
Byzantine Consensus in the Random Asynchronous Model

GEORGE DANEZIS,Mysten Labs and University College London, United Kingdom

JOVAN KOMATOVIC, EPFL, Switzerland
LEFTERIS KOKORIS-KOGIAS,Mysten Labs, Greece

ALBERTO SONNINO,Mysten Labs and University College London, United Kingdom

IGOR ZABLOTCHI,Mysten Labs, Switzerland

We propose a novel relaxation of the classic asynchronous network model, called the random asynchronous

model, which removes adversarial message scheduling while preserving unbounded message delays and

Byzantine faults. Instead of an adversary dictating message order, delivery follows a random schedule. We

analyze Byzantine consensus at different resilience thresholds (𝑛 = 3𝑓 + 1, 𝑛 = 2𝑓 + 1, and 𝑛 = 𝑓 + 2)
and show that our relaxation allows consensus with probabilistic guarantees which are impossible in the

standard asynchronous model or even the partially synchronous model. We complement these protocols with

corresponding impossibility results, establishing the limits of consensus in the random asynchronous model.

1

1 INTRODUCTION
Byzantine Fault-Tolerant (BFT) consensus is a fundamental primitive in distributed computing,

serving as the backbone of many applications, including blockchains [6]. Solving BFT consensus in

an asynchronous network model [13] is a well-studied problem [9, 16, 17, 24]. Typically, algorithms

in this model assume that the adversary controls (1) a subset of faulty processes and (2) message

delays, particularly the message schedule—the order in which messages are delivered.

However, asynchronous BFT consensus is constrained by restrictive lower bounds [13, 19].

These lower bounds often stem from the adversary’s ability to impose arbitrary message schedules.

Requiring an algorithm to function under the worst possible scheduling scenario often renders

tasks impossible due to a single, highly unlikely counterexample, that is, a pathological schedule

that violates the algorithm’s properties [13].

Yet, due to performance considerations, practical implementations of consensus circumvent

the limitations of asynchrony by assuming that the schedule is not adversarial. For example, we

are aware of asynchronous consensus protocols running in production commodity wide-area

networks for extensive periods of time without a random coin implementation [11]—so as to avoid

the performance overhead of generating cryptographically-secure randomness—without loss of

liveness. This motivates our search for a model that explains this empirical observation.

Another common relaxation that circumvents the limitations of asynchrony is to assume periods

of synchrony, leading to the widely used partially synchronous model [12]. However, protocols

based on partial synchrony lose liveness outside of these periods, which may occur due to poor

network conditions or denial-of-service (DoS) attacks [15].

In this paper, in order to provide a sound basis for non-adversarial scheduling as assumed by

some modern practical systems, and to avoid the limitations of partial synchrony, we propose

an alternative relaxation of the asynchronous model: we study asynchronous networks without

adversarial scheduling. Specifically, we ask: What becomes possible in a network where message

delays are unbounded, but the message schedule is not adversarial?

To explore this question, we introduce a new variant of the asynchronous model, which we

call the random asynchronous model. In this model, message delays remain unbounded, and the

adversary still controls a subset of processes. However, the message schedule is no longer ad-

versarial; instead, messages are delivered in a random order. By relaxing adversarial scheduling,

our approach unlocks new algorithmic possibilities for consensus. It enables protocols to achieve

probabilistic guarantees [5] that were previously impossible in the standard asynchronous model,

while preserving unbounded message delays and Byzantine faults.

To isolate the impact of random scheduling, we consider only deterministic algorithms, meaning

processes do not have access to local randomness. We analyze the impact of our model on Byzantine

consensus at different resilience thresholds: 𝑛 = 3𝑓 + 1, 𝑛 = 2𝑓 + 1, and 𝑛 = 𝑓 + 2, where 𝑛 is the

total number of processes, and up to 𝑓 processes may be faulty.

Our model enables consensus protocols that are impossible under standard asynchrony. The key

insight is that the random asynchronous model prevents an adversary from blocking honest parties

from communicating indefinitely. In traditional asynchrony, an adversary can delay messages

indefinitely to prevent termination (e.g., in the FLP impossibility result [13]). In contrast, in the

random asynchronous model, the adversary cannot control the schedule, ensuring that honest

parties can exchange messages within a bounded number of steps with high probability.

1.1 Modeling Challenges
Designing an asynchronous model with a non-adversarial schedule presented several challenges.

Our initial attempt at a round-based model, while mathematically tractable, proved too rigid,

2

enforcing communication patterns that were overly restrictive. We then explored probabilistic

scheduling over entire message schedules, but this approach was unintuitive and impractical for

analysis. A more promising approach was to randomly select individual messages for delivery.

However, this exposed a critical vulnerability: Byzantine processes could manipulate the scheduling

distribution by flooding the system with messages, effectively regaining control over the schedule.

Attempts to mitigate this by encrypting messages failed, as the adversary could still infer crucial

protocol information from the message patterns and delivery timings. More details about our initial

attempts to model random asynchrony can be found in Appendix A.1.

These challenges led us to our final model: instead of selecting individual messages, the scheduler

randomly selects sender-receiver pairs. At each step, a sender-receiver pair (𝑠, 𝑟) is chosen, and
the earliest pending message from 𝑠 to 𝑟 is delivered. This approach prevents Byzantine nodes

from biasing the schedule since the probability of a message being delivered depends only on the

number of available sender-receiver pairs, not on the volume of messages sent by a single process.

A natural concern is whether removing adversarial scheduling trivializes the consensus problem.

We address this in two ways. First, Appendix A.2 presents a naive algorithm that fails to solve

consensus when 𝑛 ≤ 2𝑓 + 1, highlighting a fundamental challenge: even though the random

asynchronous model guarantees eventual communication, Byzantine nodes can still equivocate,

preventing honest processes from distinguishing between correct and faulty messages. Second,

we complement our positive results with corresponding impossibility results, establishing close

bounds on what can be achieved in the random asynchronous model.

1.2 Our Results

Our key contribution is the introduction of the random asynchronous model, a novel relaxation of

the classic asynchronous model that removes adversarial scheduling while preserving unbounded

message delays and Byzantine faults. This relaxation allows us to achieve new bounds that were

previously impossible under standard asynchrony. We then design BFT consensus protocols in

this new model, analyzing their feasibility at different resilience thresholds. Finally, we provide

both positive results (demonstrating feasibility) and impossibility results (establishing the model’s

limits), summarized in Table 1.

Resilience Positive Result Negative Result

𝑛 = 3𝑓 + 1 Det. strong V, det. A, P1 T Det. strong V, det. A, det. T

𝑛 = 2𝑓 + 1 Whp strong V, whp A, det. T P1 strong V, P1 A, det. T

𝑛 = 𝑓 + 2 Det. weak V, whp A, det. T Whp strong V, whp A, det. T
†

Table 1. Results in this paper for Byzantine consensus. Det.means “deterministic", P1means “with probability
1”, and whp means “with high probability". V stands for “validity”, A stands for “agreement”, and T stands for
“termination”. These terms are defined in Section 2. †Additional assumption needed (see Section 6).

2 MODEL & PRELIMNARIES

Processes. We consider a set Π of 𝑛 processes, up to 𝑓 of which may be faulty. We consider

the Byzantine-fault model, in which faulty processes may depart arbitrarily from the protocol.

Throughout the paper, we assume that correct (non-faulty) processes have deterministic logic, i.e.,

they do not have access to a source of randomness.

Cryptography. We make standard assumptions: processes communicate through authenticated

channels and have access to digital signatures whose properties cannot be broken by the adversary.

3

Network. The processes communicate by sending messages over a fully-connected reliable

network: every pair of processes 𝑝 and 𝑞 communicate over a link that satisfies the integrity and

no-loss properties. Integrity requires that a message𝑚 from 𝑝 be received by 𝑞 at most once and

only if𝑚 was previously sent by 𝑝 to 𝑞. No-loss requires that a message𝑚 sent from 𝑝 to 𝑞 be

eventually received by 𝑞.

Random asynchrony. Processes send messages by submitting them to the network; a random

scheduler decides in which order submitted messages are delivered. We assume the scheduler

delivers messages one by one, i.e., no two delivery events occur at exactly the same time. For

convenience, we use a global discrete notion of time to reflect the sequence of delivery events:

time proceeds in discrete steps 0, 1, . . .; each time step corresponds to a message delivery event in

the system. Processes do not have access to this notion of time (they do not have clocks). Sending

a message and performing local computation occur instantaneously, between time steps. Note

that this notion of time does not bound message delays: an arbitrary amount of real time can pass

between time steps.

