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Abstract. Blockchains have been proposed as solution against lack of
transparency in the traditional finance domain. However, this does not
directly prevent arbitrage, but it at least exposes it publicly. In response
MEV (Miner Extractable Value) resilience mechanism have been pro-
posed with one significant class of proposals focusing on encrypting sen-
sitive transactions. These solutions, however, face a critical challenge in
balancing transaction privacy, efficiency, and execution speed for non-
encrypted transactions. Specifically, prior approaches either compromise
privacy for non-committed transactions to achieve low latency or signifi-
cantly increase communication complexity and processing time to main-
tain strong privacy guarantees against MEV attacks.
This paper presents a novel hybrid approach specifically designed for
MEV-resilience of blockchains. Our method employs a dual encryption
scheme for each transaction: a per-transaction encryption that keeps con-
tents private until commitment, and a per-event encryption enabling
communication efficient batch processing after commitment. This tech-
nique maintains transaction confidentiality from submission until just
before execution, while minimizing the delay non-encrypted transactions
face. Our construction achieves O(n+B) communication complexity for
B encrypted transactions and n nodes in optimistic environments, sub-
stantially improving upon existing MEV-resistant protocols.
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1 Introduction

The primary function of a blockchain involves blockchain nodes receiving trans-
actions from users and proposing them to other nodes, ensuring that all blockchain
nodes reach a consensus on an ordered list of committed transactions [2]. These
committed transactions then update the blockchain’s state in a consistent man-
ner based on the established order.

One popular class of applications that use such blockchain infrastructure
is Decentralized Finance (DeFi), where apps offering users transparency and
absence of middlemen have been managing billions of USD. One reason DeFi
is preferred to classic centralized finance (CeFi) is that centralized actors are
known to abuse their position either to arbitrage [26] or to censor [18] users.
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Unfortunately in DeFi such attacks have also been seen by nodes (and in cases
of public mempools, external observers as well) who use their advantage of seeing
all transactions before they are committed, and interject other transactions to
unfairly gain profit. Those types of attacks are called Maximal Extractable Value
(MEV) attacks [14] and include frontrunning and sandwich attacks. A by product
of MEV attacks is that it incentivizes nodes to slow down block creation to
increase their profit.

In this paper, we explore ways to limit MEV. One of the promising ap-
proaches for mitigating MEV attacks is to encrypt transactions3: A public key
pk is generated by the blockchain under which users can encrypt their transac-
tions. The nodes then commit those encrypted transactions, and once committed,
collaborate to decrypt them (i.e., threshold decryption), allowing execution to
complete. For simplicity, as we focus on the cryptographic and distributed com-
putation protocols, throughout this work we assume the extreme case in which
encrypted transactions fully hide everything about the transaction except for
what is needed for paying basic network fees.

As public infrastructure, blockchains support a wide variety of transaction
types, not all of which require MEV protections (e.g., simple payments or object
transfers [8]). However, current MEV protection proposals present a challenge
when dealing with mixed transaction lists. For instance, consider a sequence of
transactions tx1, etx2, tx3, where tx1 and tx3 are normal transactions and etx2 is
an encrypted one. When this list needs to be finalized for execution, transac-
tions following an encrypted transaction (tx3) are blocked until the encrypted
transaction (etx2) is decrypted and executed. We define the time between the
commitment of tx3 and its execution as the delay duration, which represents the
additional latency imposed on normal transactions that follow encrypted ones
(assuming execution time is negligible). This delay may be minor for networks
with infrequent commits, as the decryption of a block may complete before sub-
sequent commits. However, for blockchains with low latency and high commit
rates, tx3 and consecutive transactions could be significantly delayed by the de-
cryption of etx2.

