
ar
X

iv
:1

71
1.

03
93

6v
1

 [
cs

.C
R

]
 1

0
N

ov
 2

01
7

1

SoK: Consensus in the Age of Blockchains

Shehar Bano1, Alberto Sonnino1, Mustafa Al-Bassam1, Sarah Azouvi1, Patrick McCorry1,

Sarah Meiklejohn1, and George Danezis12

1University College London, United Kingdom
2The Alan Turing Institute

Abstract—The blockchain initially gained traction in 2008
as the technology underlying Bitcoin [104], but now has been
employed in a diverse range of applications and created a
global market worth over $150B as of 2017. What distinguishes
blockchains from traditional distributed databases is the ability
to operate in a decentralized setting without relying on a trusted
third party. As such their core technical component is consensus:
how to reach agreement among a group of nodes. This has been
extensively studied already in the distributed systems community
for closed systems, but its application to open blockchains has
revitalized the field and led to a plethora of new designs.

The inherent complexity of consensus protocols and their
rapid and dramatic evolution makes it hard to contextualize
the design landscape. We address this challenge by conducting
a systematic and comprehensive study of blockchain consensus
protocols. After first discussing key themes in classical consensus
protocols, we describe: (i) protocols based on proof-of-work
(PoW), (ii) proof-of-X (PoX) protocols that replace PoW with
more energy-efficient alternatives, and (iii) hybrid protocols that
are compositions or variations of classical consensus protocols.
We develop a framework to evaluate their performance, security
and design properties, and use it to systematize key themes in
the protocol categories described above. This evaluation leads us
to identify research gaps and challenges for the community to
consider in future research endeavours.

I. INTRODUCTION

Blockchains—the technology at the foundation of Bitcoin

and other cryptocurrencies—have been hailed as a major

disruptive innovation with the potential to transform most

industries. The total global market capital of blockchain-

based tokens and cryptocurrencies has reached over $150B

as of 2017, and is expected to grow further [112]. While the

projected capabilities and value of the blockchain might seem

overly optimistic, its key properties of integrity, resilience,

and transparency make it an attractive option for a number

of applications. The blockchain is a decentralized, replicated,

immutable and tamper-evident log: data on the blockchain can-

not be deleted, and anyone can read data from the blockchain

and verify its correctness. An important implication of this

architecture is disintermediation: multiple untrusted or semi-

trusted parties can directly and transparently interact with each

other without the presence of a trusted intermediary. This

makes blockchains immediately relevant to banks and financial

institutions which incur huge middleman costs in settlements

and other back office operations. A number of big players

are actively exploring the feasibility of blockchains, including

the Bank of England [22], the Bank of America [46] and the

IMF [63]. However, blockchains are not just restricted to the

financial industry; the list of use cases is long [79], ranging

from voting [5] and government and public records [? ?], to

the sharing economy [3, 7, 8] and social media [1, 11].

We are at a crucial point in the evolution of blockchains.

The major hurdle in the widespread adoption of blockchains

is their performance and scalability—while improvements

have been made, they are nowhere near as ubiquitous as

their traditional counterparts. These properties are deeply

related to the consensus protocol—the core component of

the blockchain—and we believe this is where future efforts

to improve blockchain performance and scalability should be

concentrated. The consensus protocol specifies how to get

multiple nodes to agree on a value—that is, if a data item

should be added to the blockchain. Two key properties of a

consensus protocol are: (i) requests from correct clients are

eventually processed (liveness), and (ii) if an honest node

accepts (or rejects) a value then all other honest nodes make

the same decision (safety/consistency). Consensus is not a new

problem: the distributed systems community has extensively

studied it for decades, and developed robust and practical

protocols that can tolerate faulty and malicious nodes [43, 88].

However, these protocols were designed for closed groups.

Bitcoin’s fundamental innovation was to enable consensus

among an open, decentralized group of nodes. This was

achieved via a leader election based on proof-of-work (PoW):

all nodes attempt to find the solution to a hash puzzle and

the node that wins adds the next block to the blockchain.

Due to its probabilistic leader election process combined with

performance fluctuations in decentralized networks, Bitcoin

offers only weak consistency: different nodes might end up

having different views of the blockchain leading to forks.

Additionally, Bitcoin suffers from poor performance which

cannot be remedied without fundamental redesign [48] and

its PoW consumes a huge amount of energy [129]. This

has led to a plethora of proposals for new consensus pro-

tocols [23]. Some replace Bitcoin’s PoW with more energy-

efficient alternatives [101], while others modify the original

design of Bitcoin for better performance [60]. To achieve

strong consistency and similar performance as mainstream

payment processing systems like Visa and PayPal, a number

of recent proposals seek to repurpose classical consensus

protocols for use in decentralized blockchains [131].

To date there has been no systematic and comprehensive

study of blockchain consensus protocols (though there exist

a few short surveys based on selected systems which we

discuss in Section II-B). This incurs two major challenges.

First, a comprehensive survey of blockchains would doubtless

include a discussion of classical consensus protocols. How-

http://arxiv.org/abs/1711.03936v1

2

ever, the literature is vast and complex, which makes it hard

to be tailored to blockchains. Second, conducting a survey

of consensus protocols in blockchains has its own difficulties.

Though young, the field is characterised by high-volume, fast-

paced work. Since 2014, on average about 250 papers per

year have appeared on the topic of blockchains. A reasonable

approach is to only consider work published in reputable

venues, but here the bulk of the work is published in non peer-

reviewed venues and as white papers for industrial platforms.

We fill this gap by making three contributions. First, we

conduct a comprehensive survey mapping how consensus

protocols have evolved from the classical distributed systems

use case to their application to blockchains. We first discuss

key themes in classical consensus protocols (Section IV), and

then shift focus to PoW approaches popularized by Bitcoin

(Section V). Section VI discusses proof-of-X (PoX) schemes,

which is an umbrella term for systems that replace PoW with

more useful and energy-efficient alternatives. In the next two

sections, we look at hybrid systems based on novel com-

positions of classical consensus primitives, or that combine

classical consensus with PoW or PoX (Sections VII and VIII).

Our second contribution is a common evaluation framework

to visualize the capabilities of blockchain consensus protocols

(Table I). Instead of considering individual protocols which

would be clearly infeasible, we map out the landscape by ex-

tracting and evaluating high-level design themes in blockchain

consensus protocols. Finally, we present a discussion of open

research challenges and potential directions in the design of

future blockchain consensus protocols (Section IX).

II. BACKGROUND AND RELATED WORK

A. Background

We describe key concepts in blockchains. For details, we

refer the readers to the excellent work by Bonneau et al. [32].

The blockchain is a decentralized, replicated, resilient and

transparent data store that allows anyone to read data and

verify its correctness. In permissioned blockchains, all the

node identities are known (trsuted or semi-trusted), and are

controlled by a single entity or federation. Permissionless

blockchains are fully decentralized and anyone can run a node

and join the network. Data is stored on the blockchain as

blocks. The blockchain is typically implemented as a linked

list in which pointers to previous blocks have been replaced

with the cryptographic hash of the previous block. The hash

serves as the id of the previous block, and also verifies its

integrity. This pattern is repeated in each block, resulting in a

hash chain in which each block implicitly verifies integrity of

the entire chain before it, and tampering with previous data is

detectable. It is also possible to store the blockchain as a tree-

like structure called the hash tree or the Merkle tree [133]. A

transaction specifies some transformation on the state of the

blockchain. If a transaction passes validity and verification

checks (transaction validation), it is included in a candidate

block (a set of transactions) to be added to the blockchain.

Nodes in the network participate in a collaborative protocol

(consensus) to agree on whether the block should be added

to the blockchain. In probabilistic consensus protocols like

Bitcoin’s PoW, nodes might end up having different views of

the blockchain (forks) because of latency in propagation of

transactions, and faulty or malicious nodes. A related concept

is that of double-spending where a transaction consumes

an asset which has already been consumed by a previous

transaction. Consensus protocols might have a leader node

that coordinates with other nodes to reach consensus, and for

appending a final, committed value to the blockchain. The

leader is usually effective for an interval called an epoch or

a round. If the epoch expires (or upon a fault), a new leader

is elected. Bitcoin transactions can include reference to well-

known deterministic scripts that operate on the transaction

inputs and produce some outputs. To make the blockchain

a general-purpose platform, scripts are being replaced with

smart contracts. A smart contract is self-executing code that

enforces a digital contract.

B. Related Work

We believe that our study represents the most compre-

hensive systematic investigation of consensus protocols in

blockchains to date. Below we list work that illuminates

different subsets of this space and supports our study.

1) Surveys and Systematization: Bonneau et al. [32] present

a comprehensive systematization of Bitcoin and other cryp-

tocurrencies. Narayanan and Clark [105] trace the academic

pedigree of Bitcoin technical components. Zohar [139] pro-

vides an overview of scalability and security issues in cryp-

tocurrencies especially Bitcoin, emphasizing the role of in-

centivization in PoW blockchains to enforce security. Cachin

and Vukolić [40] discuss key concepts in classical consen-

sus and describe a selection of permissioned blockchains.

Vukolić [131] emphasizes the weak consistency of PoW

systems. He advocates the shift to classical BFT protocols

that offer strong consistency, but notes challenges in their

scalability which are discussed in a previous paper by the

same author [130]. Both these papers focus on permissioned

blockchains. Yli-Huumo et al. [136] conduct a survey (based

on 41 papers) of topic trends in blockchain research and find

that 80% of the papers are on Bitcoin and the remaining

20% are dominated by security and privacy in blockchains.

They highlight concrete evaluation criteria and scalability as

neglected areas of research.

2) Evaluation: BLOCKBENCH [55] is a framework for

evaluating the security and performance of private blockchains.

Their evaluation reveals that due to design gaps, popular

blockchains lag far behind traditional database systems when

processing traditional data processing workloads. Their rec-

ommendations include systematic benchmarking, improved

usability, and revitalizing classical database design principles

such as modularity, exploiting hardware primitives, sharding,

and support for declarative languages. Gervais et al. [67]

present a quantitative framework to evaluate the security and

performance of PoW blockchains. They focus on optimal

adversarial strategies for double-spending and selfish mining,

while accounting for network propagation, different block

sizes, block generation intervals, information propagation

mechanism, and the impact of eclipse attacks. Croman et

3

al. [48] present metrics to evaluate the resource costs and

performance of Bitcoin with a focus on scalability. They show

that even with reparametrization, Bitcoin can only achieve a

maximum throughput of 27 tx/s with a latency of 12 seconds.

III. SYSTEMATIZATION METHODOLOGY

Capturing a longitudinal and representative view of a topic

as rich as consensus is challenging. We describe our method-

ology for compiling the literature on which this work is based,

and describe the review process and the evaluation framework.

We consider consensus in classical systems and blockchains

separately because there is a significant difference in the

maturity of these two fields.

A. Classical consensus

The area of classical consensus is well-established and

spans decades. Our goal is to present sufficient background on

classical consensus to contextualize its subsequent application

to blockchains. The surveyed literature comprised of well-

known seminal works in the area, based on their influence

and subsequent citations. It was also supported by Cachin et

al.’s comprehensive book on this topic [37] and Schneider’s

classical survey on state machine replication [120].

B. Consensus in Blockchains

Consensus in blockchains is more involved because it is a

high-volume, high-churn evolving area of research.