We next describe the random scheduler. At any time 𝑡 , let 𝑃 (𝑡) ⊆ Π2
be the set of pairs of

processes (𝑝, 𝑞) such that 𝑝 has at least one pending message to 𝑞. We say that a message𝑚 from

𝑝 to 𝑞 is pending at time 𝑡 if 𝑝 send𝑚 before 𝑡 and 𝑞 has not received𝑚 by time 𝑡 . At each time

step 𝑡 , the random scheduler draws a pair (𝑝, 𝑞) at random from 𝑃 (𝑡) and delivers to 𝑞 the earliest

message from 𝑝 . We assume that there exists a constant C(𝑛, 𝑓) > 0 such that, for any 𝑝 and 𝑞, the

probability that (𝑝, 𝑞) ∈ 𝑃 (𝑡) is drawn at time 𝑡 is at least C(𝑛, 𝑓). In general, C(𝑛, 𝑓) may depend

on 𝑛 and 𝑓 , but not on 𝑡 . We assume that each scheduling draw is independent from others, and

does not depend on the content of the message being delivered.

Consensus. Our algorithms solve two variants of binary Byzantine consensus: strong and weak.

Strong Byzantine consensus is defined by the following properties:

Strong Validity If all correct processes propose 𝑣 , then correct processes that decide, decide 𝑣 .

Agreement If correct processes 𝑝 and 𝑞 decide 𝑣 and𝑤 respectively, then 𝑣 = 𝑤 .

Termination Every correct process decides some value.

Weak Byzantine consensus [18] has the same agreement and termination properties as the strong

variant above, but has a different validity property:

Weak Validity If all processes are correct and propose 𝑣 , then processes that decide, decide 𝑣 .

Deterministic and probabilistic properties. The probability of a schedule is the probability of

the intersection of all its scheduling steps. We say that an algorithm A ensures a property P
deterministically if P holds in every execution ofA. Note that any algorithm that ensures a property

P deterministically in the standard asynchronous model, must also ensure P deterministically in

the random asynchronous model. Given an algorithm A and a property P, we say that a schedule

𝑆 is bad for P if there exists an execution 𝐸 of A with schedule 𝑆 such that P does not hold in 𝐸.

An algorithmA ensures a property P with probability 1 if the total probability of all schedules that

are bad for P is 0. An algorithm A ensures a property P with high probability (whp) if the total

probability of all schedules that are bad for P is negligible; in this paper, a probability is negligible

if approaches 0 exponentially with some parameter of the algorithm, for any (fixed) 𝑛 and 𝑓 (e.g.,

the number of communication steps).

3 𝑛 = 3𝑓 + 1: DETERMINISTIC SAFETY, TERMINATIONWITH PROBABILITY 1
In this section we solve binary Byzantine consensus with deterministic strong validity and agree-

ment, and termination with probability 1.

4

Our algorithm, shown in Algorithm 1, proceeds in rounds: in each round, processes attempt to

decide using a Round procedure; if unsuccessful, processes update their estimate and try again

in the next round. The Round procedure is similar to an adopt-commit object [14, 26]: processes

propose a value and return a pair (𝑔, 𝑣), where 𝑣 is a value and 𝑔 is a grade, which can be either

Commit or Adopt. If 𝑔 = Commit, then it is guaranteed that all correct processes return the same

value 𝑣 (possibly with different grades). If all correct processes propose the same value 𝑣 , then all

correct processes are guaranteed to return 𝑣 with a Commit grade.

Algorithm 1Main consensus algorithm for 𝑛 = 3𝑓 + 1: pseudocode at process 𝑖
1: procedure Propose(𝑣𝑖): ⊲ 𝑣𝑖 ∈ {0, 1}
2: 𝑒𝑠𝑡𝑖 ← 𝑣𝑖
3: 𝑟𝑖 ← 0

4: while true:
5: (𝑔, 𝑣) ← Round(𝑟𝑖 , 𝑒𝑠𝑡𝑖)
6: if 𝑔 = Commit: decide(𝑣) ⊲ Only once

7: 𝑒𝑠𝑡𝑖 ← 𝑣

8: 𝑟𝑖 ← 𝑟𝑖 + 1

Algorithm 2 Byzantine Round implementation for 𝑛 = 3𝑓 + 1: pseudocode at process 𝑖
1: procedure Round(𝑟, 𝑣):
2: BRB-Broadcast ⟨Init, 𝑟 , 𝑣⟩ ⊲ Phase 1

3: Wait to BRB-Deliver ⟨Init, 𝑟 , _⟩ from 𝑛 − 𝑓 processes

4: H ← delivered ⟨Init, 𝑟 , _⟩ messages

5: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← majority value inH
6: if ∃ 𝑣∗ such that I received > 𝑛/2 ⟨Init, 𝑟 , 𝑣∗⟩ messages:

7: BRB-Broadcast ⟨Echo, 𝑟 , 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙,H⟩ to all processes ⊲ Phase 2

8: Wait to BRB-Deliver valid ⟨Echo, 𝑟 , _, _⟩ messages from 𝑛 − 𝑓 processes

9: if ∃ 𝑣∗ ≠ ⊥ such that I received ≥ 2𝑓 + 1 ⟨Echo, 𝑟 , 𝑣∗, _⟩ messages:

10: return ⟨Commit, 𝑣∗⟩
11: else:
12: 𝑣∗ ← majority value among received ⟨Echo, 𝑟 , _, _⟩ messages

13: return ⟨Adopt, 𝑣∗⟩

The core of the algorithm is the Round procedure, shown in Algorithm 2. There are two

types of messages: Init and Echo. Processes rely on Byzantine Reliable Broadcast (BRB) [9] for

communication.
1
Furthermore, all messages are signed. The algorithm has two phases. In phase 1,

each correct process 𝑝 broadcasts (using BRB) its input value 𝑣 in an Init message (line 2), and

waits to deliver 𝑛 − 𝑓 = 2𝑓 + 1 Init messages (line 3). Process 𝑝 adopts as its proposal for phase 2,

the majority value among the received Init messages (line 5). Then, in phase 2, 𝑝 broadcasts an

Echo message with 𝑝’s phase 2 proposal, as well as the 𝑛 − 𝑓 (signed) Init messages that justify

𝑣 to be the majority phase 1 value (line 7); 𝑝 waits for 𝑛 − 𝑓 valid Echo messages (line 8). If all

delivered Echo messages are for the same value 𝑣∗, then 𝑝 commits 𝑣∗ (line 10); otherwise 𝑝 adopts

the majority value (line 13).

We prove the correctness of our algorithm in Appendix B. The main intuition is that at each

round, a favorable schedule can help all correct processes agree (i.e., adopt the same estimate), by

causing them to select the same majority value in phase 1 (e.g., by ensuring that they deliver Init

messages from the same set of processes). Since the schedule is random, it has a non-zero chance of

1
Any asynchronous BRB protocol is also correct in the random asynchronous model.

5

being favorable at each round. Thus, with probability 1, the schedule will eventually be favorable.

This is similar in spirit to random coin based Byzantine Randomized Consensus algorithms [9],

in which correct processes choose their next estimate by tossing a coin, if they do not manage

to reach agreement in a given round. Here we are relying on the random schedule instead of the

random coin. However, as we show later, in our model, consensus is solvable for settings where it

is impossible for standard asynchrony even when equipped with a common coin.

Crash-fault tolerant consensus. A similar approach can be used to solve crash-fault tolerant

consensus with 𝑛 = 2𝑓 + 1, with the same guarantees of deterministic safety, as well as termination

with probability 1. Our algorithm uses the same round-based structure in Algorithm 1 and a

modified Round procedure, that does not require reliable broadcast, and employs standard point-

to-point messages instead. The main intuition is similar to our Byzantine algorithm: the random

scheduler eliminates the need for a common coin by ensuring that correct processes eventually

deliver messages in a favorable order which leads them to agree and thus terminate. Appendix C

gives our algorithm and proves its correctness.

4 𝑛 = 2𝑓 + 1: DETERMINISTIC TERMINATION, SAFETY WHP

In this section, we pose 𝑛 = 2𝑓 + 1 and solve strong Byzantine consensus such that safety (validity

and agreement) holds with high probability and termination is deterministic.

Algorithm 3 shows our proposed protocol. The main idea is as follows: There are 𝑓 + 1 phases,
each consisting of 𝑅 communication rounds, where 𝑅 is a parameter. 𝑅 is large enough so that

correct processes hear from each other at least once within 𝑅 rounds with high probability. In each

round, a correct process sends its set of accepted values (𝑉𝑖 in Algorithm 3) to all other processes. A

correct process 𝑖 accepts a value from process 𝑗 at phase 𝑝 (𝑝 = 1, . . . , 𝑓 + 1) if (1) 𝑗 is the origin
of 𝑣 (i.e., the first signature on 𝑣 is by 𝑗), (2) 𝑖 has not already accepted a value from 𝑗 , and (3) 𝑣

has valid signatures from 𝑝 distinct processes. We say that 𝑖 accepts a value 𝑣 at phase 𝑝 if 𝑝 is the

earliest phase at which 𝑖 accepts 𝑣 (from any process).

