
Coconut: Threshold Issuance Selective Disclosure
Credentials with Applications to Distributed Ledgers

Alberto Sonnino∗†, Mustafa Al-Bassam∗†, Shehar Bano∗†, Sarah Meiklejohn∗ and George Danezis∗†
∗ University College London, United Kingdom

† chainspace.io

Abstract—Coconut is a novel selective disclosure credential
scheme supporting distributed threshold issuance, public and
private attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. Coconut integrates with blockchains
to ensure confidentiality, authenticity and availability even when
a subset of credential issuing authorities are malicious or offline.
We implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three ap-
plications related to anonymous payments, electronic petitions,
and distribution of proxies for censorship resistance. Coconut
uses short and computationally efficient credentials, and our
evaluation shows that most Coconut cryptographic primitives
take just a few milliseconds on average, with verification taking
the longest time (10 milliseconds).

I. INTRODUCTION

Selective disclosure credentials [16], [19] allow the is-
suance of a credential to a user, and the subsequent unlinkable
revelation (or ‘showing’) of some of the attributes it encodes
to a verifier for the purposes of authentication, authoriza-
tion or to implement electronic cash. However, established
schemes have shortcomings. Some entrust a single issuer with
the credential signature key, allowing a malicious issuer to
forge any credential or electronic coin. Other schemes do not
provide the necessary efficiency, re-randomization, or blind
issuance properties necessary to implement practical selective
disclosure credentials. No existing scheme provides all of
efficiency, threshold distributed issuance, private attributes, re-
randomization, and unlinkable multi-show selective disclosure.

The lack of efficient general purpose selective disclosure
credentials impacts platforms that support ‘smart contracts’,
such as Ethereum [53], Hyperledger [15] and Chainspace [1].
They all share the limitation that verifiable smart contracts
may only perform operations recorded on a public blockchain.
Moreover, the security models of these systems generally
assume that integrity should hold in the presence of a threshold
number of dishonest or faulty nodes (Byzantine fault tol-
erance); it is desirable for similar assumptions to hold for
multiple credential issuers (threshold issuance).

Issuing credentials through smart contracts would be very
desirable: a smart contract could conditionally issue user
credentials depending on the state of the blockchain, or attest

some claim about a user operating through the contract—
such as their identity, attributes, or even the balance of their
wallet. This is not possible, as current selective credential
schemes would either entrust a single party as an issuer, or
would not provide appropriate efficiency, re-randomization,
blind issuance and selective disclosure capabilities (as in the
case of threshold signatures [3]). For example, the Hyperledger
system supports CL credentials [16] through a trusted third
party issuer, illustrating their usefulness, but also their fragility
against the issuer becoming malicious. Garman et al. [26]
present a decentralized anonymous credentials system inte-
grated into distributed ledgers; they provide the ability to issue
publicly verifiable claims without central issuers, but do not
focus on threshold issuance or on general purpose credentials,
and showing credentials requires expensive double discrete-
logarithm proofs.

Coconut addresses these challenges, and allows a subset of
decentralized mutually distrusting authorities to jointly issue
credentials, on public or private attributes. Those credentials
cannot be forged by users, or any small subset of potentially
corrupt authorities. Credentials can be re-randomized before
selected attributes are shown to a verifier, protecting privacy
even in the case in which all authorities and verifiers collude.
The Coconut scheme is based on a threshold issuance signature
scheme that allows partial claims to be aggregated into a
single credential. Mapped to the context of permissioned and
semi-permissioned blockchains, Coconut allows collections of
authorities in charge of maintaining a blockchain, or a side
chain [3] based on a federated peg, to jointly issue selective
disclosure credentials.

Coconut uses short and computationally efficient creden-
tials, and efficient revelation of selected attributes and verifi-
cation protocols. Each partial credential and the consolidated
credential is composed of exactly two group elements. The size
of the credential remains constant regardless of the number
of attributes or authorities/issuers. Furthermore, after a one-
time setup phase where the users collect and aggregate a
threshold number of verification keys from the authorities,
the attribute showing and verification are O(1) in terms of
both cryptographic computations and communication of cryp-
tographic material—irrespective of the number of authorities.
Our evaluation of the Coconut primitives shows very promising
results. Verification takes about 10ms, while signing a private
attribute is about 3 times faster. The latency is about 600
ms when the client aggregates partial credentials from 10
authorities distributed across the world.

Contribution. This paper makes three key contributions:

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23272
www.ndss-symposium.org

Fig. 1: A high-level overview of Coconut architecture.

