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Abstract—The flexibility of Field Programmable Gate Arrays
(FPGAs) as well as their parallel processing capabilities make
them a good choice for digital signal processing in communication
systems. However, today, further improvements in performance
hang in mid-air as we run into the frequency wall and FPGA
based devices are clocked below 1 GHz. New methodologies
which can cater performance optimization within the frequency
wall limitation become highly essential. In this context, efficient
modulation techniques like Quadrature Amplitude Modulation
(QAM) and mixed time and frequency domain approach have
been utilized in this paper to employ a generic scalable FPGA
based QAM transmitter with the filter parallelization being
executed in mixed domain. The system developed in this paper
achieves a throughput of 4 Gb/s for QAM-16 format with a
clock frequency as low as 62.5 MHz, thereby, paves down a
promising methodology for applications where having higher
clock frequencies is a hard limit.

Keywords—FPGA, mixed domain, parallelization, QAM, SRRC
filter.

I. INTRODUCTION

The growth of Field Programmable Gate Arrays (FPGAs) in
the field of digital communication technology not only claims
for high speed hardware but also for a flexible, low-cost and
standardized environment where facile modulation techniques
like Quadrature Amplitude Modulation (QAM) can be em-
braced and fostered. In order to transmit QAM signals, the
crucial setting is to band limit the transmitted signals and also
at the same time to suppress the Intersymbol Interference (ISI).
In that purpose, the Square Root Raised Cosine (SRRC) filter
is one of the most frequently used pulse shaping Finite Impulse
Response (FIR) filters in digital modulation. Optimizing and
discussing the nature of the filter and choice of its parameters
are left to related works [1], [2]. The first part of the paper
deals with parallelizing these modern filters, which is a chal-
lenging task as their convolutional form acts as a significant
speed limitation in digital communication systems. This can
be invalidated by the fact that linear operations performed in
one domain have corresponding operations in another domain.
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Therefore, convolution operation in time domain becomes a
pointwise multiplication in frequency domain. The second part
focusses on developing a variable FPGA based generic QAM
transmitter, where the user has a variety of options to choose
from with regard to modulation orders, filter coefficients (filter
order) and degree of parallelization (number of parallel inputs)
through core parametrization. In order to highlight today’s top
technology, a qualitative chart as shown in Fig.1 analyzes other
works related to this field. In 2003, Yongbin Wu and Yousef
R. developed a high-speed 64-QAM transceiver using Xilinx
Virtex II FPGA. Moreover, their filter selection is same as
the one considered in this paper and they were able to reach
an operating frequency of 55 MHz [3]. A complete 16-QAM
with an achievable frequency of 111.11 MHz was built using
two Xilinx Virtex IV FPGA boards, one for the transmitter
and one for the receiver respectively in 2010 ([4]). The very
same year, in [5], a 64-QAM receiver based on Xilinx Virtex
V FPGA operating at a maximum frequency of 125 MHz was
developed.

In 2012, a modular QAM transmitter working with 16-
QAM to 256-QAM formats with an operating frequency of
128.6 MHz has been implemented on a Xilinx Virtex IV
FPGA platform [6]. The next year, a 16-QAM transceiver
on a Xilinx Virtex VI board with an achievable frequency
of 625 MHz at the cost of low precision has been brought
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forth [7]. More recent state-of-the-art took advantage of the
powerful Xilinx Virtex VI FPGA by building a 256-QAM
transceiver at 750 MHz. Nevertheless, this impressive result is
attenuated by the fact that their system doesn’t comprise a filter
[8]. Though much better and higher performances could have
been acheived by ASIC platforms and multi-FPGA systems,
our work is confined to single channel FPGA systems. The
rest of the paper is organized as follows: Section 2 throws lime
light into fundamental aspects of the employed mixed domain
QAM transmitter concept. It’s implementation is covered in
Section 3 with experimental results substantiated quantitatively
in Section 4, and conclusions summarized in Section 5.

II. FUNDAMENTALS AND CONCEPT OF MIXED DOMAIN
QAM TRANSMITTER

Due to the convolutional nature of the filtering process, the
filter input needs to be fed in sequentially which detrains the
potency of the system when the preference shifts to system
parallelization. Therefore, a mixed domain approach with the
filter operation being shifted to frequency domain in order to
accompany parallel inputs and outputs as shown in Fig. 2 is
utilized. The steps of the illustrated signal processing from left
to right are explained in the following subsections.