After the 𝑓 + 1 phases are over, a correct process decides on the majority value within its set of

accepted values (i.e., the value that appears most often). Note that at the end of the communication

phases, each correct process must have at least one accepted value, since correct processes sign

and send their input value in phase 1 and the network is reliable.

The main intuition behind this protocol is that, if a correct process accepts a value 𝑣 , then all

correct processes will accept 𝑣 by the end of the execution, and thus all correct processes will have

the same set of accepted processes. Therefore, all correct processes can use a deterministic rule to

decide the same value.

We now prove that Algorithm 3 satisfies the consensus properties in Section 2.

Lemma 4.1. With high probability, every correct process receives at least one message from every

other correct process in each phase.

Proof. We start by fixing two correct processes 𝑝 and 𝑞 and upper bounding the probability

that 𝑞 does not receive any message from 𝑝 after 𝑅 iterations. The probability of not delivering 𝑝’s

round-1 message to 𝑞 is at most (1 − C(𝑛, 𝑓)) at each time step. There must be at least 𝑅(𝑛 − 𝑓)2
time steps for 𝑞 to complete 𝑅 iterations, so the probability of 𝑞 not observing 𝑝’s message is at

most

(1 − C(𝑛, 𝑓))𝑅 (𝑛−𝑓)2 ≈ 𝑒−𝑅C(𝑛,𝑓) (𝑛−𝑓)2 .
To finish the proof, we upper-bound the probability of any correct process not observing the

input value of some other correct process. We first compute the expected number of (ordered) pairs

6

Algorithm 3 Binary Byzantine consensus for 𝑛 = 2𝑓 + 1; pseudocode for process 𝑖
1: Local variables:
2: 𝑉𝑖 = ∅, a map from processes to signed values

3: procedure Propose(𝑣):
4: 𝑉𝑖 [𝑖] ← Sign(𝑣)
5: for 𝑝ℎ𝑎𝑠𝑒 in 1 . . . 𝑓 + 1:
6: for 𝑟𝑜𝑢𝑛𝑑 in 1 . . . 𝑅:

7: Send (𝑉𝑖 , 𝑝ℎ𝑎𝑠𝑒, 𝑟𝑜𝑢𝑛𝑑) to all processes

8: 𝑣𝑎𝑙𝑖𝑑 ← 0

9: while 𝑣𝑎𝑙𝑖𝑑 < 𝑛 − 𝑓 :

10: Receive a (𝑉𝑗 , 𝑝, 𝑟) message ⊲ receive single message per process, phase and round

11: if 𝑉𝑗 contains a value 𝑣 with valid signatures from 𝑝ℎ𝑎𝑠𝑒 distinct processes and
𝑉𝑖 [Origin(𝑣)] = ∅

12: 𝑉𝑖 [Origin(𝑣)] ← Sign(𝑣)
13: if (𝑝, 𝑟) = (𝑝ℎ𝑎𝑠𝑒, 𝑟𝑜𝑢𝑛𝑑)
14: 𝑣𝑎𝑙𝑖𝑑 ← 𝑣𝑎𝑙𝑖𝑑 + 1
15: decide MajorityValue(𝑉𝑖)

of processes (𝑝, 𝑞) such that 𝑞 does not observe the input value of 𝑝 at the end of the 𝑅 iterations.

There are 𝑛(𝑛 − 1) possible pairs, so this expected value is at most 𝐸 = 𝑛(𝑛 − 1)𝑒−𝑅C(𝑛,𝑓) (𝑛−𝑓)2 .
Now, by Markov’s inequality, we have that

Pr(at least one unreachable pair) ≤ 𝐸 = 𝑛(𝑛 − 1)𝑒−𝑅C(𝑛,𝑓) (𝑛−𝑓)2 .
For fixed 𝑛 and 𝑓 , this probability approaches 0 exponentially in the number of iterations 𝑅. □

Lemma 4.2. With high probability, every correct process accepts the input values of every other

correct process.

Proof. By Lemma 4.1, every correct process receives at least one message from every other

correct process in the first phase, whp. Since messages from correct processes always contain their

input values with a valid signature, every correct processes 𝑖 will accept the input value of another

correct process 𝑗 when 𝑖 receives the first message from 𝑗 . □

Theorem 4.3. With 𝑛 = 2𝑓 + 1, Algorithm 3 satisfies strong validity whp.

Proof. Assume that all correct processes propose the same value 𝑣 . Then, by Lemma 4.2, all

correct processes will accept at least 𝑛 − 𝑓 = 𝑓 + 1 𝑣 values whp. Since 𝑓 + 1 is a majority out of a

maximum of 𝑛 = 2𝑓 + 1 accepted values, correct processes decide 𝑣 whp. □

Lemma 4.4. If a value 𝑣 is accepted by a correct process 𝑖 at phase 𝑝 ≤ 𝑓 , then all correct processes

accept 𝑣 by the end of phase 𝑝 + 1, whp.

Proof. If 𝑖 accepts 𝑣 at phase 𝑝 , then 𝑣 must have signatures from at least 𝑝 processes. Process 𝑖

is not one of the 𝑝 processes, otherwise 𝑖 would have accepted 𝑣 at an earlier phase. Since 𝑖 accepts

𝑣 , 𝑖 adds its signature to 𝑣 and will send 𝑣 , as part of𝑉𝑖 , to all processes in phase 𝑝 + 1. By Lemma 4.1,

all correct processes will thus receive 𝑣 by the end of phase 𝑝 + 1 whp, and will accept 𝑣 (if they

haven’t already), since 𝑣 has the required number of signatures. □

Lemma 4.5. If a value 𝑣 is accepted by a correct process 𝑖 at phase 𝑓 + 1, then all correct processes

accept 𝑣 by the end of phase 𝑓 + 1, whp.

7

Proof. If 𝑖 accepts 𝑣 at phase 𝑓 + 1, then 𝑣 must have signatures from at least 𝑓 + 1 processes; 𝑖
is not among these processes, otherwise 𝑖 would have accepted 𝑣 at an earlier phase. Since there

are at most 𝑓 faulty processes, 𝑣 must have at least one signature from a correct process 𝑗 ≠ 𝑖 .

So 𝑗 must have accepted 𝑣 at an earlier phase 𝑝 ≤ 𝑓 and therefore, by Lemma 4.4, all correct

processes will accept 𝑣 by the end of phase 𝑓 + 1 whp. □

Theorem 4.6. With 𝑛 = 2𝑓 + 1, Algorithm 3 satisfies agreement whp.

Proof. By Lemma 4.4 and Lemma 4.5, with high probability, correct processes have the same

set of accepted values by the end of phase 𝑓 + 1, and thus decide the same value. □

Theorem 4.7. With 𝑛 = 2𝑓 + 1, Algorithm 3 satisfies deterministic termination.

Proof. Follows immediately from the algorithm: correct processes only execute for 𝑅(𝑓 + 1)
rounds. In each round, a correct process waits to receive 𝑛 − 𝑓 messages from that round, which

is guaranteed to occur since there are at least 𝑛 − 𝑓 correct processes and the network is reliable

(no-loss property). □

5 𝑛 = 𝑓 + 2: DETERMINISTIC TERMINATION ANDWEAK VALIDITY, AGREEMENTWHP
Interestingly, if we pose 𝑛 = 𝑓 + 2, we can solve weak Byzantine consensus with deterministic

validity and termination, and agreement whp, using the same protocol in Algorithm 3.

Weak validity is clearly preserved: if all processes are correct and have the same input value 𝑣 ,

no other value is received by any process, and thus all processes decide 𝑣 .

Theorem 5.1. With 𝑛 = 𝑓 + 2, Algorithm 3 satisfies deterministic weak validity.

Proof. If all processes are correct and propose the same value 𝑣 , then all (𝑉𝑖 , 𝑝ℎ𝑎𝑠𝑒, 𝑟𝑜𝑢𝑛𝑑)
messages will have 𝑣 as their value, so no process can decide any other value. □

Theorem 5.2. With 𝑛 = 𝑓 + 2, Algorithm 3 satisfies agreement whp.

Proof. Lemmas 4.1, 4.2, 4.4, and 4.5 still hold: their proofs are also valid if 𝑛 = 𝑓 + 2. Thus the
proof of this theorem is the same as the proof of Theorem 4.6: By Lemma 4.4 and Lemma 4.5, with

high probability, correct processes have the same set of accepted values by the end of phase 𝑓 + 1,
and thus decide the same value. □

Theorem 5.3. With 𝑛 = 𝑓 + 2, Algorithm 3 satisfies deterministic termination.