1) Compiling and Reviewing Survey Material: We used a

combination of sources to compile our survey material because

the bulk of the work in this area originates in non-academic

venues, and the usual metrics such as impact (the number

of citations) cannot be employed in this young field. We

first compiled a seed-list of literature to survey based on

a creditable, actively maintained bibliographic repository on

blockchain research by Christian Decker from ETH Zürich.1

We augmented this list with work that cited peer-reviewed

papers in it, and with other relevant papers of which we

were aware. After further refinement, we ended up with the

papers listed in Appendix A, which are categorized by PoW,

PoX, or hybrid. For each category, a subset of representative

papers were selected, prioritizing papers published in academic

venues, and papers that significantly advance the field.

2) Evaluation Framework: Our evaluation framework de-

scribes systems along three broad themes: security, perfor-

mance, and design aspects. In terms of security, we consider

three properties: consistency (i.e., whether or not the system

will reach consensus on a proposed value), transaction cen-

sorship resistance (i.e., the system’s resilience to malicious

nodes suppressing transactions), and DoS resistance (i.e., the

system’s resilience to DoS attacks against nodes involved in

consensus). In terms of performance, we consider throughput

(i.e., the maximum rate at which values can be agreed upon by

the consensus protocol), scalability (i.e., the system’s ability to

1Other similar repositories by Aljosha Judmayer [80] and Brett Scott [122]
(discontinued after 2016) are also note-worthy; Decker’s collection overlaps
with both of these.

achieve greater throughput when consensus involves a larger

number of nodes) and latency (i.e., the time it takes from when

a value is proposed, until when consensus has been reached

on it). In terms of design, some properties are relevant only to

their associated categories, so we defer explanation of them

to sections where they are relevant. A complete glossary is

included in Appendix B.

We use Table I as a common reference throughout our

discussion on PoW, PoX, and hybrid consensus, focusing on

parts of the table relevant to each category. Unless explicitly

stated, we always assume partial synchrony (i.e., messages

might be delayed in the network but eventually arrive within

some bound). The wide view captured by this table aids in

visualizing evaluation of the field.

IV. CLASSICAL CONSENSUS

Safety in distributed systems has been studied since the

1970s, alongside the rise of distributed databases and trans-

actions. Jim Gray, in 1978, proposed the two-phase commit

protocol [72], allowing a transaction manager to atomically

commit a transaction, depending on different resources held

by a distributed set of resource managers. Transaction commit

protocols enable distributed processing, and thus scalability,

but do not provide resilience against faulty resource managers,

or more generally nodes. In fact, two-phase commit suffers a

deadlock in case a resource manager fails to complete the

protocol, requiring the introduction of more complex three-

round protocols allowing recovery [123]—i.e. the distributed

resource managers being able to release the locks held on

resources. Since potentially a crucial resource may only be

available on a single resource manager, any failures inhibit

progress towards accepting dependent transactions.

The need for consensus, or atomic broadcast, protocols

in distributed systems originates from the need to provide

resilience against failures across multiple nodes holding repli-

cas of databases. The primitive is closely associated with the

state machine replication paradigm [120] for building reliable

distributed computations: any computation is expressed as a

state machine, accepting messages to mutate its state. Given

that a set of replicas start at the same initial state, and can

agree on a common sequence of messages, then they may all

privately evolve the state of the computation and correctly

maintain consistency across the replicated databases they

hold, despite failures or network variations. The underlying

consensus protocols are characterized by the communication

model, as well as the failure model, assumed.

According to the taxonomy by Dwork et al. [57], net-

works may be syncronous or asynchronous, or offer eventual

synchrony. In a synchronous network the delays messages

may suffer can be bound by some time ∆. On the other

hand, in asynchronous networks messages may be delayed

arbitrarily, and there exists no reliable bound ∆ for their

delay. Networks with partially synchronous, or eventually

synchronous networks, assume that the network at some

stage will eventually be synchronous despite potentially a

long period of asynchrony. Fischer et al. [62] show that

deterministic protocols for consensus are impossible in the

4

fully asynchronous case, and have known solutions in the

synchronous case (also known as the “Byzantines General’s

Problem”). The impossibility theorem is also not taking into

account computational bounds on the work nodes may do—

something that is exploited by both Nakamoto consensus, as

well as other cryptographic solutions [38] to overcome it.

Different failure models have also been considered in the lit-

erature. In the crash failure model, nodes may fail at any time,

but they fail by stopping to process, emit or receive messages.

Usually failed nodes remain silent forever, although a num-

ber of distributed protocols consider recovery. On the other

hand, in the byzantine failures model, failed nodes may take

arbitrary actions—including sending and receiving sequences

of messages that are specially crafted to defeat properties of

the consensus protocol. In the network security literature those

nodes would be considered malicious or collectively controlled

by an adversary. Thus the byzantine setting is of relevance to

security-critical settings, and traditional consensus protocols

tolerating only crash failures such as Paxos [88], viewstamped

replication [109] and the more modern Raft [110] or Zab [81]

cannot be used, unmodified, in adversarial settings.

In terms of the properties expected from a consensus

protocol, we consider liveness and safety as enumerated by

Cachin et al. [40]. For liveness, validity ensures that if a node

broadcasts a message, eventually this message will be ordered

within the consensus, and agreement ensures that if a message

is delivered to one honest node, it will eventually be delivered

to all honest nodes. For safety, integrity guarantees that only

broadcast messages are delivered, and they are delivered only

once, and total order ensures that all honest nodes extract the

same order for all delivered messages.

Consensus refers to ‘agreement’ by all nodes, not ‘choice’:

consensus protocols are not voting protocols ensuring that all

or a majority of nodes agree to the total order, or any single

message—the order may be arbitrary or even controlled by

an adversary. A number of extensions to consensus protocols

include a validation step, that ensures the transactions accepted

are valid—however the validation rules must be deterministic

and uniform across all nodes, and does not afford nodes any

discretion about what constitutes a valid message.

An exemplary protocol implementing consensus in the the

byzantine and partially synchronous setting is Practical Byzan-

tine Fault Tolerance (PBFT) by Castro and Liskov [42]. The

protocol operates in a sequence of views, each coordinated by

a leader—a pattern also used in Paxos [88]. Within each view

the leader orders messages, and propagates them through a

three step reliable broadcast to the replicas. Replicas monitor

the leader for safety, as well as for liveness, and can propose

a view change in case the leader is unavailable or malicious.

Safety is guaranteed within the asynchronous network setting;

liveness on the other hand is only guaranteed within a partially

synchronous setting, since replicas rely on time-outs to detect

a faulty leader. The key complexity of PBFT lies in the view-

change sub protocol, that needs to ensure agreement on the

new leader and view, as well as guarantee safety of messages

agreed in previous views. The basic protocol requires O(n2)
messages for n replicas to achieve consensus, where n is the

number of nodes. The properties of the protocol are guaranteed

if n = 3f + 1, where f is the number of byzantine nodes.

The issue of storage efficiency, a topic of great relevance to

blockchain protocols, is discussed in PBFT: a naive implemen-

tation of state machine replication, based on consensus, would

store the full sequence of actions. The proposed solution relies

on replicas agreeing checkpoint actions. Those checkpoints are

co-signed by all replicas, and allow them to only store the

current state of the system, and discard the past sequence that

led to the checkpoint state.

PBFT and other consensus protocols employ replication to

achieve resilience against failures, not scalability. In fact the

traditional literature on byzantine consensus does not discuss

distribution of resources, in the context of a distributed or

sharded database, with the exception of a less known joint

work by Gray and Lamport on combining atomic broadcast

with atomic commit [71]. As a result, one expects systems

employing byzantine consensus to see this protocol become

a bottleneck, since its trivial application would require all

transactions to be sequenced by the quorum of n nodes—

using protocols that are slower than asking a single processor

to sequence them.

V. PROOF-OF-WORK CONSENSUS

In 2008, Bitcoin [104] was published by a pseudonymous

author Satoshi Nakamoto; it has since gone on to become one

of the most successful cryptocurrencies of modern times. The

key innovation of Bitcoin is its use of proof-of-work (PoW) to

achieve consensus—also called Nakamoto consensus after its

originator—in a fully decentralized, permissionless network.

A. Nakamoto consensus

While the technical components of Bitcoin originate in

previous academic literature, their composition in Bitcoin to

achieve consensus is novel. The idea of proof-of-work was

first presented by Dwork and Naor in 1993 as a technique

for combatting spam mail, by requiring the email sender to

compute the solution to a mathematical puzzle to prove that

some computational work was performed [58].

PoW was independently proposed in 1997 for Hashcash by

Back, another system for fighting spam [21]. In Hashcash, the

computational puzzle is finding a SHA-1 hash of a header

including the email recipient’s address and current date, such

that the hash contains at least 20 bits of leading zeros. As the

hashing algorithm is pre-image resistant, the puzzle can be

solved only by including random nonces in the header until

the resulting hash meets the leading zeros requirement. These

guesses require a significant amount of computational work,

so a valid hash is considered to be a PoW.

Nakamoto consensus is derived from Hashcash [21]. It

replaces Hashcash’s SHA-1 hashing with two successive SHA-

2 hashes, and requires valid hashes to have a value below a

target integer value t. The difficulty of the puzzle is therefore

adjustable: decreasing t increases the number of guesses (and

thus work) required to generate a valid hash. The nodes that

generate hashes are called miners and the process is referred

to as mining. Miners calculate hashes of candidate blocks of

5

TABLE I: Evaluation of blockchain consensus protocols. Notation for binary values: ✓ has property, ✗ does not have property. Notation for non-binary values: has property, partially has property, does not have

property. Notation for meta-information: – the property does not apply to the given category, ? the value could not be extracted, ! the value is missing. The rows correspond to selected systems in each protocol category; a full

list of the corresponding citations is provided in Appendix A. A list of terms is included in Appendix B. In the Msg. column (message complexity), n refers to the number of participants, and c is the size of the committee.

Systems
code

avail.

Committee

Formation
(Resources)

Strong

consistency

Single Committee

Committee
Configura-

tion

Inter-Committee Consensus

Incentives
(Join,Participate)

Leader Msg.

Multiple Committee

Intra-
Committee

Configura-
tion

Intra-committee Consensus

Mediated Incentives

Safety

Transaction
Censorship

Resistance

DoS

Resistance

Adversary

Model

Performances

Throughput Scalable Latency Exp. Setup

h
y

b
ri

d

ByzCoin [83] ✓ PoW ✓
Rolling

(single)
✓✗ Internal O(n) - - - ✓ 33% 1000 tx/s 1 ✗ 10–20s 1 Real

Solidus [15] ✗ PoW ✓
Rolling

(single)
✓✓ External O(n2) - - - ✗ 33% - - - -

Algorand [69] ✗ Lottery ✓ Full swap ✗✗ Internal O(n2) - - - ✗ 33% 90 tx/h 2 ✗ 40s 2 Real

Hyperledger [132] ✓ Permissioned ✓ Static - Flexible Flexible - - - ✓ 33% 110k tx/s 3 ✗ <1s 3 Real

RSCoin [50] ✓ Permissioned ✓ Static - Internal O(n) ✗ Client ✗ ✓ 33% 2k tx/s 4 ✓ <1s 4 Real

Elastico [94] ✗ PoW ✓ Full swap ✓✗ Internal O(n2)
Dynamic

(Random)
! ! ✗ 33%

16 blocks in

110s 5 ✓
110s for 16

blocks 5 Real

Omniledger [84] ✗ PoW/PoX ✓
Rolling

(subset)
✓✗ Internal O(n)

Dynamic

(Random)
Client ✗ ✓ 33% ≈10k tx/s 6 ✓ ≈1s 6 Real

Chainspace [17] ✓ Flexible ✓ Flexible ✗✗ Internal O(n2) ✗ ✗ ✗ ✓ 33% 350 tx/s 7 ✓ <1s 7 Real

p
ro

o
f-

o
f-

X

Ouroboros [82] ✗ Lottery ✗ Full swap ✓✓ Internal O(nc) – – – ✗ 50% 257.6 tx/s 9 ✗ 20s Simulation

