed transaction fees.
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until it either finds a valid nonce or receives the valid nonce from
Pbft replicas. Such a case may arise due to the following reasons:

(1) A malicious miner may choose not to participate in the PoC
protocol, and coincidently, it may be assigned the slice containing
a valid nonce. Even if a malicious miner finds the valid nonce, it
may not broadcast that nonce to other miners.

(2) Although a significantly low probability, it is possible that
none of the miners find a valid nonce. This may be possible if no
value in any slice yields the expected hash.

As these cases restrict PoC miners from making progress, we
provide novel solutions to alleviate these situations.

Timer Initialization. Prior to searching the nonce for the 𝑘-th
block, we require each miner m to set a timer 𝛿 (Figure 6, Line 42).
If the miner m either discovers a valid nonce or receives a valid 𝑘-th
block from another miner, it stops the timer 𝛿 for the 𝑘-th block.

Malicious Miner. If m’s timer 𝛿 expires and it does not have ac-
cess to a valid nonce, it initiates our slice shifting protocol (Figure 6,
Line 49). The slice shifting protocol runs for at most fM rounds
and aims to resolve Attack (A3) by a malicious miner. It does so by
switching the slices assigned to different miners. A round of slice
shifting only takes place when at least fM + 1 miners request to
do so. When a miner m𝑖 timeouts, it creates a message Shift(𝑏, r)
and broadcasts this message to all the other miners. Here, r repre-
sents the slice shifting round, which is initially set to zero. When m
receives Shift messages from fM + 1 distinct miners, it requests
Pbft to help reach a consensus on slice shifting (Figure 6, Line 54).
To do so, each miner creates a certificate ℭ that includes fM + 1
Shift messages and broadcasts this certificate to a Pbft replica.

Once p receives ℭ signed by fM +1miners, it initiates consensus
on ℭ. Note: consensus on ℭ is like consensus on any transaction
where ℭ acts as the transactional data. PoC miners will fetch this
committed transaction when they run the IDA algorithm to fetch
the next committed batch of transactions. Once a miner receives
the committed certificate ℭ from Pbft replicas, it assumes it is time
to run the next round r + 1 of the slice shifting protocol (Figure 6,
Lines 32-36). Following this, m updates its slice S𝑖 to slice S𝑗 , where
𝑗 = (𝑖 + 1) mod nM . Next, m restarts the timer 𝛿 for the 𝑘-th block
and initiates nonce discovery using its new slice S𝑗 .

If m has access to a valid nonce, prior to the expiry of its timer
𝛿 , it follows the steps in Section 4.4. Otherwise, m increases r and
re-starts the slice shifting protocol. If m is unable to receive a valid
nonce due to malicious miners, it will receive the nonce within
r = fM rounds (with high probability). This is the case because at
most fM miners may act maliciously.

No nonce – Merge. It is possible that even after r = fM rounds,
honest miners do not have access to a valid nonce. Such a case
takes place if no value in any slice can yield the expected hash. To
resolve this case, we require the miners to terminate their search
for the nonce and initiate the merge process. The aim of merging
blocks is to increase the probability of reaching the expected hash.

Specifically, for the𝑘-th block, if a minerm receives a certificateℭ
from Pbft replicas, which has shift round r = fM , then m concludes
that no valid nonce exists for the 𝑘-th block (Figure 6, Line 28).
Following this, m creates a new block that merges contents of the
𝑘-th and (𝑘 + 1)-th blocks (Figure 6, Line 41). This new merged
block acts as the 𝑘-th block and miners attempt to find the nonce

for this new block. The merged block includes a Merkle root, which
is the hash of all the transactions in 𝑘 and (𝑘 + 1)-th blocks.

Penalty for Slice Shifting. Frequent slice shifting due to ma-
licious miners will be detrimental to the performance of our PoC
protocol; it forces honest miners to do more work and wastes their
resources. To discourage malicious attacks, we heavily penalize

malicious miners. Specifically, we require each miner to track the
number of shifts (r) it took to find a valid nonce and to identify the
miners that failed to find the valid nonce.

