
Stingray: Fast Concurrent Transactions Without Consensus
Srivatsan Sridhar

Stanford University

Alberto Sonnino

Mysten Labs

University College London

Lefteris Kokoris-Kogias

Mysten Labs

Abstract
Recent advances have improved the throughput and latency of

blockchains by processing transactions accessing different parts

of the state concurrently. However, these systems are unable to

concurrently process (a) transactions accessing the same state, even

if they are (almost) commutative, e.g., payments much smaller

than an account’s balance, and (b) multi-party transactions, e.g.,

asset swaps. Moreover, they are slow to recover from contention,

requiring once-in-a-day synchronization. We present Stingray, a

novel blockchain architecture that addresses these limitations. The

key conceptual contributions are a replicated bounded counter

that processes (almost) commutative transactions concurrently,

and a FastUnlock protocol that uses a fallback consensus protocol

for fast contention recovery. We prove Stingray’s security in an

asynchronous network with Byzantine faults and demonstrate on

a global testbed that Stingray achieves 10,000 times the throughput

of prior systems for commutative workloads.

1 Introduction
Blockchain technology has fundamentally transformed the land-

scape of digital transactions, providing a decentralized and secure

framework for managing digital assets. Despite its innovative po-

tential, current blockchains [14, 22, 35] face significant scalability

and efficiency challenges. Two key issues are the batch commit

of blocks, which necessitates transactions to wait until a block is

ready to be proposed, and the sequential execution of transactions,

which fails to exploit modern CPU architectures capable of par-

allel processing. These limitations introduce latency and restrict

throughput, impeding the full utilization of available resources.

To mitigate these bottlenecks, recent advances have focused on

enhancing concurrency in transaction processing. This has been

achieved through improvements in both the agreement module via

consensus-less fast paths [10, 21, 30, 42] and the execution module

via parallel execution engines [24, 29, 30, 45]. Existing consensus-

less fast paths enable concurrency and significantly reduce latency

for transactions that have a consensus number of 1 [25], such as pay-

ments and transfers, and facilitate easy identification of transactions

accessing independent resources for parallel execution [30, 45].

Despite these advancements, existing fast-path protocols and

parallel execution engines still have limitations. First, while they

parallelize transactions touching independent parts of the state,

e.g., payments to/from different accounts, transactions accessing

the same account are sequential because they incorporate a ver-

sion number derived from the preceding transaction on the same

account. This lack of concurrency limits performance gains for com-

mutative transactions that do not inherently require sequentiality.

Second, the fast path has been confined to a limited range of trans-

actions. For example, in systems such as Sui [13], FastPay [10] and

Astro [21], fast-path transactions are restricted to objects owned by

a single entity, allowing simple payments and asset transfers but

excluding more complex operations such as asset swaps or multi-

signature authorizations. This limitation significantly decreases the

potential transaction load that could benefit from the fast path.

Finally, if a user submits concurrent conflicting transactions

through the fast path, the system must lock the object until the

system can deterministically resolve this deadlock. While it is an-

ticipated that users will not send conflicting transactions, such

conflicts may arise due to minor bugs in wallet implementations

or malicious collusion among signatories in multi-signature struc-

tures. Deployed systems, such as Sui [30], can take up to 24 hours

to resolve these conflicts, resulting in a suboptimal user experience.

We address the first limitation by allowing concurrent trans-

actions that are commutative or almost commutative. We were

inspired by the database literature, where systems can deduce (or

be instructed) that accessing the same resource can occur safely

when actions are commutative [26]. This is captured using Conflict-

free Replicated Data Types (CRDTs) [36]. However, using CRDTs

is insufficient, as any transaction in a blockchain system must pay

for gas. This gas payment (and any payment transaction) has a

non-commutative comparison with zero. To our knowledge, the

only algorithms that bridge this gap between commutativity and

comparing a counter (or set) with a bound (i.e., nearly commutative)

have been proposed under crash faults [1, 36, 44] and break under

Byzantine faults. We resolve this open question in Stingray with the

first Byzantine fault-tolerant bounded counter. The intuition behind

this construction is to (a) provide a local budget per validator for

signing transactions but (b) require quorums for approval such that

even if every quorum includes all malicious validators the global

budget can still not be overspent. This allows users to spend up to

half their account’s value concurrently before resynchronization.