Praos [51] ✗ Stake ✗
Rolling

(subset)
✓✓ Internal O(1) – – – ✗ 50% – – – –

Snow-white [49] ✗ Stake ✗ Full swap ✓✓ Internal O(1) – – – ✗ 50% 100-150 tx/s 9 ✓ ? Simulation

PermaCoin [101] ✓ PoW/PoR11 ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% – ✗ – –

SpaceMint [76] ✓ PoS ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% ? ✗ 600s Simulation

Intel PoET [78] ✓ TH12 ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ TH12 1000 tx/s 10 ✓ – Real

REM [137] ✗ TH12 ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ TH12 ! ✓ – Real

p
ro

o
f-

o
f-

w
o

rk

Bitcoin [104] ✓ PoW ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% 7 tx/s ✗ 600s Real

Bitcoin-NG [60] ✗ PoW ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% 7 tx/s ✗ <1s Simulation

GHOST [125] ✗ PoW ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% – ✗ – –

DECOR+HOP [91] ✗ PoW ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% 30 tx/s 8 ✗ 60s Simulation

Spectre [124] ✗ PoW ✗
Rolling

(single)
✗✓ Internal O(1) – – – ✓ 50% – ✗ – –

1 144 nodes/committee.
2 50k nodes/committee.
3 4 nodes/committee (corresponding to BFTSmart [13]).
4 3 nodes/committee. 10 committees.
5 100 nodes/committee. 16 committees.
6 72 nodes/committee (12.5% adversary). 25 committees.
7 4 nodes/committee. 15 committees.
8 1 minute average interval; 1 block = 1 MB.
9 40 nodes.
10 As reported in a blog post [6].
11 proof-of-retrievability.
12 Trusted Hardware.

6

transactions to be added to the blockchain, and are rewarded

with new coins if they find a valid block. The value t is reset by

the network every 2016 blocks such that miners are successful

(and can append a block to the blockchain) probabilistically

every 10 minutes (also called the inter-block interval).

B. Forks

Forks in the blockchain may occur if two miners find two

different blocks that build on the same previous block. This

is resolved by PoW consensus, which orders transactions and

makes double-spending expensive. In the original paper, forks

are resolved in the consensus rules by accepting the ‘longest

chain, which has the greatest proof-of-work effort invested

in it’ as the correct one. In practice, this is implemented as

the chain with most accumulated work, as it is possible for a

shorter chain to have more proof-of-work than a longer chain.

To double-spend assets on a PoW blockchain, an attacker

must have sufficient computing power to be able to create

a fork of the blockchain that has more accumulated work

than the chain that is to be overridden. Thus the threat model

assumes an adversary that has the majority of the computing

power on the network (referred to as a 51% attack) can

outpower the remaining computational power in generating a

chain with the most accumulated work. The security threshold

of the network is the percentage of computing power required

to conduct a 51% attack. Decker and Wattenhofer showed

that due to the delays in blocks propagation in the Bitcoin

network, increasing the block size and decreasing the inter-

block interval increases the chance of forks occurring [53],

as delayed miners may waste effort in attempting to mine on

top of blocks that are no longer the latest ones. As a result,

the network becomes more susceptible to 51% attacks from a

miner that does not suffer from delays.

C. Scaling Bitcoin

Bitcoin currently has a hardcoded blocksize limit of 1MB

per block, and a 10 minute block frequency target. Gervais et

al. [67] showed that Bitcoin’s block frequency can be reduced

to 1 minute per block without reducing the security threshold

of the existing network, modelling the bandwidth distribution

of the network around real-world broadband data.

Forks might still occur in PoW blockchains despite coun-

termeasures to avoid them. New policies have been proposed

for the selection of the main chain in the forked blockchain

to obtain a more resilient and scalable system than Bitcoin.

GHOST [125] exploits blocks that are not on the main chain,

achieving higher transaction rates without undermining Bitcoin

security. Unlike Bitcoin’s linear blockchain, GHOST organizes

blocks in a tree structure. The tree is shaped by the blocks

that successful miners choose to extend. The chain selection

algorithm chooses the heaviest path as main chain, where a

block’s weight depends on how dense its subtree is.

The challenge of scaling PoW blockchains is that the

more one increases throughput (block size) or the more one

decreases latency (block frequency), the lower the resilience

of the network to 51% attacks. A common theme in enhancing

PoW consensus is to improve performance while maintaining

the security threshold of the network without requiring nodes

and miners to upgrade their network connections.
Bitcoin-NG [60] shares Bitcoin’s trust model, but improves

performance by separating leader election from transaction

serialization (i.e., appending them to the blockchain). In each

epoch, a leader is selected via PoW as in Bitcoin. Unlike

Bitcoin, the leader can continue to append transactions to the

blockchain for the duration of its epoch, until a new leader

is elected. This allows latency to be limited only by the

network’s propagation delay, and bandwidth to be limited only

by the processing capacity of the nodes. Another approach for

improving performance, used by Spectre [124], is to allows

miners to mine blocks concurrently by replacing the ‘linear’

blockchain structure with a block-DAG. Off-chain approaches

to improve Bitcoin scalability such as the Lightning Net-

work [115] have also been proposed, where parties can execute

transactions off the main consensus path, and submit only the

final state to the blockchain. A more detailed discussion of

off-chain solutions is outside the scope of this work.

D. Mining Centralization

To reduce the variance of miners’ rewards, miners often

aggregate resources and share rewards among themselves via

pooled mining protocols. However, mining pools undermine

decentralization and are vulnerable to transaction censorship

by a malicious pool manager (needed to map transactions to

blocks) [96]. To mitigate such attacks, the PoW mechanism

should be fair: the number of valid blocks mined by a miner

should be proportional to its computing power in the network.

A number of techniques have been proposed to create decen-

tralized mining pools [96, 102]. SmartPool [96] implements a

practical decentralized mining pool through an Ethereum smart

contract, with the smart contract replacing the traditional pool

manager. On the other hand, Miller et al. [102] discourage

mining pools by proposing non-outsourceable proof-of-work

puzzles, in which rewards can be entirely stolen from the pool

manager by the entity solving the puzzle, without producing

any evidence of its implication.
DECOR+HOP [91] enforces fairness between miners by

allowing them to share the profit when competing blocks

are generated. Such efforts aim to avoid centralization by

giving miners the same reward and guaranteeing low vari-

ance as if they were mining with centralized pools. More-

over, DECOR+HOP improves Bitcoin performance by using

‘header-first propagation’, where the block header is sent

first, and nodes attempt to reconstruct the full block from

transactions that they have already heard about. If there are

missing transactions, the node fetches them from its peers.

E. Incentives

The security of Nakamoto consensus relies on economi-

cally incentivising miners to validate and mine blocks, by

rewarding them with new coins. However, previous work has

shown that Nakamoto consensus is not completely incentive

compatible [31, 59, 95].
Aside from incentives, protocol-level attacks exist that lower

the security threshold of Bitcoin below 51%. Selfish min-

ing [61] allows colluding miners to generate more valid blocks

7

than their computing power would normally allow them to if

they were following the standard protocol. In selfish mining,

colluding miners withhold blocks that they have found, which

allows them to maintain a lead over the rest of the network,

who may waste their computational power on stale blocks.

When the network is about to catch up with the colluding

miners, the colluding miners release a portion of their withheld

blocks to the network. Using this mining strategy, it is possible

to conduct a 51% attack against the network with as little as

25% of the network’s computing power.

Systems like Fruitchain [113] aim to mitigate selfish mining

by using two independent mining processes on top of each

other: in addition to the PoW to create blocks, Fruitchain

requires an additional PoW to mine an new type of block,

called ‘fruits’. Blockchain transactions are included into these

fruits, and the fruits are included into the blocks created by the

first mining process. This mechanism prevents selfish miners

from dropping honest blocks from the blockchain by releasing

their withhold blocks because eventually, an honest block will

be created and will include back all the dropped fruits.

VI. PROOF-OF-X CONSENSUS

One of the biggest criticisms of Bitcoin is that it is based on

power-intensive PoW that has no external utility, and makes

it prone to centralization (Section V-D). These limitations of

PoW motivated a new class of consensus protocols based

on proof-of-X (PoX) that replace wasteful computations with

useful work derived from alternative commonly accessible

resources, or remove computational work altogether.

A. Proof-of-Stake

In proof-of-stake, participants vote on new blocks weighted

by their in-band investment such as the amount of currency

held in the blockchain. A number of recent systems have prov-

ably secure proof-of-stake protocols [49, 51, 82]. A common

theme in these systems is to randomly elect a leader from

among the stakeholders, which then appends a block to the

blockchain. Leader election may be public, that is the outcome

is visible to all the participants [49, 82]. Alternatively, in

a private election the participants use private information to

check if they have been selected as the leader, which can be

verified by all other participants using public information [51].

Private leader election is resilient to DoS attacks because

candidates privately check if they are elected before revealing

it publicly in their blocks, at which point it is too late to

DoS them. A malicious leader can censor transactions during

its epoch. But as leaders are re-elected sufficiently often, a

subsequent leader will add the censored transaction to the

blockchain (albeit some delay).

In Ouroboros [82], the participants (a random subset of all

stakeholders) run a multiparty coin-tossing protocol to agree

on a random seed. The participants then feed this seed to a

pseudo-random function defined by the protocol, that elects

the leader from among the participants in proportion to their

stake. The same random seed is used to elect the next set of

participants for the next epoch. Ouroboros distributes rewards

among all the participants regardless of whether or not they

win the election.

In Ouroboros Praos [51] and Snow-White [49] participants

independently determine if they have been elected. Snow-

White uses similar criteria for leader election as Bitcoin, that

is finding a pre-image that produces a hash below some target.

However, participants are limited to compute only one hash

per time step (assuming access to a weakly synchronized

clock) and the target takes into account each participant’s

amount of stake. Snow-White employs the incentive structure

of Fruitchain [113]: payouts are distributed equally among

fruits (Section V-E). In Ouroboros Praos, participants generate

a random number using a verifiable random function (VRF). If

the random number is below a threshold, it indicates that the

participant has been elected as the leader, who then broadcasts

the block along with the associated proof generated by the

VRF to the network. Ouroboros Praos inherits the incentive

structure of Ouroboros.

A challenge for proof-of-stake systems is to keep track of

the changing stakes of the stakeholders. Ouroboros requires

that shift in stakes is bounded, meaning the statistical distance

is limited over a certain number of epochs. Additionally,

Snow-White looks at stakes sufficiently far back in time to

ensure that everyone has agreed on the stake distribution.

Outside academia, some deployed cryptocurrencies incor-

porate proof-of-stake [4, 9], but their designs have not been

rigorously studied and they are not very popular. Ethereum

Foundation has been considering using proof-of-stake for some

time, but their work is still in progress [30].

1) Attacks and Mitigation: PoX results in three new attacks

compared to Nakamoto consensus [44]. The first is called

the nothing-at-stake attack where miners are incentivized to

extend every potential fork. Since it is computationally cheap

to extend a chain, in the case of forks rational miners mine

on top of every chain to increase the likelihood of getting

their block in the right chain. One way of dealing with this is

to introduce a penalty mechanism: a miner producing blocks

on different forks is penalized by having part of their stake

taken [49]. Another mitigation is to remove forks, at the cost

of a bigger overhead [69]. The second attack is called the

grinding attack where a miner re-creates a block multiple

times until it is likely that the miner can create a second block

shortly afterwards. This attack can be thwarted by ensuring

that a miner is not able to influence the next leader election

by using an unbiasable source of randomness or a deterministic

leader election. In the third attack called the long-range attack,

an attacker can bribe miners to sell their private keys. If these

keys had considerable value in the past, then the adversary

can mine previous blocks and re-write the entire history of the

blockchain. This is possible because the bribed miners have

already received their external utility for these coins (i.e., sold

the coins for fiat currency), and no longer have a stake in

the system. Thus the bribed miners can send their keys to the

adversary at almost no cost. This can be thwarted by central

checkpointing: some entity (e.g., one of the main developers)

declares that some blocks are final if they are sufficiently far

in time, or by requiring participants to lock their coins for a

longer period of time than the duration of their participation.