There are two types of threshold decryption approaches currently used. The
first is to use per-transaction decryption, where nodes jointly decrypt every one of
the committed encrypted transactions separately [6,34,27]. Decrypting a transac-
tion requires O(1) values from each of the nodes. To minimize the delay duration,
nodes can broadcast those values to each other, requiring O(n) communication
from each node per transaction, which is a large communication overhead. A
cheaper alternative is to send those values to a leader/aggregator, who would
then collect messages from all nodes and only broadcast the decrypted trans-
actions. Although this option reduces communication per transaction to O(1)
values from each node in the happy case, it might dramatically increase the
delay duration in case of a slow or byzantine leader/aggregator. Note that the

3 Encrypted transactions can help in other use cases such as securely patching a vul-
nerable smart contract or an insecure onchain state (e.g., [28]), avoiding censorship,
etc.
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minimal delay duration we can hope for is the time it takes to communicate
one message between any set of parties (i.e., 1/2 RTT) or even zero in case the
threshold decryption and consensus protocols are coupled [6,32]. Hence, the first
option above achieves the minimal delay duration but requires large communi-
cation, while the second option has a reasonable communication overhead but
potentially larger delay duration.

The second type of threshold decryption being used is what we call a per-event
decryption [29,15] where encryptions are associated with a blockchain event in
the future, and once that event occurs, the nodes jointly compute an ephemeral
key that allows decrypting all encryptions associated with that event. Time-lock
encryption (e.g., [17]) is an example of time-based events, and in general Identity
Based Encryption (IBE) (e.g., [9]) can be used for any type of events defined
by the network (e.g., the event that block i was committed can be represented
by the unique identity block:i). Users would now encrypt their transactions to
a close-in-the-future event E and send them to the blockchain. Some of those
transactions would be committed before event E and be considered valid whereas
the rest would be considered invalid. Once E occurs, the nodes jointly compute
the ephemeral key for E , and all encrypted transactions can be decrypted and
executed, unblocking also the execution of subsequent committed transactions.

Ideally, to minimize the delay duration, nodes may use a different ordering
for execution: All committed transactions that are encrypted for event E are not
scheduled for execution until E occurs, unblocking the execution of subsequent
committed normal transactions. Transactions committed after E might be de-
layed because of the unavoidable decryption process. However, jointly computing
the ephemeral key for an event requires only O(1) values from each of the nodes,
independent of the number of encrypted transactions that are waiting for that
key, thus a simple broadcast (with O(n) communication per node) is sufficient
and requires only the minimal delay duration.

The main drawback of per-event decryption is that all the encrypted trans-
actions ordered after event E will be considered invalid but still decryptable,
since the decryption key for E is public. As a result they leak private informa-
tion about the transaction that could be used to extract MEV (e.g., in case the
user just retries the same transaction with a different event E ′). Privacy aware
users are likely to hesitate to encrypt for a close-by event as they risk not mak-
ing their transactions on time but losing privacy, considerably increase latency
of encrypted transactions. In contrast, per-transaction decryption does not leak
such information as only committed transactions are decrypted, but the system
needs to either “pay” with large communication overhead or large delay duration
in case of node faults.

In this paper we explore a middle ground solution between per-transaction
and per-event encryptions, where we minimize the delay duration while guaran-
teeing privacy for non-committed transactions without introducing chokepoints
in the process.
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1.1 Our Contribution

We propose a new hybrid approach that achieves low delay duration while main-
taining the highest level of privacy and requiring only O(n+B) communication
for a batch of B encrypted transactions from each node when the network is syn-
chronous and parties are not faulty. In high-level, each transaction is encrypted
twice, requiring both encryptions to be decrypted. The first encryption is using
per-transaction key, guaranteeing privacy for non-committed transactions while
not affecting the delay duration. The second encryption uses a fast per-event
decryption together with other encrypted transactions for the same event. Exe-
cution order is defined only with respect to the per-event decryption, thus the
delay duration is minimal.

We present a construction that is simple and uses two IBE encryptions, one
per-transaction and one per-event. We use the fact that the derived keys of IBE
encryption schemes are publicly verifiable, thus decryption can be verified as well
given acccess to those decryption keys. The transaction itself is encrypted using a
symmetric encryption with a fresh key k. We split k into a random string k1 and
a string k2 = k⊕k1. The k1 is encrypted using per-transaction encryption and k2
using per-event encryption. Once the transaction is committed, nodes start the
decryption of k1 without blocking the execution of normal transactions. This is
done efficiently using aggregators needing a small number of communication hops
in case of non-faulty parties, and O(f) in the worse case. Once k1 is committed,
the nodes block execution and jointly recover the decryption key associated with
the next event, allowing them to decrypt all the transactions for that event. Last,
the nodes locally decrypt the k2 component of all the relevant transactions, fully
decrypt the transactions, and resume execution.