In our HybridChain system, identifying malicious miners re-
sponsible for r shifts is a trivial task for honest miners. When a
miner m receives a valid nonce for the 𝑘-th block in shift round r
(1 ≤ r ≤ fM ), it identifies malicious miners on the basis of the slice
containing the valid nonce. Let S𝑗 be the slice, then:

M𝑚𝑎𝑙 = {m𝑖 }, where 𝑖 = ( 𝑗 + 𝑙 − 1) mod nM , 𝑙 ∈ [1, r]

Here M𝑚𝑎𝑙 is the set of malicious miners who caused r rounds of
slice shifting. To penalize these malicious miners, we again invoke
the Pbft protocol. Specifically, once a miner m has the knowledge
of set M𝑚𝑎𝑙 , it sends a message Penalty(M𝑚𝑎𝑙 , 𝑏, r) to all the
miners (Figure 6, Lines 17-20). Once m receives Penalty messages
from fM + 1 miners, it creates a certificate that includes these
Penalty messages and broadcasts this certificate to each replica in
R (Figure 6, Line 57).

When the Pbft primary receives a Penalty certificate signed
by fM + 1 distinct miners, it creates a new batch of transactions
that penalize the malicious miners and initiates Pbft consensus on
this batch. Post consensus, each replica executes these transactions,
which deducts the stake of each malicious miner (§ 6.1).

Invalid Nonce Attack. A malicious miner can always send an
invalid nonce to the Pbft replicas. As Pbft replicas do not verify
the correctness of the nonce, such invalid nonces force them to do
wasteful consensus. However, honest miners can always validate
whether a nonce is valid or not. To thwart malicious miners from
flooding the Pbft replicas with invalid nonces, we require honest
miners to detect an invalid nonce and initiate the process to penalize
the responsible miners (Figure 6, Line 23). The process of penalizing
the malicious miners is the same as before.

5.2 Malicious Primary – View Change

Pbft replicas play an important role in guaranteeing safety and
liveness to our HybridChain system. Specifically, Pbft replicas
help in the following tasks:

(1) Ordering client transactions.
(2) Selecting a nonce.
(3) Facilitating slice shifting protocol.
(4) Penalizing malicious miners.
All of these tasks require the primary replica p to ensure suc-

cessful consensus. However, if p is malicious and prevents any of
these tasks, we require honest replicas to replace p. To do so, we
follow Pbft’s view change protocol. Specifically, each consensus is
led by the primary of current view 𝑣 , and the view change protocol
moves replicas from view 𝑣 to view 𝑣 + 1.

Timer Initialization. At the start of each consensus, each
replica starts a timer 𝜏 . Each replica also initiates a timer, when it
receives (i) NonceFind messages, (ii) Shift certificate signed by

7



Block [𝔅1] Nonce
Discovery

Slice
Shift

Shift
Certificate

Pbft Shift Nonce
Discovery

Submit
Nonce

Pbft Chain
Update

Penalty
Agreement

Penalty
Certificate

Pbft Penalize
m2

m3
m2
m1

Pbft
[0, 1]
[2, 3]
[4, 5]

[2, 3]
[4, 5]
[0, 1]

Figure 7: Slice shifting procedure: assume 2 is the valid nonce and is present in the slice of malicious miner m2. m2 fails to
broadcast 2, which triggers slice shifting. Miners agree on slice shifting with help of Pbft. Once 2 is found, m2 is penalized.

fM + 1 distinct miners, (iii) Penalty certificate signed by fM + 1
distinct miners, and (iv) an uncommitted client request from a client.

In all of these cases, each replica rwaits for p to initiate consensus
on respective transactions. If its timer 𝜏 timeouts, r requests view
change by broadcasting a ViewChange message to all the replicas.
When the replica p′ designated as the primary for view 𝑣+1 receives
ViewChange message from 2fR + 1 distinct replicas, it starts view
𝑣 + 1 by broadcasting NewView messages. Following this, p′ tries
to complete consensus on pending requests.

5.3 Long Range Attacks

In existing PoS and mft systems that experience frequent validator
churn, it is not unthinkable that a malicious party gains access to
the old keys of validators who have exited the system. If this hap-
pens, either through bribery or simply mishandling of key material,
the adversary can trivially rewrite the complete ledger. This is an
extremely precarious situation as even-aged ledgers–5, 10, or 50
years old–are easy to forge. In these systems, a malicious party
needs to create new blocks to replace the original blocks and digi-
tally sign them using the keys of honest parties. As stated earlier,
performing such an attack on a PoW system though theoretically
possible is infeasible in practice due to computational resources
needed to mine each block. We illustrate that the same guarantees
hold for our HybridChain system.

In our HybridChain system, if malicious parties have access
to private-keys of honest parties, they can attempt the following:
(1) malicious replicas can commit multiple batches at the same
sequence number, (2) malicious miners may change the setM𝑚𝑎𝑙 .