Importantly, resynchronization still happens through a consensus-

less fast path, solving the problem in asynchrony using protocols

resembling reliable broadcast [15].

Once we identify that the real problem in concurrent distributed

ledgers is not the concurrent accesses on the same memory location

(i.e., concurrency), but the non-monotonic [32] accesses that cannot

be reordered (i.e., contention), we address the second limitation by

extending the fast path to accommodate transactions involving

objects owned by different users, such as asset swaps, and support

complex authorization structures, including threshold and logical

combinations of user authorizations. These transactions are final-

ized extremely fast and in parallel as long as there is no contention

over the resources accessed. However, the absence of contention is

no longer guaranteed if one of the users is malicious, risking loss of

liveness. The last challenge we solve is alleviating this risk through

our novel FastUnlock protocol that leverages the consensus of hy-

brid blockchains [5, 13] to swiftly resolve conflicting transactions

and enable users to submit new transactions within the latency of

consensus protocols (e.g., 400ms for Mysticeti [5]).

1

We implement Stingray on top of the consensus-less fast path

of Sui [30], called Mysticeti-FPC [5], and show that it provides

significant throughput and latency improvements for transaction

loads concurrently accessing the same resources with commutative

operations (20,000 tps in 0.5 seconds instead of 2 tps). Additionally,

we demonstrated that Stingray incurs no performance penalty for

fully parallelizable workloads, both with and without faults, when

compared to Sui.

Contributions. This paper makes the following contributions:

• We introduce the first bounded counter with Byzantine fault

tolerance, a new object type that supports commutative op-

erations, such as addition and subtraction, and some non-

commutative operations, such as comparison with zero for

account balances, without consensus.

• We propose a new protocol, FastUnlock, that enables the fast

resolution of conflicting transactions within the latency of

consensus protocols.

• We present Stingray, a novel system that applies these tech-

niques to existing fast-path protocols. In addition to bounded

counters and FastUnlock, Stingray supports on the fast path,

transactions involving objects owned by different users, such

as asset swaps, and complex authorization structures, includ-

ing thresholds and other logical combinations.

• We formally prove the safety and liveness of Stingray in the

asynchronous network model with Byzantine faults.

• We implement Stingray and evaluate it in a realistic geo-

replicated environment to demonstrate that it outperforms

the state of the art by 10,000x for a commutative workload.

2 Background
Several consensus-less systems have been proposed in the literature,

including FastPay [10], Astro [21], Zef [11], and Linera [33]. In this

section, we recap Sui (the Sui Lutris mechanism [30]) as a basis

for the Stingray design, as it is the only currently deployed system

supporting a consensus-less fast path. Stingray improves upon the

Sui design (a) the concurrency admitted between transactions by

exploiting commutativity and (b) the scope of object authentication

and transactions in the fast path. Finally, Stingray recognizes that

these benefits apply to the fast path only in the optimistic case and

mitigates this by (c) extending Sui’s consensus with FastUnlock to

mitigate the worst case of contented transactions.

2.1 Data Structures

Object Types. The Sui blockchain state consists of a set of objects

categorized into three types. Sui determines whether to use the fast

path or the consensus path for a transaction based on the types of

objects involved.

• Read-only objects cannot be mutated or deleted and may be

used in transactions in either path concurrently by all users.

• Owned objects have an owner field that determines access

control. The owner is an address representing a public key.

A transaction may access the object if it is signed by that key

(which can also be a multi-signature). A canonical example is

a user’s cryptocurrency account. As owned objects are never

under contention when the owner is honest, Sui validates

transactions accessing only owned or read-only objects using

the fast path.

• Shared objects do not specify an owner. They can instead be

included in transactions by anyone and do not require any

authorization. Instead, their authorization logic is enforced

by a smart contract. In Sui, such objects are only accessed

through consensus to serialize their access.