Proof. Correct processes only execute for 𝑅(𝑓 + 1) rounds. In each phase and round, a correct

process waits to receive 𝑛 − 𝑓 valid messages from that phase and round. This wait is guaranteed

to terminate since there are at least 𝑛 − 𝑓 correct processes, correct processes can always produce

a valid message (a message (𝑉𝑖 , 𝑝, 𝑟) is valid if 𝑝 and 𝑟 are equal to the current phase and round,

respectively), and the network is reliable (no-loss property). □

6 NEGATIVE RESULTS
In this section we provide negative results that closely match our positive results from previous

sections. Intuitively, we show that in the random asynchronous model it is not possible to obtain

Byzantine consensus protocols with more powerful guarantees than the protocols we propose in

this paper. This shows that the random asynchronous model, while avoiding some restrictions and

impossibilities of the standard asynchronous model, is not overly permissive.

We prove the following three results. The first two results hold without any additional assump-

tions, while for the third result we require a couple of mild assumptions.

8

Theorem 6.1. No protocol can solve Byzantine consensus in the random asynchronous model with

deterministic strong validity, agreement, and termination.

Theorem 6.2. With 𝑛 = 2𝑓 + 1, no protocol for Byzantine consensus in the random asynchronous

model can ensure strong validity and agreement with probability 1, as well as deterministic termination.

Before stating the third result, we describe two additional assumptions. Given a protocol A, we

say that an execution 𝐸 is clean if all processes are correct in 𝐸; a schedule 𝑆 is clean if at least

one clean execution admits 𝑆 as its schedule. Our first assumption is that the total probability of

clean schedules is not negligible. This assumption is reasonable, as without it, a protocol could,

for instance, break agreement or validity in all clean executions and still claim whp agreement

and validity; such a protocol would be useless in practice, where clean executions are common. A

protocol satisfying this assumption is called clean.

Our second assumption is: if some correct process 𝑝 proposes 𝑣 ∈ {0, 1} in an execution 𝐸

with schedule 𝑆 , then there exists an execution 𝐸′ with the same schedule 𝑆 , in which 𝑝 proposes

1 − 𝑣 . Intuitively, this assumption implies that processes can have the same communication pattern

(e.g. send the same number of messages) whether they propose 0 or 1. A protocol satisfying this

assumption is called regular. Now we are ready to state our third negative result.

Theorem 6.3. With 𝑛 = 𝑓 + 2, 𝑓 ≥ 2, no clean, regular protocol for Byzantine consensus in the

random asynchronous model can ensure strong validity and agreement with high probability, while

ensuring deterministic termination.

Proof sketch for Theorem 6.1. This result is equivalent to the FLP impossibility [13] in the

random asynchronous model, and the FLP proof holds in our model as well. Essentially, if at least

one process can fail by crashing, there exists an infinite bivalent execution (the same execution as

constructed in the FLP proof), which prevents processes from deciding without breaking agreement.

□

Proof of Theorem 6.2. We prove the result by contradiction. Assume that such a protocol A
exists. We show through a “split-brain” argument that A admits an execution 𝐸 such that 𝐸 breaks

agreement and 𝐸 has non-zero probability.

Take 𝐸 to be an execution in which at least one correct process proposes 0 and at least one correct

process proposes 1. Let 𝑆0 be the set of correct processes that propose 0, |𝑆0 | ≥ 1, and 𝑆1 be the set

of correct processes that propose 1, |𝑆1 | ≥ 1. Let 𝐵 be the set of Byzantine processes, |𝐵 | = 𝑓 .

In 𝐸, the Byzantine processes behave toward the correct processes in 𝑆0 as correct processes

whose inputs are all 0. And they behave toward the 𝑆1 as correct processes whose inputs are all 1.

Furthermore, any message between a process 𝑆0 and a process in 𝑆1, or vice-versa, is delayed by the

scheduler until after all correct processes have decided.
2
To processes in 𝑆0, 𝐸 is indistinguishable

from an execution in which all correct processes have input 0; thus they must decide 0 in a finite

number of steps to preserve termination and strong validity. Symmetrically, to processes in 𝑆0,

𝐸 is indistinguishable from an execution in which all correct processes have input 1; thus they

must decide 1 in a finite number of steps. Therefore, 𝐸 is a finite execution in which agreement is

violated.

Since 𝐸 is a finite execution, it has a finite number of scheduling steps, each of which has non-zero

probability; thus, 𝐸 has non-zero probability. We have shown that A admits an execution that

breaks agreement and has non-zero probability; a contradiction. □
2
Correct processes in 𝑆0 cannot wait for messages from 𝑆1 before proceeding with their protocol logic, as in asynchrony

processes may only wait for messages from 𝑛 − 𝑓 = 𝑓 + 1 processes. In 𝐸, the 𝑓 + 1 processes that a process from 𝑆0 hears

from first always happen to be from 𝑆0 or 𝐵. Symmetrically, processes from 𝑆1 always hear from 𝑆1 or 𝐵 first and cannot

wait for messages from 𝑆0.

9

Lemma 6.4. With 𝑛 = 𝑓 + 2, 𝑓 ≥ 2, let A be a clean, regular Byzantine consensus protocol which

satisfies strong valdity and agreement whp, as well as deterministic termination. Then any clean

schedule 𝑆 of A is bad for strong validity or agreement.

Proof. Consider any clean schedule 𝑆 of A. Since A is regular, there exists a clean execution

𝐸 of A with schedule 𝑆 , in which at least 2 processes propose 0 and at least 2 processes propose

1. Assume wlog that 𝑝1 and 𝑝2 propose 0, while 𝑝𝑛−1 and 𝑝𝑛 propose 1. We now describe three

executions 𝐸1, 𝐸2, and 𝐸3, with the same schedule 𝑆 as 𝐸, and show thatA must break either strong

validity or agreement in one of the three executions. This is sufficient to show that 𝑆 is bad for

strong validity or agreement.

Let 𝐸1 be an execution with schedule 𝑆 , in which all processes behave identically to 𝐸; in 𝐸1, 𝑝1
and 𝑝2 are correct, while 𝑝3, . . . , 𝑝𝑛 are Byzantine but behave correctly. To satisfy strong validity,

𝑝1 must decide 0 in 𝐸1.

Let 𝐸2 be an execution with schedule 𝑆 , in which again all processes behave identically to 𝐸; this

time, 𝑝1 and 𝑝𝑛 are correct, while 𝑝2, . . . , 𝑝𝑛−1 are Byzantine. Since 𝐸1 and 𝐸2 are indistinguishable
to 𝑝1, and 𝑝1 has deterministic logic, 𝑝1 must decide the same value in both executions, namely 0.

Thus, in order to satisfy agreement, 𝑝𝑛 must also decide 0 in 𝐸2.

Let 𝐸3 be an execution with schedule 𝑆 , in which again all processes behave as in 𝐸; this time,

𝑝𝑛−1 and 𝑝𝑛 are correct, while 𝑝1, . . . , 𝑝𝑛−2 are Byzantine. Since 𝐸2 and 𝐸3 are indistinguishable to
𝑝𝑛 , and 𝑝𝑛 has deterministic logic, 𝑝𝑛 must decide the same value in both executions, namely 0. But

this breaks strong validity, as both correct processes (𝑝𝑛−1 and 𝑝𝑛) have proposed 1 in 𝐸3. □

Proof of Theorem 6.3. Assume by contradiction that such a protocol A exists. By Lemma 6.4,

all clean schedules of A are bad for strong validity or agreement, and since A is clean, the total

probability of its clean schedules is not negligible. It follows that the total probability of schedules

which are bad for strong validity or agreement is not negligible, soA cannot satisfy strong validity

and agreement both with high probability; a contradiction. □

7 RELATEDWORK

Random scheduling. Similar assumptions to the random asynchronous model have been explored

by previous work. In message passing, Bracha and Toueg [8] define the fair scheduler, which ensures

that in each message round, there is a non-zero constant probability that every correct process

receives messages from the same set of correct processes. Under this scheduler, they proposed

deterministic asynchronous binary consensus protocols for crash and Byzantine fault models.

More recently, Tusk [11] and Mahi-Mahi [16] employ a form of random scheduling. Their random

scheduler can be seen as a special case of ours: they only consider the 𝑛 = 3𝑓 + 1 case and assume a

standard round-based model with the subset of processes that a process “hears from” in a given

round chosen uniformly at random among all possibilities. They leverage the random scheduler

to increase the probability to commit at each round, and thus to reduce latency, whereas our

paper focuses on circumventing impossibility results in standard asynchrony, at different ratios of

fault-tolerance. They conduct experiments without randomization on a wide-area network, without

observing loss of liveness, which can serve as motivation for our work.