Table 1 compares the main existing approaches with ours.

Scheme Communication Privacy Latency

Per-tx [6,34,27] O(nB) ! 1 ow

Per-event [15,29] O(n) % 1 ow

Our construction O(n+B)
!

2 ow + 1 c
O(n+Bf) O(cf)

Table 1: A comparison of the different approaches with minimal duration for n
nodes. In all schemes, the additional committed transaction size is O(1). Com-
munication is per node and a batch of B encrypted transactions, ignoring the
committed transaction itself. Privacy is of non-committed encrypted transac-
tions. Latency is the additional latency of encrypted transactions on top of the
first transaction commit, measured by one-way communication latency (ow) and
commit latency (c), assuming that the minimal duration latency is 1 ow. For our
construction we compare communication and latency for the happy case and the
worst case (in red).
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More related work. Other types of protocols that use encrypted transactions
include commit-and-reveal protocols that require the user to also decrypt its
transactions, resulting in possibly biasable outputs, encryption using Publicly
Verifiable Secret Sharing that require large transactions (e.g., [24]), or, depending
on third party entities to decrypt transactions (e.g., trusted enclaves, or small
MPC committees).

Recently [12] presented a new cryptographic primitive called Batched Thresh-
old Encryption that allows nodes to decrypt a batch of per-event encryptions
without revealing information about non-committed encryptions for the same
event, using only O(1) elements from each node. This is a very promising direc-
tion for achieving our goals, but more work needs to be done on optimizing its
performance in practice (e.g., likely more than a minute for a setup with only 50
parties, and more than 18 seconds for a per-event precomputation for the same
number of parties).

Last, we mention other mitigations for MEV: MEV-aware application de-
signs (e.g., [19,5,25]), time-based fair ordering of transactions (e.g., [23,11,22]),
MEV auctions (e.g. [16,10]), secure enclaves (e.g., [7]). See [4,20,33] for more
comprehensive systemization of knowledge of the topic.

Scope limitations. MEV attacks also include scenarios in which nodes can
detect public onchain state that can be exploited, and exploit it first as they
produce the blocks, e.g., quickly buy a new collection of NFTs sold on a sale.
Those types of attacks do not use user transactions at all, thus the solutions
described in this work do not help with them, but they can be combined with
other solutions (e.g., randomizing the order after commit [21,27]).

This work assumes deterministic finalization of transactions as privacy relies
on the fact that transactions are decrypted only after nodes know all other honest
nodes would eventually commit them.

Last, our focus is supporting encrypted transactions in the blockchain pro-
tocol layer, as opposed to the application/smart contract layer. The latter may
indeed be simpler to design as different applications may process their incoming
encrypted requests independently, especially independently of normal transac-
tions. However, it breaks composition since calls to different smart contracts in
this case are not atomic.

2 Preliminaries

Bilinear pairings. Let G,G′,GT be groups of prime order q, let G ∈ G, G′ ∈
G′, GT ∈ GT be generators and Zq be its scalar field. We assume the existence
of an efficiently computable bilinear pairing map e : G × G′ → GT , satisfying
(Bilinearity) ∀(P,Q, a, b) ∈ (G × G′ × Zq × Zq): e(aP, bQ) = b · e(aP,Q) =
a · e(P, bQ) = ab · e(P,Q), and (Non-degeneracy) e(G,G′) ̸= 1. Last, let HG(·)
be a hash function that maps strings to G.
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For the elliptic curves of BLS12-381, a multiplication in G or an evaluation
of HG is roughly twice faster than a multiplication in G′, and about six times
faster than an evaluation of the pairing map e.

Gap Bilinear Diffie-Hellman (Gap-BDH). Computational Bilinear Diffie-
Hellman (CBDH) states that it is computationally hard to compute xyz ·e(G,G′)
from xG, yG, xG′, zG′, for x, y, z ←R Zq. Decisional Bilinear Diffie-Hellman
(DBDH) states that it is computationally hard to distinguish between
(aG, bG, aG′, cG′, dGt) and (aG, bG, aG′, cG′, abc ·Gt), for a, b, c, d←R Zq.

