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Abstract

This paper explores a modular design architecture aimed at helping blockchains (and other
SMR implementation) to scale to a very large number of processes. This comes in contrast to
existing monolithic architectures that interleave transaction dissemination, ordering, and execu-
tion in a single functionality. To achieve this we first split the monolith to multiple layers which
can use existing distributed computing primitives. The exact specifications of the data dissemi-
nation part are formally defined by the Proof of Availability & Retrieval (PoA&R) abstraction.
Solutions to the PoA&R problem contain two related sub-protocols: one that “pushes” informa-
tion into the network and another that “pulls” this information. Regarding the latter, there is
a dearth of research literature which is rectified in this paper. We present a family of pulling
sub-protocols and rigorously analyze them. Extensive simulations support the theoretical claims
of efficiency and robustness in case of a very large number of players. Finally, actual implemen-
tation and deployment on a small number of machines (roughly the size of several industrial
systems) demonstrates the viability of the architecture’s paradigm.

1 Introduction

Blockchain systems are currently supporting a trillion-dollar economy. New use cases emerge every
day and with the promise of “Web 3.0” powering the future digital societies, the number of users
grows rapidly. Nevertheless, more than a decade after Bitcoin’s invention, blockchains’ scalability
remains one of the prevalent problems. This problem exists in two dimensions. First, the number of
transactions per second a blockchain can process with low latency, enabling real-time payments as
well as robustness under high load. Second, the level of decentralization of the system that manages
to achieve that high performance. This is important even in permissioned settings since to increase
trust blockchains should be as decentralized as possible.

Implementations of blockchain protocols in a permissioned setting are currently using leader-
based SMR protocols such as PBFT [15], Tendermint [10], or Hotstuff [39]. Although Tendermint
and Hotstuff reduce the total load of the system when the leader is good to O(n), they are still
challenging to scale. This is because of the monolithic architecture proposed by current SMR designs,
where the leader is expected to propose already executed valid operations and disperse them directly
to all parties on the critical path, quickly using up the computing, storage, and networking resources
of the leader node.

One good approach to tackle the network bottleneck is to reduce the traffic on the critical path
by running consensus on the metadata instead of on the full blocks. This is evident by its abundant
use in literature and industry (e.g., [8, 15, 10]). In many works, achieving consensus on the metadata
and disseminating the full blocks are deeply intertwined (which may help performance in a particular
system but hinders attempts to reuse in other systems). However, these works gain efficiency mostly
thanks to not being deployed in real adversarial settings. If, for example, we use a gossip network
to disseminate the block like Tendermint [10] or Filecoin [38] then the liveness of the consensus is
dependant on the performance and robustness of the gossip network which in their majority are not
Byzantine Fault tolerant1.

Nevertheless, the idea of splitting responsibilities is a natural one. In this paper, we treat it
as a first-class citizen generalizing not only to decoupling communication from ordering but also

1The single exception is Guerraoui et al. [25] which is yet to be implemented due to its complexity, high runtime,
and inability to identify when it fails.
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computation. This results in the proposal for a modular SMR design. This design, unlike classic
SMR, does not directly solve the SMR problem but instead composes existing sub-protocols towards
building an SMR. This allows for better usage of resources and exposes a key unexplored bottleneck,
that of post-ordering retrieval of data.

More specifically, we split the responsibilities of data dissemination, data ordering, and data
execution into different modules. Data dissemination is done through a disperse&retrieve module
that can be implemented by any Asynchronous Verifiable Information Dispersal (AVID) protocol [13].
Data ordering is done through any kind of Byzantine Atomic Broadcast (AB) protocol [33, 20, 13]
and execution is done through any deterministic execution engine [5, 1, 26].

Once we define this layering approach it becomes apparent that there is a gap of research on the
retrieval step. This step is supposed to take the totally ordered proofs of availability that the AB
outputs and retrieve the actual data to be executed. Current AVID protocols focus on scaling the
disperse phase, but the retrieval protocols either ask the initial source for the data or collect from
a supermajority of parties error-corrected chunks. Both of these protocols impose an O(n) cost per
process for retrieval and do not try to load-balance. We address this gap in the literature with our
scalable retrieval protocol. There we investigate how to efficiently run the retrieve sub-protocol of
AVID. Unlike existing designs that cost O(n) messages per node, we show how, using a probabilistic
retrieval algorithm, we can achieve complete retrieval with an expected O(log n) messages per node.

The Proof of Availability & Retrieval Problem

In a nutshell, the PoA&R problem detaches the act of “sending” a block from the part in which nodes
“receive” it. Thus, a significant amount of the costs is transferred from the critical path to a time
of the recipient’s choice. To do so, each block is translated into a (short) proof π and when a node
aims to inform the network of a new block of information (or transactions in our blockchain example)
it disseminates π instead of the actual block. This can be done, for example, by broadcasting π,
which is cheaper than broadcasting the block itself when using an efficient proof generator. A node
that receives π stores it and is essentially convinced that when the actual block is needed it will be
retrievable.2

To obtain the block itself, processes can retrieve it at their own time. In this sub-protocol they
reconstruct the initial block, using the stored proof π. Since we alleviate the costs of dispersing the
block’s evidence into the network, the act of retrieving the block must incur additional costs. However,
this kind of paradigm equips systems designers with the flexibility to decide when to undertake such
costs. Specifically in blockchains systems, in times of congestion processes can progress by making
consensus decisions on proofs alone, whereas the block retrieval and execution can be updated when
the load decreases.

In our proposed solution, the creation of the proof π is done using an erasure code scheme and a
vector commitment scheme. When a process aims to share a block, it uses erasure coding to create
a vector of n code words. It then creates a commitment that binds each word to the entire vector
and sends each word (together with the commitment) to a different process. Processes that receive
a commitment return a signature to the sender. Once the sender collects “enough” signatures, it
forms the proof π that the block can be reconstructed. This is the basic “push” part in several AVID
protocols [13, 20, 33].

In existing AVID protocols, retrieving the block (corresponding to the proof π) from the network
is done via collecting a large number of code words and reconstructing the block. This might be too
costly in large-scale systems. Instead, for the retrieval part, we propose a randomized solution that is
deterministically safe and provides liveness with probability 1. Our proposed protocol incorporates
vector reconstruction with random sampling. That is, a process that attempts to retrieve a block,
occasionally samples a random subset of processes and asks them for the block. Clearly, when
processes first try to retrieve the block, the creator of the block is the only process that knows it,
thus, more communication rounds are needed. However, the spread of information is typically very
fast. This intuitive claim is formally proved in Section 5. Moreover, we analyze different sample sizes
that allow for different trade-offs in the cost structure.

Main contributions

• We formalize a modular architecture for the design of blockchains that enables flexibility by
using off-the-shelf solutions for parts of the system. In particular, we define the proof of avail-
ability & retrieval abstraction that is required for our architecture.

2Notice that, unlike for AVID, the node does not need to reliably broadcast π. The AB layer takes care of that.
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• We recognize a gap in research regarding the retrieval sub-protocol and present a family of
(possibly) probabilistic protocols that offer a variety of cost structures. In particular, by using
a probabilistic approach, we can reduce the expected cost of messages per node from Θ(n)
to Θ(log n).