In shared memory, Aspnes [4] defines noisy scheduling, in which the adversary may chose the

schedule, but that adversarial schedule is perturbed randomly. Under this assumption, deterministic

asynchronous consensus becomes achievable. Also in shared memory, previous work introduce a

stochastic scheduler [2, 3], which schedules shared memory steps randomly. This line of work shows

that many lock-free algorithms are essentially wait-free when run against a stochastic scheduler,

because the schedules that would break wait-freedom have negligible probability.

10

Randomized consensus. A large body of research leverages random coins to circumvent the FLP

impossibility result [13], which states that deterministic consensus is impossible in crash-prone

asynchronous systems. In this approach, protocols relax deterministic termination to probabilistic

termination, assuming processes have access a source of (cryptographically-secure) randomness

that cannot be predicted by the adversary. Randomized consensus protocol employ either local

coins [7, 21, 28]—which produce randomness independently and locally at each process, without

coordination with other processes—or common coins [10, 11, 16, 22, 23, 25]—which, through the

use of coordination and strong cryptographic primitives, ensure that all correct processes receive

the same random output with some probability.

Our algorithms for the 𝑛 = 3𝑓 + 1 setting resemble existing coin-based random consensus

protocols, with the randomness moved from the process logic to the schedule. In fact, all of the coin-

based consensus protocols we examined can be transformed, with minor changes, into deterministic

(coin-less) algorithms in the random asynchronous model. A natural question, then, is whether

our model is equivalent to the standard asynchronous model with coin tosses. It is not: in the

standard model, achieving safety whp when 𝑛 < 3𝑓 is impossible, even if processes have access

to randomness. This is because of a standard split-brain argument: the adversary can partition

correct processes into two sets that never exchange messages, allowing Byzantine to force different

decisions in each set. By contrast, our model makes long-lived network partitions occur with

negligible probability, allowing safety whp even for 𝑛 < 3𝑓 .

Probabilistic quorum systems. A line of work on probabilistic quorum systems [20, 27] relaxes

quorum intersection to be probabilistic rather than deterministic, and allows for probabilistic

correctness guarantees. However, they are vulnerable to an adversarial scheduler [1]. ProBFT [5]

addresses this through the use of verifiable random functions for quorum selection. These works

are similar to ours in that correctness is probabilistic rather than deterministic, but their approach

focuses on the 𝑛 = 3𝑓 + 1 setting, and is mainly aimed at scalability and efficiency (e.g., communi-

cation complexity), whereas we aim to circumvent impossibilities in standard asynchrony across

various fault tolerance ratios.

8 CONCLUSION
We introduce the random asynchronous model, a novel relaxation of the classic asynchronous model

that replaces adversarial message scheduling with a randomized scheduler. By eliminating the

adversary’s ability to indefinitely delay messages, our model circumvents traditional impossibility

results in asynchronous Byzantine consensus while preserving unbounded message delays and

tolerating Byzantine faults. Our approach avoids the need for synchronized periods (as in partial

synchrony) or cryptographic randomness (as in randomized consensus), offering a foundation

for practical alternatives to existing asynchronous systems. We demonstrated that this relaxation

enables new feasibility results across different resilience thresholds: deterministic safety and

probabilistic termination for 𝑛 = 3𝑓 + 1, deterministic termination with safety holding with high

probability (whp) for 𝑛 = 2𝑓 + 1, and weak validity with whp agreement for 𝑛 = 𝑓 + 2. These
results are complemented by impossibility bounds, showing our protocols achieve near-optimal

guarantees under the model.

Future work could explore extensions of this model to other distributed computing problems,

such as state machine replication, and investigate empirical performance trade-offs in real-world

deployments. By bridging the gap between theoretical impossibility and practical assumptions, we

believe our model opens avenues for efficient, resilient consensus protocols.

11

APPENDIX
A CHALLENGES
A.1 Modeling Challenge
Our aim is to propose a model for asynchrony without adversarial scheduling that is (1) general,

i.e., does not restrict algorithm design (2) easy to work with for proofs, (3) usable by practical

algorithms, and (4) intuitive. In the course of defining the current model, we came up with several

other possibilities that do not meet the aims above:

(1) A round-based model, similar to the fair scheduler model of Bracha and Toueg [8]. In each

communication round, a correct process sends a message to every process and waits to hear

back from 𝑛 − 𝑓 processes. The random scheduler assumption is: in each round, a correct

process has a non-trivial (i.e., lower-bounded by a constant) probability of hearing from

any subset of 𝑛 − 𝑓 processes. This model has the advantage of being easy to work with,

but is too restrictive, as it restricts algorithms to the round-based structure.

(2) A model which places probability directly on entire schedules, instead of on individual

communication steps: each valid schedule has a non-trivial probability of occurring. We

found this model to be un-intuitive and difficult to work with.

(3) A model in which the next message to be delivered is drawn, according to some distribution,

from all currently pendingmessages (i.e., messages that have been sent but not yet delivered).

The distributionmust ensure that everymessage has a non-trivial probability to be scheduled

next. This model is general (does not restrict algorithm structure), intuitive, and easy to

work with, but has the following crucial flaw. Byzatine processes can skew the scheduling

distribution by producing a large number of messages (potentially under the guise of

retransmitting them as part of the reliable links assumption). If, at any given time, most

pending messages are from Byzantine processes, then these messages are more likely to be

delivered first, effectively reverting the model to an adversarial scheduler.

(4) Similarly to the previous proposal: at each scheduling step, a sender-receiver pair (𝑠, 𝑟) is
drawn uniformly at random, and the earliest pending message from 𝑠 to 𝑟 is the next message

delivered in the system. This model is intuitive, and easy to work with, while also fixing the

message injection attack by Byzantine processes: the number of pending messages from a

(potentially Byzantine) process 𝑠 to process 𝑟 does not influence the probability distribution

of 𝑠’s messages to be delivered before other messages. The only drawback is with respect to

generality: the uniform distribution on the sender-receiver pairs is a strong assumption.

Our final model is similar to the last proposal above, while solving the generality problem by

removing the uniform distribution assumption. Instead, we simply assume that the probability of

each sender-receiver pair being drawn is non-negligible.

A.2 Algorithmic Challenge
Take the following naive (and incorrect) binary consensus algorithm for the 𝑛 ≤ 2𝑓 + 1 cases

(𝑛 = 2𝑓 + 1 and/or 𝑛 = 𝑓 + 2):
• Round 0: Processes initially sign and send their input value to all other processes, and wait

for such messages from 𝑛 − 𝑓 processes.

• Rounds 1–𝑅 (where 𝑅 is a parameter): Processes sign and send their entire history of sent and

received messages to all processes and wait for valid such messages from 𝑛 − 𝑓 processes.

• At the end of round 𝑅, correct processes decide on, say, the lowest input value they have

received.

This algorithm is subject to the following attack:

12

• Assume all correct processes have 1 as their input value.

• The 𝑓 Byzantine processes do not send any messages to the 𝑛 − 𝑓 correct processes up until

and including round 𝑅 − 1. Otherwise, Byzantine processes act as correct processes whose
input values are 0, including accepting messages from correct processes.

• Thus, no correct processes is aware of 0 as a valid input value before round 𝑅.

• Let 𝑝 be some correct processes that the Byzantine processes have agreed on before the

start of the execution. The attack attempts to cause 𝑝 to decide on a different value than the

other correct processes, breaking agreement.

• In round 𝑅, Byzantine processes send correctly constructed messages to 𝑝 , containing their

entire communication histories. If the random scheduler delivers even one of these messages

to 𝑝 before the end of the round, then 𝑝 becomes aware of the input value 0 for the first

time in round 𝑅 (and therefore does not have time to inform the other correct processes).

• After round 𝑅, 𝑝 must decide 0 (being the lowest input value it is aware of), while the other

processes must decide 1 (not being aware of 0 as a valid input value), breaking agreement.

This attack succeeds if the random scheduler delivers a message from a Byzantine process to

𝑝 in round 𝑅, among the first 𝑛 − 𝑓 messages delivered to 𝑝 in that round. This has a non-trivial

chance of occurring.

This algorithm illustrates the main challenge of designing correct algorithms under the random

asynchronous model when 𝑛 ≤ 2𝑓 + 1: even if the model ensures that all correct processes

communicate with each other eventually, Byzantine processes can still equivocate and correct

processes do not know necessarily know which messages are from correct processes and which are

not.