Malicious replicas may attempt to commit multiple batches at the
same sequence number if they want to rewrite the ledger. Assuming
that the ledger has |𝔅| blocks and starting from the 𝑖-th block 𝔅𝑖 ,
𝑖 < |𝔅|, the malicious parties want to rewrite the ledger. To do so,
malicious miners need to create a new block to replace each block
in the range 𝑖 to |𝔅|. However, malicious miners will not receive
help from honest miners to create these blocks as each honest miner
has a copy of the ledger. As at least 51% miners are honest (hold at
least 51% compute power), so each malicious miner has to solve at
least two slices to find a nonce for the replacement block. This is
the case because the probability of successfully finding the solution
for each block in the initial slice decreases exponentially.

Let, 12 be the probability that malicious miners find the solution
for the first new block in the first slice. So, the probability that
malicious miners find the solution for the 𝑏 consecutive blocks in
the first slice is ( 12 )

𝑏 . If 𝑏 ≥ 7, the probability is 0.7%. This implies
thatmaliciousminers will spend twice the amount of resources/time
to mine each new block. This task becomes infeasible if the number
of blocks to mine is greater than 7 and in parallel, the ledger at the
honest miners may keep growing.

Alternatively, malicious parties may decide to delay honest min-
ers by giving them different batches or no batches. Such an attack
will be detected by honest miners and anyone observing the net-
work as there will be a sudden drop in the rate of block production.

The insight here is that the malicious parties can neither rewrite
the ledger fast like in PoS and mft systems, as finding nonce is
computationally expensive, nor be fast enough to produce new
blocks at the expected latency of the PoC network.

6 DISCUSSION

We now present a discussion on how the miners and replicas join
ourHybridChain system, how are the accounts of miners managed,
and how is the difficulty of PoC mining controlled.

6.1 Staking and Account Database

Like existing PoW and PoS blockchain systems [20, 23, 76], our
HybridChain system also rewards and penalizes miners participat-
ing in the PoC consensus. To do so, we assume our HybridChain
system also includes some native token. For the sake of discus-
sion, let us refer to this native token as Ψ. Without delving into
token economics, we assume that initially Ψ is proportional to a
percentage of dollar currency.

At the genesis of our HybridChain system, any miner that
wishes to participate in the PoC mining needs to exchange their
dollars for Ψ. Each miner m stakes a portion of its tokens Ψ𝑠 to be
eligible for mining. For simplicity, we assume that each miner has to
stake at least 𝑒 ·Ψ𝑠 , where 𝑒 > 0 and 𝑒 is a system parameter. Staking
implies that 𝑒 ·Ψ𝑠 of the miner m are locked prior to its participation
in PoC mining; m cannot access its 𝑒 · Ψ𝑠 till it is participating in
PoC mining. For this purpose, we assume each miner interested in
participating in our PoC mining has two accounts: stake account
and mining account.

In our HybridChain system, these accounts are managed as a
NoSQL database. Each account is represented as a key-value pair;
key is the public-key of a miner and value stores the number of Ψ𝑠
held by the miner. We assume that each miner has a local copy of
this NoSQL database, and it updates the rewards/penalties for each
miner as per the protocols described in Sections 4 and 5.

Whenever PoC miners successfully append a new block to the
ledger, they are rewarded with Ψ𝑟 . These Ψ𝑟 are added to their
mining account. To penalize a malicious miner, Ψ𝑝 are subtracted
from its staking and mining accounts.

6.2 Bootstrapping and Discovery

We follow the practices dictated by existing PoS or mft systems to
bootstrap our HybridChain system [20, 23, 63]. Each of these sys-
tems assumed that the initial members of their networkwere honest;
these members were vetted before being added to the network. Fur-
ther, these systems assume that all times at least 2/3-rd members
are honest. For example, Ethereum Foundation [76], Avalanche [63],
and Cardano [20], control large stakes in their respective networks
to prevent malicious attacks.

Prior to any consensus, the Pbft replicas of our HybridChain
system help create the first block of the ledger, genesis block. This
genesis block includes the following information: (1) total number

8



ofminers (nM ), (2) total number of replicas (nM ), (3) keys of staking
and mining accounts of each miner, (4) value of staking account
of each miner, (5) slice identifier for each miner, and (6) identifier
for each replica. This genesis block is created and proposed by the
primary, and all the replicas participate in Pbft consensus to create
to commit this block. Post Pbft consensus, all the PoC miners run
the first round of PoC mining to add this block to the ledger.

During the execution of our HybridChain system, replicas and
miners may want to join or leave the system. To allow dynamic
participation, we make a simplifying assumption that any replica
or miner leaves at the boundary of consensus; no miner or replica
leaves during an ongoing consensus. This assumption is not sur-
prising as all the mft systems make a similar assumption [23, 77].
Even PoS systems that use a committee of stakeholders to propose
the next set of blocks require the committee members to stay until
the next committee is selected [20, 31].