• We analyze the behavior of our protocols both theoretically and with extensive simulations for
large-scale systems. For smaller-sized systems, we implement and deploy our architecture on a
network of AWS machines and show its viability in practice.

2 Model

We consider a standard asynchronous message-passing model with Byzantine faults and a computa-
tionally bounded adversary [11, 12, 30]. There is a fixed set Π of n = 3f + 1 processes, at most f
of them are faulty. These faulty processes are called Byzantine and are not bound to the protocol.
The rest of the processes are correct and act according to the protocol. Until a process is corrupted
by the adversary it is called so-far correct. Each pair of processes is connected via reliable albeit
asynchronous links. That is, messages eventually arrive but there is no bound on message delays.
We consider an adversary that is exposed to all of the network communication, fully controls the
Byzantine processes, and can adaptively choose which processes to corrupt with an after-the-fact
removal effect. That is, even after a so-far correct process has sent a message, if the message is
yet to be delivered the adversary can view this message, choose to corrupt the sending process, and
change/delete the message.

We model the computations made by all system components as probabilistic Turing machines
and bound the number of computational basic steps allowed by the adversary by a polynomial in a
security parameter λ. We further assume a trusted setup, namely, before the start of the protocol,
each party is dealt its own secret key share and the public keys as internal states. This can be
achieved by a trusted dealer or distributed key generation protocols [28, 19, 2], but for presentation
simplicity, we consider this trusted setup for granted.

Our protocols employ several standard cryptographic primitives with the following abstractions.
Erasure code. We use an erasure code scheme that consists of two algorithms, EC.encode and
EC.decode. EC.encode takes a block b and returns a vector of n code words such that any n− 2f out
of the n code words suffice for EC.decode to fully reconstruct the original block b. (See [9].)
Threshold signature. This scheme allows processes to combine different signatures on the same
message, into a single compact signature. It consists of the SignShare and Combinet algorithms. The
first is used by each individual to produce its individual signature, while Combinet is used to produce
a single compact signature from t valid individual signatures. Individual/full signatures are O(λ)-bit
long. (See [29].)
Vector Commitment. The vector commitment (VC) scheme is comprised of three algorithms: 1)
VectorCommit(c) which takes an n-element vector c and returns a commitment to that vector vcsig;
2) PositionalCommitProof(c, vcsig, ci, i) which takes the vector c, its commitment vcsig, the element ci
and its position i in c, and returns a positional proof πi; and 3) VerifyElement(vcsig, ci, πi) that uses
the proof πi to check whether ci is indeed the ith element in the vector whose commitment is vcsig.
Both vcsig and πi bit lengths are in O(λ). (See [16].)

3 Modular SMR architecture

As the first contribution of this work, we propose a layered architecture for SMR that enables plug-
and-play use of PoA&R, Atomic Broadcast, and deterministic execution protocols. We first define
the properties of the protocol and then in Figure 1 we provide a breakdown of how it works. In the
rest of the paper we focus on the PoA&R protocol. For completeness, we define below the properties
the rest of the layers should have.

3.1 The Proof of Availability & Retrieval Problem definition

In this section, we introduce and formally define the Proof of Availability & Retrieval (PoA&R)
abstraction. This abstraction should capture the ability to disseminate a block in a fashion that
enables reducing the cost on the critical path (the consensus module). Roughly speaking, we detach
the act of “sending” a block from the part in which processes “receive” it. Thus, a significant amount
of the costs can be transferred from the critical path to a time of the recipient’s choice.

The PoA&R abstraction exposes an interface with two operations and two callbacks:
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• PoA push(b): an operation invoked by a process to push (disseminate) a proof for block b.

• PoA commit(π): a callback triggered to commit a proof π. (For the availability of a block b.)

• PoA pull(π): an operation invoked by a process to pull (retrieve) a block that corresponds to
the proof π.

• PoA deliver(b): a callback triggered to handle the delivery of a block b.

We only define the single-sender problem (with a given known sender ps), since this specification
can easily be extended to the case with multiple senders that push/pull blocks. For the multiple-
senders problem, many single-senders instances can be active in parallel (they can be distinguished,
for example, by using source tags).

We assume the existence of two functions CreateProof and Verify that satisfy the following
conditions. For any arbitrary blocks b, b1 and b2, it holds that CreateProof(b1) ̸= CreateProof(b2)
iff b1 ̸= b2, and Verify(b, π) = true if π = CreateProof(b) and Verify(b, π) = false otherwise. Given
these standard cryptographic functions, the PoA&R problem is defined by the following properties
that must be satisfied at all the possible executions.

Definition 1. Proof of Availability & Retrieval:

• Push-validity: If ps is correct and invokes PoA push(b), then every correct process eventually
performs PoA commit(π) such that Verify(b, π) = true.

• Pull-validity: If a correct process pi performs PoA deliver(b), then there exists π such that pi
had performed PoA commit(π) and Verify(b, π) = true.

• Pull-termination: Let pi be a correct process. For each π such that pi had performed
PoA commit(π) and has invoked PoA pull(π), pi eventually delivers a unique block with proba-
bility 1.

Since PoA&R is defined as part of a blockchain architecture, we are able to capture exactly what
is necessary without redundant properties. For example, we do not need the agreement property of
AVID, which in turn enables us to design more efficient protocols.

Complexity measures A PoA&R protocol satisfies the validity and termination properties even
in cases of asynchrony and Byzantine faulty processes, which means it is robust by design. However,
executions with failures and asynchrony are not the majority in the routine operation of systems. In
fact, the “nice case” in which no failures occur and the network is almost synchronous can be quite
common in practice. It is therefore desired to design systems that minimize costs in these common
“nice” conditions while allowing for increased costs when having to deal with troubles. We assume
that the common-case execution of the considered blockcahin system has the following properties:

• Good processes. All process are correct.

• Synchrony. The roundtrip of messages in the network is within ∆.

• Concurrency. Processes start the pulling sub-protocol at the same time.

The last assumption is crucial for the stochastic analysis of the protocols. It is a justified approxi-
mation since in the normal modus operandi a process pulls immediately after the consensus decision,
and synchrony causes these decisions to happen within a short time span at almost all processes.

We henceforth use the following (per process) complexity metrics:
Message complexity. The expected number of messages a process sends during a common-case
execution.
Bit complexity. The expected number of bits a process sends during a common-case execution.
Round complexity (running time). We define an asynchronous round in the standard way
(see [14]). Essentially, this measurement counts the number of messaging “rounds”, when the protocol
is embedded into a lock-step timing model. The round complexity is then the expected number of
asynchronous rounds it takes a process to complete the protocol (deliver a block) during a common-
case execution.
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Figure 1: Overview of the Layered SMR approach

3.2 Atomic Broadcast

The classic definition of Atomic Broadcast states that every execution of a protocol solving AB should
satisfy:

• Validity: If a correct process broadcasts msg then all correct processes eventually deliver msg.