8

2) Alternatives: Bonneau et al. [32] describe informal

(and unpublished) consensus protocols based on proof-of-stake

that have been proposed in the cryptocurrency community.

Broadly, these system require miners to hold or prove the

ownership of coins. We list three variations of this theme,

though we note that this area has not seen significant advances.

• Proof-of-deposit: Miners ‘lock’ a certain amount of coins,

which they cannot spend for the duration of their mining.

One such system is Tendermint [87], where a miner’s voting

power is proportional to the amount of coins they have

locked.

• Proof-of-burn: Miners prove that they have destroyed a

quantity of coins, for example by sending them to a verifi-

ably unspendable address [10]. Slimcode [111] implemented

this approach in 2014 but has recently been discontinued.

• Proof-of-coin-age: Miners show possession of a quantity of

coins, where the quantity of coins is weighted by their coin-

age—the time since the coins were last moved. Peercoin [9]

adapts this approach.

B. Proof-of-Capacity

In proof-of-capacity, participants vote on new blocks

weighted by their capacity to allocate a non-trivial amount of

disk space. PermaCoin [101] repurposes Bitcoin’s PoW with

a more broadly useful task: providing a robust, distributed

storage. In PermaCoin, eligibility for the leader election re-

quires participants to also store segments of a large file. The

file is distributed by an authoritative ‘dealer’ who signs file

blocks. To provides censorship-resistant file storage, the file

is fully recoverable from the participants in the event of a

dealer failure or shutdown. SpaceMint [76] employs a consen-

sus protocol based on a non-interactive variant of proof-of-

capacity (called proof-of-space), where participants generate

and commit to a unique hard-to-pebble graph. PermaCoin and

SpaceMint have the same basic model as Nakamoto consensus,

so inherit Bitcoin’s incentivization mechanism, as well as its

resilience against censorship and DoS.
1) Attacks and Mitigation: Proof-of-capacity is vulnerable

to centralization due to participants outsourcing the file storage

to an external provider. To mitigate this problem, the proof-

of-retrievability in PermaCoin requires sequential read access

to blocks in a pseudorandom order: this directly increases

the bandwidth latency in case of outsourced storage, which

reduces the miner’s chance of finding a solution.

C. Proof-of-Elapsed-Time

Using the trusted enclave in Intel SGX, it is possible to

replace computational work with proof-of-elapsed-time [78].

Participants request a wait time from their enclave and the chip

with the shortest wait time is elected as the leader. The newly

elected leader can provide an attestation alongside the new

block to convince other participants that: (i) it indeed had the

shortest wait time, and (ii) that it did not broadcast the block

until after the wait time had expired.
An alternative approach is called Resource-Efficient Mining

(REM) [137] that proposes computing useful PoW using

trusted hardware. Every instruction cycle for the useful PoW

can be seen as a lottery ticket: if a cycle wins the lottery,

the participant is authorized to mint a new block. To extend

this model to arbitrary work, the authors introduce a two-layer

hierarchical attestation. The first layer certifies that useful PoW

was performed, and the second layer attests that the program

(and its input) incremented the counter for instruction cycles

appropriately. A hash of both layers is sent alongside a new

block to prove that the participant was authorized to mint it.

1) Attacks and Mitigation: Both proof-of-elapsed-time ap-

proaches suffer from two limitations. First, breaking a single

piece of trusted hardware enables the attacker to always win

the lottery. Both Sawtooth and REM argue that a statistical

analysis of newly minted blocks suffices to detect whether

a chip can be compromised. Second, the stale chip problem

highlights that it is advantageous to collect chips as this

increases the probability of minting a new block (i.e., every

new chips is an additional lottery ticket). REM provides an

economic analysis to show that a miner’s revenue source

originates from useful work, and not farming chips.

VII. HYBRID CONSENSUS: SINGLE COMMITTEE

A single consensus node suffers from poor performance as

well as safety limitations such as weak consistency and low

fault-tolerance. This has resulted in a shift towards consensus

protocols where a committee—rather than a single node—

collectively drives the consensus.

A. Committee Formation

Committee formation refers to the criteria used to allow

nodes to join a committee. This is an important aspect of

decentralized, permissionless systems to thwart sybil attacks.

1) Permissioned: Permissioned blockchains operate in a

trusted environment where nodes are granted committee mem-

bership based on organizational policy. Hyperledger [36] is

one such system that supports smart contracts. There is a

hierarchy of trust, with some nodes being fully trusted while

others only partially trusted. This allows for a modular design

where transaction validation is performed by the fully trusted

nodes (or endorsers) while the semi-trusted nodes (ordering

nodes) order the transactions and add these to the blockchain.

In Hyperledger, clients first submit their transactions to the

endorsers who execute the smart contract. A transaction is

only submitted to a subset of endorsers according to the policy

of the respective smart contract. As different smart contracts

can designate different endorsers, execution can take place

in parallel. Clients collect matching signed results and smart

contract state updates from sufficient number of endorsers,

and submit these to the ordering nodes which append it to the

blockchain using a consensus protocol.

2) Proof-of-work: In these systems, nodes are allowed to

join the committee based on PoW. In ByzCoin, the consensus

committee is dynamically formed by a window of recent min-

ers. Each miner has voting power proportional to its number

of mining blocks in the current window, which is proportional

to its hash power. When a miner finds a solution to the

puzzle, it becomes a member of the committee and receives a

share in the consensus. Solidus and Omniledger have a similar

9

model for committee formation. Omniledger also supports

proof-of-stake to allocate committee membership based on

directly invested stake instead of power-wasteful work. A

public randomness or cryptographic sortition protocol is run

within the current committee to select the next committee from

the current stakeholder distribution defined in the ledger.

3) Lottery: Candidates are promoted to committee mem-

bership based on the outcome of a lottery. In Algorand, all

candidates have a public key, and get chosen to become a com-

mittee member using cryptographic sortition. This involves the

candidates running a verifiable random function and seeing if

the output is below a certain value.

B. Committee Configuration

The way a committee is configured has safety and per-

formance implications. Permissioned systems usually assume

static committee members, but sybil resistance in a permission-

less and decentralized setting requires dynamic membership.

1) Static: In static setting, the committee members are

not periodically changed. This is the typical configuration in

permissioned systems like Hyperledger and RSCoin where

committee members have known, trusted identities and the

threat model does not include sybil attacks.

2) Rolling (Single): The committee is updated in a sliding

window fashion: new miner(s) are added to the current com-

mittee and the oldest members are ejected. In ByzCoin, each

miner has voting power proportional to the number of mining

blocks it has in the current window, which is proportional to

its hash power. When a miner finds a solution to the puzzle,

it becomes a member of the current consensus group and

receives a share in the current window which moves one step

forwards (ejecting the oldest miner).

An important aspect of reconfiguration is wedging, that is

to stop the old committee from approving more transactions

without losing any transactions it is processing at the time

of reconfiguration. Solidus updates its committee similarly to

ByzCoin, but a new miner joining the committee can propose

transactions only once. This binds transaction proposals to

reconfiguration, so it is no longer possible for an old com-

mittee to approve transactions concurrent to a reconfiguration

event. Another issue is how to resolve leader contention when

two miners simultaneously solve a PoW puzzle. Solidus uses

a Paxos-style leader election where a higher ranked leader

can interrupt a lower ranked leader. Ranks are derived from

leaders’ PoW solutions and supplementary epoch numbers. To

ensure safety, the new leader must propose a value that has

been (or may be) committed.

A reconfigurable committee needs some mechanism to track

committee membership. In Peercensus [52], a new member is

allowed to join the committee following a collective decision

which involves validating that the member is reachable over

the network. Committee members use a failure detector (e.g.,

by sending regular ping messages) to detect when a member

has left the committee. If a member finds another to be

unreachable, it can propose ‘leave’ for the absent member

and the committee membership is updated after a collective

decision is made by the committee. A limitation of this

approach is that malicious members can slow down or stall

the system by constantly generating false alarms for eviction

of legitimate members. Addressing this would require rate-

limiting the number of leave operations a member can propose

in a given time interval.
3) Full: Lottery-based systems like Algorand and Snow-

White select the committee members for each epoch using

randomness generated based on previous blocks.
4) Rolling (Multiple): Omniledger uses cryptographic sor-

tition to select a subset of the committee to be swapped out

and replaced with new members. This is done in such a way

that the ratio between honest and byzantine members in a

committee is maintained. This also has the benefit that the

system is operational during reconfiguration as the operational

members can continue to process transactions while a fraction

of the committee is being reconfigured and bootstrapped.

C. Consensus Protocol

Most committee-based systems use classical BFT consensus

protocols such as PBFT. In this section we focus on modifi-

cations to classical BFT protocols or their novel compositions

to tailor them for use in blockchains.
In Solidus, the leader is external to the committee and

can propose transactions and PoW to nominate itself as

a committee member only once to the committee. If the

committee agrees, they approve the proposed transactions and

allow the miner to join the committee in the next round. The

proposal, that has now become a decision, also serves as the

next puzzle and is propagated to all miners. This approach

is motivated by a safety problem in PBFT’s ‘stable’ leader

which can potentially manipulate reconfiguration by waiting

for a malicious miner to solve the puzzle, and later nominating

it on to the committee—allowing the committee to gradually

become dominated by corrupt members.
ByzCoin organizes the consensus committee into a commu-

nication tree where the most recent miner (the leader) is at the

root. The leader runs PBFT [43] to get all members to agree

on the next block. However, it replaces PBFT’s O(n2) MAC-

authenticated all-to-all communication with a primitive called

scalable collective signing (CoSi) that reduces messaging

complexity to O(n). The outcome of running two rounds

of PBFT with CoSi is a fixed 64 byte collective signature

that proves that at least two-thirds of the committee members

witnessed and attested the block. A node in the network can

verify in O(1) time that a block has been validated.
A malicious committee leader can potentially censor trans-

actions by not proposing them; this does not compromise

safety, but it can negatively affect fairness. Omniledger deals

with this issue by allowing non-leader committee members

to propose a transaction if they suspect that it has been

censored by the leader (since they can ‘hear’ all messages

because of the gossip protocol for information dissemination).

In Chainspace and ByzCoin, transaction-censorship triggers

leader re-election (or view change). Elastico does not discuss

censorship by committee leader. Classic BFT protocols often

rely on a timeout to detect censorship or unreliability by a

leader, and thus liveness and censorship resistance rest on a

partial synchronous network assumption.

10

In the context of BFT-based committees, DoS means that all

the honest members in the committee are taken offline. This

is challenging, and made further difficult by how frequently

and what fraction of committee membership changes (epoch,

dynamism). ByzCoin has medium DoS resistance because the

committee configuration is rolling (single). Elastico has high

resistance within single committees because full committees

are reconfigured (full swap), but in the absence of an intra-

shard consensus mechanism, an adversary can flood the system

with transactions that touch multiple committees causing a

deadlock. Omniledger further enhances ByzCoin’s efficient

BFT protocol with O(n) messaging complexity by using a

more robust group communication pattern. This addresses

an issue in the original protocol where node failures cause

ByzCoin to fall back on a more robust all-to-all communi-

cation pattern that significantly degrades system performance.