� We describe the signature schemes underlying Coconut,
including how key generation, distributed issuance, aggre-
gation and veri�cation of signatures operate (Sections II
and III). The scheme is an extension and hybrid of the
Waters signature scheme [52], the BGLS signature [9],
and the signature scheme of Pointcheval and Sanders [43].
This is the �rst general purpose, fully distributed threshold
issuance, re-randomizable, multi-show credential scheme
of which we are aware.

� We use Coconut to implement a generic smart contract
library for Chainspace [1] and one for Ethereum [53],
performing public and private attribute issuance, aggrega-
tion, randomization and selective disclosure (Section IV).
We evaluate their performance and cost within those
platforms (Section VI).

� We design three applications using the Coconut contract
library: a coin tumbler providing payment anonymity;
a privacy preserving electronic petitions; and a proxy
distribution system for a censorship resistance system
(Section V). We implement and evaluate the �rst two
applications on the Chainspace platform, and provide a
security and performance evaluation (Section VI).

II. OVERVIEW OF COCONUT

Coconut is a selective disclosure credential system, sup-
porting threshold credential issuance of public and private
attributes, re-randomization of credentials to support multiple
unlinkable revelations, and the ability to selectively disclose a
subset of attributes. It is embedded into a smart contract library
that can be called from other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1. Any
Coconut user may send a Coconutrequestcommand to a set
of Coconut signing authorities; this command speci�es a set
of public or encrypted private attributes to be certi�ed into
the credential (Ê). Then, each authority answers with anissue
command delivering a partial credential (Ë). Any user can
collect a threshold number of shares, aggregate them to form
a single consolidated credential, and re-randomize it (Ì). The
use of the credential for authentication is however restricted
to a user who knows the private attributes embedded in the
credential—such as a private key. The user who owns the
credentials can then execute theshowprotocol to selectively
disclose attributes or statements about them (Í). The showing
protocol is publicly veri�able, and may be publicly recorded.
Coconut has the following design goals:

� Threshold authorities: Only a subset of the authorities is
required to issue partial credentials in order to allow the

users to generate a consolidated credential [8]. The com-
munication complexity of therequestandissueprotocol is
thusO(t), wheret is the size of the subset of authorities.
Furthermore, it is impossible to generate a consolidated
credential from fewer thant partial credentials.

� Blind issuance & Unlinkability: The authorities issue
the credential without learning any additional information
about the private attributes embedded in the credential.
Furthermore, it is impossible to link multiple showings of
the credentials with each other, or the issuing transcript,
even if all the authorities collude (see Section III-B).

� Non-interactivity: The authorities may operate indepen-
dently of each other, following a simple key distribution
and setup phase to agree on public security and crypto-
graphic parameters—they do not need to synchronize or
further coordinate their activities.

� Liveness: Coconut guarantees liveness as long as a
threshold number of authorities remains honest and weak
synchrony assumptions holds for the key distribution [33].

� Ef�ciency: The credentials and all zero-knowledge proofs
involved in the protocols are short and computationally
ef�cient. After aggregation and re-randomization, the
attribute showing and veri�cation involve only a single
consolidated credential, and are thereforeO(1) in terms
of both cryptographic computations and communication
of cryptographic material—no matter the number of au-
thorities.

� Short credentials: Each partial credential—as well as
the consolidated credential—is composed of exactly two
group elements, no matter the number of authorities or
the number of attributes embedded in the credentials.

As a result, a large number of authorities may be used to
issue credentials, without signi�cantly affecting ef�ciency.

III. T HE COCONUT CONSTRUCTION

We introduce the cryptographic primitives supporting
the Coconut architecture, step by step from the design of
Pointcheval and Sanders [43] and Bonehet al. [10], [9] to
the full Coconut scheme.

� Step 1: We �rst recall (Section III-C) the scheme of
Pointchevalet al. [43] for single-attribute credentials. We
present its limitations preventing it from meeting our
design goals presented in Section II, and we show how to
incorporate principles from Bonehet al. [10] to overcome
them.

� Step 2:We introduce (Section III-D) theCoconut thresh-
old credentials scheme, which has all the properties of
Pointcheval and Sanders [43] and Bonehet al. [10], and
allows us to achieve all our design goals.

� Step 3: Finally, we extend (Section III-E) our schemes
to support credentials embeddingq distinct attributes
(m1; : : : ; mq) simultaneously.