• Agreement: If a correct process delivers msg then all correct processes eventually deliver msg.

• Integrity: msg is delivered by a correct process at most once, and only if it was previously
broadcast.

• Total order: If two correct processes deliver both msg and msg′, they deliver them in the same
order.

However, it is well-known that AB is impossible to solve in an asynchronous model even with one
possible crash failure [24]. Since we are dealing with an asynchronous setting with Byzantine failures,
these properties must be relaxed. There are varied relaxations and protocols solving them in the
literature, e.g., [15, 32, 39, 3]. We leave the choice of desired relaxation and implementing protocol
for the system designer, but remark that this crucial choice determines the basic theoretical guarantees
provided by the SMR system.

3.3 Execution

The execution layer simply takes as input the total ordered set of operations and updates the state.
The only property required by this layer to implement SMR is that of determinism. Solutions such
as [35, 18, 17, 23] can be used to provide a scalable execution layer.

3.4 Bringing them all together

Our SMR works in layers. First, every process that has a batch of operations transmits it through
PoA&R and collects a proof of availability π. These proofs are then submitted to the AB layer which
totally orders the proofs without having to incur the cost of handling the data. The totally ordered
proofs are then fed into the Retrieval sub-protocol that recovers any batches not locally available at
each process. Once a batch is available and at the head of the ordering queue, the process locally
executes it and updates the state. Figure 1 and Algorithm 1 give an overview of the architecture.

4 Proof of Availability and Retrieval Protocols

Many protocols can implement the abstraction of Definition 1, for example, AVID protocols. As we
have observed, the retrieval (pulling) part significantly affects the performance of the system. Thus,
we propose a PoA&R module with a family of pulling sub-protocols that offer different trade-offs in
terms of time vs. communication costs. Clearly, any pulling sub-protocol depends on the dispersal
(push) sub-protocol, therefore, it is defined with relation to a given push-commit protocol.

In a trivial PoA&R scheme, when a process wishes to push a block b, it simply sends it to
all processes. Upon receiving the block, a correct process commits b as the proof for itself (i.e.,
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Algorithm 1: Layered-SMR Calling Sequence

1 Committed Proofs← {} // a set of unordered proofs.

2 Ordered Proofs← [] // proofs that are ordered according to AB.

3 upon New Batch(b) do
4 PoA push(b)

5 upon PoA commit(π) do
6 Committed Proofs.push(π)

7 while not Committed Proofs.empty() do
8 π ← Committed Proofs.pop()
9 Atomic Broadcast(π)

10 upon AB deliver(π) do
11 Ordered Proofs.push(π)
12 PoA pull(π)

13 upon PoA deliver(b) do
14 State ← Execute(b) // Execute waits for all batches ordered before to

finish.

CreateProof(b) = b), and when it wants to pull it, it immediately delivers b. It is straightforward
that this simple algorithm satisfies Definition 1 and is also optimal in the number of messages and the
round complexity. However, it is far from being optimal in terms of bit complexity. More importantly,
this solution does not allow the desired goal of removing the load from the consensus module. That
is, processes take the block itself as an input for a single consensus decision. In typical systems, a
single block contains a large number of transactions in order to increase throughput, which implies
large block sizes. This renders the above sub-protocol impractical for large systems with a high level
of decentralization (i.e. large n).

To bypass this problem several works suggested using erasure coding and vector commitments [30,
33] in their protocols, that can be interpreted as push-commit sub-protocols. We use this single
(standard) push sub-protocol and focus instead on the pulling sub-protocol. For completeness, we
first detail the standard push-commit protocol and briefly explain the standard deterministic pull
protocol. We then present a pulling protocol that improves the standard one by satisfying pull-
termination with probability 1 instead of deterministically.

4.1 Erasure Coded PoA&R

Push-Commit Protocol. (The pseudo-code appears in Algorithm 2.) In this algorithm, the sender
erasure-codes the block b into n code words from which any n− 2f words suffice for reconstructing b.
These n code words are treated as a vector from hereon. The sender then uses a vector commitments
mechanism to create a binding proof for each vector element. Each code word and proof are then sent
to a process corresponding to the vector position. A process that receives a valid vector commitment
proof, returns to the sender a signed share for a threshold signature on the vector signature (denoted
as vcsig). When the sender collects enough shares (n − f this time), it combines them into a valid
threshold signature on vcsig and sends that signature to all as the proof. A process that receives a
valid threshold signature commits it as a “proof for the availability of a block”.

The bit and message complexities of Algorithm 2 are in Θ(|B| + nλ) and Θ(n) respectively.
Since the sender must transmit Ω(|B|) bits and must send at least f messages to enable the correct
reconstruction of b, the Push-Commit protocol is asymptotically optimal in the number of bits it
communicates as well as in the number of messages.3

Deterministic Pull-Deliver protocol. A natural pull-deliver protocol that complements the pre-
sented push algorithm appears in Appendix A. In this algorithm, a process that initiates PoA pull(π)
sends to all other processes a request to reconstruct the block associated with π. Each of the processes
answers with its share of the data and the vector commitment proof attached to it. When the puller

3We note that the cryptographic primitives for vector commitments are somewhat heavy in local computations and
might slow down a system. In comparison, simpler commitment primitives such as Merkle trees [31] can prove a better
match as long as n is not “too large”. However, they incur a Θ(λ logn) bit complexity per commitment in comparison
to the constant (λ) complexity of the vector commitment primitive.
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Algorithm 2: Push-Commit protocol: code for process pi

1 upon PoA push(b) do
2 (c1, . . . , cn)← EC.encode(b)
3 vcsig ← VectorCommit(c1, . . . , cn)
4 for each pj ∈ Π do
5 πj ← PositionalCommitProof(b, vcsig, cj , j)
6 Send(vcsig, cj , πj) to process pj

7 upon Receiving (vcsig, ci, πi) from ps for the first time do
8 if VerifyElement(vcsig, ci, πi) then
9 σi ← SignShare(vcsig)

10 Send (ACK, σi) to process ps

11 upon Receiving (ACK, σi) from pi for the first time do
12 if VerifyShare(vcsig, i, σi) then
13 Sigs←Sigs∪{σi}
14 if |Sigs| = n− f then
15 σ ← Combinen−f (vcsig, {σi ∈ Sigs}) // choose n− f partial signatures and

combine them

16 Send(Commit, vcsig, σ) to all processes

17 upon Receiving (Commit, vcsig, σ) from ps for the first time do
18 if Verify(vcsig, σ) then
19 PoA commit(vcsig)

collects f + 1 valid replays, it reconstructs b. It then verifies that b is valid by computing the vector
commitment procedure on b and comparing the resulting vcsig to the one in π. If the block is valid,
it can be delivered. Otherwise, deliver ⊥– indicating that the sender of the block is faulty and no
valid block exists.