A. QAM Mapper

The input bit stream is clustered into k = log2(M) bits and
these k-tuples called symbols can be effectively represented
using a constellation diagram. The standard rectangular con-
stellation is preferred because of its less overhead implementa-
tion and simplicity. There are many ways to associate a symbol
and certainly grey code is the most common choice [9] as it
reduces the erroneous symbol decision to one bit error. The
QAM symbols are then interleaved to form In-phase (I) and
Quadrature (Q) components. After normalization they are sent
as inputs to the filter block.

B. Fourier Transform

Fourier Transform (FT) is a mathematical tool that decon-
structs the signal into its sinusoidal components and, similarly,
Inverse FT (IFT) is the tool to reverse it. More specifically,
Discrete Fourier Transform (DFT) takes the interleaved com-
ponents from the QAM mapper in time domain and transforms
them into corresponding frequency domain components to
be used by SRRC filter. After the filtering operation, the
components are then taken back in time domain by Inverse
Discrete Fourier Transform (IDFT).
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Fig. 2. Mixed-domain QAM transmitter

C. Square Root Raised Cosine Filter

The FIR filters, though their computational requirements are
more than that of an Infinite Impulse Response (IIR) filter, are
chosen for the following advantages: 1) Since they don’t have
feedback, the total error doesn’t sum up over each cycle as
they have the same rounding error in each iteration. 2) They
ensure good stability as the output is the sum of finite number
of finite multiples of the input and cannot become greater
than a fixed multiple of the input value. 3) Their linear phase
property delays only the input signal and does not distort the
phase.

The call for an efficient spectrum usage and less ISI
projects SRRC filter as one of the promising filters because
of their matched filtering and fulfillment of Nyquist criteria
[10]. As said above, the barrier in having parallel filters is
eliminated by performing the filter operation in frequency
domain, where the convolution operation becomes a simple
pointwise multiplication.

D. Quadrature Amplitude Modulator

The main functions of QAM modulator are to group the
incoming input bit stream into symbols as per the modulation
order, map them onto the signal constellation, filter the inter-
leaved I and Q components and then modulate them with two
orthogonal carriers. The former operations are done by QAM
mapper and SRRC filter. IDFT is performed on the filtered
real and imaginary components (I and Q respectively) and
then they are multiplied with the carrier waves. The products
are then subtracted from each other to deliver the resulting
modulated QAM signal which will be transmitted through the
channel.

III. IMPLEMENTATION OF QAM TRANSMITTER

Handwritten Verilog codes, Xilinx IP cores and auto-
generated Verilog modules (Java FQM Utility) are some of
the design mechanisms that aid in the implementation of
QAM transmitter. A parallel bus packing technique is used
where all the parallel inputs and outputs are packed into the
same bus as shown in Fig. 3 with each datai being a 16-
bit bus. The QAM transmitter accepts an arbitrary number
of parallel inputs, a customizable filter order and supports
multiple modulation formats. Despite the fact that the system
has been formulated to achieve the highest order of modularity,
the Xilinx IP cores require the bus width parameter to be
entered manually in the graphic interface at the time of core
configuration. Fig. 4 depicts the implementation of the whole
system with N = 16. The dotted lines represent that each main
module is completely isolated from others and has its own
parameterizable interface and thereby, the system designers
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Fig. 4. Parallelized QAM system

can reuse any of these modules in their custom designs without
any need for reimplementation.

A. QAM Transmitter

The design’s top entity called “transmitter.v” puts up with
two input parameters N and FORMAT, which represent
the number of parallel inputs and the desired modulation
format respectively. Table I shows an abstract view of the
system focussing on its input and output ports. The input
stream (in) is clustered by the number of bits defined by the
Verilog parameter FORMAT. For example, for a 16-QAM
modulation, the user needs to enter N parallel inputs of length
specified by FORMAT = log2(16)= 4, which is then packed
into a single bus of width (FORMAT*N). The modulated
signal (out) is also delivered in this packed representation
as tvalid flag validates the output data. The output width is
(16*N) since the signal precision is fixed to 16 bits.

A Java application program called Fourier QAM Modulator
(FQM) Utility has been developed to aid in breaking the
complexity of the design usage. By default, fifteen rows are
available to enter the filter coefficients, while extra rows can be
added or suppressed depending upon the desired filter order.
Once the carrier frequency has been specified, the Verilog files
filter coeff.v, dft coeff.v and carriers.v, which are essential to
run the top module transmitter.v, get generated. Additionally,
explict information like system precision in bits, number of
entered filter coefficients as well as the number of zeros that
will be padded in order to reach N, and also the DFT size1,
can be gathered from the utility.