Gap Bilinear Diffie-Hellman is a stronger variant of CBDH as follows. We say
that Gap-BDH holds in groups G,G′,GT with pairing map e, if for any x, y, z ←R

Zq, computing xyz · e(G,G′) is computationally hard given xG, yG, xG′, zG′

and access to a DBDH oracle that given (aG, bG, aG′, cG′, dGt) returns whether
abc · e(G,G′) = dGt.

Threshold IBE Encryption. (t, n)-Threshold Identity Based Encryption (TIBE)
is initialized with a public key pk and a set of public keys pk1, . . . , pkm such
that the i-th party knows ski that corresponds to pki. Anyone can run c =
Enc(m,u, pk) to encrypt message m using pk for identity u. A party can com-
pute PartialKey(ski, u) as the i-th partial decryption key kui for identity u. Anyone
can verify the partial decryption key kui for identity u using Verify(kui , u, pki).
Given a set D of t valid partial decryption keys, anyone can run Combine(D) for
computing the decryption key ku for identity u. Verify(ku, u, pk) can be used for
verifying that key as well. Last, an encryption c for identity u can be decrypted
with the decryption key ku using Dec(c, ku).

Recall the IBE encryption scheme of [9]. The secret key is sk ∈ Zq and the
public key is PK = sk·G′ ∈ G′. In the threshold setting, sk is distributed between
nodes using DKG protocol such that ski is a linear t-out-of-n share of sk. An en-
cryption of message m for identity u is Enc(m,u,PK) = (u, rG′,H(e(rHG(u),PK))⊕
m) where r ←R Zq and H(·) is a hash function with sufficient length (else
we can use a symmetric encryption with the output of the hash as the key).
PartialKey(ski, u) = skiHG(u) and Verify(kui , u,PKi) checks if e(HG(u),PKi) =
e(PartialKey(ski, u), G

′). Given the decryption key ku = sk·HG(u) ∈ G, Dec((u, c1, c2), ku)
outputs c2 ⊕ H(e(ku, c1)).

Blockchain Substrate. We follow the modular view of a blockchain introduced
in recent work [1,13], illustrated in Figure 1. Since we do not focus on the trans-
action dispersal we bundle the three first layers into a Total Order Broadcast
(TOB) black-box that continuously accepts transactions from clients and out-
puts a total order list of blocks of (ordered) transactions. The TOB guarantees
that a transaction sent by an honest client is eventually included in a block, and,
that all honest nodes eventually output the same list of blocks.

Our contribution is to introduce an intermediate layer between the (TOB)
and the the Execution Layer (EL), which we call the MEV Resilient Layer (MEV-
R). MEV-R takes as input the total order of blocks and deterministically reorders
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Fig. 1: Overview of a system with 4 nodes (V1, V2, V3, V4) submitting batches
to the Total Order Broadcast (TOB) layer. Each node locally runs a MEV-R
layer over the commit sequence and re-order it. Finally the Execution layer (EL)
consumes this sequence and outputs the state of the system.

some of the transactions in a way that mitigates MEV attacks. Our specific
focus is on a MEV-R that handles encrypted transactions, but other works have
focused on a MEV-R that provides fair timestamping [22]. The final reordered
stream of transaction is then provided as input into the EL.

The EL as before simply maintains a state and updates it in a deterministic
manner given a continuous, ordered stream of blocks.

We assume that in addition to user transactions, sequenced blocks may in-
clude (explicitly or implicitly) unique “synthetic” event messages. An event mes-
sage indicates an event that is agreed by all honest nodes, e.g., the block height,
or an approximated time agreed by the chain. For simplicity we assume that
events are committed last in their blocks.

Properties of a MEV-R Layer. We informally define the properties of the
MEV-R layer:

– MEV-Resilience: We say that a protocol has MEV-Resilience if the ad-
versary does not learn information about transactions of honest users that
are not yet assigned a sequence number as part of their input in the exe-
cution layer. MEV-Resilience has different privacy flavors for transactions
that are committed and for transactions failed to commit. For committed
valid transactions privacy is only guaranteed until the sequence number is
assigned. Afterwards the transaction is revealed so that execution can pro-
ceed. For the rest of the transactions, including ones that are committed and
ignored by the network (e.g., have an invalid nonce), transactions that are
never committed, or even never submitted to the TOB, we want perpetual
privacy.4

4 In the security analysis we use ad-hoc games that are similar to CPA security to
capture those informal guarantees. We leave to future work the question of whether
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– Safety: We say that a protocol is safe if for two honest nodes that get the
same ordering of transactions as input from the TOB into the MEV-R layer
then they get the same output.