Chainspace does not include details on intra-committee con-

figuration, hence it only provides medium level of resistance

against DoS attacks.

Systems based on proof-of-stake consensus (e.g., Ouroboros

Praos and Algorand) achieve DoS protection by privately

electing committees. This ensures that participants cannot

learn whether another participant is a committee member and

only learns this when the newly elected member announces

this. In Algorand, users check for themselves whether or not

they should play a role in the committee for the next round

by seeing if, on input a seed known only to the user, the

output of a verifiable random function is less than a certain

value; this ensures that only they know what roles (if any) they

should play in the committee. Once the roles are fixed, users

then participate according to their role in the BA⋆ consensus

protocol, which is a variant of PBFT that allows the set of

participating servers to rotate. As participants start playing

their roles, they can include information in their messages that

allows other participants to check that they are in fact eligible.

Hyperledger uses pluggable and modular consensus in

which the consensus protocol can be specified by the smart

contract policy. For example, Hyperledger supports a CFT ser-

vice based on Apache Kafka [2] and its ZooKeeper unit [77],

and more recently a PBFT-variant BFTSmart [29]. Because of

their trust assumptions, permissioned systems are resilient to

DoS and censorship of transactions by the committee.

D. Incentives

Classical BFT protocols assume two kinds of players:

cooperative and byzantine. This assumption works well in

centralized settings where nodes are controlled by the same

entity or federation. However, decentralized networks that rely

on volunteer nodes need to provide incentives for participation.

Most committee-based systems such as ByzCoin use the

same incentive model as Bitcoin; however, instead of the

most recent miner receiving all reward and fee, it is shared

between members of the committee in proportion to their

shares. ByzCoin states that to ensure that members remain

active after joining the committee, they will also be rewarded

for participation (e.g., upon completion of PBFT pre-prepare

and commit phases); however, details have not been provided.

In general, consensus protocols assume two kind of players:

honest and byzantine. Solidus argues that with no clear incen-

tives, the honest (or altruistic) committee members have noth-

ing to gain from participating in the consensus. To alleviate

this, Solidus introduces a third kind of player: a rational player

that assesses its expected utility in terms of Solidus coins.

Solidus argues that equal distribution of rewards between all

committee members can lead to a situation where members

can suppress reconfiguration to stay on the committee and

continue to collect rewards. To address this, Solidus rewards

the committee members that are the fastest to endorse reconfig-

uration creating a competition. Moreover, the external leader

gets all the transaction fees, while the mining reward is split

between the external leader and the committee members. This

ensures that committee members do not have an incentive to

delay reconfiguration due to a possible high transaction fee.

Solidus includes incentives for information propagation and

present a game-theoretic analysis that a miners best strategy

is to propagate the PoW puzzle and charge a small fee.

Smart contract platforms require clients to include fees

to be paid to the nodes that execute the smart contracts.

This not only helps to incentivize node participation, but

also protects the system from overuse by discouraging clients

from submitting long computations that monopolize system

resources. Ethereum clients have to pay ‘gas’ in proportion to

the cost of executing the contract [134].

VIII. HYBRID CONSENSUS: MULTIPLE COMMITTEES

While single-committee consensus significantly improves

performance over single-node consensus, a major limitation is

that it is not scalable: adding more members to the committee

decreases throughput. This motivated the design of consensus

based on multiple committees. To make the system scalable,

transactions are split among multiple committees (shards)

which then process these transactions in parallel.

A. Committee Topology

When multiple committees are involved in consensus, an

important question is how they will be organized in terms

of topology. Chainspace and Omniledger have flat topologies,

that is all committees are at the same level. Elastico has a

hierarchical topology in which a number of ‘normal’ com-

mittees validate transactions, and a leader committee orders

these transactions and extends the blockchain. In RSCoin [50]

(a permissioned blockchain), the central bank controls all

monetary supply, while mintettes authorized by the bank

validate a subset (shard) of transactions. The transactions that

pass validation are submitted to the central bank which adds

them to the blockchain.

B. Intra-committee Configuration

In permissioned systems, the process of assigning nodes

to committees is usually done statically according to the

policy of the federation. Another approach is to dynamically

allocate nodes to committees. This should be done randomly

to stop an adversary from concentrating its presence in one

11

committee and exceeding the byzantine-tolerance threshold.

Permissioned systems like RSCoin can use a trusted source

of randomness for committee reconfiguration, but this can be

problematic in a permissionless setting which would require

a shared random coin [47, 70]. However, generating good

randomness in a distributed way is a known hard problem:

current best solutions tolerate up to 1/6 fraction of byzantine

peers, while incurring a high message complexity [19]. Among

the more recent solutions, RandHerd [127] provides a scalable,

secure multi-party computation protocol that offers unbiasable,

decentralized randomness in a byzantine setting.

Omniledger periodically reconfigures committees to ensure

that a committee is never compromised. This is achieved by

a secure shard reconfiguration protocol, based on RandHerd,

that committee members run periodically and autonomously.

In every epoch, a random subset of members is replaced

with new set of members that registered their interest in the

previous epoch. The swap operation is done such that liveness

is maintained during reconfiguration events because a subset

of committee members continues to be operational.

Elastico operates in epochs: assignment of nodes to com-

mittees is valid only for duration of the epoch. At the end of

the epoch, nodes compute solution to a puzzle seeded by a

random string generated by the final committee and sends the

solution to the final committee to be assigned to a committee.

As a result, in each epoch a node is paired with different

nodes in a committee managing a different set of transactions.

The number of committees scales linearly in the amount of

computational power available in the system, but the number

of nodes within a committee is fixed.

Chainspace has abstracted details of committee reconfigu-

ration and it is up to policy enforced via a smart contract

to decide how nodes will be allocated to committees. Nodes

can be added (and removed) to committees by their members

through majority (2f + 1) voting.

C. Intra-committee Consensus

In a multi-committee system, some transactions might in-

volve coordination between multiple committees. Such trans-

actions might require access and manipulation of state that is

handled by different committees. The intra-committee consen-

sus ensures that this takes place consistently and atomically

across all concerned committees.

Omniledger uses an atomic commit protocol to process

transactions across committees. A transaction submitted by a

client is processed by the committees that manage its inputs.

Each related committee validates the transaction, and returns

a proof-of-acceptance (or rejection) to the client, and locks

the transaction inputs. To unlock the inputs, the client sends

proof-of-accepts to the committees that manage the transaction

outputs, who add the transaction to the next block to be

appended. If the transaction fails the validation test, the client

can send proof-of-rejection to the input committees to roll back

the transaction and unlock the inputs.

In RSCoin, communication between committee members

takes place indirectly through the client (similar to Om-

niledger), and it also relies on the client to ensure completion

of transactions. A client first gets signed ‘clearance’ from

majority of the mintettes that manage the transaction inputs.

Next the client sends the transaction and signed clearance to

mintettes corresponding to transaction outputs. The mintettes

check validity of the transactions and verify signed evi-

dence from input mintettes that the transaction is not double-

spending any inputs. If the checks pass, the mintettes adds

the transaction to be included in the next block. The system

operates in epochs: at the end of each epoch, mintettes send

all cleared transactions to the central bank which collates

transactions into blocks that are added to the blockchain.

Client-driven atomic commit protocols like Omniledger and

RSCoin are vulnerable to DoS if the client stops participating

and the inputs are locked forever. These systems make the

assumption that clients are incentivized to proceed to the

unlock phase. Such incentives may exist in a cryptocurrency

application where an unresponsive client will lose its own

coins if the inputs are permanently locked, but do not hold

for a general-purpose platform where transaction inputs may

have shared ownership. Instead of a client-driven approach,

Chainspace runs an atomic commit protocol collaboratively

between all the concerned committees. This is achieved by

making the entire committees act as resource managers for

the transactions they manage.

IX. DISCUSSION

A. Integrating BFT protocols into blockchains

The renewed interest in BFT protocols, in the context of

blockchain, has led to more mature and efficient variants of

those protocols, or variants that leverage new assumptions.

Here we discuss several open problems that still remain.

1) ‘Open’ vs ‘closed’ asynchronous protocols: A number

of recent scalable blockchain protocols, such as RSCoin [50],

Omniledger [84] and Chainspace [17], employ traditional

byzantine consensus protocols for scalability and sharding.

However, those consensus protocols are inherently ‘closed’,

in the sense that replicas need to have authenticated channels

between them, long term interactions with each other, and can

only tolerate f byzantine nodes. Thus, traditional consensus

protocols cannot accommodate open participation of nodes and

high churn, and are vulnerable to sybil attacks [56].

Newer BFT protocols, such as Honeybadger [103], even

overcome impossibility results, and provide both safety and

liveness in a fully asynchronous setting, through a randomized

consensus algorithm. While this breakthrough, building upon

the earlier work by Cachin et al. [38] is of notable theoretical

value, it does not resolve the issue of the need for a ‘closed’

group and therefore those solutions cannot be a drop-in

replacement for open Nakamoto consensus. Such random-

ized BFT protocols have traditionally been more expensive

than deterministic ones, both in terms of communication and

cryptographic operation costs. Byzantine consensus protocols,

besides Nakamoto consensus, in the context of open group

participation is still an open research problem.

2) Exploiting advances in hardware and cryptography:

The most mature current implementation of BFT is the Java

BFTSmart [29] library with message complexity O(N2) in the

12

size of the quorum N . However, Byzcoin [83] uses modern

signature schemes to optimistically relay all messages through

a leader, reducing the common case of BFT consensus to

O(N). The XFT [93] protocol, on the other hand, improves

the efficiency of consensus by relaxing the threat model. It

considers that byzantine nodes may act arbitrarily, however

links between honest nodes are reliable and eventually syn-

chronous. This leads to a simplification of the view change and

steady state BFT protocol. Finally, some consensus protocols

are now leveraging secure hardware executions environments:

the Intel Sawtooth lake system uses the Intel SGX and related

trusted execution environments to perform the duties related to

ordering transactions, while ensuring safety and liveness [116].

3) Identity management: In BFT consensus protocols, a

malicious member can potentially generate spoofed responses

on behalf of other members to bias majority in its favour. To

counter this attack, BFT committees assume that there exist

point-to-point, authenticated channels between all members,

which requires some mechanism to track committee members

and their keys. Tracking membership and key distribution in

dynamic permissionless committees is challenging, and most

systems abstract these details.

A naı̈ve solution is for all nodes to regularly broadcast

their identity to the entire network (along with evidence that

they have been granted permission to join the committee)

resulting in O(n2) messages. A better approach to is to form

a special committee that offers directory services to new

committee members [94]. However, this presents a dilemma:

a static committee undermines decentralization, but forming

a decentralized directory committee suffers from the same

challenges as the committee aims to solve in the first place.

Another technique, used by Omniledger [84], is to record

committee members for each round in a separate ‘identity’

blockchain—however, its details are not provided. In multi-

committee systems, intra-committee interaction further re-

quires each committee to have a collective identity, and some

way for the committees to discover each other.

B. Committee-based approaches

1) Secure committees: The idea of scaling services built

on state machine replication (SMR) by splitting state (or

sharding) among multiple committees (also called partitions

or shards) has been well-studied in the context of traditional

distributed systems [47, 70, 90]. The key challenge in these

systems is to ensure linearizability by atomically executing

operations that span multiple committees. More recent opti-

mizations enable elastic SMR so that committees can dynam-

ically merge (scale up) and split (scale out) their state for

load-balancing purposes [108]. These systems employ fault-

tolerant BFT protocols at their core as the nodes are controlled

by a single entity or a group of entities that collectively

govern the system. Due to similar governance assumptions,

these techniques can be extended to permissioned blockchains.