TABLE I. TRANSMITTER - SPECIFICATIONS

transmitter.v - Receives N 16-bit inputs and
outputs N 16-bit modulated waves

Latency 17 cycles
Parameters N Number of parallel inputs

FORMAT QAM order
Inputs clk Clock

reset Reset
in Clustered input stream

Outputs tvalid Output’s valid flag
out Output

1Even if the DFT algorithm doesn’t require the number of inputs to be
a power of two, the FFT does. This design constraint has been added for a
further replacement of DFT by FFT.

B. QAM Mapper

It receives N clustered inputs and delivers N corresponding
I and Q signals. This module has been set up using three
Verilog parameters N, W and FORMAT. Respectively, they
indicate the number of parallel inputs, the bus width and the
modulation format. Though the bus width (W) is set to 16
bits, it is still regarded as a modular parameter for future
reutilization of the block. The available modulation formats
are 8, 16 (default), 32 and 64-QAM. Since flexibility is also
a salient standard of this QAM transmitter, each modulation
format has been implemented in a separate Verilog file qam.v
in order to encourage the users to extend this system with
any other modulation format and then, through a very basic
modification of qam.v module, to allow the transmitter’s top
entity to use the newly added format.

As the modulation order specified by FORMAT parameter
alone gets generated, changing the order during execution
time is not possible. Moreover, an accurate reader will notice
that generating all the modulation formats even if they are
not used shouldn’t actually require much additional logic
as these blocks are mainly combinatorial. Nevertheless, this
design constraint has been set up to keep control over resource
utilization and to keep the transmitter’s performance as close
as possible to the results shown in section IV.

C. Discrete Fourier Transform

The DFT block (resp. IDFT block) receives signal in time
domain (resp. frequency domain) and outputs its correspond-
ing transformation in frequency domain (resp. time domain).
This module is inputted by N, which can be either viewed
as the transform length or the number of parallel inputs. In
addition to clock and reset signals, this module requires the
time domain (resp. frequency domain) complex input to be
separated into its real (xn re) and imaginary (xn im) parts.
Moreover, the weights of cosine and sine signals (ccos and
csin) also have to be provided to be applied during the
transformation process. Unfortunately, the current FFT Xilinx
IP core cannot be used in this parallel design as it inputs and
outputs data serially. Therefore, in order to achieve the aimed
parallelization, the discrete Fourier and the inverse discrete
Fourier transforms have been implemented in hardware. The
Complex Multiplier v5.0 core is used N2 times, while the
Adder Subtracter v11.2 core is used 2N(N−1) in adder mode,
both working with 16-bit inputs. This fair amount of core’s
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Fig. 5. MATLAB reference model of the QAM transmitter

instance is required as both imaginary and real parts have to
be processed. Since these additions need synchronization, the
core is manually configured to have zero latency. Finally, the
output is rescaled by 2−17 to be able to fit into the desired
16-bit bus and to avoid possible overflow.

D. Filter

The filter’s implementation is one of the main targets of this
paper. Implementing the filter in the frequency domain is much
simpler than in the time domain as it requires simple multi-
plication of inputs with coefficients, and most importantly, it
is easily parallelizable, thus, revealing the urge for having a
mixed domain transmitter. In order to isolate this block and to
ensure its reusability, the parameter N sets up the number of
parallel inputs and the module accepts an arbitrary number of
filter coefficients through the auto-generated configuration file
filter coeff.v, thereby allows the system to implement a filter
of arbitrary order. The only core in this block is 2N instances
of Multiplier v11.2, which works with 16-bit inputs, generates
16-bit symmetrically rounded outputs and rescales the output
by 2−16.

E. Modulator

This block, parameterized by N, works with any carrier fre-
quency, which has been set up in the FQM Utility and passed
on to this module through the configuration file carriers.v. The
real input gets multiplied with cosine carrier and the imaginary
with sine carrier. These products are then subtracted according
to the following equation:

out(t) = R
{
[I(t) + iQ(t)]e2πf0t

}
= I(t) cos(2πf0t)−Q(t) sin(2πf0t) (1)

Multiplier v11.2 and Adder Subtracter v11.2 are the two
cores that have been instantiated in this module with the
multiplier’s configuration exactly as same as that of in the
filter module and the Adder Subtracter core is configured as
subtracter. Since synchronization is no more an issue, the core
latency is automatically set to two clock cycles in the pursuit
of performance optimization. This implementation requires

2N Multiplier cores and N Adder Subtracter cores with the
Multiplier core rescaling the output by 2−16.

IV. EXPERIMENTAL RESULTS

In addition to the hardware implementation on Xilinx
Virtex-7 VC707 evaluation board, a complete MATLAB model
as shown in Fig. 5 has been developed in order to pre-
evaluate the expected behavior of the system and to serve
as a reference for the implemented system. By consequence,
each block constituting the system has been first realised in
MATLAB using the physical and mathematical fundamentals
explained before and then the system’s performances and
resources requirements are investigated.