If a miner m wants to join our HybridChain system, it creates
a message ⟨JoinMiner(𝑝𝑘,Ψ)⟩m and broadcasts this message to
all the Pbft replicas. Similarly, a replica r broadcasts a message
⟨JoinReplica(𝑝𝑘)⟩r. In these messages, 𝑝𝑘 refers to the public-
key; in the case of replicas, public keys must be registered with a
public-key certificate authority. The primary replica p, on receiving
a join request, creates a transaction that includes this request and
initiates Pbft consensus on this transaction. Once the transaction
is successfully committed, it is fetched by the miners through IDA.
When the miners have added this transaction to the next block, the
new node is allowed to join the system. In the case a new miner
wants to join the system, once the committed transaction is added to
the block, each existing miner creates staking and mining accounts
for the new miner in its database.

Similarly, when a minerm (or a replica r) is going to leave theHy-
bridChain system, it will broadcast amessage ⟨LeaveMiner(𝑝𝑘)⟩m
(⟨LeaveReplica(𝑝𝑘)⟩r) to all the Pbft replicas. Again, a Pbft con-
sensus is initiated by the primary. Once the leave request is success-
fully added to the ledger and all the blocks, in which the miner (or
replica) participated have been added to the ledger, they can leave
the system. At this point, it is safe to release the Ψs of the miner.

6.3 Difficulty

Difficulty is a measure of how quickly a block can be generated.
It determines the computational resources required to find a valid
nonce. Specifically, difficulty states the characteristics of the ex-
pected hash–number of leading zeroes. The higher the difficulty,
the larger is the amount of time it takes a miner to find the valid
nonce.

In existing PoW-based blockchain systems, the difficulty fre-
quently changes (mostly increasing) in an attempt to keep the
ledger safe. Specifically, when these systems have lower difficulty,
there is a higher probability of two or more miners reaching the
valid nonce, which leads to forks in the blockchain. Hence, by
keeping high difficulty, these systems aim to reduce the probabil-
ity of forks. For example, Bitcoin changes its difficulty every 2016
blocks [10, 12].

Unsurprisingly, our PoC has a stable difficulty, which is stated
in the genesis block. This stable difficulty helps to substantially
save computation resources and energy. Why does PoC has a stable

difficulty? Every valid nonce is committed by Pbft replicas, which
ensures that a malicious miner cannot produce a random nonce.
However, as the hardware technology improves with time, some
miners may have access to better hardware. In such a case, we
would have to increase the difficulty to prevent blocks from being
recomputed by malicious miners with better hardware. This deci-
sion to increase the difficulty will be taken by Pbft replicas, and
all the miners will be informed via committed transactions.

7 CORRECTNESS ARGUMENTS

We argue the security properties of HybridChain presented in
Section 2. These properties hold under the standardmft assumption
stated in Section 2. That is, the set of 3fR + 1 replicas contains at
most fR malicious replicas. Similarly, the set of 2fM + 1 miners
contains at most fM malicious miners.

7.1 Safety Argument

HybridChain is composed of two subsystems: a mft consensus
and PoC protocol. We argue the safety of HybridChain by relying
on the agreement property of the mft consensus sub-system.

Theorem 7.1 (Safety). No two conflicting blocks are settled by
the PoC protocol. That is, two correct miners𝑚 and𝑚′

do not settle

different blocks 𝑏 ≠ 𝑏′ with the same sequence number 𝑘 .

Proof. Let’s assume a correct miner𝑚 settles a block 𝑏 with
sequence 𝑘 and another correct miner𝑚′ settles a block 𝑏′ (𝑏 ≠ 𝑏′)
with the same sequence 𝑘 . Correct miners settle a block 𝑏 with se-
quence number𝑘 only if theirmft consensus sub-system committed
𝑏 with sequence 𝑘 . This implies that the mft consensus sub-system
of miner𝑚 committed 𝑏 with sequence number 𝑘 , and that the mft
consensus sub-system of miner 𝑚′ committed 𝑏′ with sequence
number 𝑘 . This implies that the mft consensus sub-system of two
correct miners sequenced different blocks at the same sequence
number. This is however a direct contradiction of the agreement
property of the mft consensus sub-system. □

7.2 Liveness Argument

Lemma 7.2 (Commit Availability). A correct miner eventually

obtains the 𝑘-th message𝑚 committed by a correct replica.