This algorithm costs Θ(|B|+ λn) bits per puller and is very efficient in moderately large systems
where n < |B|. For larger-scale systems, however, the linear number of messages per puller might hin-
der performance. A “strawman” solution to this issue is the following. A puller first asks the sender
for the block. If the sender does not respond timely, then the puller initiates the deterministic pull-
deliver protocol. Although this protocol seems to cost on average only a single message and O(|B|)
bits per puller, it fails in practice because many pullers ask the sender for the block concurrently,
thus causing it to stall and become a fatal bottleneck. This is because there is a process (the sender)
that experiences an Ω(n) message and Ω(n|B|) bits complexity. The acute imbalance of costs leads
to a severe bottleneck in large systems. We deal with this imbalance problem by proposing a family
of randomized pull-deliver protocols. These protocols combine rumor spreading in a “reverse gossip-
ing” manner for common-case performance together with erasure-code reconstruction to ensure safety.

Probabilistic Pull-Deliver protocols. (The pseudo-code is divided between Algorithms 3 and 4.)
A process that initiates PoA pull(π) and does not have the block locally does the following. It flips
a (biased) coin with a probability of k/n of getting heads. If heads is flipped, then the puller sends
a reconstruction request to all. Regardless of the coin’s outcome, the puller randomly selects a set S
of k processes and sends them a block request (for the transmission of the block associated with π).
A process that receives a reconstruction request answers with its code word. A process that receives
a “block-transmission” request answers with the block if it has it, otherwise, it informs the puller
that it does not have the block (via a “NACK” message). If the puller receives a “NACK” from
a process pj ∈ S, it removes pj from S and randomly chooses a new process, sends this process a
block-transmission request, and adds it to S. If the puller does not receive any reply from pj ∈ S
within some predefined time (say ∆), it randomly chooses a process not in S, sends this process a
block-transmission request, and adds it to S. After every new k block requests, the puller flips the
coin again to decide whether to attempt a reconstruction from all or not.

Algorithms 3 and 4 offer a variety of cost structures for the system designer to choose from. The
cost is comprised of the expected message, bit and round complexities in the common case. These
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Algorithm 3: Probabilistic pulling protocol - part 1: code for puller process (ppull).

1 upon PoA pull(vcsig) do
2 if there exists a block b in memory such that Verify(vcsig, b) = True then
3 PoA deliver(b) // from local memory

4 InTransit← {}
5 NewInTransit← {}
6 counter← 0
7 while did not PoA delivered a block corresponding to vcsig do
8 goto SendReq procedure

9 SendReq procedure :
10 if |InTransit| < f + k then
11 for each ⟨pj , time⟩ ∈ NewInTransit do
12 if currTime > time+∆ then
13 NewInTransit← NewInTransit \ {⟨pj , time⟩}

14 k̂ ← k − |NewInTransit|
15 randomly choose a set S ⊆ Π \ InTransit of k̂ processes
16 for each pj ∈ S do
17 if counter % k = 0 then
18 with probability k

n Send(RECONSTRUCT, vcsig, σ) to all

19 counter = counter+ 1
20 NewInTransit← NewInTransit ∪ {⟨pj , currTime⟩} // currTime is the reading

of the puller’s local clock at the point of sending the message.

21 InTransit← InTransit ∪ S
22 Send (PULL, vcsig, σ) to S

23 upon Receiving (ACK, b) from process pj do
24 if Verify(vcsig, b) then
25 PoA deliver(b)

26 upon Receiving (NACK) from process pj do
27 InTransit← InTransit \ {pj}
28 NewInTransit← NewInTransit \ {⟨pj , ·⟩}
29 upon Receiving (vcsig, cj , πj) from pj for the first time do
30 if VerifyVecotr(vcsig, i, cj , πj) =True then
31 CODEDVECTOR[j]← cj
32 if |CODEDVECTOR| > f then
33 b← EC.decode(CODEDVECTOR)
34 if Verify(vcsig, b) then
35 PoA deliver(b)
36 else
37 PoA deliver(⊥)

complexities are determined by the choice of k, as we show in the theoretical analysis in Section 5.
While using our probabilistic pulling protocols cannot significantly reduce the bit complexity in
comparison to the deterministic counterpart, in terms of expected message complexity we can gain
an exponential improvement. Specifically, we prove that for k ∈ Θ(1) we get a message complexity

in O(log n), for k ∈ Θ(log n) the message complexity is in O
(

log2 n
log logn

)
, and in for k ∈ Θ(

√
n) we get

a message complexity in O(
√
n). However, the reduced message complexity does not come for free.

Either the round complexity increases (for k ∈ Θ(1)), or the bit complexity increases (for k ∈ Θ(
√
n)).

Therefore, different choices of k fit different systems according to where the system bottleneck is.

8



Algorithm 4: Probabilistic pulling protocol - part 2: code for all processes.

1 upon Receiving (PULL, vcsig, σ) from ppull do
2 if previously performed PoA deliver(b) for the commitment vcsig then
3 Send (ACK, b) to ppull // b can be ⊥
4 else
5 Send NACK to ppull

6 upon Receiving (RECONSTRUCT, vcsig, σ) from ppull do
7 if Verify(vcsig, σ) then
8 if previously received a valid (vcsig, ci, πi) then
9 Send(vcsig, ci, πi) to ppull

4.2 Correctness Proof

The proof relates to the combination of algorithm 2 for pushing a proof with algorithms 3 and 4 for
pulling the block.

Push-validity: If ps is correct and invokes PoA push(b), then every correct process eventually per-
forms PoA commit(π) such that Verify(b, π) = true.
A correct sender that initiates PoA push(b), sends correct code words, positional commitments and
vector commitment to all on line 6. Every correct process eventually receives the sender’s mes-
sage, signs vcsig and sends it to ps. Process ps eventually receives at least n − f > 2f such cor-
rect partial signatures, hence, it is able to combine them into a threshold signature on line 14.
As the sender is correct, it sends a correctly structured tuple (Commit, vcsig, σ) to all. Conse-
quently, every correct process receives (Commit, vcsig, σ) from ps exactly once and therefore, eventu-
ally performs PoA commit(vcsig, σ) on line 19. The vector commitment mechanism guarantees that
Verify(b, vcsig) = true.

Pull-validity: If a correct process pi performs PoA deliver(b), then there exists π such that pi had
performed PoA commit(π) and Verify(b, π) = true.
Let pi be a process according to the above. It performs PoA deliver(b ̸= ⊥) on line 14 or on line 24.
This only happens if Verify(b, π ≜ vcsig) = true where vcsig is known to pi because it was previously
committed.

Pull-termination: Let pi be a correct process. For each π such that pi had performed PoA commit(π)
and has invoked PoA pull(π), pi eventually delivers a unique block with probability 1.
Let pi be a process according to the above. Process pi is correct and commits only after receiving
a valid threshold signature on vcsig (lines 18-19). This implies that n − f processes have signed
vcsig on line-9, out of these n − f at least f + 1 are correct processes that have correct code words
from the pusher. If pi receives the code words of these f + 1 correct processes it succeeds in recon-
structing the block (based on the erasure coding scheme) on line 22. Therefore, once pi performs a
RECONSTRUCT broadcast, it will eventually receive enough correct code words to reconstruct and
deliver the block on line 24. As long as pi haven’t PoA delivered the associated block, it performs
this broadcast with constant probability every ∆ (or even more frequently if it receives NACKs).
Therefore, the probability of eventually performing the broadcast (and eventually PoA delivering a
block) is 1.