– Livness: We say that a protocol is live if for an honest node that gets an
ordering of transactions as input from the TOB into the MEV-R layer then
they get all input transactions as output.

3 Warm Up: Optimizing Execution Order

Most blockchains execute transactions according to a deterministic order that
depends on the commit order (e.g., ordered by fee, per block) [31,3,30]. How-
ever, when mixing with encrypted transactions, it is better to order the ex-
ecution of normal transactions first (with the standard ordering logic), and
only after that order the encrypted ones. E.g., given a block with transactions
tx1, tx2, etx3, tx4, etx5, the MEV-R layer would order tx1, tx2, tx4 first, and then
etx3, etx5. This change does not break any fairness or security assumptions, while
it reduces the delay duration of transactions that are committed in the same
block with encrypted ones to zero, as they can be executed independently of the
decryption process.

Similarly, when per-event decryption is used, the execution of encrypted
transactions should not be ordered after the normal transactions from the same
block, but instead at the end of the block that commits the target event. In other
words, transactions that are encrypted for event E and committed before E is
committed, are executed after the normal transactions of block b that includes
the target event E . This way, all normal transactions that are committed up
to and including block b are not affected by transactions encrypted for E . For
example, say we have a block with etx1, tx2, one with tx3, etx4, E , and another
with tx5. The MEV-R layer will order tx2, tx3 first, etx1, etx4 after, and last tx5
(which will be blocked on the decryption of the previous two transactions).

Note that even after the above two optimizations, the execution of normal
transactions from block bi+1 might be blocked on the execution of encrypted
transactions from the previous block bi, impacting the delay duration (as hap-
pens with tx5 in the last example). For blockchains with fast consensus protocols
that may commit multiple times per second, this delay can be dramatic. In the
next section we show how to reduce this overhead.

4 The Seahorse Design

As the system is designed for blockchains, for simplicity we assume that all
transactions are authenticated. Recall that an encrypted transaction still needs

our protocols can be proven to be secure for stronger notions of security that use ideal
functionalities and simulation. Those notions may, for example, capture “adaptive”
attacks in which the adversary chooses which transactions to commit depending on
the ciphertexts.
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to pay basic network fees even if the encrypted data is invalid. We represent an
encrypted transaction etx by (sender, nonce, blob, sig) where sender is the entity
that sent the transaction and pays the fees, nonce is a random nonce chosen by
the sender per transaction (which may or may not be used by the network for
replay attack prevention), blob is the encrypted data, and sig is a signature on
sender, nonce, blob using the signature key associated in the network with sender
(sig may include other inputs as defined by the network for normal transactions).
We denote by sender(·) the sender of a given transaction, and by nonce(·) the
associated nonce.

Let π(i) be a deterministic permutation of the node ids, where i is an index,
and let π(i, j) be the j-th value of π(i).

For simplicity and generality we do not specify the details of the DKG pro-
tocol and assume that all parties initialize TIBE and agree on the public key pk.
Also, we assume that there is a continuous series of “synthetic” events E1, E2, . . .
committed by the nodes, e.g., an event for every tenth block. The exact frequency
should be set considering the trade-off between the cost per event vs latency.

4.1 Our Construction

While for simplicity the construction below uses TIBE also for per-transaction
encryption, any threshold encryption can be used for that layer (e.g., TDH2 from
[34]) as long as the encryption can be bounded to the transaction sender and
the nonce.

Encrypting a transaction for event Ei in the future. Given a transaction
tx, the user follows the next steps: First, it selects a random nonce nonce of
sufficient length (i.e., 40 bits). Second, it selects random strings k1, k2 of the
length of a symmetric key, and sets identity u = sender(tx) | nonce. Then, the
user computes c1 = H(k1 | k2) ⊕ tx where hash function H has a sufficiently
long output,5 c2 = Enc(k1, u, pk), and c3 = Enc(k2, E ′i , pk) where E ′i is an event
associated with Ei that will be emitted below, e.g., Ei can be the message block:i
and E ′i be the message postblock:i. If the length of the transaction tx should
remain private as well, we assume that it is padded to a fixed size before being
encrypted. Last, it outputs (Ei, c1, c2, c3) as the blob of the encrypted transaction.