In Stingray, we introduce two additional types of objects, bounded

counters (Sec. 4) and collective objects (Sec. 5.2). Transactions using

them are validated using the fast path.

Transactions. A transaction is a signed command that specifies

several input objects, a version number per object, and a set of pa-

rameters. For owned objects, executing the transaction consumes

the input object versions and constructs a set of output objects—

which may be the input objects at a later version or new objects.

Shared objects do not require a specified version. Instead, the sys-

tem assigns the version on which the transaction executes based on

the consensus sequence. Input objects’ versions must be the latest

version in validators’ databases and must not be re-used across

transactions. This limits concurrency because validators must pro-

cess transactions with the same object sequentially, and we address

this using bounded counter objects (Sec. 4).

In Sui, a transaction is signed by a single address and therefore

can use one or more objects owned by that address. A single transac-

tion cannot use objects owned by more than one address and must

use shared objects instead. In this work, we will allow a transaction

to use objects owned by different addresses if the transaction is

signed by the all the owners (Sec. 5.1), thus enabling validation of

such transactions on the fast path.

Certificates.A certificate (Cert) on a transaction contains the trans-
action and signatures from a quorum of at least 2𝑓 + 1 validators
with their identifiers. A certificate may not be unique, and the same

logical certificate may be signed by different quorums of validators.

However, two different valid certificates on the same transaction

are treated as representing semantically the same certificate.

2.2 Processing in the Fast Path and Consensus
Fig. 1 provides an overview of Sui and, by extension, Stingray’s

common case. A transaction is sent by a user to all validators (➊),

who ensure it is correctly authenticated by the owners of all owned

objects and that all objects exist (➋). A correct validator rejects any

conflicting transaction using the same owned object versions (the

first transaction using an object acquires a lock on it). Validators

then countersign the transaction (➌) and return the signatures to

the user. A quorum of signatures constitutes a certificate for the

transaction (➍). Anyone may submit the certificate to the valida-

tors (➎) that check it.

At this point, execution may take the fast path: If the certifi-

cate only references read-only and owned objects (in Stingray, also

owned bounded counter and collective objects) it is executed im-

mediately (➏) and a signature on the effects of the execution is

returned to the user. Signatures from 2𝑓 + 1 validators create an
effects certificate (➐), and the transaction is finalized, i.e., it is guar-

anteed to never be rolled back, even if the set of validators change.

If any shared objects are included, execution must wait for them

2

client

validators

➊ ➋ check & sign

validators

➍

➌ ➎ submit cert

➏

Byzantine

agreement ➑

early execute

all certificates

are sequenced

➐

➏’ late

execute

➐’

checkpoint

Figure 1: General protocol flow of Sui Lutris [13] fast-path (➊-➐) & consensus failover system (➑,➏’,➐’).

to be assigned versions post-consensus. In all cases, certificates

are input into consensus and sequenced (➑). Once sequenced, the

system assigns a common version number to shared objects for

each certificate, and execution can resume (steps ➏’ and ➐’) to

finalize the transaction. The common sequence of certificates is

also used to construct checkpoints, which are guaranteed to include

all finalized transactions (➑).

Checkpoints and Reconfiguration. Sui ensures transaction fi-

nality before consensus for owned object transactions (➐) or after

consensus for shared object transactions (➐’). A reconfiguration

protocol ensures that any transaction finalized through the fast

path will eventually be included in a checkpoint before the end of

the epoch (epochs last roughly for 24 hours).

Limitations of Sui. Sui users are not allowed to submit conflicting

transactions that reuse the same owned object versions in steps (➊)

and (➋), limiting concurrency. If a misconfigured user client be-

haves this way, neither transaction may successfully construct a

certificate (➍), and the owned object becomes locked until the end

of the epoch, harming user experience. To avoid mistrusting users

from locking each other’s objects for a day, Sui restricts transac-

tions to only contain objects from a single owner, thus limiting the

applicability of the fast path. For similar reasons, objects used in

the fast path may have at most one owner.