A. Notations and Assumptions

We present the notation used in the rest of the paper, as
well as the security assumptions on which our primitives rely.

2

a) Zero-knowledge proofs:Our credential scheme uses
non-interactive zero-knowledge proofs to assert knowledge
and relations over discrete logarithm values. We represent
these non-interactive zero-knowledge proofs with the notation
introduced by Camenischet al. [17]:

NIZK f (x; y; : : :) : statements aboutx; y; : : : g

which denotes proving in zero-knowledge that the secret values
(x; y; : : :) (all other values are public) satisfy the statements
after the colon.

b) Cryptographic assumptions: Coconut requires
groups (G1; G2; GT) of prime orderp with a bilinear map
e : G1 � G2 ! GT and satisfying the following properties:
(i) Bilinearity means that for allg1 2 G1, g2 2 G2 and
(a; b) 2 F2

p, e(ga
1 ; gb

2) = e(g1; g2)ab; (ii) Non-degeneracy
means that for allg1 2 G1, g2 2 G2, e(g1; g2) 6= 1 ;
(iii) Ef�ciency implies the mape is ef�ciently computable;
(iv) furthermore, G1 6= G2, and there is no ef�cient
homomorphism betweenG1 and G2. The type-3 pairings
are ef�cient [25]. They support the XDH assumption which
implies the dif�culty of the Computational co-Dif�e-Hellman
(co-CDH) problem inG1 and G2, and the dif�culty of the
Decisional Dif�e-Hellman (DDH) problem inG1 [10].

Coconut also relies on a cryptographically secure hash
function H , hashing an elementG1 into an other element
of G1, namelyH : G1 ! G1. We implement this function
by serializing the(x; y) coordinates of the input point and
applying a full-domain hash function to hash this string into
an element ofG1 (as Bonehet al. [10]).

c) Threshold and communication assumptions:Co-
conut assumes honest majority (n=2 < t) to prevent mali-
cious authorities from issuing credentials arbitrarily. Coconut
authorities do not need to communicate with each other;
users wait fort-out-of-n replies (in any order of arrival) and
aggregate them into a consolidated credential; thus Coconut
implicitly assumes an asynchronous setting. However, our
current implementations rely on the distributed key generation
protocol of Kateet al. [33], which requires (i) weak synchrony
for liveness (but not for safety), and (ii) at most one third of
dishonest authorities.

B. Scheme De�nitions and Security Properties

We present the protocols that comprise a threshold creden-
tials scheme:

v Setup(1�) ! (params): de�nes the system parameters
params with respect to the security parameter� . These
parameters are publicly available.

v KeyGen(params) ! (sk; vk): is run by the authorities
to generate their secret keysk and veri�cation keyvk from
the publicparams.

v AggKey(vk1; : : : ; vkt) ! (vk): is run by whoever wants
to verify a credential to aggregate any subset oft veri�cation
keys vki into a single consolidated veri�cation keyvk.
AggKey needs to be run only once.

v IssueCred(m; �) ! (�): is an interactive protocol be-
tween a user and each authority, by which the user obtains

a credential� embedding the private attributem satisfying
the statement� .

v AggCred(� 1; : : : ; � t) ! (�): is run by the user to ag-
gregate any subset oft partial credentials� i into a single
consolidated credential.

v ProveCred(vk; m; � 0) ! (� ; � 0): is run by the user to
compute a proof� of possession of a credential certifying
that the private attributem satis�es the statement� 0 (under
the corresponding veri�cation keyvk).

v VerifyCred(vk; � ; � 0) ! (true=false): is run by who-
ever wants to verify a credential embedding a private at-
tribute satisfying the statement� 0, using the veri�cation key
vk and cryptographic material� generated byProveCred.

A threshold credential scheme must satisfy the following
security properties:

Unforgeability: It must be unfeasible for an adversarial user
to convince an honest veri�er that they are in possession
of a credential if they are in fact not (i.e., if they have not
received valid partial credentials from at leastt authorities).

Blindness: It must be unfeasible for an adversarial authority
to learn any information about the attributem during the
execution of the IssueCred protocol, except for the fact
that m satis�es � .

Unlinkability / Zero-knowledge: It must be unfeasible for
an adversarial veri�er (potentially working with an adversar-
ial authority) to learn anything about the attributem, except
that it satis�es� 0, or to link the execution ofProveCred
with either another execution ofProveCred or with the
execution of IssueCred (for a given attributem).