Proof. We argue this lemma by induction over the serialized
reconstruction of committed messages. Assuming a history of 𝑘 − 1
committed messages for which this property holds we consider
the 𝑘-th committed message𝑚. When a correct replica commits
message𝑚 it calls the function IDA-split (Line 19 of Figure 3) to
split𝑚 into 2fM + 1 parts. It then makes its part available to the
miners, whenever they request for the same. It is thus guaranteed
that 2fR + 1 correct replicas eventually hold their part of 𝑚. A
correct miner can then query any fR + 1 correct replica for their
parts of𝑚. Finally, the correctness property of the IDA protocol
ensures that the correct miner can regenerate𝑚 from these parts
(Line 4 of Figure 6). The inductive base case involves assuming that
all replicas are initialized with a committed genesis (𝑘 = 1) message,
which we can ensure axiomatically. □

Corollary 7.3 (Batch Availability). A correct miner eventu-

ally obtains the 𝑘-th batch 𝜎 committed by a correct replica.

9



Proof. The proof follows from the application of Lemma 7.2
with message𝑚 := Committed(𝑘, 𝜎). □

Lemma 7.4 (Nonce Search). The first time a correct miner obtains

the 𝑘-th committed batch 𝜎 , it searches for a valid nonce 𝜂 in slice S𝑖 .

Proof. Upon receiving the 𝑘-th committed batch 𝜎 for the first
time, correct miners call the function PenaltyCheck (Line 6 of
Figure 6) that eventually returns (i.e., it does not contain any loop).
They then call the function NewMine either through function
NonceCheck (Line 7 of Figure 6) or SliceCheck (Line 8 of Figure 6).
The function NewMine (Line 37 of Figure 6) checks that 𝜎 is the
𝑘-th committed batch (which is the case by definition), aggregates
it into a block 𝑏 (Line 40) and calls FindNonce (Line 45) to search
for a nonce in slice S𝑖 . □

Lemma 7.5 (Shift Liveness). If a correct miner does not find a

valid nonce 𝜂 in slice S𝑖 to settle block 𝑏 within time 𝛿 , another miner

eventually tries it.

Proof. When timer 𝛿 expires correct replicas submit a message
SignMessage to at least one correct replica (Line 49 of Figure 6).
The liveness property of themft consensus sub-system ensures that
these messages are eventually committed, and Lemma 7.2 ensures
that correct miners are eventually notified of the commit. When
fM + 1 miners timeout, they create a shift certificate (Line 56 of
Figure 6). This certificate is then used to reset the timer (Line 32
of Figure 6) and restart the nonce finding process in slice S𝑗 (with
𝑗 = (𝑖 + 1) mod nM (Line 36 of Figure 6). As a result, correct
miners keep shifting and searching for each other nonces until they
are all found. □

Lemma 7.6 (Block Settlement). All correct miners settle block

𝑏 if a valid nonce 𝜂 for block 𝑏 exists.

Proof. When a correct miner𝑚 finds a nonce it submits it to
the mft consensus sub-system (Line 48 of Figure 6). The liveness
property of the mft consensus sub-system ensures that this nonce
is eventually committed by all correct validators. Lemma 7.2 Then
ensures that all correct miners can obtain the corresponding certifi-
cate. We conclude the proof by noting that if the certificate contains
a valid nonce 𝜂, correct miners settle 𝑏 (Line 16 of Figure 6). □

Theorem 7.7 (HybridChain Liveness). Any valid transaction

⟨𝑇 ⟩𝑐 of a correct client 𝑐 is eventually settled.

Proof. The correct client 𝑐 disseminates its transaction ⟨𝑇 ⟩𝑐
to at least one correct replica. The liveness property of the mft
consensus sub-system ensures that the transaction ⟨𝑇 ⟩𝑐 is even-
tually committed as part of a batch 𝜎 by at least 2fR + 1 correct
replicas. Corollary 7.3 ensures that miners eventually obtain the
committed batch 𝜎 (Line 4 of Figure 6). Lemma 7.4 then ensures that
the miner searches for a valid nonce 𝜂 to settle 𝜎 as part of a block
𝑏. Finally, an honest miner can find a nonce in its slice S𝑖 within
time 𝛿 with non-zero probability. If it doesn’t, Lemma 7.5 ensures
that other correct miners will try it again until they succeed. As a
result, correct miners eventually find a nonce 𝜂 for block 𝑏 in their
slice within time 𝛿 . Lemma 7.6 then ensures that all correct miners
use 𝜂 to settle block 𝑏 and thus the transaction ⟨𝑇 ⟩𝑐 it contains. □

Incentive-Compatibility Argument

Lemma 7.8 (Penaly Certificate). There cannot be a penalty

certificate ⟨Penalty(𝑏, r,ℭ)⟩m unless the timer 𝛿 of at least 1 correct
miners expires.