The blob is cryptographically bound to the transaction sender via the iden-
tity u. This binding prevents adversaries from committing different transactions
with the same identity, as u is computed by the network based on the sender of
an authenticated transaction. The security implications of this binding are signif-
icant. If u were instead a random string, an adversary could potentially intercept
a user’s transaction, generate an alternative encrypted transaction with an iden-
tical identity, commit it to the network, await its decryption, and subsequently
use the revealed decryption key to decrypt the original user’s transaction, de-
spite it not being committed. This vulnerability underscores the critical nature
5 Other option is to use H(k1 | k2) as a key to a symmetric encryption that is used to

encrypt tx.
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of the secure binding between the blob and the transaction sender in maintain-
ing the integrity of the encryption scheme and preventing unauthorized access
to transaction contents.

In certain scenarios, the entity encrypting the transaction may differ from
the one responsible for network fees. Consequently, setting u to sender(etx) be-
comes problematic, as the fee-paying entity could potentially execute the afore-
mentioned attack and transmit additional transactions with an identical u. To
address this issue in such settings, an alternative approach utilizing a signa-
ture scheme is proposed. The user encrypting the blob generates an one-time
signature key pair (sk, pk), employing pk in place of sender(etx) in the identity
computation. Subsequently, the user signs the encrypted blob using sk. This
method maintains security by preventing adversaries from creating a signed en-
crypted blob for the same pk, thereby precluding unauthorized use of the network
to compute the decryption key for u unless the legitimate user’s transaction is
committed.

Committing encrypted transactions. Encrypted transactions are commit-
ted by the TOB layer as normal ones.

Let the blob of an encrypted transaction be (Ei, c1, c2, c3). The MEV-R layer
ignores/aborts the transaction if Ei was committed already. Otherwise, the MEV-
R layer stores internally this encryption and triggers the per-tx decryption below.
(Note that MEV-R layer continues processing following transactions.)

Per-tx decryption of etx [slow path]. The MEV-R layer of node j sends
PartialKey(skj , u) to node π(m, 0), where u is calculated as defined above for etx,
and m is the index of the commit that included etx. Node π(m, 0) checks the
partial keys using Verify and once it has enough valid partial decryptions for
the encrypted transaction etx, it computes ku using Combine and sends it to the
TOB along with a reference to etx (e.g., its digest). This process is asynchronous
and does not block the execution of other transactions.

A malicious node π(m, 0) may refuse to decrypt some transactions. To solve
this issue, we use the deterministic order of π(m) to all other nodes who would act
as backups. All nodes keep track of all encrypted transactions that are committed
and monitor the work of the primary node π(m, 0). If the backup nodes fail to
observe a key ku associated one of the committed encrypted transactions in the
output of the TOB after a fixed (protocol specified) number of commits, other
nodes take over the role of π(m, 0) in turns, following their deterministic order
(i.e., the first backup aggregator would be π(m, 1), then π(m, 2), and so on).
This signal is also used to rotate the primary aggregator node and allow the
next backup node in line to take over its role.

Inserting ku into the TOB also allows full nodes and auditors following the
output of TOB to ensure that no fully corrupted group of nodes censored en-
crypted transactions by refusing to decrypt them.
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Per-event decryption and execution [fast path]. Let CT(Ei) be the set of
committed, encrypted transactions for Ei that were committed up to event Ei.
Once the per-tx decryption keys for all the transactions of CT(Ei) are commit-
ted, and Ei is also committed (implying no more encrypted transactions for Ei
will be decrypted), the MEV-R layer implicitly emits E ′i and pauses executing
following transactions. Nodes then jointly generate the per-event decryption key
kE

′
i . This is achieved by every node disseminates its partial decryption key to all

other nodes. When the decryption key is known to the MEV-R layer, it uses it to
decrypt the pending encrypted transactions for E ′i , outputs their decrypted vari-
ants, and resumes executing subsequent transactions. While the above process
is synchronous and blocks the execution of other non-encrypted transactions, it
is cheaper than the per-transaction decryption process as it only requires the
generation of a single per-event decryption key which can be implemented with
a simple broadcast.