B PROOFS FOR DETERMINISTIC SAFETY ALGORITHMS

In this section we prove the correctness of our algorithm in Section 3. We first prove that the Round

procedure in Algorithm 2 satisfies the properties below, and then prove that Algorithm 1 solves

consensus under Byzantine faults.

Strong Validity If all correct processes propose the same value 𝑣 and a correct process returns

a pair ⟨Grade, 𝑣 ′⟩, then Grade = Commit and 𝑣 ′ = 𝑣 .

Consistency If any correct process returns ⟨Commit, 𝑣⟩, then no correct process returns

(·, 𝑣 ′ ≠ 𝑣).
Termination If all correct processes propose, then every correct process eventually returns.

In our proofs we rely on the following properties of Byzantine Reliable Broadcast (BRB) [9]:

BRB-Validity If a correct process 𝑝 broadcasts a message 𝑚, then every correct process

eventually delivers𝑚.

BRB-No-duplication Every correct process delivers at most one message.

BRB-Integrity If some correct process delivers a message𝑚 with sender 𝑝 and process 𝑝 is

correct, then𝑚 was previously broadcast by 𝑝 .

BRB-Consistency If some correct process delivers a message𝑚 and another correct process

delivers a message𝑚, then𝑚 =𝑚.

BRB-Totality If some message is delivered by any correct process, every correct process

eventually delivers a message.

Lemma B.1. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 2 satisfies strong validity.

Proof. If all correct processes propose the same value 𝑣 , then at least 2𝑓 + 1 processes BRB-
broadcast an Init message for 𝑣 , and therefore at most 𝑓 processes BRB-broadcast an Init message

13

for 1−𝑣 . Thus 𝑣 will be the majority value among all Initmessages delivered in phase 1, at all correct

processes. Thus all correct processes will BRB-broadcast an Echo message for 𝑣 . Furthermore, no

Byzantine process can produce a valid Echo message for 1− 𝑣 , since to do so would require a set of
2𝑓 + 1 Init message with a majority value of 1 − 𝑣 . This is impossible due to the properties of BRB

and the fact that at most 𝑓 processes have BRB-broadcast an Init message for 1 − 𝑣 . So, all valid
Echo messages received by correct processes will be for 𝑣 , so all correct processes will commit 𝑣 at

line 10. □

Lemma B.2. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 2 satisfies consistency.

Proof. If a correct process 𝑝1 commits 𝑣 at line 10, then it must have delivered a set 𝑆1 of 2𝑓 + 1
Echo messages for 𝑣 at line 8. Take now another process 𝑝2 and consider the set 𝑆2 of 2𝑓 + 1 Echo
messages it delivers at line 8. By quorum intersection, 𝑆1 and 𝑆2 must intersect in at least 𝑓 + 1
messages. By the BRB-Consistency property, these 𝑓 + 1 messages must be identical at 𝑝1 and 𝑝2.

Thus 𝑝2 delivers at least 𝑓 + 1 Echomessages for 𝑣 , which constitutes a majority of the 2𝑓 + 1 Echo
messages it delivers overall. So if 𝑝2 commits a value at line 10, then it must commit 𝑣 , and if 𝑝2
adopts a value at line 13, then it must adopt 𝑣 . □

Lemma B.3. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 2 satisfies termination.

Proof. Follows immediately from the algorithm and from the properties of Byzantine Reliable

Broadcast. Processes perform two phases; the only blocking step of each phase is waiting for 𝑛 − 𝑓

messages (lines 3 and 8). This waiting eventually terminates, by the BRB-Validity property and the

fact that there are at least 𝑛 − 𝑓 correct processes. □

Theorem B.4. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 1 satisfies strong validity.

Proof. This follows from the strong validity property of the Round procedure (Lemma B.1): if

all correct processes propose 𝑣 to consensus, then all correct processes propose 𝑣 to Round in the

first round, where by Lemma B.1, all correct processes commit 𝑣 , and thus all correct processes

decide 𝑣 at line 6. □

Theorem B.5. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 1 satisfies agreement.

Proof. Let 𝑟 be the earliest round at which some process decides and let 𝑝 be a process that

decides 𝑣 at round 𝑟 . We will show that any other process 𝑝′ that decides, must decide 𝑣 .

For 𝑝 to decide 𝑣 at round 𝑟 , Round must output (Commit, 𝑣) in that round. Thus, by the

consistency property of Round,Round(𝑟, ·)must output (·, 𝑣) at all correct processes. IfRound(𝑟, ·)
outputs (Commit, 𝑣) for 𝑝′, then 𝑝′ decides 𝑣 at round 𝑟 (line 6). Otherwise, all correct processes
input 𝑣 to Round(𝑟 + 1, ·), and by the strong validity property, all processes (including 𝑝′) will
output (Commit, 𝑣) and decide 𝑣 at round 𝑟 + 1. □

Theorem B.6. With Byzantine faults and 𝑛 = 3𝑓 + 1, Algorithm 1 satisfies termination.

Proof. We can describe the execution of the protocol as a Markov chain with states 0, . . . , 𝑛− 𝑓 =

2𝑓 + 1; the system is at state 𝑖 if 𝑖 correct processes have estimate (𝑒𝑠𝑡𝑖 variable) equal to 0 before

invoking Round. Due to the strong validity property of the Round procedure, states 0 and 2𝑓 + 1
are absorbing states. There is a non-zero transition probability from each state (including 0 and

2𝑓 + 1), to state 0 or 2𝑓 + 1, or both (we show this below). Therefore, with probability 1, the system

will eventually reach one of the two absorbing states and remain there. Once this happens (i.e.,

once all processes have the same 𝑒𝑠𝑡𝑖 variable), the strong validity property of Round ensures that

all processes (who have not decided yet) will decide within a round.

14

It only remains to show that there is a non-zero transition probability from each state to at least

one of the absorbing states 0 and 2𝑓 + 1. Consider a state 𝑖 ∉ {0, 2𝑓 + 1}; there is a schedule 𝑆 with

non-zero probability which leads the system from 𝑖 to 0 or 2𝑓 + 1 in one invocation of Round. We

consider two cases:

• 𝑖 < 𝑓 +1: in this case 0 is the minority value among correct processes. In schedule 𝑆 , the 𝑛− 𝑓
Init messages delivered by correct process at line 3 are all from correct processes. Thus,

every correct process sees 𝑖 0s and 2𝑓 +1−𝑖 1; 1 is the majority value, so all correct processes

adopt it for phase 2. In phase 2, 𝑆 again ensures that the 𝑛 − 𝑓 Echo messages delivered by

correct process at line 8 are all from correct processes. Thus, all correct processes see 2𝑓 + 1
Echo messages for 1 and commit 1, bringing the system to state 0.

• 𝑖 ≥ 𝑓 +1: in this case 0 is themajority value among correct processes. This case is symmetrical

with respect to the previous one: the only difference is that all correct processes adopt 0

(the majority value) at the end of phase 1, and all correct processes deliver 2𝑓 + 1 Echo
messages for 0, thus committing 0 and bringing the system to state 2𝑓 + 1.

□

C CRASH-FAULT TOLERANT CONSENSUS IN THE RANDOM ASYNCHRONOUS
MODEL

C.1 Definition
In the crash-fault model, faulty processes may permanently stop participating in the protocol at any

time, but otherwise follow the protocol. Crash-fault tolerant consensus is defined by the following

properties:

Validity If a process decides 𝑣 , then 𝑣 was proposed by some process.

Uniform Agreement If processes 𝑝 and 𝑞 decide 𝑣 and𝑤 respectively, then 𝑣 = 𝑤 .

Termination Every correct process decides some value.

C.2 Algorithm
Our algorithm for crash-fault tolerant consensus uses the same round-based structure, shown in Al-

gorithm 1, as our Byzantine consensus algorithm from Section 3. We use a different implementation

of the Round procedure, shown in Algorithm 4.

The Round algorithm consists of two phases. In the first phase, every correct process proposes a

value by sending it to all processes (line 2). Then it waits to receive proposals from a quorum of

processes (line 3). If a process observes that all responses contain the same phase-one proposal value

then it proposes that value for the second phase (line 5). If a process does not obtain a unanimous

set of proposals in the first phase, the process simply proposes ⊥ for the second phase (line 7).

Note that as a result of this procedure, if two processes propose a value different from ⊥ for the

second phase, they propose exactly the same value. Let this value be called 𝑣∗.

The purpose of the second phase is to verify if 𝑣∗ was also observed by enough other processes.

After a process receives 𝑛 − 𝑓 phase-two messages (line 8), it checks if more than 𝑓 phase-two

proposals are equal to 𝑣∗, and if so commits 𝑣∗ (line 11). A process adopts 𝑣∗ if it receives 𝑣∗ in the

second phase, but is unable to collect enough 𝑣∗ values to decide (line 13). Finally, it is possible that

a process does not receive 𝑣∗ in the second phase (either because no such value was found in phase

one or simply because it has received only ⊥ in phase two); in this case the process adopts the fist

value it received in phase one (line 15).