5 Theoretical Analysis

We analyze the complexity of the common-case in which all processes attempt to synchronize at the
same time, the sender is correct, and in addition, the network is in a stable “nice” period. Concretely,
we analyze the complexity in cases where no faults occur and a message round-trip time takes exactly
1 time-unit throughout the network.

5.1 One Sample per Round

With k = 1 (a single sample per round), our model resembles the random phone-call model of [21].
There is an elegant analysis for address-oblivious rumor spreading in this model that was made by
Karp, Schindelhauer, Shenker, and Vocking in [27]. Our analysis is inspired by their techniques and
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therefore shares similar structure. Nevertheless, their analysis yields slightly different quantities than
ours, since they consider a protocol in which processes both actively tell the rumor (send the block)
as well as passively inform others who ask for the rumor. In contrast, we allow only to passively
inform those who ask. Moreover, the analysis in [27] only holds for large enough n, a restriction we
do not have since we bound the expected values rather than the probability of higher costs.

Theorem 1. In a common-case execution of Algorithms 3 and 4 with k = 1, the pulling terminates
within O(log n) expected rounds.

Proof. The spread of information can be modeled as a Markov process, with states {1, . . . , n} which
represent how many process currently have the block. Denote the random variable Xr ∈ {1, . . . , n} to
be the number of informed processes after round r. Given Xr we have that ∆r+1 ≜ Xr+1−Xr follows
a binomial distribution with n − Xr experiments and a success probability of Xr

n−1 per experiment.

I.e, ∆r+1 | Xr ∼ B(n−Xr,
Xr

n−1 ), and

E[Xr+1 | Xr] = Xr + E[∆r+1 | Xr] = Xr +
n

n− 1
Xr −

1

n− 1
X2

r = Xr

(
2 +

1

n− 1
− Xr

n− 1

)
> Xr

(
2− Xr

n− 1

)
.

(1)
For Xr ≤ 1

2 (n− 1), we get
E[Xr+1 | Xr] ≥ Xr · 1.5, (2)

and by the law of total expectation,

E[Xr+1] ≥ 1.5E[Xr]. (3)

Applying the same argument recursively, yields,

E[Xr+1] ≥ (1.5)r+1E[X0]. (4)

Let rhalf be the first round in which Xr > 1
2 (n − 1). Then by (4) E[rhalf] ≤ logn

log 1.5 . Now, for

r ≥ rhalf denote by Yr the random variable n−Xr. We have that Yr+1 | Yr ∼ B
(
Yr,

Yr−1
n−1

)
, and

E[Yr+1 | Yr] =
Y 2
r − Yr

n− 1
,

E[Y 2
r+1 | Yr] =

Yr(Yr − 1)

n− 1

(
1− Yr − 1

n− 1

)
+

(
Yr(Yr − 1)

n− 1

)2

=
Y 2
r − Yr

n− 1
− Y 2

r − Yr

n− 1

Yr − 1

n− 1
+

(
Y 2
r − Yr

n− 1

)2

= E[Yr+1 | Yr]−
Yr − 1

n− 1
E[Yr+1 | Yr] + E[Yr+1 | Yr]

2.

(5)
Using the law of total expectation and both of the above equations, we get

E[Yr+1 | Yr] =
E[Yr | Yr−1]− Yr−1−1

n−1 E[Yr | Yr−1] + E[Yr | Yr−1]
2 − E[Yr | Yr−1]

n− 1

=
E[Yr | Yr−1]

2 − Yr−1−1
n−1 E[Yr | Yr−1]

n− 1
≤ E[Yr | Yr−1]

2

n− 1
.

(6)

Applying (6) recursively we obtain

E
[
Yr+1 | Yr

n− 1

]
≤

(
E[Yr+1−i | Yr−i]

n− 1

)2i

. (7)

Recall that Yr = n −Xr and that for r ≥ rhalf it holds that Yr < n+1
2 ≤ n

2 (since Yr is an integer).
Thus, we can use (5) and get

E[Yrhalf+1 | Yrhalf ] =
Yrhalf

n− 1
(Yrhalf − 1) ≤ n/2

n− 1

n− 2

2
≤ n

2n

n− 1

2
=

n− 1

4
. (8)

Plugging (8) into (7), we obtain

E
[
Yr+1 | Yr

n− 1

]
≤

(E[Yrhalf+1 | Yrhalf ]

n− 1

)2(r−rhalf)

≤
(
1

4

)2(r−rhalf)

. (9)
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The above means that by the law of total expectation

E[Yr | Yrhalf ] ≤ (n− 1)

(
1

2

)2(r−rhalf)

, (10)

and the expected additional number of rounds to reach Yr ≤ 1 once round rhalf was reached is
O(log log n).

Finally, denote by rend the round at the end of which all processes have been informed. We recall
that if Yr ≤ 1 then Yr+1 = 0 deterministically. As a result, the linearity of expectation yields

E[rend] ≤ 1 + E[rend − rhalf] + E[rhalf]
= 1 +O(log log n) +O(log n),

(11)

and E[rend] ∈ O(log n).

From Theorem 1 we immediately get the following.

Corollary 1. In the common-case,

1. the expected number of messages per process is in O(log n), and

2. the expected number of bits per process is in O(|B| + λ log n) with only the sender having a
higher load of Θ(|B| log n+ λ log n).

We remark that since we use only passive spreading without actively gossiping, our expected
bit complexity is better than that of [27] which is Θ(|B| log log n + log n) per receiving process and
Θ(|B| log n + log n) for the sender. Moreover, we are able to bypass the lower bound for address-
oblivious protocols which is also presented in [27]. We do so by analysing the expected cost rather
than the cost w.h.p. Applying a Chernoff bound on our result will show that we are optimal for the
cost w.h.p.

5.2 Sampling log n per Round

For a different trade-off, one may choose the pulling protocol with k ∈ Θ(log n). We show here the
resulting expected costs of such choice.

Theorem 2. In a common-case execution of Algorithms 3 and 4 with k = log n, the pulling termi-

nates within O
(

logn
log logn

)
expected rounds.

Proof. The spread of information can be modeled by a Markov process, with states {1, . . . , n} which
represent how many process currently have the block. Denote the random variable Xr ∈ {1, . . . , n}
to be the number of informed processes at the end of round r and Yr ≜ n − Xr is the number of
uninformed processes at the end of round r. Observe thatXr ≥ Xr−1, X0 = 1, and that if Yr = 1 then
Yr+1 = 0 deterministically. Given Xr we have that ∆r+1 ≜ Xr+1−Xr follows a binomial distribution
with n−Xr experiments and some success probability Pr. I.e., ∆r+1 | Xr ∼ B(n−Xr, Pr), and we
wish to bound Pr from below.