A. Design Precision

For a set of 16 parallel random inputs, the transmitter’s
output data is compared with that of the reference MATLAB
model (see Fig. 6) in order to observe the system’s precision
with the assumption that the MATLAB simulation is consid-
ered as perfect (i.e., all the internal MATLAB rounding errors
are ignored). Both the results seem to overlap each other and
only one curve is visible due to their proximity and Fig. 7
plots this error as an absolute value.

From these figures, it can be observed that the implemented
system has less than 1% error with respect to the MATLAB
model. For completeness, many other sets of random input
samples have also been tested and the precision still appears
to be very similar to the one exposed above. The outputs
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of DFT and IDFT blocks are also examined by comparing
their real and imaginary values with that of the MATLAB
simulated values and it is observed that most of the errors in
the transmitter system are from the DFT and IDFT processes.

B. Design Resources and Performances

All the simulations in this section have been made by
selecting the parameter N to 16 and with a carrier frequency of
100 Hz. Firstly, the resource requirements and the achievable
performance when adders and multipliers are configured to use
DSP instead of fabric, and Mults instead of LUTs respectively
are investigated. From Fig. 8 and 1st column of Table II, it
is clear that selecting DSP option for adder configuration is
not optimal as the total usuage of DSP48E1 blocks is 92%
and the maximum achievable frequency is 28.77 MHz, which
after place and route gets reduced to 28.57 MHz. Though
routing such a huge amout of DSP blocks requires much effort,
simulations have been done for all the QAM formats and the
results stay identical due to their combinatorial nature. So the
adders have been configured using fabric rather than DSPs.

To scrutinize the optimization process, a combination of
fabric and LUTs for adders and multipliers respectively have
been analyzed. Fig. 9 and 2nd column of Table II reveal that
the system performance is improved by a factor of 3 yielding
a clock frequency of 58.82 MHz, as the DSP utilization is
reduced by 50%. When fabric for adders and Mults for
mulitipliers are exercised, a slight increase of 62.5 MHz is
obtained (Fig. 10). From the information displayed in the 3rd
column of Table II, it can be seen that the most demanded
resources are DSP48E1s while more than 50% of LUTs
remain unused. Nevertheless, since the system receives N = 16
parallel inputs, the effective speed is: 16 ∗ 62.5 = 1GHz.
From this observation, since each M-QAM format’s symbol
contains log2(M), the achievable throughput for each of the
supported modulation format with carrier frequency of 100 Hz
is derived as follows: 8-QAM: 3 ∗ 16 ∗ 62.5 = 3Gb/s; 16-
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TABLE II. RESOURCE UTILIZATION

Resources DSP -
Mults

Fabric -
LUTs

Fabric -
Mults

Slice Registers 5% 8% 5%
Slice LUTs 1% 12% 7%
LUTs used as Logic 1% 11% 6%
Occupied Slices 14% 22% 17%
Unused Flip Flop 6% 22% 28%
Unused LUTs 82% 33% 51%
Bounded IOBs 46% 46% 46%
DSP48E1s 92% 54% 57%

QAM: 4∗16∗62.5 = 4Gb/s; 32-QAM: 5∗16∗62.5 = 5Gb/s;
64-QAM: 6 ∗ 16 ∗ 62.5 = 6Gb/s.

V. CONCLUSION

This paper describes a new approach to optimize the
performance of high-speed Quadrature Amplitude Modula-
tion implemented on FPGAs by exploiting the advantageous
properties of a mixed time and frequency domain approach.
While standard transmitters operating entirely in time domain
need to process serial data due to the convolutional nature
of the filtering operation, this mixed-domain transmitter has
the theoretical capability to work with an arbitrary number of
parallel inputs N . The design has been simulated, synthesised,
routed and tested on a Xilinx Virtex 7 FPGA kit with a
precision of 16 bits, for N = 16 parallel inputs and for multiple
QAM formats; i.e. 8-QAM, 16-QAM, 32-QAM and 64-QAM.
However, the concept can be generalised to more parallel
inputs and other modulation formats. After a long place and
route operation, a top clock frequency of 62.5 MHz has been
reached while processing 16 parallel inputs with a carrier
frequency of 100 Hz. Therefore, this implementation offers an
effective speed of 1 GHz. In addition to the high achieved per-
formances, the realized system is extensively generic. Indeed,
an arbitrary number of filter coefficients for the FIR filter, the
number of parallel inputs N and the desired QAM format can
be chosen by the user though the core parameterization.
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