However, sharding permissionless blockchains with byzantine

adversaries is challenging and tackled by only a few recent

systems [17, 84, 94]. Individual committees can tolerate up to

33% of malicious members, but if this is not the case then the

malicious committee can compromise all the transactions that

touch the bad committee. This is an outstanding issue shared

by all multi-committee blockchains. Future research should

focus on developing robust mechanisms to detect malicious

committees and to recover from them.

Chainspace starts mitigating this issue by making the author

of the smart contract responsible to designate the parts of

the infrastructure that are trusted to maintain the integrity

of its contract; the contract’s integrity only depend on their

correctness (as well as the correctness of contract sub-calls).

Moreover, Chainspace provides an auditing mechanism allow-

ing honest node in honest committees to detect inconsistencies

and discover the malicious committee; there are however no

systems today providing a recovery mechanism.

Finally, sharded solutions achieve a different notion of

verifiability from solutions that rely on a single committee (or

are fully decentralized), as it is no longer clear how to define a

global set of transactions. In Omniledger and Chainspace, for

example, every committee defines its own blockchain, and in

RSCoin the separate sets of transactions agreed upon by each

shard are combined only through the use of a central entity.

We leave it as an interesting research problem to quantify the

difference, in terms of public verifiability, between sharded

and non-sharded solutions.

2) Bootstrapping committees: The biggest threat to the

integrity of a permissionless committee is from an adversary

that might create sybil identities and take over the whole

committee. As discussed in Section VII-A, prominent ap-

proaches include using PoW or PoX to allow nodes to join

the committee. A limitation here is that the biggest miners will

have a greater likelihood of dominating the committee, though

at the cost of significantly more hashing power than required

for single-leader PoW systems. Other PoX alternatives have

been proposed but these suffer from similar issues.

Multi-committee systems raise the additional issue of how

to map nodes to committees. One approach is to randomly

map nodes to committees [84, 94]. However, this prohibits

finer governance. General-purpose platforms like Chainspace

might have different policies within committees; for example

some committees can be permissioned while others are per-

missionless. In this case it might be useful to enforce node-

to-shard mapping via smart contracts that allow a node to join

a committee trusted by the smart contract provider.

Another consideration for bootstrapping committees is to

achieve coercion resistance, in the form of requiring enormous

effort for an adversary to suppress the overall operation of the

system. Systems such as Tor [54] have survived in a highly

adversarial environment despite parts of its infrastructure,

namely directory authorities, being a closed consensus group.

These authorities are distributed geographically, and are under

different jurisdictions and managed by different organizations.

Furthermore, like blockchains, they only handle high-integrity

operations—not privacy-sensitive ones—making their audit

and also replacement in case of unreliability, easier despite

being manual. This is a hopeful example, illustrating that

even small closed groups may, through careful selection of

participants, provide sufficient protection against coercion.

13

C. Incentives and governance in consensus protocols

Decentralized networks need to incentivize nodes for active

participation in different operations such as consensus [83, 84,

94], information propagation [15, 20, 27], and executing smart

contracts [17, 134]. Recently there has been a shift towards

incentive-compatible consensus protocols, where incentives

are built into the core of the protocol. Solidus argues that

cooperative players in the classical BFT protocols are replaced

by rational players in the decentralized setting, who are

motivated to maximize their utility [15]. To ensure that rational

players participate in all phases of the protocol, incentives

should be distributed among them such that they can only be

claimed after the completion of each phase. This is a new but

important observation. This implies that the committee should

be reconfigured regularly to maintain a suitable committee

size: large committees might result in trivial rewards for

individual committee members (or might lead to inflation of

client fees to account for the difference).

An important question is: who distributes the incentives?

In Solidus the leader of the committee distributes incentives

among the first 2f + 1 responders. This approach has several

limitations: (i) a faulty or malicious leader might not divide the

rewards, (ii) there is no way to enforce that the leader rewards

the genuinely fast responders, so the leader can instead wait for

its favourite members to reply, and (iii) the notion of ‘fast’ is

problematic in decentralized networks where members located

farther from the leader are at a natural disadvantage.

Broadly, incentivization in PoW blockchains has seen some

study [86]: major limitations have been identified [41, 61,

106, 119], and possible solutions have been proposed [138].

Similarly, in the context of protocols where creating a block

is cheap, good incentives are crucial to prevent attacks on

the system, but have not been carefully analyzed. The inves-

tigation of these issues in BFT protocols is likewise far from

mature, and non-existent in multi-committee protocols where

the incentives need to be extended to intra-committee opera-

tions. This area will benefit from combining formal economic

and game theoretic analysis with cryptography, such as has

already been done in the blockchain community [85, 115].

Techniques such as rational cryptography [35, 64] and the

BAR model [16], which considers Byzantine, altruistic, and

rational agents, could also be adapted to work here.

Beyond concrete incentivization to participate in the pro-

tocol, it is important to consider also what makes protocols

attractive to participants in the first place, and what makes

them think their investment in a given system will be re-

paid. These broader types of incentive are both related to

the governance of the system, in terms of identifying the

entities who define its rules, and the extent to which the

protocol is able to evolve. It is ultimately a relatively unstudied

question at this point what types of governance structures

would provide the strongest incentivization, or the extent to

which these structures are taken into account when participants

are deciding which protocol to join. This area would benefit

from social science-based analysis.

D. Privacy in consensus

By their very nature transparent distributed ledgers pose sig-

nificant privacy challenges with respect to both the information

contained in them, as well as the privacy of transactions and

their meta-data. The original Bitcoin announcement promised

‘anonymity’ as a property of the new system; however, the

weak form of pseudonymity offered can be bypassed by

tracing attacks [100].

Permissioned systems, such as BigchainDB [99], have the

ability to protect privacy by restricting the set of core par-

ticipants in the consensus to a small vetted set—that are

assumed to be trusted both for the integrity (safety) of the

systems, its liveness, and can also be trusted for keeping

secrets (privacy). However, trusting a set of entities for privacy

is of a different nature than trusting them for integrity: if

information is replicated any node may violate the property,

and such a violation cannot be detected within the system—

since it only involves leaking secrets. Furthermore, relying on

permissioned ledgers for privacy forces the system to rely on

closed groups, for reasons besides efficiency of consensus—

making this design choice hard to change.

Protocol-layer techniques for protecting privacy also have

implications for scalability. The most established exemplar of

this family is Zcash [25], where a transaction contains a suc-

cinct non-interactive zero-knowledge proof (zk-SNARK) [73],

proving that it is spending an existing unspent coin, but with-

out publicly specifying which one. The cost of constructing

such SNARKs and verifying them, as well as their size,

affects the efficiency and scalability of protocols. Furthermore,

since coins are spent in private, it is impossible to prune

past transactions to maintain a smaller Unspent Transaction

Output (utxo), and checkpointing is ineffective. Thus the state

necessary to validate transactions grows indefinitely.

From a systems perspective, such systems expose the min-

imum amount of information for validation, and to agree

on a consensus on the ordering of transactions—while the

actual construction and execution of transactions happens

off-chain between the parties having visibility into the full

secrets. The Chainspace platform applies this privacy pat-

tern to general smart contracts [17]. Others [132] argue that

distributed ledgers can decouple the ordering—performed in

public on cryptographic commitments of transactions—from

the validation containing private information, that is only

checked by a trusted cabal. Such architectures can scale at the

same rate as the core ordering protocol, but do not provide

any universal end-to-end verifiability.

X. CONCLUSIONS

The last few years have seen a dramatic surge in blockchain

consensus protocols, as a result of which the field has grown

increasingly complex. We presented a comprehensive system-

atization of blockchain consensus protocols, and evaluated

their performance and security properties using a novel frame-

work. In a broader context, this work has highlighted a number

of open areas and challenges related to: (i) gaps between

BFT and blockchains, (ii) security vs. performance tradeoffs,

(iii) incentives, and (iv) privacy. This longitudinal perspective

14

makes a timely contribution to the prolific and vibrant area

of blockchain consensus protocols: the wide-scale adoption of

blockchains is constrained by their performance and scalability

limitations, and is desperately in need of new and faster

consensus protocols that can cater to varying security and

privacy requirements.

Acknowledgements. George Danezis, Shehar Bano and Al-

berto Sonnino are supported in part by EPSRC Grant

EP/M013286/1 and the EU H2020 DECODE project under

grant agreement number 732546. Mustafa Al-Bassam is sup-

ported by a scholarship from The Alan Turing Institute. Sarah

Meiklejohn, Shehar Bano (in part) and Patrick McCorry are

supported by EPSRC grant EP/N028104/1.

REFERENCES

[1] Akasha. https://akasha.world.
[2] Apache kafka. https://kafka.apache.org/ .
[3] Arcade City. https://arcade.city.
[4] Blackcoin. https://blackcoin.co/.
[5] Follow My Vote. https://followmyvote.com.
[6] Hyperledgers Sawtooth Lake Aims at

a Thousand Transactions per Second.
https://www.altoros.com/blog/hyperledgers-sawtooth-lake-aims-at-a-thousand-transactions-per-second/.

[7] Lazooz. http://lazooz.org.
[8] LemonWay. https://www.lemonway.com/en/.
[9] Peercoin. https://peercoin.net/.

[10] Proof of burn. https://en.bitcoin.it/wiki/Proof of burn.
[11] Steem. https://steem.io.
[12] The Swirlds hashgraph consensus algorithm: fair, fast, Byzantine fault

tolerance. Technical Report SWIRLDS-TR-2016-01, Swirlds, Inc.,
2016.

[13] hyperledger-bftsmart. https://github.com/jcs47/hyperledger-bftsmart ,
2017.

[14] I. Abraham and D. Malkhi. Bvp: Byzantine vertical paxos. 2016.
[15] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman.

Solidus: An incentive-compatible cryptocurrency based on permission-
less byzantine consensus. https://arxiv.org/abs/1612.02916, Dec 2016.
Accessed: 2017-02-06.

[16] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. Bar fault tolerance for cooperative services. SIGOPS Oper.

Syst. Rev., 39(5):45–58, Oct. 2005.
[17] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.

Chainspace: A Sharded Smart Contracts Platform. In To appear in Pro-

ceedings of the Network and Distributed System Security Symposium

(NDSS), 2018.
[18] ArtForz. Re: Possible way to make a

very profitable 50 plus ish attack for pools?
https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772,
2011.

[19] B. Awerbuch and C. Scheideler. Robust random number generation
for peer-to-peer systems. In Proceedings of the 10th International

Conference on Principles of Distributed Systems, OPODIS’06, pages
275–289, Berlin, Heidelberg, 2006. Springer-Verlag.

[20] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar. On bitcoin and red
balloons. In Proceedings of the 13th ACM conference on electronic

commerce, pages 56–73. ACM, 2012.
[21] A. Back. A partial hash collision based postage scheme.

http://www.hashcash.org/papers/announce.txt , 1997.
[22] Bank of England. Digital Currencies.

http://www.bankofengland.co.uk/research/Pages/onebank/cbdc.aspx.
[23] S. Bano, M. Al-Bassam, and G. Danezis. The Road to Scalable

Blockchain Designs. USENIX ;login: magazine, December 2017. To
appear.

[24] A. Barger, Y. Manevich, B. Mandler, V. Bortnikov, G. Laventman, and
G. Chockler. Scalable communication middleware for permissioned
distributed ledgers. In Proceedings of the 10th ACM International

Systems and Storage Conference, page 23. ACM, 2017.
[25] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014,

Berkeley, CA, USA, May 18-21, 2014, pages 459–474, 2014.