C. Foundations of Coconut

Before giving the full Coconut construction, we �rst
recall the credentials scheme proposed by Pointcheval and
Sanders [43]; their construction has the same properties as
CL-signatures [16] but is more ef�cient. The scheme works in
a bilinear group(G1; G2; GT) of type 3, with a bilinear map
e : G1 � G2 ! GT as described in Section III-A.

v P.Setup(1�) ! (params): Choose a bilinear group
(G1; G2; GT) with orderp, wherep is a� -bit prime number.
Let g1 be a generator ofG1, andg2 a generator ofG2. The
system parameters areparams = (G1; G2; GT ; p; g1; g2).

v P.KeyGen(params) ! (sk; vk): Choose a random se-
cret key sk = (x; y) 2 F2

p. Parse params =
(G1; G2; GT ; p; g1; g2), and publish the veri�cation key
vk = (g2; �; �) = (g2; gx

2 ; gy
2).

v P.Sign(params; sk; m) ! (�): Parsesk = (x; y). Pick
a randomr 2 Fp and seth = gr

1 . Output � = (h; s) =
(h; hx + y�m).

v P.Verify(params; vk; m; �) ! (true=false): Parse
vk = (g2; �; �) and � = (h; s). Output true if h 6= 1 and
e(h; �� m) = e(s; g2); otherwise outputfalse .

The signature� = (h; s) is randomizable by choosing a
randomr 0 2 Fp and computing� 0 = (hr 0

; sr 0
). The above

scheme can be modi�ed to obtain credentials on a private
attribute: to run IssueCred the user �rst picks a random

3

t 2 Fp, computes the commitmentcp = gt
1Y m to the message

m, whereY = gy
1 ; and sends it to a single authority along with

a zero-knowledge proof of the opening of the commitment.
The authority veri�es the proof, picks a randomu 2 Fp, and
returnse� = (h; es) = (gu ; (Xcp)u) whereX = gx

1 . The user
unblinds the signature by computing� = (h; es(h) � t), and this
value acts as the credential.

This scheme provides blindness, unlinkability, ef�ciency
and short credentials; but it does not support threshold issuance
and therefore does not achieve our design goals. This limitation
comes from theP.Sign algorithm—the issuing authority com-
putes the credentials using a private and self-generated random
numberr which prevents the scheme from being ef�ciently
distributed to a multi-authority setting1. To overcome that
limitation, we take advantage of a concept introduced by BLS
signatures [10]; exploiting a hash functionH : Fp ! G1
to compute the group elementh = H (m). The next section
describes how Coconut incorporates these concepts to achieve
all our design goals.

D. The Coconut Threshold Credential Scheme

We introduce theCoconut threshold credential scheme,
allowing users to obtain a partial credential� i on a private
or public attributem. In a system withn authorities, at-out-
of-n threshold credentials scheme offers great �exibility as
the users need to collect onlyn=2 < t � n of these partial
credentials in order to recompute the consolidated credential
(both t andn are scheme parameters).

a) Cryptographic primitives:For the sake of simplicity,
we describe below a key generation algorithmTTPKeyGen
as executed by a trusted third party; this protocol can however
be executed in a distributed way as illustrated by Gennaroet
al. [27] under a synchrony assumption, and as illustrated by
Kate et al. [33] under a weak synchrony assumption. Adding
and removing authorities implies a re-run of the key generation
algorithm—this limitation is inherited from the underlying
Shamir's secret sharing protocol [48] and can be mitigated
using techniques introduced by Herzberget al. [29].

v Setup(1�) ! (params): Choose a bilinear group
(G1; G2; GT) with order p, where p is a � -bit
prime number. Let g1; h1 be generators ofG1, and
g2 a generator of G2. The system parameters are
params = (G1; G2; GT ; p; g1; g2; h1).

v TTPKeyGen(params; t; n) ! (sk; vk): Pick2 two poly-
nomialsv; w of degreet � 1 with coef�cients in Fp, and set
(x; y) = (v(0); w(0)) . Issue to each authorityi 2 [1; : : : ; n]
a secret keyski = (x i ; yi) = (v(i); w(i)) , and publish their
veri�cation key vki = (g2; � i ; � i) = (g2; gx i

2 ; gy i
2).

v IssueCred(m; �) ! (�): Credentials issuance is com-
posed of three algorithms:
v PrepareBlindSign(m; �) ! (d; � ; �): The users gen-
erate an El-Gamal key-pair(d;
 = gd

1); pick a random

1The original paper of Pointcheval and Sanders [43] proposes a sequen-
tial aggregate signature protocol that is unsuitable for threshold credentials
issuance (see Section VII).