For each of the Yr = n−Xr experiments we denote by S the sampled set of processes. |S| = log n
and the samples are without replacement which increases the hitting probability. Therefore, Pr is
bounded from below by sampling with replacement.

Pr = P (at least one out of log n samples without replacement hits one of Xr options)

≥ P (at least one out of log n samples with replacement hits one of Xr options) ≜ P̃r.
(12)

By the inclusion–exclusion principle

P̃r =P (

logn⋃
i=1

a sample from n− 1 possibilities hits one of Xr options)

− P (at least two samples from n− 1 possibilities hits one of Xr options)

≥ log n · Xr

n− 1
−
(
log n

2

)(
Xr

n− 1

)2

=
Xr

n− 1

(
log n− (log n)(log n− 1)

2
· Xr

n− 1

)
,

(13)
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where the last inequality is due to the union bound which implies that the probability of at least two

samples hitting is at most P

(log n
2 )⋃

i=1

(
Xr

n−1

)2

. Now, for Xr ≤ n
logn we have that

P̃r ≥ log n · Xr

n− 1

(
1− log n− 1

2
· Xr

n− 1

)
≥ log n · Xr

n− 1

(
1− 1

2

)
=

log n

2
· Xr

n− 1
. (14)

And using the expectation of a binomial variable, we obtain

E[Xr+1 | Xr] = Xr + E[∆r+1 | xr] = Xr + (n−Xr)Pr = (1− Pr)Xr + n · Pr ≥ n · Pr ≥ n · P̃r

≥ n · log n
2
· Xr

n− 1
≥ log n

2
·Xr,

(15)

and by the law of total expectation

E[Xr+1] ≥
log n

2
· E[Xr]. (16)

Let r1 be the first round at the end of which Xr ≥ n
logn . By applying (16) recursively we have

n ≥ E[Xr1 ] ≥
(
log n

2

)r1

· E[X0]. (17)

Taking the log of both sides yields

log n ≥ r1 · log
(
log n

2

)
r1 ≤

log n

log logn− 1
.

(18)

We thus have that E[r1] ∈ O
(

logn
log logn

)
.

We now turn to analyze the behavior of Yr ≜ n − Xr. It follows a binomial distribution Yr+1 |
Yr ∼ B (Yr, Qr), where Qr is the probability that all of the log n samples miss. Again we bound it
using sampling with replacement and get

Qr ≤
(
Yr − 1

n− 1

)logn

≤
(
Yr

n

)logn

. (19)

Recall that at the end of round r1 it holds that Xr1 ≥ n
logn and therefore,

Qr1 ≤
(
Yr1

n

)logn

≤
(
n− n/ log n

n

)logn

=

(
1− 1

log n

)logn

≤ 1

e
. (20)

This, in turn, implies

E[Yr1+1 | Yr1 ] = Yr1 ·Qr1 ≤
(
n− n

log n

)
· 1
e
≤ n

2
. (21)

We denote the first round at which Yr ≤ n
2 by r2. According to the above, it is expected that

r2 − r1 ∈ O(1).
Moreover, denote the round when Yr ≤ 1 by r3. We have that

E[Yr2+1 | Yr2 ] = Yr2 ·Qr2 ≤ Yr2

(
Yr2

n

)logn

≤ n

2
·
(
1

2

)logn

=
n

2
· 1
n
≤ 1. (22)

Clearly, E[r3−r2] ∈ O(1). Finally, denote by rend the round at the end of which all processes have
been informed. We recall that if Yr ≤ 1 then Yr+1 = 0 deterministically. As a result, the linearity of
expectation yields

E[rend] ≤ 1 + E[r3] = 1 + E[r3 − r2] + E[r2 − r1] + E[r1]

= 1 +O(1) +O(1) +O

(
log n

log log n

)
,

(23)

and E[rend] ∈ O
(

logn
log logn

)
.
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This result implies:

Corollary 2. In the common-case,

1. the expected number of messages per process is in O
(

log2 n
log logn

)
, and

2. the expected number of bits per process is in O
(
|B| log n+ λ log2 n

log logn

)
.

5.3 Sampling
√
n per Round

For the fastest termination, that is within O(1) expected asynchronous rounds, it is possible to use our
retrieval protocol with k ∈ Θ(

√
n) samples. To prove this we use a Markov process, similarly to the

previous proofs, with a binomial state-transfer distribution. Specifically, ∆r+1 | Xr ∼ B(n−Xr, Pr)

where we bound Pr to be at least 1 − e
−Xr√

n . Roughly speaking, since E[Xr] ∈ Ω(
√
n), we will get

that, in expectation, all processes complete their pull in a constant number of rounds.

Theorem 3. In a common-case execution of Algorithms 3 and 4 with k =
√
n, the pulling terminates

within O(1) expected rounds.

Proof. We use the same notation as before, that is, Xr is the number of informed processes at the end
of round r and Yr ≜ n −Xr is the number of uninformed processes at the end round r. Remember
that Xr+1 ≥ Xr, X0 = 1, and that if Yr = 1 then Yr+1 = 0 deterministically. We also denote by
Xr and Yr the sets informed and uninformed processes at the end of round r. Again, we have that
∆r+1 | Xr ∼ B(n −Xr, Pr), and we wish to bound Pr from below. For each of the Yr experiments
we denote by S the sampled set of processes. We then have that Pr ≥ 1− P (S ∩ Xr = ∅ | Xr), and
by a simple counting argument we get

P (S ∩ Xr = ∅ | Xr) =

(
n−Xr−1√

n

)(
n−1√

n

) . (24)

Denote by r1 the first round at the end of which Xr ≥
√
n. Clearly, P1 ≥

√
n

n−1 and E[X1] >
√
n

hence, E[r1] ∈ O(1).
We further analyze Eq. (24) to get a lower bound on Pr

P (S ∩Xr = ∅ | Xr) =
(n−Xr − 1)!

(n−Xr −
√
n− 1)!

√
n!
· (n−

√
n− 1)!

√
n!

(n− 1)!
=

(n−Xr − 1)!

(n−Xr −
√
n− 1)!

· (n−
√
n− 1)!

(n− 1)!

=

√
n∏

i=1

n−Xr − i

n− i
≤

(
n−Xr

n

)√
n

=

(
1− Xr/

√
n√

n

)√
n

≤ e
−Xr√

n .

(25)
According to the above, when Xr ≥

√
n it holds that Pr ≥ 1 − e−1. Therefore, given that we have

reached r1, we have

E[Xr1+1 | Xr1 ] ≥ Xr1 + (n−Xr1)(1− e−1) > n(1− e−1). (26)

Denote by r2 the first round at the end of which Xr > n(1 − e−1). By Eq. (26) we have that
E[r2 − r1] ∈ O(1).

Recall that Yr+1|Xr ∼ B(Yr, 1− Pr). Therefore, Eq. (25) can be used to show

E[Yr+1 | Yr] ≤ Yr · e−
Xr√

n , (27)

and for Xr > n(1− e−1) it holds that

E[Yr+1 | Yr] ≤
n/e

e(1−e−1)
√
n
≤ 1. (28)

Now, denote by r3 the first round at the end of which at most a single process is uninformed, i.e.,
Yr3 ≤ 1. By Eq. (28) we have that E[r3 − r2] ∈ O(1).