[26] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies without proof
of work. CoRR, abs/1406.5694, 2014.

[27] I. Bentov, P. Hubáček, T. Moran, and A. Nadler. Tortoise and hares
consensus: the meshcash framework for incentive-compatible, scalable
cryptocurrencies. http://eprint.iacr.org/2017/300, 2017. Accessed:
2017-06-29.

[28] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of activity:
Extending bitcoins proof of work via proof of stake. Cryptology ePrint
Archive, Report 2014/452, 2014. http://eprint.iacr.org/2014/452.

[29] A. Bessani, J. a. Sousa, and E. E. P. Alchieri. State machine replication
for the masses with bft-smart. In Proceedings of the 2014 44th

Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN ’14, pages 355–362. IEEE Computer Society,
2014.

[30] E. Blog. Introducing Casper “the Friendly Ghost”.
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/,
2015.

[31] J. Bonneau. Why buy when you can rent? In International Conference

on Financial Cryptography and Data Security, pages 19–26. Springer,
2016.

[32] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In IEEE Symposium on Security and Privacy, 2015.

[33] E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of

Blockchains. PhD thesis, 2016.
[34] V. Buterin. Soft-forking the block time to 2 min.

https://www.reddit.com/r/btc/comments/428tjl/softforking the block time to 2 min my primarily/,
2016.

[35] P. Caballero-Gil, C. Hernández-Goya, and C. Bruno-Castañeda. A
rational approach to cryptographic protocols. CoRR, abs/1005.0082,
2010.

[36] C. Cachin. Architecture of the hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[37] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable

and Secure Distributed Programming. Springer Publishing Company,
Incorporated, 2nd edition, 2011.

[38] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constan-
tipole: practical asynchronous byzantine agreement using cryptography.
In Proceedings of the nineteenth annual ACM symposium on Principles

of distributed computing, pages 123–132. ACM, 2000.
[39] C. Cachin, S. Schubert, and M. Vukolić. Non-determinism in byzantine

fault-tolerant replication. arXiv preprint arXiv:1603.07351, 2016.
[40] C. Cachin and M. Vukolić. Blockchain Consensus

Protocols in the Wild. preprint, arXiv:1707.01873 [cs.DC],
https://arxiv.org/pdf/1707.01873.pdf, 2017.

[41] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan. On
the instability of bitcoin without the block reward. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, pages 154–167, New York, NY, USA, 2016. ACM.
[42] M. Castro. Practical Byzantine Fault Tolerance. Ph.D., MIT, Jan. 2001.

Also as Technical Report MIT-LCS-TR-817.
[43] M. Castro, B. Liskov, et al. Practical Byzantine fault tolerance. In

OSDI, volume 99, pages 173–186, 1999.
[44] A. Chepurnoy. Interactive proof-of-stake. CoRR, abs/1601.00275,

2016.
[45] A. Churyumov. Byteball: A decentralized system for storage and

transfer of value.
[46] CoinDesk. Bank of America, Mi-

crosoft Partner on Blockchain Trade Finance.
https://www.coindesk.com/bank-america-microsoft-partner-blockchain-trade-finance/,
2016.

[47] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally distributed
database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[48] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, and E. Gün. On scaling decentralized
blockchains. In 3rd Workshop on Bitcoin and Blockchain Research,

Financial Cryptography 16, 2016.
[49] P. Daian, R. Pass, and E. Shi. Snow white: Provably secure

proofs of stake. Cryptology ePrint Archive, Report 2016/919, 2016.
http://eprint.iacr.org/2016/919.

[50] G. Danezis and S. Meiklejohn. Centrally banked cryptocurrencies. In
Network and Distributed System Security. The Internet Society, 2016.

https://akasha.world
https://kafka.apache.org/
https://arcade.city
https://blackcoin.co/
https://followmyvote.com
https://www.altoros.com/blog/hyperledgers-sawtooth-lake-aims-at-a-thousand-transactions-per-second/
http://lazooz.org
https://www.lemonway.com/en/
https://peercoin.net/
https://en.bitcoin.it/wiki/Proof_of_burn
https://steem.io
https://github.com/jcs47/hyperledger-bftsmart
https://arxiv.org/abs/1612.02916
https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772
http://www.hashcash.org/papers/announce.txt
http://www.bankofengland.co.uk/research/Pages/onebank/cbdc.aspx
http://eprint.iacr.org/2017/300
http://eprint.iacr.org/2014/452
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://www.reddit.com/r/btc/comments/428tjl/softforking_the_block_time_to_2_min_my_primarily/
https://arxiv.org/pdf/1707.01873.pdf
https://www.coindesk.com/bank-america-microsoft-partner-blockchain-trade-finance/
http://eprint.iacr.org/2016/919

15

[51] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake pro-
tocol. Cryptology ePrint Archive, Report 2017/573, 2017.
http://eprint.iacr.org/2017/573.

[52] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin meets strong
consistency. In Proceedings of the 17th International Conference on

Distributed Computing and Networking, page 13. ACM, 2016.
[53] C. Decker and R. Wattenhofer. Information propagation in the bitcoin

network. In P2P, pages 1–10. IEEE, 2013.
[54] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th USENIX Security

Symposium, August 9-13, 2004, San Diego, CA, USA, pages 303–320,
2004.

[55] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan. Blockbench: A framework for analyzing private blockchains.
https://arxiv.org/pdf/1703.04057.pdf , 2017. Accessed: 2017-03-22.

[56] J. R. Douceur. The sybil attack. In International Workshop on Peer-

to-Peer Systems, pages 251–260. Springer, 2002.
[57] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.
[58] C. Dwork and M. Naor. Pricing via processing or combatting junk

mail. In CRYPTO, 1992.
[59] I. Eyal. The miner’s dilemma. In 36th IEEE Symposium on Security

and Privacy, S&P 2015, 2015.
[60] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-NG: A

Scalable Blockchain Protocol. In Proceedings of the 13th Usenix Con-

ference on Networked Systems Design and Implementation, NSDI’16,
pages 45–59, Berkeley, CA, USA, 2016. USENIX Association.

[61] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Financial Cryptography, 2013.

[62] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM

(JACM), 32(2):374–382, 1985.
[63] I. M. Fund. Fintech and Financial Services : Initial Considerations.

http://www.imf.org/en/Publications/Staff-Discussion-Notes/Issues/2017/06/16/Fintech-and-Financial-Services-Initial-Considerations-44985,
2017.

[64] J. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Ra-
tional protocol design: Cryptography against incentive-driven ad-
versaries. Cryptology ePrint Archive, Report 2013/496, 2013.
http://eprint.iacr.org/2013/496.

[65] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT

2015, pages 281–310. Springer, 2015.
[66] A. E. Gencer, R. van Renesse, and E. G. Sirer. Service-oriented

sharding with aspen. arXiv preprint arXiv:1611.06816, 2016.
[67] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,

and S. Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’16, pages 3–16. ACM,
2016.

[68] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 3–16. ACM, 2016.
[69] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zel-

dovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
http://eprint.iacr.org/2017/454, 2017.

[70] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson.
Scalable consistency in scatter. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, SOSP ’11, pages
15–28. ACM, 2011.

[71] J. Gray and L. Lamport. Consensus on transaction commit. ACM

Transactions on Database Systems (TODS), 31(1):133–160, 2006.
[72] J. N. Gray. Notes on data base operating systems. In Operating

Systems, pages 393–481. Springer, 1978.
[73] J. Groth. Short pairing-based non-interactive zero-knowledge argu-

ments. In Advances in Cryptology - ASIACRYPT 2010 - 16th Inter-

national Conference on the Theory and Application of Cryptology and

Information Security, Singapore, December 5-9, 2010. Proceedings,
pages 321–340, 2010.

[74] S. Guo and C. Mate Jr. Crysto: A scalable and permission-less
blockchain platform.

[75] M. Hearn. Corda–a distributed ledger. Corda Technical White Paper,
2016.

[76] T. Hønsi. SpaceMint: A Cryptocurrency Based on Proofs of Space.
IACR Cryptology ePrint Archive, 2017.

[77] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for internet-scale systems. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX
Association.

[78] Hyperledger. Sawtooth. https://intelledger.github.io/introduction.html.
[79] C. INSIGHTS. Banking Is Only The Beginning:

30 Big Industries Blockchain Could Transform.
https://www.cbinsights.com/research/industries-disrupted-blockchain/,
2017.

[80] A. Judmayer. blockchainbib. https://allquantor.at/blockchainbib/ .
[81] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance

broadcast for primary-backup systems. In Dependable Systems and

Networks (DSN), 2011 IEEE/IFIP 41st International Conference on,
pages 245–256. IEEE, 2011.

[82] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. Cryptology ePrint
Archive, Report 2016/889, 2016. http://eprint.iacr.org/2016/889.

[83] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing bitcoin security and performance with strong consistency
via collective signing.

[84] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and
B. Ford. Omniledger: A secure, scale-out, decentralized ledger.
http://eprint.iacr.org/2017/406, 2017.

[85] A. Kothapalli, A. Miller, and N. Borisov. Smartcast: An incentive
compatible consensus protocol using smart contracts. In 1st Workshop

on Trusted Smart Contracts, Financial Cryptography, 2017.
[86] J. A. Kroll, I. C. Davey, and E. W. Felten. The Economics of Bitcoin

Mining or, Bitcoin in the Presence of Adversaries. Workshop on the

Economics of Information Security, 2013.
[87] J. Kwon. Tendermint: Consensus without mining.

https://tendermint.com/static/docs/tendermint.pdf, 2014.
[88] L. Lamport. The part-time parliament. ACM Transactions on Computer

Systems (TOCS), 16(2):133–169, 1998.
[89] B. Laurie. An efficient distributed currency. Practice, 100, 2011.
[90] L. H. Le, C. E. Bezerra, and F. Pedone. Dynamic scalable state machine

replication. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, DSN ’16. IEEE/IFIP, 2016.
[91] S. D. Lerner. Decor+ hop: A scalable blockchain protocol.
[92] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame. Towards scalable and

private industrial blockchains. In Proceedings of the ACM Workshop on

Blockchain, Cryptocurrencies and Contracts, pages 9–14. ACM, 2017.
[93] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. Xft: Practical

fault tolerance beyond crashes. In OSDI, pages 485–500, 2016.
[94] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.

A Secure Sharding Protocol For Open Blockchains. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.
[95] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. Demystifying incentives

in the consensus computer. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15,
pages 706–719, New York, NY, USA, 2015. ACM.

[96] L. Luu, Y. Velner, J. Teutsch, and P. Saxena. Smart pool: Practical de-
centralized pooled mining. IACR Cryptology ePrint Archive, 2017:19,
2017.

[97] W. Martino. Kadena—the first scalable, high
performance private blockchain. whitepaper.
http://kadena.io/docs/Kadena-ConsensusWhitePaper-Aug2016.pdf,
2016.

[98] D. Mazieres. The stellar consensus protocol: A federated model for
internet-level consensus. Stellar Development Foundation, 2015.

[99] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto.
Bigchaindb: a scalable blockchain database. white paper, BigChainDB,
2016.

[100] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage. A Fistful of Bitcoins: Characterizing
Payments Among Men with No Names. In Proceedings of the 2013

Conference on Internet Measurement Conference, IMC ’13, pages 127–
140, New York, NY, USA, 2013. ACM.