As in the Byzantine case, the main intuition is that at each round, a favorable schedule can help

processes agree (i.e., adopt the same estimate), by causing them to adopt the same estimate at

15

Algorithm 4 Crash-tolerant Round implementation: pseudocode at process 𝑖

1: procedure Round(𝑟, 𝑣):
2: Send ⟨Init, 𝑟 , 𝑣⟩ to all processes ⊲ Phase 1

3: Wait for 𝑛 − 𝑓 ⟨Init, 𝑟 , _⟩ messages

4: if ∃ 𝑣∗ such that I received ≥ 𝑓 + 1 ⟨Init, 𝑟 , 𝑣∗⟩ messages:

5: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← 𝑣∗

6: else:
7: 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 ← ⊥
8: Send ⟨Echo, 𝑟 , 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙⟩ to all processes ⊲ Phase 2

9: Wait for 𝑛 − 𝑓 ⟨Echo, 𝑟 , _⟩ messages

10: if ∃ 𝑣∗ ≠ ⊥ such that I received ≥ 𝑓 + 1 ⟨Echo, 𝑟 , 𝑣∗⟩ messages:

11: return ⟨Commit, 𝑣∗⟩
12: else if ∃ 𝑣∗ ≠ ⊥ such that I received ≥ 1 ⟨Echo, 𝑟 , 𝑣∗⟩ messages:

13: return ⟨Adopt, 𝑣∗⟩
14: else:
15: 𝑣∗ ← value in first ⟨Init, 𝑟 , _⟩ message received

16: return ⟨Adopt, 𝑣∗⟩

line 15 (e.g., by ensuring that the first Init message they receive is from the same process). Since

the schedule is random, it has a non-zero chance of being favorable at each round. Thus, with

probability 1, the schedule will eventually be favorable.

C.3 Proofs

We begin with a few lemmas which establish that the Round procedure in Algorithm 4 satisfies

these properties:

Integrity If a process returns (·, 𝑣), then 𝑣 was proposed by some process.

Strong Validity If all correct processes propose the same value 𝑣 and a process returns a pair

⟨Grade, 𝑣 ′⟩, then Grade = Commit and 𝑣 ′ = 𝑣 .

Consistency If any correct process returns ⟨Commit, 𝑣⟩, then no process returns (·, 𝑣 ′ ≠ 𝑣).
Termination If all correct processes propose, then every correct process eventually returns.

Lemma C.1. With crash faults and 𝑛 = 2𝑓 + 1, Algorithm 4 satisfies integrity.

Proof. We say that a value 𝑣 is valid if it is the input value of some process. We want to show

that processes only return valid values. We observe that (1) Initmessages only contain valid values

(line 2), and therefore (2) Echo messages only contain valid values or ⊥ (lines 4–8). If a process 𝑝

returns 𝑣 at line 11 or 13, then 𝑝 received at least one Echo message for 𝑣 , and thus 𝑣 is valid by (2)

above. If 𝑝 returns 𝑣 at line 15, then 𝑝 received at least one Init message for 𝑣 , and thus 𝑣 is valid

by (1) above. □

Lemma C.2. With crash faults and 𝑛 = 2𝑓 + 1, Algorithm 4 satisfies strong validity.

Proof. If all processes propose the same value 𝑣 , then all processes send ⟨Init, 𝑣⟩ at line 2; all
processes receive at least 𝑛/2 ⟨Init, 𝑣⟩ messages (since 𝑛− 𝑓 = 𝑓 + 1 ≥ 𝑛/2); all processes adopt 𝑣 as
their proposal for the second phase and send ⟨Echo, 𝑣⟩ at line 8; all processes receive 𝑛 − 𝑓 = 𝑓 + 1
⟨Echo, 𝑣⟩ and return ⟨Commit, 𝑣⟩. □

Lemma C.3. If a process 𝑝 sends ⟨Echo, 𝑣⟩ at line 8, then no process sends ⟨Echo, 𝑣 ′⟩, for any 𝑣 ′ ≠ 𝑣 .

16

Proof. Assume the lemma does not hold. Then 𝑝 must have received more than 𝑛/2 ⟨Init, 𝑣⟩
messages, and some process 𝑝′ must have received more than 𝑛/2 ⟨Init, 𝑣 ′⟩ for some 𝑣 ′ ≠ 𝑣 . By

quorum intersection, it follows that some process must have sent both an ⟨Init, 𝑣⟩ and ⟨Init, 𝑣 ′⟩
message. This is a contradiction, as processes only send one Init message at line 2. □

Lemma C.4. With crash faults and 𝑛 = 2𝑓 + 1, Algorithm 4 satisfies consistency.

Proof. If process 𝑝 returns ⟨Commit, 𝑣⟩, it must do so at line 11, after having received 𝑓 + 1
⟨Echo, 𝑣⟩ messages. Therefore, every other process 𝑝′ that returns, must receive at least one

⟨Echo, 𝑣⟩ message. If 𝑝′ also receives 𝑓 + 1 ⟨Echo, 𝑣⟩ messages, then it returns ⟨Commit, 𝑣⟩. Other-
wise, by Lemma C.3, 𝑝′ cannot receive an Echo message for any other value 𝑣 ′ ≠ 𝑣 , so 𝑝′ returns
⟨Adopt, 𝑣⟩ at line 13. □

Lemma C.5. With crash faults and 𝑛 = 2𝑓 + 1, Algorithm 4 satisfies termination.

Proof. This follows immediately from the construction of the algorithm. Processes perform

two phases; the only blocking step of each phase is waiting for 𝑛 − 𝑓 messages (lines 3 and 9). This

waiting eventually terminates, since there are at least 𝑛 − 𝑓 correct processes. □

Now we can show that the consensus protocol in Algorithm 1 is correct under crash faults.

Theorem C.6. With crash faults, Algorithm 1 satisfies validity.

To prove the theorem, we first prove the following lemma:

Lemma C.7. If a process proposes 𝑣 to the Round procedure, then 𝑣 is the consensus input of some

process.

Proof. We prove the result by induction on the round 𝑟 . For the base case: If 𝑟 = 0, then all

processes input their consensus inputs into Round. For the induction case: assume the lemma

holds up to 𝑟 > 0, and consider the case of 𝑟 + 1. By the induction hypothesis and the integrity

property of the Round procedure, any output of Round(𝑟, ·) must be the consensus input of some

process. Since the input of Round(𝑟 + 1, ·) is the output of Round(𝑟, ·), the lemma must also hold

for the case of 𝑟 + 1. This completes the induction. □

Proof of Theorem C.6. If a process 𝑝 decides a value 𝑣 , then the Round procedure must have

output (Commit, 𝑣) at line 6. By Lemma C.7 and the integrity property of the Round procedure, it

follows that 𝑣 is the consensus input of some process. □

Theorem C.8. With crash faults, Algorithm 1 satisfies uniform agreement.

Proof. Let 𝑟 be the earliest round at which some process decides and let 𝑝 be a process that

decides 𝑣 at round 𝑟 . We will show that any other process 𝑝′ that decides, must decide 𝑣 .

For 𝑝 to decide 𝑣 at round 𝑟 , Round must output (Commit, 𝑣) in that round. Thus, by the

consistency property of Round, Round(𝑟, ·) must output (·, 𝑣) at all processes. If Round(𝑟, ·)
outputs (Commit, 𝑣) for 𝑝′, then 𝑝′ decides 𝑣 at round 𝑟 (line 6). Otherwise, no other value than 𝑣

can be input to Round(𝑟 + 1, ·), and by the strong validity property, all processes (including 𝑝′)
will output (Commit, 𝑣) and decide 𝑣 at round 𝑟 + 1. □

Theorem C.9. With crash faults, Algorithm 1 satisfies termination with probability 1.

17

Proof. We can describe the execution of the protocol as a Markov chain with states 0, . . . , 2𝑓 + 1;
the system is at state 𝑖 if 𝑖 processes have estimate (𝑒𝑠𝑡𝑖 variable) equal to 0 before invoking Round.

Due to the strong validity property of the Round procedure, states 0 and 2𝑓 + 1 are absorbing states.
There is a non-zero transition probability from each state, other than 0 and 2𝑓 + 1, to each other

state (we show this below). Therefore, with probability 1, the system will eventually reach one of

the two absorbing states and remain there. Once this happens (all processes have the same 𝑒𝑠𝑡𝑖
variable), the strong validity property of Round ensures that all processes (who have not decided

yet) will decide within a round.