For auditing purposes nodes may send kE
′
i to the TOB so auditors can verify

the decrypted transactions.

Sharding the aggregators. The per-tx decryption process leverages a leader
to reduce communication complexity. To avoid placing all the communication
and computation burden of collecting and processing partial decryptions over a
single node at the time, we may logically create l shards (e.g., l = 5). Each shard
starts with a different primary node and sequence of backup nodes. We then
deterministically assign each committed etx to a shard (e.g., in a round-robin
fashion). This simple sharding strategy allows a parallel resources utilisation of
honest nodes and a lower latency.

Putting it all together - an example. Figure 2 illustrates an end-to-end
example execution. Say normal (unencrypted) transactions tx1, tx2, tx3 and en-
crypted transactions etx4, etx5, etx6 for event E are sent to the nodes (➊). Nodes
call the TOB and receive a list of three blocks, first with tx1, etx4, second with
etx5, tx2, E , and third with tx3, etx6 (➋). When a node calls the MEV-R layer
on those blocks, the MEV-R layer outputs tx1, tx2, tx3, since those transactions
should not be blocked on encrypted transactions for E (➌). etx6 is ignored as it
was committed after E . Once the MEV-R layer sees etx4, etx5 it sends to nodes
π(1, 0), π(2, 0) the partial decryptions for those transactions (➍). Assuming those
nodes are honest and responsive, they receive enough partial decryptions to re-
construct the full decryption keys w1, w2 for the c2 components of etx4, etx5 and
send them to the TOB (➎).

Let the following blocks returned from the TOB include the block tx7, block
w1, tx8, w2, and block tx9 (E ′ is not explicitly included in the second block as
it can be deducted from the output of the TOB) (➏). When a node calls the
MEV-R layer on those blocks, it outputs tx7, tx8 as those transactions should
not be blocked on encrypted transactions for E (➐). Once the MEV-R observes
that w1, w2 are included in a block (and are valid decryption keys), it pauses
executing following transactions (i.e., tx9 is pending), and broadcasts to all nodes
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Fig. 2: Example execution performed over the input transactions tx1, tx2, tx3 and
the encrypted transactions etx4, etx5, etx6 for event E , followed by transactions
tx7, tx8, tx9.

the partial decryption key for event E ′ (➑). Once the layer receives enough partial
decryption keys to construct the full decryption key for E ′, it decrypts etx4, etx5
and gets tx4, tx5, and then outputs transactions tx4, tx5, tx9 (➒).

4.2 Analysis

Lemma 1. The decryption key for identity u = sender(tx) | nonce is revealed
only if user sender(tx) sent an encrypted transaction for identity u, and that
transaction was committed before its associated event Ei.

This follows the finality and safety of the TOB (i.e., all honest nodes see the
same ordered transactions), the fact that transactions are authenticated (i.e.,
no other party can send a message with the same sender(etx)), the security of
TIBE (i.e., less than t parties cannot recover the key for u), and that u is derived
explicitly by nodes and therefore cannot be faked by the adversary.

MEV-Resilience of committed transactions. We require that the adversary
cannot win the CPA security of IBE with respect to the encryption of k2 and a
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chosen identity E∗: Recall that in that game, the challenger chooses a random
bit b, generates a key pair sk,PK and sends PK to the adversary. The adversary
can once send (id,m0,m1) and ask the challenger for a challenge encryption
Enc(mb, id,PK). In addition it can repeatedly ask the challenger for a decryption
key du for any identity u as long as u ̸= id. The adversary sends b′ to the
challenger and the challenger outputs b = b′.

In our variant, a adversary chooses E∗ as the chosen challenge identity, to
represent the fact that E ′ was not emitted, auxiliary identity u∗ and two messages
m0,m1 such that |m0| = |m1|. It gets back the encrypted transaction for those
inputs, with tx = mb. The adversary sends b′ to the challenger and the challenger
outputs b = b′.