Finally, denote by rend the round at the end of which all processes have been informed. We recall
that if Yr ≤ 1 then Yr+1 = 0 deterministically. As a result, the linearity of expectation yields

E[rend] ≤ 1 + E[r3] = 1 + E[r3 − r2] + E[r2 − r1] + E[r1]
= 1 +O(1) +O(1) +O(1),

(29)

and E[rend] ∈ O(1).

13



101 102 103 104

number of processes

4

6

8

10

12

14

16

tim
e 

un
til

 e
ve

ry
on

e 
kn

ow
s

k=1
k=log(n)
k= sqrt(n)
log(n)+loglog(n)
log(n)/loglog(n)+1

(a) Synchronous common-
case.

101 102 103 104

number of processes

5

10

15

20

25

tim
e 

un
til

 e
ve

ry
on

e 
kn

ow
s

k=1
k=log(n)
k= sqrt(n)
1.5(log(n)+loglog(n))
log(n)/loglog(n)+1

(b) Synchronous with
faults.

101 102 103 104

number of processes

2
4
6
8

10
12
14
16

tim
e 

un
til

 e
ve

ry
on

e 
kn

ow
s

k=1
k=log(n)
k= sqrt(n)
log(n)+loglog(n)
log(n)/loglog(n)+1

(c) Asynchronous no fail-
ures.

101 102 103 104

number of processes

5

10

15

20

25

tim
e 

un
til

 e
ve

ry
on

e 
kn

ow
s

k=1
k=log(n)
k= sqrt(n)
1.5(log(n)+loglog(n))
log(n)/loglog(n)+1

(d) Asynchronous with
faults.

Figure 2: Simulation results for the retrieval sub-protocol in different systems and under different
network assumptions. The x-axis states the number of processes n, and the y-axis states the time
in units of ∆ (the expected roundtrip delay). The graphs depict the time at which the last correct
process had delivered the block as a function of n. The network assumption are: (a) The assumed
common case, i.e., synchrony and no failures; (b) Synchrony but 1/3 non-responsive processes; (c)
Asynchronous delay that follows a Poisson distribution with parameter ∆ and no failures; and (d) (c)
Asynchronous delay that follows a Poisson distribution with parameter ∆ with a 1/3 of the processes
that are non-responsive. In all cases, the system sizes vary between 10 to 104 processes.

The consequent message and bit complexities for a process are as follows.

Corollary 3. In the common-case,

1. the expected number of messages per process is in O(
√
n), and

2. the expected number of bits per process is in O(|B|
√
n).

5.4 Simulations

We complement the rigorously proven complexities with extensive simulations for systems with a
large number of participants. All of the simulations begin with only a randomly chosen sender that
posses the block while all other processes have their corresponding code word. We measure the time
at which the last process is informed (i.e., delivers the block). For each system, we run 5 simulations
and average the end results. The outcome is on par with the theoretical expectations which are
depicted by the dashed lines. Moreover, since our protocols are address oblivious and do not rely on
synchrony for correctness, they are very robust by design. To demonstrate this, we have also simulated
a degraded form of asynchrony by employing stochastic delays that follow a Poisson distribution and
set ∆ to be the expected delay. Besides the fact that it allows for unbounded delays, the choice of the
distribution is arbitrary. (We make no claim as to what best models delays in practical networks.)
The results in Figures 2c and 2d suggest that, for ∆ that equals the expected delay, the protocols are
robust to asynchrony and achieve essentially the same complexities as in synchronous settings. There
is even a slight improvement in comparison to synchronous networks, possibly because fast processes
are able to answer slower processes in the same “asynchronous round” when they first obtain the
block. Finally, we have also simulated the protocol’s behavior under faults. Specifically, we run
simulations in which a random 1/3 of the processes have crashed. The results appear in Figures 2b
and 2d. Again, the simulations indicate the robustness of our protocols, with only a 3

2x slowdown in
performance which is expected since on average third of the samples are wasted on faulty processes.
To conclude, our simulations suggest that the pulling sub-protocol is as efficient as expected and is
robust under different network conditions.

6 Implementation and Evaluation

We demonstrate the benefits of our approach by providing an implementation, called Layered-SMR.
We then evaluate its performance in realistic conditions to demonstrate its real-world value. Many
practical systems typically run with small number of nodes, ranging from 10 to 30 [22, 34, 37]. This
section demonstrates that despite our retrieval protocol targets very large systems (see Section 5.4),
it also provides significant benefits for current real-world deployments.
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6.1 Implementation

We implement Layered-SMR on top of a high-performance open-source implementation of Hot-
Stuff4 [39]. We selected this implementation because it implements a Pacemaker [39], contrarily to
the implementation used in the original HotStuff paper5. Additionally, it provides well-documented
benchmarking scripts to measure performance in various conditions, and it is close to a production
system (it provides real networking, cryptography, and persistent storage). It is implemented in
Rust, uses Tokio6 for asynchronous networking, ed25519-dalek7 for elliptic curve based signatures,
and data-structures are persisted using RocksDB8. It uses TCP to achieve reliable point-to-point
channels, necessary to correctly implement the distributed system abstractions.

By default, this HotStuff implementation uses a traditional mempool to disseminate transactions
before consensus; we modify its mempool crate to use Layered-SMR instead. Its pull protocol simply
synchronizes missing blocks by querying the block’s creator; we modify its synchronizer module
to implement the probabilistic pull-deliver protocol described in Section 4.1. We use a rust port
of BackBlaze to implement Read-Solomon erasure coding 9 necessary for our push protocol, and
traditional Merkle trees as commitment scheme. We use the library smtree10 operating as traditional
Merkle tree (rather than sparse Mekrle tree) as illustrated in library’s test-suite11. We are open-
sourcing Layered-SMR12 along with any measurements data to enable reproducible results13.

6.2 Evaluation

We evaluate the throughput and latency of Layered-SMR through experiments on Amazon Web
Services (AWS). We then show its improvements over a baseline monolithic HotStuff, called Baseline-
HotStuff, with no mempool optimizations14 (validators simply disseminate transactions as part of the
consensus block). We particularly aim to demonstrate that Layered-SMR (C1) drastically improves
throughput in the common case (no faulty validators), (C2) the pull protocol (Section 4.1) is efficient
in that it does not introduce significant latency overhead, and (C3) drastically improves both latency
and throughput in the presence of crash-faults. Note that evaluating BFT protocols in the presence
of Byzantine faults is still an open research question [6].

We deploy a testbed on AWS, using m5.8xlarge instances across 5 different AWS regions: N.
Virginia (us-east-1), N. California (us-west-1), Sydney (ap-southeast-2), Frankfurt (eu-central-1),
and Tokyo (ap-northeast-1). Parties are distributed across those regions as equally as possible. Each
machine provides 10Gbps of bandwidth, 32 virtual CPUs (16 physical core) on a 2.5GHz, Intel Xeon
Platinum 8175, 128GB memory, and run Linux Ubuntu server 20.04. We select these machines
because they provide decent performance and are in the price range of ‘commodity servers’.