2This algorithm can be turned into theKeyGen and AggKey algorithms
described in Section III-B using techniques illustrated by Gennaroet al. [27]
or Kateet al. [33].

o 2 Fp, compute the commitmentcm and the group
elementh 2 G1 as follows:

cm = gm
1 ho

1 and h = H (cm)

Pick a randomk 2 Fp and compute an El-Gamal
encryption ofm as below:

c = Enc(hm) = (gk
1 ;
 k hm)

Output (d; � = (
; c m ; c; � s); �), where � is an
application-speci�c predicate satis�ed bym, and � s is
de�ned by:

� s = NIZK f (d; m; o; k) :
 = gd
1 ^ cm = gm

1 ho
1

^ c = (gk
1 ;
 k hm) ^ � (m) = 1 g

v BlindSign(ski ; � ; �) ! (~� i): The authorityi parses� =
(
; c m ; c; � s), ski = (x i ; yi), andc = (a; b). Recompute
h = H (cm). Verify the proof � s using
 , cm and � ;
if the proof is valid, build~ci = (ay ; hx i by i) and output
~� i = (h; ~ci); otherwise output? and stop the protocol.

v Unblind(~� i ; d) ! (� i): The users parse~� i = (h; ~c) and
~c = (~a;~b); compute� i = (h; ~b(~a) � d). Output � i .

v AggCred(� 1; : : : ; � t) ! (�): Parse each� i as(h; si) for
i 2 [1; : : : ; t]. Output(h;

Q t
i =1 sl i

i), wherel is the Lagrange
coef�cient:

l i =

2

4
tY

j =1 ;j 6= i

(0 � j)

3

5

2

4
tY

j =1 ;j 6= i

(i � j)

3

5

� 1

mod p

v ProveCred(vk; m; �; � 0) ! (� ; � 0): Parse � = (h; s)
and vk = (g2; �; �). Pick at randomr 0; r 2 F2

p; set
� 0 = (h0; s0) = (hr 0

; sr 0
); build � = �� m gr

2 and� = (h0)r .
Output (� = (�; �; � 0; � v); � 0), where� 0 is an application-
speci�c predicate satis�ed bym, and� v is:

� v = NIZK f (m; r) : � = �� m gr
2 ^ � = (h0)r ^ � 0(m) = 1 g

v VerifyCred(vk; � ; � 0) ! (true=false): Parse
� = (�; �; � 0; � v) and � 0 = (h0; s0); verify � v using
vk and � 0. Output true if the proof veri�es, h0 6= 1 and
e(h0; �) = e(s0�; g 2); otherwise outputfalse .

b) Correctness and explanation:The Setup algorithm
generates the public parameters. Credentials are elements of
G1, while veri�cation keys are elements ofG2. Figure 2
illustrates the protocol exchanges.

To keep an attributem 2 Fp hidden from the author-
ities, the users run PrepareBlindSign to produce � =
(
; c m ; c; � s). They create an El-Gamal keypair(d;
 = gd

1),
pick a randomo 2 Fp, and compute a commitmentcm =
gm

1 ho
1. Then, the users computeh = H (cm) and the encryption

of hm as below:

c = Enc(hm) = (a; b) = (gk
1 ;
 k hm);

where k 2 Fp. Finally, the users send(� ; �) to the signer,
where � s is a zero-knowledge proof ensuring thatm sat-
is�es the application-speci�c predicate� , and correctness
of
; c m ; c (Ê). All the zero-knowledge proofs required by
Coconut are based on standard sigma protocols to show
knowledge of representation of discrete logarithms; they are

4

based on the DH assumption [17] and do not require any
trusted setup.

To blindly sign the attribute, each authorityi veri�es the
proof � s, and uses the homomorphic properties of El-Gamal
to generate an encryption~c of hx i + y i �m as below:

~c = (ay ; hx i by i) = (gky i
1 ;
 ky i hx i + y i �m)

Note that every authority must operate on the same element
h. Intuitively, generatingh from h = H (cm) is equivalent to
computingh = g~r

1 where ~r 2 Fp is unknown by the users
(as in Pointcheval and Sanders [43]). However, sinceh is
deterministic, every authority can uniquely derive it in isolation
and forgeries are prevented since differentm0 andm1 cannot
lead to the same value ofh.3 As described in Section III-C,
the blind signature scheme of Pointcheval and Sanders builds
the credentials directly from a commitment of the attribute
and a blinding factor secretly chosen by the authority; this is
unsuitable for issuance of threshold credentials. We circumvent
that problem by introducing the El-Gamal ciphertextc in our
scheme and exploiting its homomorphism, as described above.