Stingray addresses all these limitations through changes to the

fast path (steps ➊-➐). Stingray increases the concurrency in Sui by

allowing concurrent transactions on bounded counters. This can

be trivially extended to bounded sets and any commutative objects

(e.g., add-only counters or PN-sets [41]). We also allow transactions

with multi-owner authentication and collective objects that are

not expected to have contention to execute in the fast path. Since

the risk of contention in such transactions is low but not zero, we

finally show how to recover from contention using FastUnlock.

3 System Overview
We introduce Stingray and the setting in which it operates.

3.1 Threat Model and Goals
The adversary is computationally bounded, ensuring that standard

cryptographic properties such as the security of hash functions,

digital signatures, and other primitives hold. Under this assumption

Stingray ensures validity, meaning that all transactions that are

executed have valid authorization (Def. 3.1).

We consider a message-passing system with 𝑛 = 3𝑓 + 1 valida-
tors running the Stingray protocol. An adversary can adaptively

corrupt up to 𝑓 validators, referred to as Byzantine, who may devi-

ate arbitrarily from the protocol. The remaining validators, called

honest, follow the protocol. The communication network is asyn-

chronous and messages can be delayed arbitrarily. Given these

conditions, Stingray is safe, that is, the union (merge) of all transac-

tions executed by honest validators does not lead to invalid state

transitions (Def. 3.3). This safety property subsumes the classic

safety of blockchains since any fork in the state, if merged, would

violate validity predicates such as conservation of value (e.g., in

case of double-spends). At the same time, this definition captures

concurrent execution.

Finally, assuming messages among honest validators are eventu-

ally delivered, Stingray is live, meaning honest validators eventually

execute certifiably valid user transactions and update their state

accordingly, and in the absence of new transactions, eventually

converge to the same state (Def. 3.4). Here, liveness is required for

transactions that can be executed without causing invalid state tran-

sitions, as certified by a quorum of validators (Def. 3.2). In contrast,

requiring liveness for all transactions issued by honest users is too

strong and unachievable, since the validity of their state transitions

depends on the system’s current state.

Definition 3.1 (Transaction Validity). A transaction Tx is valid if

all its input objects are owned by the transaction’s signers.

Definition 3.2 (Certificate Validity). A transaction Tx has a valid
certificate if:

• The transaction is valid

• It has a quorum certificate signed by at least 2𝑓 +1 validators
Let 𝑇𝑝 (𝑡) denote the set of transactions executed by validator

𝑝 up to time 𝑡 . The applications specify a set of predicates P over

sequences of transactions. For example, a predicate may require

that no user can spend more than their account balance or that no

two transactions perform conflicting state updates.

Definition 3.3 (Safety Properties). For any execution of Stingray

with at most 𝑓 Byzantine validators:

• Validity: For all 𝑝, 𝑡 : all Tx ∈ 𝑇𝑝 (𝑡) have valid certifcates.

• Global safety: For all 𝑡 , for all subsets𝐻 of honest validators,

there exists a sequence𝑇 that contains

⋃
𝑝∈𝐻 𝑇𝑝 (𝑡) such that

for all 𝑃 ∈ P: 𝑃 (𝑇) is true.
Definition 3.4 (Liveness Properties). For any execution of Stingray

with at most 𝑓 Byzantine validators:

• Progress: Every transaction with a valid certificate is even-

tually executed by all honest validators, unless an owner

of its input objects equivocates, i.e., signs two transactions

with the same object version as input.

3

• Eventual consistency: For all honest validators 𝑝1, 𝑝2 and
all time 𝑡 , there exists a time 𝑡 ′ ≥ 𝑡 such that𝑇𝑝1 (𝑡 ′) ⊇ 𝑇𝑝2 (𝑡).

Alongside the above properties, our goal is to enable concur-

rent execution of as many transactions as possible. Stingray uses

separate paths for processing commutative/bounded-counter trans-

actions and for other fast-path transactions. We prove the security

of the former in Sec. 4.4 and the latter in App. C.

3.2 Motivating Applications of Stingray
We present three example applications of Stingray: one utilizing

the bounded counter and two employing multi-owner transactions

(whose potential liveness risks are mitigated by FastUnlock).