Proof. Assume there exists a penalty certificate ⟨Penalty(𝑏, r,ℭ)⟩m
while none of the timers of the correct miners expired. Correct min-
ers do not sign penalty certificates when their timer is not expired.
Since penalty certificates are composed of fM + 1 signatures, it
follows the system contains fM + 1 > fM corrupt miners, hence a
contradiction. □

Theorem 7.9 (HybridChain Incentive-Compatibility). No
correct miner receives a penalty if (i) it can find a nonce 𝜂 within time

𝛿 and (ii) the network is experiencing a period of synchrony.

Proof. Let’s assume a correct miner𝑚 receives a penalty based
on shift round 𝑟 (Line 11 of Figure 6). This implies the existence
of a penalty certificate (Line 9 of Figure 6) including miner𝑚 in
its list of miners to penalize. Lemma 7.8 states that this certificate
can only exist if the timer 𝛿 of at least 1 correct miners expires.
However, since the fM + 1 miners are correct, they only try to
penalize𝑚 if they did not receive its nonce before 𝛿 . This implies
that either miner𝑚 did not find its nonce before 𝛿 (which is a direct
contradiction of assumption (i)), or that its nonce did not reach the
fM + 1 correct miners before their timer expire (which is a direct
contradiction of assumption (ii)). □

8 EVALUATION

We implement ourHybridChain system on top of our high-throughput
yielding, open-sourced ResilientDB fabric [35, 37, 38]. Like Re-
silientDB, HybridChain is written in C++. Further, ResilientDB
provides access to Pbft consensus, so we only had to implement our
PoC protocol. In the rest of this section, we refer to ResilientDB’s
Pbft protocol as R-Pbft. The simplicity of our PoC implemen-
tation is evident from the fact that it has 2,400 LOC, while Re-
silientDB has 32,215 LOC. Our evaluation aims to answer the
following:

(1) Batching and scaling of R-Pbft? (§8.3-§8.4)
(2) Batching and scaling of PoC? (§8.5-§8.6)
(3) Failures in PoC? (§8.7)
(4) HybridChain versus other blockchains? (§8.8)
(5) Energy consumed by different blockchains? (§8.9)
8.1 Baselines.We evaluate our HybridChain system against

five state-of-the-art blockchain systems: DiemBFT [23], Hyper-
ledger Fabric [3] (abbreviated as Hyperledger in rest of this
section), Avalanche [63], Ethereum [76], and Cardano [20]. We
choose to compare against these systems: (1) Ethereum,Avalanche
and Cardano are among the top ten cryptocurrencies by market
capital; these permissionless blockchain systems hold a combined
market capital of 185 billion dollars as of writing this paper. (2)
Ethereum version 1.1 allows us to compare against a PoW-based
system, whileAvalanche andCardano permit comparison against
PoS-based system. (3) Hyperledger and DiemBFT are two pop-
ular permissioned blockchain systems using raft [58] and Hot-
Stuff [77] consensus algorithms, respectively.
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8.2 Setup. We run experiments on Oracle Cloud Infra. (OCI);
each replica/miner/node uses VM.Standard2.8 architecture (16 cores,
8.2Gbps bandwidth, 120GBMemory). For each baseline, we present
their peak throughput and least latency on a variety of cluster sizes:
16, 32, 64, and 120 nodes (OCI limited us from reaching 128 nodes).

Unless explicitly stated, we set the number of replicas and miners
for HybridChain system to 120. We require R-Pbft replicas to
run consensus on a batch 100 transactions. Each experiment we
run for 30minutes where first 20min are for warmup and results
are collected over last 10minutes. We average results over three
runs to remove noise. For HybridChain, we require clients to sign
their messages using ED25519-based DS while replicas use CMAC.
In all the systems, clients send the next transaction after receiving
confirmation that their previous block has been committed.

We serve YCSB [17, 24] transactions from Blockbench [24] frame-
work to R-Pbft replicas. These transactions are key-value store
operations that access a database of 600 k records.

Note: In PoW-based systems, difficulty (𝐷) is expressed as the
number of leading zeroes in expected hash [54, 76]. Larger the
difficulty, greater the amount of resources needed to find a nonce.
As Bitcoin started with difficulty 𝐷 = 8, so in this work, we ex-
periment 𝐷 = 8 and 𝐷 = 9. With our available compute power,
larger values of 𝐷 requires 20+ hours to find a valid nonce, which
made the experiment infeasible. Like Bitcoin, we set the number
of nonce bits to 42, which leads to a total solution space of 242.
In all our experiments, we reach the peak network bandwidth for
R-Pbft, which implies that the network can no longer send any
more messages.