[101] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin:
Repurposing bitcoin work for data preservation. In Security and

Privacy (SP), 2014 IEEE Symposium on, pages 475–490. IEEE, 2014.
[102] A. Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-

off puzzles to discourage bitcoin mining coalitions. In Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications

Security, pages 680–691. ACM, 2015.

http://eprint.iacr.org/2017/573
https://arxiv.org/pdf/1703.04057.pdf
http://www.imf.org/en/Publications/Staff-Discussion-Notes/Issues/2017/06/16/Fintech-and-Financial-Services-Initial-Considerations-44985
http://eprint.iacr.org/2013/496
http://eprint.iacr.org/2017/454
https://intelledger.github.io/introduction.html
https://www.cbinsights.com/research/industries-disrupted-blockchain/
https://allquantor.at/blockchainbib/
http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2017/406
https://tendermint.com/static/docs/tendermint.pdf
http://kadena.io/docs/Kadena-ConsensusWhitePaper-Aug2016.pdf

16

[103] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 31–42. ACM, 2016.
[104] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf , Dec 2008. Accessed: 2015-07-01.
[105] A. Narayanan and J. Clark. Bitcoin’s academic pedigree. Queue,

15(4):20:20–20:49, Aug. 2017.
[106] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining:

Generalizing selfish mining and combining with an eclipse attack. In
1st IEEE European Symposium on Security and Privacy, 2016. IEEE,
2016.

[107] K. Nikitin, E. Kokoris Kogias, P. S. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, J. Cappos, and B. A. Ford. Chainiac: Proactive software-
update transparency via collectively signed skipchains and verified
builds. In Proceedings of the 26th Usenix Security Symposium, number
EPFL-CONF-229405, 2017.

[108] A. Nogueira, A. Casimiro, and A. Bessani. Elastic state machine
replication. IEEE Trans. Parallel Distrib. Syst., 28(9):2486–2499, 2017.

[109] B. M. Oki and B. H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed systems.
In Proceedings of the seventh annual ACM Symposium on Principles

of distributed computing, pages 8–17. ACM, 1988.
[110] D. Ongaro and J. K. Ousterhout. In search of an understandable

consensus algorithm. In USENIX Annual Technical Conference, pages
305–319, 2014.

[111] P4Titan. Slimcoin: A Peer-to-Peer Crypto-Currency with Proof-of-
Burn. http://www.slimcoin.club/whitepaper.pdf, 2014.

[112] D. Palmer. $150 billion: Total cryptocur-
rency market cap hits new all-time high.
https://www.coindesk.com/150-billion-total-cryptocurrency-market-cap-hits-new-time-high/ ,
2017.

[113] R. Pass and E. Shi. Fruitchains: A fair blockchain. In Proceedings of

the ACM Symposium on Principles of Distributed Computing, pages
315–324. ACM, 2017.

[114] R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the
permissionless model. In LIPIcs-Leibniz International Proceedings

in Informatics, volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[115] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. Technical Report (draft), 2015.

[116] G. Prisco. Intel develops sawtooth lakedistributed ledger technology
for the hyperledger project. Bitcoin Magazine, 2016.

[117] L. Ren, K. Nayak, I. Abraham, and S. Devadas. Practical synchronous
byzantine consensus. arXiv preprint arXiv:1704.02397, 2017.

[118] Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin. Implicit con-
sensus: Blockchain with unbounded throughput. arXiv preprint

arXiv:1705.11046, 2017.
[119] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish

mining strategies in bitcoin. http://arxiv.org/pdf/1507.06183.pdf, 2015.
Accessed: 2016-08-22.

[120] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319,
Dec. 1990.

[121] D. Schwartz, N. Youngs, and A. Britto. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5, 2014.

[122] B. Scott. Bitcoin academic research.
https://docs.google.com/spreadsheets/d/1VaWhbAj7hWNdiE73P-W-wrl5a0WNgzjofmZXe0Rh5sg/htmlview?usp=sharing&pli=1&sle=true.

[123] D. Skeen. Nonblocking commit protocols. In Proceedings of the 1981

ACM SIGMOD international conference on Management of data, pages
133–142. ACM, 1981.

[124] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and
scalable cryptocurrency protocol. IACR Cryptology ePrint Archive,
2016:1159, 2016.

[125] Y. Sompolinsky and A. Zohar. Accelerating bitcoin’s transaction
processing. fast money grows on trees, not chains. IACR Cryptology

ePrint Archive, 2013(881), 2013.
[126] T. Swanson. Consensus-as-a-service: a brief report on the emergence

of permissioned, distributed ledger systems. Report, available online,

Apr, 2015.
[127] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.

Fischer, and B. Ford. Scalable bias-resistant distributed randomness. In
Security and Privacy (SP), 2017 IEEE Symposium on, pages 444–460.
IEEE, 2017.

[128] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities ”Honest or
Bust” with Decentralized Witness Cosigning. In IEEE Symposium on

Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,

pages 526–545, 2016.
[129] D. Trends. The world’s cryptocurrency

mining uses more electricity than iceland.
https://www.digitaltrends.com/computing/bitcoin-ethereum-mining-use-significant-electrical-power ,
2017.

[130] M. Vukolić. The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication. In International Workshop on Open Problems in

Network Security, pages 112–125. Springer, 2015.
[131] M. Vukolic. Eventually returning to strong consistency.

https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf,
2016.

[132] M. Vukolić. Rethinking permissioned blockchains. In Proceedings of

the ACM Workshop on Blockchain, Cryptocurrencies and Contracts,
BCC ’17, pages 3–7, New York, NY, USA, 2017. ACM.

[133] Wikipedia. Merkle tree. https://en.wikipedia.org/wiki/Merkle tree.
[134] G. Wood. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper, 151, 2014.
[135] G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework,

2016.
[136] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander. Where Is

Current Research on Blockchain Technology? – A Systematic Review.
volume 11, page e0163477. Public Library of Science, 2016.

[137] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. V. Renesse. REM:
Resource-efficient mining for blockchains. In 26th USENIX Security

Symposium (USENIX Security 17), pages 1427–1444, Vancouver, BC,
2017. USENIX Association.

[138] R. Zhang and B. Preneel. Publish or perish: A backward-compatible
defense against selfish mining in bitcoin. In Cryptographers’ Track at

the RSA Conference, pages 277–292. Springer, 2017.
[139] A. Zohar. Securing and scaling cryptocurrencies. In Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence,

IJCAI-17, pages 5161–5165, 2017.

APPENDIX

A. List of Papers

POW [104], [21], [18], [34], [61], [53], [60], [65], [58], [96],
[68], [115], [134], [125], [96], [102], [91], [113]

POX [26], [28], [82], [51], [49], [9], [4] [44] [30] [101] [76]
[78] [137]

HYBRID [98], [83], [128], [50], [69], [94], [17], [84], [94], [132],
[15], [33], [45], [103], [114], [14], [24], [12], [107],
[126], [75], [74], [89], [118], [39], [?], [135], [117],
[121], [66], [97], [92], [36], [99]

B. Glossary

• Adversary model: The fraction of malicious or faulty

nodes that the consensus protocol can tolerate (i.e., it will

operate correctly despite the presence of such nodes).

• Code available: Whether the code implementing the

system is publicly available.

• Committee: How the participants work together to par-

ticipate in the consensus protocol; either they all work

together (single committee), or they are divided in mul-

tiple subgroups (multiple committees).

• Committee Formation: How the members of the commit-

tee are chosen, for example via proof-of-work, proof-of-

stake, trusted hardware etc.

• Consistency: The likelihood that the system will reach

consensus on a proposed value; it can be either strong or

weak.

• DoS resistance: Resilience of the node(s) involved in

consensus to denial-of-service (DoS) attacks. If the par-

ticipants of the consensus protocol are known in advance,

an adversary may launch a DoS attack against them.

https://bitcoin.org/bitcoin.pdf
http://www.slimcoin.club/whitepaper.pdf
https://www.coindesk.com/150-billion-total-cryptocurrency-market-cap-hits-new-time-high/
http://arxiv.org/pdf/1507.06183.pdf
https://docs.google.com/spreadsheets/d/1VaWhbAj7hWNdiE73P-W-wrl5a0WNgzjofmZXe0Rh5sg/htmlview?usp=sharing&pli=1&sle=true
https://www.digitaltrends.com/computing/bitcoin-ethereum-mining-use-significant-electrical-power
https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf
https://en.wikipedia.org/wiki/Merkle_tree

17

• Experimental setup: The configuration used to generate

the numbers reported for throughput and latency.

• Incentives: The mechanisms that keep nodes motivated to

participate in the system and follow its rules.

• Inter-committee Configuration: How the members are

assigned to the committee in a single committee setting;

either members serve on the committee permanently

(static), or they are changed at regular intervals (rolling,

or full swap).

• Inter-committee Consensus: Reaching agreement on a

value among nodes in a single committee.

• Intra-committee configuration: How the members are

assigned to the committees in a multiple committees

setting; it can be static or dynamic.

• Intra-committee Consensus: Reaching agreement on a

value among nodes across multiple committees; this can

be optionally mediated by an external party (e.g., the

client).

• Latency: The time it takes from when a transaction is

proposed until consensus has been reached on it.

• Leader: The leader of the consensus protocol, which can

be either elected among the current committee (inter-

nally), externally, or flexibly (e.g., through arbitrary smart

contracts).

• Participants: The nodes that participate in the consensus

protocol.

• Permissioned blockchain: Only participants selected by

the appropriate authorities can participate in the consen-

sus protocol.

• Permissionless blockchain: Anyone can join the system

and participate in the consensus protocol.

• Scalability: The system’s ability to achieve greater

throughput when consensus involves a larger number of

nodes.

• Throughput: The maximum rate at which transactions can

be agreed upon by the consensus protocol (transactions

per second/hour).

• Transaction censorship resistance: The system’s re-

silience to proposed transactions being suppressed (i.e.,

censored) by malicious node(s) involved in consensus.

	I Introduction
	II Background and Related Work
	II-A Background
	II-B Related Work
	II-B1 Surveys and Systematization
	II-B2 Evaluation

	III Systematization Methodology
	III-A Classical consensus
	III-B Consensus in Blockchains
	III-B1 Compiling and Reviewing Survey Material
	III-B2 Evaluation Framework

	IV Classical Consensus
	V Proof-of-Work Consensus
	V-A Nakamoto consensus
	V-B Forks
	V-C Scaling Bitcoin
	V-D Mining Centralization
	V-E Incentives

	VI Proof-of-X Consensus
	VI-A Proof-of-Stake
	VI-A1 Attacks and Mitigation
	VI-A2 Alternatives

	VI-B Proof-of-Capacity
	VI-B1 Attacks and Mitigation

	VI-C Proof-of-Elapsed-Time
	VI-C1 Attacks and Mitigation

	VII Hybrid Consensus: Single Committee
	VII-A Committee Formation
	VII-A1 Permissioned
	VII-A2 Proof-of-work
	VII-A3 Lottery

	VII-B Committee Configuration
	VII-B1 Static
	VII-B2 Rolling (Single)
	VII-B3 Full
	VII-B4 Rolling (Multiple)

	VII-C Consensus Protocol
	VII-D Incentives

	VIII Hybrid Consensus: Multiple Committees
	VIII-A Committee Topology
	VIII-B Intra-committee Configuration
	VIII-C Intra-committee Consensus

	IX Discussion
	IX-A Integrating BFT protocols into blockchains
	IX-A1 `Open' vs `closed' asynchronous protocols
	IX-A2 Exploiting advances in hardware and cryptography
	IX-A3 Identity management

	IX-B Committee-based approaches
	IX-B1 Secure committees
	IX-B2 Bootstrapping committees

	IX-C Incentives and governance in consensus protocols
	IX-D Privacy in consensus

	X Conclusions
	Appendix
	A List of Papers
	B Glossary