Upon reception of~c, the users decrypt it using their El-
Gamal private keyd to recover the partial credentials� i =
(h; hx i + y i �m); this is performed by theUnblind algorithm (Ë).
Then, the users can call theAggCred algorithm to aggregate
any subset oft partial credentials. This algorithm uses the
Lagrange basis polynomiall which allows to reconstruct the
original v(0) andw(0) through polynomial interpolation;

v(0) =
tX

i =1

v(i)l i and w(0) =
tX

i =1

w(i)l i

However, this computation happens in the exponent—neither
the authorities nor the users should know the valuesv(0) and
w(0). One can easily verify the correctness ofAggCred of t
partial credentials� i = (hi ; si) as below.

s =
tY

i =1

(si)
l i =

tY

i =1

�
hx i + y i �m � l i

=
tY

i =1

(hx i) l i

tY

i =1

(hy i �m) l i =
tY

i =1

h(x i l i)
tY

i =1

h(y i l i) �m

= hv(0)+ w(0) �m = hx + y�m

Before veri�cation, the veri�er collects and aggregates the
veri�cations keys of the authorities—this process happens only
once and ahead of time. The algorithmsProveCred and
VerifyCred implement veri�cation. First, the users randomize
the credentials by picking a randomr 0 2 Fp and computing
� 0 = (h0; s0) = (hr 0

; sr 0
); then, they compute� and � from

the attributem, a blinding factorr 2 Fp and the aggregated
veri�cation key:

� = �� m gr
2 and � = (h0)r

3If an adversaryA can obtain two credentials� 0 and � 1 on respectively
m0 = 0 and m1 = 1 with the same valueh as follows: � 0 =
hx and � 1 = hx + y ; thenA could forge a new credential� 2 on m2 = 2 :
� 2 = (� 0) � 1 � 1 � 1 = hx +2 y .

Fig. 2: Coconut threshold credentials protocol exchanges.

Finally, they send� = (�; �; � 0; � v) and � 0 to the veri�er
where� v is a zero-knowledge proof asserting the correctness
of � and � ; and that the private attributem embedded
into � satis�es the application-speci�c predicate� 0 (Ì). The
proof � v also ensures that the users actually knowm and
that � has been built using the correct veri�cation keys
and blinding factors. The pairing veri�cation is similar to
Pointcheval and Sanders [43] and Bonehet al. [10]; expressing
h0 = g~r

1 j ~r 2 Fp, the left-hand side of the pairing veri�cation
can be expanded as:

e(h0; �) = e(h0; g(x + my + r)
2) = e(g1; g2)(x + my + r)~r

and the right-hand side:

e(s0�; g 2) = e(h0(x + my + r) ; g2) = e(g1; g2)(x + my + r)~r

From where the correctness ofVerifyCred follows.

c) Security: The proof system we require is based on
standard sigma protocols to show knowledge of representation
of discrete logarithms, and can be rendered non-interactive
using the Fiat-Shamir heuristic [23] in the random oracle
model. As our signature scheme is derived from the ones due
to Pointcheval and Sanders [43] and BLS [10], we inherit their
assumptions as well; namely, LRSW [37] and XDH [10].

Theorem 1. Assuming LRSW, XDH, and the existence of
random oracles, Coconut is a secure threshold credentials
scheme, meaning it satis�es unforgeability (as long as fewer
than t authorities collude), blindness, and unlinkability.

A sketch of this proof, based on the security of the underlying
components of Coconut, can be found in Appendix A. Coconut
guarantees unforgeability as long as less thant authorities
collude (t > n= 2), and guarantees blindness and unlinkability
no matter how many authorities collude (and even if the veri�er
colludes with the authorities).

E. Multi-Attribute Credentials

We expand our scheme to embed multiple attributes into
a single credential without increasing its size; this generaliza-
tion follows directly from the Waters signature scheme [52]
and Pointcheval and Sanders [43]. The authorities' key pairs
become:

sk = (x; y1; : : : ; yq) and vk = (g2; gx
2 ; gy1

2 ; : : : ; gyq
2)

whereq is the number of attributes. The multi-attribute creden-
tial is derived from the commitmentcm and the group element

5