Say that adversary A wins the above game with non-negligible advantage ϵ.
We can define a simulator S that breaks the security of the IBE by emulating
the honest parties for A. S passes the public key from the IBE experiment
to A and tunnels requests to decryption keys directly to the IBE experiment
challenger (both modified according to the threshold variant of the protocol).
When A requests a challenge encryption (providing E∗, u∗,m0,m1), S chooses
random k1, k2, computes c2 = Enc(k1, u

∗,PK), sends (E∗, k2, 0) (where k2 and 0
are the two messages for the challenge for identity E∗) to the IBE challenger and
receives back an encryption c which is used as c3, and sets c1 to H(k1 | k2)⊕mb. S
outputs whatever A outputs. When the IBE experiment challenger’s bit is 1, c1
is statistically hiding mb and thus the adversary cannot guess b with significant
advantage. When the bit is 0, the advantage of guessing b is the same as in the
above experiment, thus overall the advantage of winning this experiment is ϵ/2.
Following the security of the IBE in use, this advantage is negligible.

MEV-Resilience of non-committed transactions. We require that the ad-
versary cannot win an experiment similar to the above one with non-negligible
advantage, where the only difference is that here we restrict the requested de-
cryption keys to not include u∗ (instead of E∗), to represent the fact that the
per-tx decryption key is not revealed if the transaction was not committed before
its associated E , following Lemma 1.

We omit the reduction to the security of the IBE encryption as it is similar
to the one above.

Safety. Safety directly follows from the safety property of TOB, and the deter-
minism of the MEV-R and EL layers. Let’s assume two honest nodes V and V ′

hold a conflicting state. Honest nodes only execute transactions once they are
output by the MEV-R layer, which in turn only processes transactions once they
are output from the TOB layer. As a result, there are three cases: (1) V and V ′

receive different outputs from the TOB layer, which is impossible as it would
contradict the safety property of the TOB; (2) The MEV-R layer of V and V ′

receive the same inputs but produce different outputs. This is impossible follow-
ing the specification of the protocol, as the MEV-R layer output is deterministic
given the inputs from the TOB layer, together with the fact that decryption keys
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in use are verifiable, thus the decryption process is deterministic; and, (3) The
EL layer of V and V ′ receive the same inputs from the MEV-R but produce a
different state, which would be a violation of the determinism property of the
EL layer.

Livness. Our protocol is live provided that there exists at least t correct nodes.
Liveness of the MEV-R layer follows the correctness property of the TIBE scheme
(Section 2) under the threshold t and the livenss of the TOB layer.

The liveness of the TOB layer ensures that an encrypted transaction etx′

encrypted for event E and correctly submitted (possibly multiple times) by a
correct user into the TOB is eventually committed before E is triggered. At
this point, all t correct nodes observe it and send their partial decryption key
to the primary aggregator. We then distinguish two cases: (i) Assuming the
correctness of the TIBE scheme, if the primary aggregator is honest, it decrypts
the transaction into a plaintext tx′ and submits it to the TOB. (ii) If the primary
aggregator is dishonest and drops the transaction, the honest nodes, eventually,
send their partial decryption key to an next honest scheduled backup node; we
are then back to case (i).

Since we use broadcast, the per-event decryption eventually progresses given
at least t correct nodes.

Communication complexity. A user transaction of length |tx| bytes requires
additional two IBE encryptions of short keys. In case an aggregator is honest,
each node sends O(1) group elements per committed encrypted transaction dur-
ing the per-tx decryption, or O(f + 1) group elements in the worst case that
f consecutive aggregators are malicious. Last, each node sends O(n) group ele-
ments in total per event.

5 Conclusion

Seahorse is a novel hybrid approach tailored for MEV-resilience in blockchains.
It integrates a dual-layer encryption scheme per transaction: one layer ensures
per-transaction encryption to keep the contents private until commitment, while
the other layer applies per-event encryption to enable communication-efficient
batch processing post-commitment. This approach preserves transaction confi-
dentiality from submission up to the moment before execution, all while mini-
mizing the delays typically encountered by non-encrypted transactions. Seahorse
achieves a communication complexity of O(n+B) for B encrypted transactions
and n nodes in optimistic environments, offering a significant improvement over
existing MEV-resistant protocols.
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