Avalanche presents a leaderless protocol called Snow to achieve
mft consensus [63, 64]. For our experiments, we employAvalanche’s
C-Chain design as it exposes a web API to access the blockchain.
For Avalanche experiments, we could deploy only 1 k clients, which
write to 10 default accounts. Clients send their transactions to pro-
posers, which verify the transaction and propose the next block.
Avalanche requires each block to have a size of 8Mb.

Hyperledger is a permissioned blockchain fabric. We run
the latest version, release-2.1, where it only supports Raft [58]
consensus. In Hyperledger, clients submit their transactions as
simple smart-contract, which update key-value pairs, to validators.
These validators verify the transaction and reply to the client. Once
the client has a sufficient number of verifications, it asks the orderers
to run Raft. For our experiments, we deploy an equal number of
validators and orderers and set up 100 clients, which continuously
submit contracts with different key-value pairs.

Cardano employs PoS consensus to reach mft agreement. For
our experiments, we use Cardano’s Allegra Era version. We de-
ploy 100 clients, which create smart contracts and send them to a
proposer. Cardano randomly selects the proposer with the highest
stake to propose the next block to be added to the chain.

Ethereum version1.1makes uses of the PoW protocol. When
the cluster size is less than 64, each miner is connected to other min-
ers; for 64 and above, Ethereum suggests connecting each miner to
only 50 other miners. For Ethereum, we set the minimum difficulty
at 131072.

DiemBFT optimizes the HotStuff [77] protocol. Like Pbft,
HotStuff also has the Preprepare, prepare, and commit phases
but it requires additional two phases as it switches primary at the

end of each consensus. We deploy the research implementation of
DiemBFT [72] as it includes all the recent optimizations, and run
both with or without mempool versions. Mempool optimization
removes the task of disseminating batches from the primary [18].

8.3 Impact of Batching on R-Pbft. First, we illustrate the
effect of batching transactions on R-Pbft; in Figures 8(a) and (b), we
vary the batch size from 1 to 1 k. We observe that R-Pbft hits the
peak throughput when batch size is 150. Beyond this, we observe
saturation of peak throughput, while there is a significant increase
in latency. This is the case because the queues at replicas are all full
and can no longer process any newer requests, which increases the
wait time for client requests.

8.4 Impact of Scaling on R-Pbft. Next, in Figures 8(c) and
(d), we increase the number of replicas from 16 to 120 and compare
the scalability of R-Pbft against DiemBFT’s linear consensus. As
expected, on increasing the number of replicas, there is a drop in the
peak throughput (consequential increase in latency) because there is
a corresponding increase in the number of messages communicated
per consensus.

In the case of DiemBFT, the no-mempool version has much
lower throughput as the implementation bottlenecks at the pri-
mary replica, which is forced to broadcast all requests.6 DiemBFT’s
mempool version requires replicas to wait for 100ms or to receive
500 Kb of transactions (whichever comes first) before propagating
the batch. As a result, DiemBFT’s mempool variant trades latency
for higher throughput. For R-Pbft, we observe a linear decrease
in throughput when scaling from 16 to 120 replicas while sustain-
ing well over 100,000 txn/s with nearly 1 second latency even at
120 replicas, which even outperforms state-of-the-art DiemBFT
protocol that is further enhanced with mempool.

8.5 Impact of Blocking on PoC. In Figures 8(e) and (f), we
vary the block size for PoC. Within each block, we increase the
number of transactions committed by Pbft from 120 k to 280 k. We
require the miners to find nonce at 𝐷 = 8 and 𝐷 = 9. As 𝐷 = 8 is
easy to solve, PoC miners are able to find the nonce quickly and
hit the peak throughput, which is also the maximum throughput
achieved by R-Pbft at 120 replicas. For 𝐷 = 9, we observe an
increase in throughput with an increase in block size until it hits
peak throughput of R-Pbft. This makes us conclude that our PoC
protocol does not bottleneck our HybridChain system.

8.6 Impact of Scaling on PoC. Next, in Figures 8(g) and (h),
we vary the number of PoCminers from 64 to 120; we test on three
different block batch sizes. We observe that by increasing the degree
of collaboration (number of miners), there is an improvement in
system performance. Further, larger batch sizes help to quickly hit
the peak throughput.