Concurrent Payments. The first application, concurrent debit
or credit of an account, is one of the most common in existing

blockchain systems. Not only is this useful for payments, but it is

also useful for gas debits, which are required for every transaction.

However, it presents significant challenges for parallel execution if

not carefully designed. Incoming transactions (credits) only increase

the account’s balance, so they are commutative. Since they do not

cause contention, they can easily be processed concurrently (even

though prior blockchains do not do so). Concurrent debits, on the

other hand, are more complex due to the need for zero-balance

checks. These operations are non-commutative, hence they cause

true contention that hinders concurrency.

Concurrent transactions may be achieved in UTXO-style block-

chains by dividing one’s account into smaller UTXOs. However,

keeping track of these smaller UTXOs is cumbersome, and using the

same UTXO twice is actually a double-spending attack. In account-

or object-based blockchains, one can similarly split their account

into smaller accounts and concurrently access them, but it has the

same challenges as with UTXOs. For example, users on Sui fre-

quently make mistakes, causing contention, which results in losing

access for an entire day. Stingray resolves this issue without intro-

ducing such complications by using amostly-commutative bounded

counter, allowing half of the budget to be spent concurrently before

requiring a sequential rebalancing transaction.

Atomic swaps. Atomic swaps enable two parties to exchange

digital assets without relying on a trusted intermediary. While

consensus-based blockchains achieve this through smart contracts,

consensus-less environments face the risk of deadlock due to Byzan-

tine users issuing concurrent transactions. Such scenarios can effec-

tively lock both parties’ assets. Thus, in Sui, swaps require multiple

transactions, with at least one (the swap) relying on consensus.

However, the risk of liveness loss on the fast path only occurs

when an active attacker deliberately creates contention. Stingray

provides an effective mitigation of this risk with the FastUnlock

protocol. This safety net allows Stingray to support multi-owner

transactions in the fast path, allowing fast path atomic swaps and

other multi-party smart contracts, enhancing the programmability

of consensus-less transactions. Although not a real application, the

same risk runs for users who inadvertently equivocate on their

objects, leading to unexpected deadlocks and a poor user experi-

ence. Here too, FastUnlock helps restore liveness quickly, lowering

barriers to securely using an ultra-low latency blockchain.

Regulated stablecoins. Regulated stablecoins [20] require the

issuer to be able to block an account for regulatory reasons, besides

its owner spending from it. This has eluded consensus-less systems

since sequencing these potentially conflicting operations requires

consensus. Yet, the ability to block objects is nearly never exercised,

creating no practical contention. Stingray’s collective objects, that

may be used by more than one owner (or complex access control)

enables such transactions in the fast path.

3.3 Challenges
Stingray defines new object types that allow for higher concurrency.

We do not focus on purely commutative data structures for which

a Byzantine fault-tolerant CRDT [26] is sufficient but still cannot

support transactions for blockchains because of gas payments that

require a comparison with zero, a non-commutative operation.

To resolve this, we define the bounded counter, which runs in the

fast path. The design of this bounded counter creates our first chal-

lenge (Challenge 1): implementing nearly commutative objects in

BFT settings. To achieve this, we depart from prior work in CFT [1]

that splits the budget among replicas since in the BFT setting, a

single malicious replica could sign infinite transactions. As a result,

we need to rely on quorums to distribute the budget collectively.

Since there is an exponential number of potential quorums we re-

duce this to giving a sufficient budget to each validator to spend

concurrently but not enough that an overspend can happen if all

quorums have a minority of equivocating participants that spend

infinite amounts. This tension results in our construction spend-

ing half of the bound when not under attack. We then show how

we can reset the budget through a consistent read, allowing for

the full amount to be concurrently spent with only log𝑛 points of

synchronization.