In the rest of this section, each measurement in the graphs is the average of 2 independent runs,
and the error bars represent one standard deviation. Our baseline experiment parameters are 10
honest validators, a maximum block size of 500KB, a transaction size of 512B, and one benchmark
client per validator (collocated on the same machine) submitting transactions at a fixed rate for a
duration of 5 minutes. The leader timeout value is set to 5 seconds.

We experimentally determined that with small committee sizes the coin bias of the pull protocol
(see Section 4) does not influence performance. We thus run the experiments of this section with an
unbiased coins (k = 0.5, see Section 4). With 50% probability the pull protocol either (i) reconstructs
the batch by requesting erasure-coded shards from every validator, or (ii) directly requests the batch
from

√
n randomly selected validators (where n is the committee size).

6.2.1 Benchmark in the common case

Figure 3a illustrates the latency and throughput of Layered-SMR and Baseline-HotStuff for varying
numbers of validators.

4https://github.com/asonnino/hotstuff
5https://github.com/hot-stuff/libhotstuff
6https://tokio.rs
7https://github.com/dalek-cryptography/ed25519-dalek
8https://rocksdb.org
9https://github.com/rust-rse/reed-solomon-erasure

10https://github.com/novifinancial/smtree
11https://github.com/novifinancial/smtree/blob/17cb9f0c9f949d9f1a134133d76ab7168c6d0b42/src/tests.rs#

L259
12https://github.com/asonnino/hotstuff/tree/lazy-dolphin
13https://github.com/asonnino/hotstuff/tree/lazy-dolphin/data
14https://github.com/asonnino/hotstuff/tree/d771d4868db301bcb5e3deaa915b5017220463f6
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Figure 3: Comparative throughput-latency under crash-faults of Layered-SMR and Baseline-HotStuff.
WAN measurements, 500KB maximum block size, and 512B transaction size.

The throughput of Baseline-HotStuff (see Figure 3a, orange lines), with a naive mempool as
originally proposed, is quite low. With either 10, 20, or 30 validators throughput never exceeds 2,500
tx/s, although latency at such low throughput is very good at around 1 second. Such surprisingly
low numbers are comparable to other works [4], who find HotStuf’s performance to be 3,500 tx/s on
LAN without modifications such as only transmitting hashes [36]. Performance evaluations [40] of
LibraBFT [7] that uses Baseline-HotStuff, report throughput of around 500 tx/s.

Layered-SMR exhibits a significantly higher throughput than Baseline-HotStuff. It remains stable
around 40,000 - 50,000 tx/s for a committee of 10, 20 and 30 nodes, making a 20x improvement over
Baseline-HotStuff. Figure 3a supports the claim (C1) that Layered-SMR significantly improves the
protocol’s throughput. Despite its high throughput, Layered-SMR’s latency is higher than Baseline-
HotStuff, at around 2-3 secs (for all committee sizes). This is expected and caused by the decoupling
of transactions dissemination from consensus. Executing the push protocol of Section 4.1 requires
erasure-code and cryptographically commit to the shards of transaction batches before making the
batch available to consensus. Figure 3a displays two measures of latency. The blue lines (labelled
‘no payload’) measure the time elapsed from when the client submits the transaction to when the
transaction is committed by one validator. The green lines measure the time elapsed from when
the client submits the transaction to when the transaction is committed by one validator and the
validator retrieved and reconstructed all transaction data. The blue and green lines are close, thus
supporting the claim (C2) that our pull protocol is efficient in that it does not introduce significant
latency overhead.

6.2.2 Benchmark under crash-faults

Figure 3b depicts the performance of Layered-SMR and Baseline-HotStuff when a committee of 10
validators suffers 1 to 3 crash-faults (the maximum that can be tolerated in this setting). Baseline-
HotStuff suffers a massive degradation in throughput as well as a dramatic increase in latency. For 3
faults, the throughput of Baseline-HotStuff drops by over 20x (dropping to about 130 tx/s) and its
latency increases by 30x compared to no faults. In contrast, Layered-SMR maintain a good level of
throughput: the underlying push-pull protocol continues collecting and disseminating transactions
despite the crash-faults, and is not overly affected by the faulty validators. Layered-SMR’s throughput
drops from 50,000 to 20,000 when experiencing 3 faults, and its latency increases from 2 secs to 15
secs. The reduction in throughput is in great part due to losing the capacity of faulty validators,
and the increase in latency is due to the leader timeout (set to 5 sec). When operating with 3 faults,
Layered-SMR provides a 150x throughput increase and about 3x latency reduction with respect to
Baseline-HotStuff. Figure 3b support the claim (C3) that Layered-SMR drastically improves both
latency and throughput in the presence of crash-faults.
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7 Discussion

Recent works have employed AVID in blockchain systems to boost performance (e.g., [30]). However,
formalizing the requirements of the PoA&R module in a blockchain architecture has shown that
AVID is stronger than necessary. In fact, the exact definition enabled us to propose a solution with
retrieval sub-protocols that do not satisfy AVID requirements. These scalable retrieval protocols
reduce the expected cost per node in large-scale systems. To support the theoretical analysis of our
protocols, we provided extensive simulations as well as real-world experimental results showing that
the Layered-SMR performs significantly better than state-of-the-art monolithic approach.

There are several questions that have arisen during this work. One natural direction to consider
is more complex choices for S, such as giving higher probability to sampling a process that we have
not previously sampled, or randomly choosing k instead of having it fixed a priori. However, it is
not obvious how to analyze such stochastic mechanisms. More practical directions to explore are:
what choice of PoA&R module best suits a system based on the system’s size? Can we use cloud-
based solutions for an optimistic and more scalable PoA&R? Finally, while our definition covers
some settings, others are left to be defined. For example, what are the properties of PoA&R in a
permissionless setting?

On a general note, formally defining modularity in blockchains is an important endeavour. It
would facilitate combining contributions from different parts of the community to establish a truly
distributed ecosystem.
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A Pseudo-code for Deterministic Pull-deliver

Algorithm 5: (Deterministic) Linear Pulling Protocol: code for process pi

1 upon PoA pull(vcsig, σ) do
2 Send(PULL, vcsig, σ) to all
3 isPulling←true

4 upon Receiving (vcsig, cj , πj) from pj for the first time do
5 if isPulling ∧ Verify(vcsig, cj , πj) then
6 CodedVector[j]← cj
7 if |CodedVector| > f then
8 b← EC.decode(CodedVector)
9 if Verify(b, vcsig,CodedVector) then

10 PoA deliver(b)
11 else
12 PoA deliver(⊥)

13 upon Receiving (PULL, vcsig, σ) from ppull for the first time do
14 if Verify(vcsig, σ) then
15 if previously received (vcsig, ci, πi) from ps then
16 Send(vcsig, ci, πi) to ppull

17 if did not previously committed vcsig then
18 PoA commit(vcsig, σ) // unnecessary. provides reliable BCast in

addition.
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