8.7 Impact of Failures. We now study two types of failures in
our PoC protocol: malicious miner and No nonce (§ 5.1). In both
of these experiments (Figures 8(i) and (j)), we issue the failure at
the 10-th block, which causes the honest miners to time out and
start slice shifting protocol. For the malicious miner experiment,
we run PoC among 120 miners, while for the no nonce case, we
run PoC among 16 miners. As a result, we also select the highest
block size necessary to hit R-Pbft’s throughput. Despite this, both

6We talked to DiemBFT’s authors and they said that the no-mempool version of
DiemBFT is unstable and has not been tested at more than 30 replicas.
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Figure 8: Peak throughput and average latency attained by different components of our HybridChain architecture.

Blockchain Cost Per 1000 Transactions
R-Pbft $0.00007

HybridChain $0.000136
DiemBFT $0.00019

Hyperledger $0.08
Avalanche $0.155
Cardano $0.239
Ethereum $14.66

Figure 9: Cost of running different blockchains.

experiments have a similar observable trend. There is a drop in
throughput at block size 10 as miners timeout. Due to this, there
is a large stack of pending transactions, which allows miners to
aggregate more transactions in their block and leads to momentary
higher throughputs. However, this period soon fades away and the
system reaches stable throughput.

8.8 Performance of Popular Blockchains.Weuse Figures 8(k)
and (l) to analyze the throughput and latency attained by four
state-of-the-art blockchain systems. Despite, fine-tuning these sys-
tems, we could not reproduce their claimed results. Prior works
have also recorded such a performance gap [33, 42]. For example,
we observe that Avalanche only reaches a peak throughput of
336 txn/s at 16 nodes, while Hyperledger attains 700 txn/s at 16
nodes but drops to 70 txn/s at 120 nodes. Similarly,Cardano attains
up to 236 txn/s. However, despite yielding the least throughput,
Ethereum’s throughput remains stable.

8.9 Energy Cost.We use Figure 9 to illustrate the cost of run-
ning different blockchains. To do so, we use the following formula:
(𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐻𝑜𝑢𝑟 × 𝐿𝑎𝑡𝑒𝑛𝑐𝑦)/(𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡). At OCI, each of our de-
ployed node costs $0.2 per hour [59] and we use the throughput
and latency measurements at 120 nodes as reference. We use this in-
formation to show that running our HybridChain system is more
energy efficient than other blockchain systems as it costs the least.

9 RELATEDWORK

mft has been studied extensively in the literature [4, 6, 13, 36, 48, 50–
52, 56, 65, 66, 70, 73, 79]. A sequence of efforts [11, 13, 34, 46, 49, 53,
68, 69, 71, 77, 78] have been made to reduce the communication cost

of the mftprotocols: (1) linearizing mft consensus [32, 35, 77], (2)
optimizing for geo-replication [1, 38], and (3) sharding [2, 19, 26, 62].
Nevertheless, all of these protocols face long-range attacks [22].

Alternatively, prior works have focussed on designing PoS pro-
tocols that permit the node with the highest stake to propose the
next block [20, 31, 45, 47] However, even these protocols suffer
from long-range attacks. Long-range attack [22] is a known at-
tack against PoS-based blockchain system that cannot protect from
compromised keys of old validators. Existing proposals to protect
against such attacks include checkpointing [29], use of key-evolving
cryptography [25, 28], or strict chain density statistics. However,
recent studies show that these systems are still unsafe. As a result,
recent works [8, 74] have proposed anchoring PoS chains on a PoW
chain and more concretely Bitcoin [54, 55]. However, these proto-
cols are designed ad-hoc assuming an external chain for security,
and additionally, lack rigorous performance evaluations. Combined
with the fact that as we show in our experiments classic PoS proto-
cols are orders of magnitude slower than permissioned ones such
as Pbft [13] and DiemBFT [9] it seems that the state-of-the-art is
either performant or secure against long-range and stake-bleeding
attacks. With HybridChain, we show how to get the best of both
words, introducing a secure and performant blockchains.

10 CONCLUSIONS

In this paper, we present the design of our HybridChain system,
which ensures that each client transaction undergoes a Pbft consen-
sus followed by our novel PoCmining. On the one hand, PoCmining
prevents long-range attacks as each block added to the ledger in-
cludes a solution to a compute-intensive puzzle; PoC miners do not
waste their resources as they collaborate to solve this puzzle. On the
other hand, Pbft consensus guarantees low latency response time
to clients and fixed difficulty for PoC puzzles. This combination
allows our HybridChain system to yield higher throughput and
lower latency and energy costs in comparison to state-of-the-art
blockchain systems.
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