The second challenge we take on is that existing consensus-less

blockchains require transactions to operate on state owned by a

single user, due to the fear of concurrency. Stingray absolves con-

currency for consensus-less transactions and instead identifies con-

tention as the true culprit of correctness violations. Thus, Stingray

enhances programmability by defining new types of objects such

as collective objects that are owned by multiple users, as well as

new types of transactions, such as multi-owner transactions (e.g.,

an asset swap) that are processed in the fast path. This approach is

powerful, and promises reduced latency for such operations that

currently require consensus. But this creates our second challenge

(Challenge 2): users may naturally submit conflicting transactions

because contention is now possible. For example, two users may

perform a swap and end up locking the objects due to bad timing. To

address this challenge, Stingray uses a novel unlocking mechanism,

called FastUnlock, that allows users to resolve conflicts quickly,

enabling users to submit new transactions within the latency of a

consensus protocol.

4 Concurrency through Commutativiy
We present protocols that allow users to finalize a common cate-

gory of transactions: updates to a bounded counter, without using

consensus. This type of object is strictly harder to implement than

CRDTs as it has a non-monotonic comparison with zero [32]. Our

4

bounded counter protocol is a modification to the fast-path pro-

tocol shown in Fig. 1, while transactions on other owned objects

continue to be processed as in Fig. 1.

4.1 The Bounded Counter Object
A bounded counter is an object that has a balance Bal ∈ R as its

state and supports transactions with a parameter 𝛿 ∈ R, allowing
additions (𝛿 > 0) and subtractions (𝛿 < 0) on its balance, while

maintaining the invariant Bal ≥ 0. Our goal is to execute transac-

tions concurrently to the extent possible.

Definition 4.1 (Bounded counter). A bounded counter object has

an authorized user called the owner and an initial balance Bal0,
supports transactions Tx with value Tx.𝛿 ∈ R and has the following

properties:

(1) Global safety: as in Def. 3.3 with predicate 𝑃 (𝑇) = (Bal0 +∑
Tx∈𝑇 Tx.𝛿 ≥ 0).

(2) Progress: If an honest owner sends a set of transactions

𝑇 such that Bal0 +
∑
Tx∈𝑇 Tx.𝛿 ≥ 0, then all validators will

eventually execute all transactions in 𝑇 .

(3) Validity and eventual consistency: as in Defs. 3.3 and 3.4.

The progress property is a strengthening of Def. 3.4 wherein we

specify the conditions under which transactions issued by honest

owners get certified and eventually executed. We show a protocol

in Sec. 4.3 and prove that it achieves the above properties in Sec. 4.4.

The bounded counter is useful for a common use case of block-

chains, cryptocurrencies, where an account’s balance can be rep-

resented using a bounded counter. The bounded counter can be

generalized to a bounded set in which elements can be added or

removed, as long as the size of the set does not exceed a predefined

bound. This may be useful, for example, to mint a predefined num-

ber of limited-edition non-fungible tokens (NFTs). More generally,

the bounded counter can be used as a loop counter. For simplic-

ity, we describe the most common case of a real-valued counter

bounded below by 0 and consider payments from an account as the

canonical use case.

4.2 Key Ideas for the Bounded Counter
Consider a user (owner) who owns an account containing Bal0
units of money. As an example, suppose that each transaction the

user makes credits 1 unit from its account, i.e., Tx.𝛿 = −1. In this

case, safety requires that no honest validator execute more than

Bal0 transactions. Validators execute a transaction only if they see

a certificate for the transaction, so it is sufficient to ensure that no

more than Bal0 transactions get certified.

Key Idea 1: Signing Budgets for Validators. Recall that Sui’s
fast path prevents the certification of two transactions on the same

version of an object by ensuring that validators sign at most one

transaction per version (Sec. 2). Extending this approach to allow

concurrent transactions, we must ensure that each validator signs

only a few transactions concurrently. We assign to each validator

a budget Bud = 𝜂Bal0, where 𝜂 =
𝑓 +1
2𝑓 +1 , which is the maximum

number of transactions the validator can sign. Since each certified

transaction is signed by at least 2𝑓 + 1 validators, 𝑓 + 1 of whom are

honest, for each certified transaction, at least 𝑓 + 1 is deducted from
the total budget of all honest validators. Since the total budget of