It only remains to show that there is a non-zero transition probability from each state, other than

0 and 2𝑓 + 1, to each other state. Consider a state 𝑖 ∉ {0, 2𝑓 + 1} and a state 𝑗 ; there is a schedule 𝑆

with non-zero probability which leads the system from 𝑖 to 𝑗 in one invocation of Round. In 𝑆 ,

every process receives Init messages for both 0 and 1 at line 3, and thus all processes send Echo

messages with ⊥ at line 8. Thus, all processes return at line 15. In 𝑆 , 𝑗 processes receive an Init

message with value 0 first, so they adopt 0, and 2𝑓 + 1 − 𝑗 processes receive an Init message with

value 1 first, so they adopt 1, bringing the system to state 𝑗 .

□

REFERENCES

[1] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. 2005. On the Availability of Non-strict Quorum Systems. In

Distributed Computing, 19th International Conference, DISC 2005, Cracow, Poland, September 26-29, 2005, Proceedings,

Vol. 3724. Springer, 48–62. https://doi.org/10.1007/11561927_6

[2] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. 2016. Are Lock-Free Concurrent Algorithms Practically Wait-Free?

J. ACM 63, 4 (2016), 31:1–31:20. https://doi.org/10.1145/2903136

[3] Dan Alistarh, Thomas Sauerwald, and Milan Vojnovic. 2015. Lock-Free Algorithms under Stochastic Schedulers. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,

Spain, July 21 - 23, 2015. ACM, 251–260. https://doi.org/10.1145/2767386.2767430

[4] James Aspnes. 2002. Fast deterministic consensus in a noisy environment. J. Algorithms 45, 1 (2002), 16–39. https:

//doi.org/10.1016/S0196-6774(02)00220-1

[5] Diogo Avelas, Hasan Heydari, Eduardo Alchieri, Tobias Distler, and Alysson Bessani. 2024. Probabilistic Byzantine

Fault Tolerance. In Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing, PODC 2024, Nantes,

France, June 17-21, 2024. ACM, 170–181. https://doi.org/10.1145/3662158.3662810

[6] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and George

Danezis. 2019. SoK: Consensus in the age of blockchains. In AFT.

[7] Michael Ben-Or. 1983. Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols (Extended

Abstract). In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,

Quebec, Canada, August 17-19, 1983. ACM, 27–30. https://doi.org/10.1145/800221.806707

[8] Gabriel Bracha and Sam Toueg. 1985. Asynchronous Consensus and Broadcast Protocols. J. ACM 32, 4 (1985), 824–840.

https://doi.org/10.1145/4221.214134

[9] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. 2011. Introduction to Reliable and Secure Distributed

Programming (2. ed.). Springer. https://doi.org/10.1007/978-3-642-15260-3

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in constantipole: practical asynchronous

Byzantine agreement using cryptography (extended abstract). In Proceedings of the Nineteenth Annual ACM Symposium

on Principles of Distributed Computing, July 16-19, 2000, Portland, Oregon, USA. ACM, 123–132. https://doi.org/10.1145/

343477.343531

[11] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. 2022. Narwhal and Tusk:

a DAG-based mempool and efficient BFT consensus. In EuroSys ’22: Seventeenth European Conference on Computer

Systems, Rennes, France, April 5 - 8, 2022. ACM, 34–50. https://doi.org/10.1145/3492321.3519594

[12] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial synchrony. Journal

of the ACM (JACM) 35, 2 (1988), 288–323.

[13] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1983. Impossibility of Distributed Consensus with One Faulty

Process. In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March 21-23,

1983. ACM, 1–7. https://doi.org/10.1145/588058.588060

https://doi.org/10.1007/11561927_6
https://doi.org/10.1145/2903136
https://doi.org/10.1145/2767386.2767430
https://doi.org/10.1016/S0196-6774(02)00220-1
https://doi.org/10.1016/S0196-6774(02)00220-1
https://doi.org/10.1145/3662158.3662810
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/4221.214134
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/343477.343531
https://doi.org/10.1145/343477.343531
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/588058.588060

18

[14] Eli Gafni. 1998. Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony (Extended Abstract). In

Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, June 28 - July 2, 1998.

ACM, 143–152. https://doi.org/10.1145/277697.277724

[15] Giacomo Giuliari, Alberto Sonnino, Marc Frei, Fabio Streun, Lefteris Kokoris-Kogias, and Adrian Perrig. 2024. An

Empirical Study of Consensus Protocols’ DoS Resilience. In ACM ASIACCS.

[16] Philipp Jovanovic, Lefteris Kokoris Kogias, Bryan Kumara, Alberto Sonnino, Pasindu Tennage, and Igor Zablotchi.

2024. Mahi-Mahi: Low-Latency Asynchronous BFT DAG-Based Consensus. arXiv preprint arXiv:2410.08670 (2024).

[17] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. 2021. All You Need is DAG. In ACM

PODC.

[18] Leslie Lamport. 1983. The Weak Byzantine Generals Problem. J. ACM 30, 3 (1983), 668–676. https://doi.org/10.1145/

2402.322398

[19] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program.

Lang. Syst. 4, 3 (1982), 382–401. https://doi.org/10.1145/357172.357176

[20] Dahlia Malkhi, Michael K. Reiter, Avishai Wool, and Rebecca N. Wright. 2001. Probabilistic Quorum Systems. Inf.

Comput. 170, 2 (2001), 184–206. https://doi.org/10.1006/INCO.2001.3054

[21] Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Veríssimo. 2011. RITAS: Services for Randomized

Intrusion Tolerance. IEEE Trans. Dependable Secur. Comput. 8, 1 (2011), 122–136. https://doi.org/10.1109/TDSC.2008.76

[22] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2015. Signature-Free Asynchronous Binary Byzantine

Consensus with 𝑡 < 𝑛/3, 𝑂 (𝑛2) Messages, and 𝑂 (1) Expected Time. J. ACM 62, 4 (2015), 31:1–31:21. https:

//doi.org/10.1145/2785953

[23] Michael O. Rabin. 1983. Randomized Byzantine Generals. In 24th Annual Symposium on Foundations of Computer Science,

Tucson, Arizona, USA, 7-9 November 1983. IEEE Computer Society, 403–409. https://doi.org/10.1109/SFCS.1983.48

[24] Zhijie Ren, Kelong Cong, Johan Pouwelse, and Zekeriya Erkin. 2017. Implicit Consensus: Blockchain with Unbounded

Throughput. arXiv:1705.11046

[25] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. 2022. Bullshark: DAG BFT

Protocols Made Practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2022, Los Angeles, CA, USA, November 7-11, 2022. ACM, 2705–2718. https://doi.org/10.1145/3548606.3559361

[26] Jiong Yang, Gil Neiger, and Eli Gafni. 1998. Structured Derivations of Consensus Algorithms for Failure Detectors.

In Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’98, Puerto

Vallarta, Mexico, June 28 - July 2, 1998. ACM, 297–306. https://doi.org/10.1145/277697.277755

[27] Haifeng Yu. 2006. Signed quorum systems. Distributed Comput. 18, 4 (2006), 307–323. https://doi.org/10.1007/S00446-

005-0133-8

[28] Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu. 2023. WaterBear: Practical Asynchronous BFT Matching

Security Guarantees of Partially Synchronous BFT. In 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim,

CA, USA, August 9-11, 2023. USENIX Association, 5341–5357. https://www.usenix.org/conference/usenixsecurity23/

presentation/zhang-haibin

https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/2402.322398
https://doi.org/10.1145/2402.322398
https://doi.org/10.1145/357172.357176
https://doi.org/10.1006/INCO.2001.3054
https://doi.org/10.1109/TDSC.2008.76
https://doi.org/10.1145/2785953
https://doi.org/10.1145/2785953
https://doi.org/10.1109/SFCS.1983.48
https://arxiv.org/abs/1705.11046
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/277697.277755
https://doi.org/10.1007/S00446-005-0133-8
https://doi.org/10.1007/S00446-005-0133-8
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-haibin
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-haibin

	Abstract
	1 Introduction
	1.1 Modeling Challenges
	1.2 Our Results

	2 Model & Prelimnaries
	3 n=3f+1: Deterministic safety, termination with probability 1
	4 n = 2f+1: Deterministic termination, safety whp
	5 n = f+2: Deterministic Termination and Weak Validity, Agreement Whp
	6 Negative Results
	7 Related Work
	8 Conclusion
	A Challenges
	A.1 Modeling Challenge
	A.2 Algorithmic Challenge

	B Proofs for Deterministic Safety Algorithms
	C Crash-fault tolerant consensus in the random asynchronous model
	C.1 Definition
	C.2 Algorithm
	C.3 Proofs

	References