𝑣0

-1 -1 -1-1-1-1

𝑣1

-1-1

to_owned

-1

Figure 2: Version updates in the bounded counter. Circles
represent unit decrement transactions and dashed boxes ver-
sions. The initial balance is Bal0 = 9, and 𝑓 = 1. For version
𝑣0, each validator has a budget of 𝑓 +1

2𝑓 +1Bal0 = 6. After 6 trans-
actions are certified, the user sends a version update (dashed
box 𝑣1) containing pointers to the 6 certified transactions.
The remaining balance is 9 − 6 = 3 and the validators update
their budget to 𝑓 +1

2𝑓 +1 ∗ 3 = 2. Finally, when the remaining bal-
ance is 1, the user converts the bounded counter to a standard
owned object and spends the remaining balance.

all honest validators starts at (2𝑓 + 1)Bud, the number of certified

transactions can be at most
(2𝑓 +1)Bud

𝑓 +1 = Bal0, even if the user and

up to 𝑓 validators are malicious.

Thus, the signing budgets ensure global safety. However, this

idea alone does not satisfy liveness. If the 𝑓 Byzantine validators

abstain from signing transactions, each certified transaction re-

quires signatures from 2𝑓 + 1 (all) honest validators, causing every

honest validator to decrease their budget. So, at most Bud = 𝜂Bal0
transactions will get certified, while liveness requires all of them to

be certified eventually.

Key Idea 2: Version Updates. When the user realizes that valida-

tors may have exhausted their budget (because Bud transactions

have already been certified), the user sends a version update request

which includes pointers to all the previously certified transactions.

Upon seeing a valid version update request, each validator updates

their budget to 𝜂 fraction of the balance remaining after executing

the certified transactions. In the above example, this increases each

validator’s budget from 0 to 𝜂 (1 − 𝜂)Bal0. The validator also up-

dates its local version to stop signing transactions with the previous

version and start signing transactions with the new version (see

Fig. 2 for an example).

Note that within a version, transactions get certified concur-

rently, while transactions across versions are certified sequentially.

At each version, the user can spend up to 𝜂 fraction of the remaining

balance, until finally, when the remaining balance is small enough,

the user can convert the bounded counter to a standard owned ob-

ject and spend the remaining amount in one last transaction (shown

in Fig. 2). Thus, with an initial balance of Bal0 and each transaction

spending 1 unit, the user requires only log(Bal0) version update

requests, and therefore 𝑂 (log(Bal0)) latency to spend the entire

balance. In contrast, this would require 𝑂 (Bal0) latency on Sui’s

fast path or any other consensus protocol.

5

4.3 Bounded Counter for Single Owner
Alg. 1 shows the algorithm run by validators for the bounded

counter. For simplicity, we specify the algorithm for when all trans-

actions have only one bounded counter object as input, although

transactions with multiple bounded counters and other owned ob-

jects as inputs can be processed in the fast path.

Processing Transactions. For each bounded counter object, the

state maintained by each validator includes the current version

Version, the current budgetBud, and the set of transactions SignedTxs
the validator has signed (ll. 4 to 6). Upon receiving a new valid

transaction, the validator checks that the transaction has the same

version as the validator’s current version (l. 12). If the transaction’s

value Tx.𝛿 is within budget (l. 13), the validator deducts its budget if

required, marks the transaction as signed, and sends the signature

to the user. Addition or debit transactions (Tx.𝛿 > 0) will always be

signed, without decreasing the budget, while subtraction or credit

transactions (Tx.𝛿 < 0) will be signed only up to the budget.

Finalizing and Executing Transactions. Upon receiving a valid

certificate Cert, the validator broadcasts the certificate to other

validators, executes the transaction to update the counter’s state

locally, and sends an effects signature to the user. Unlike standard

owned objects where the effects signature contains the new state

of the object, for a bounded counter object, the effect signature

simply marks the transaction as executed because the validator

does not know the counter’s correct state yet due to its partial view

of other certified transactions. Once the user receives 2𝑓 + 1 effects
certificates, it considers the transaction finalized.

Version Update Requests. When the validator receives a version

update request, it processes the request only if all the transactions to

which the request points (𝑣 .PrevTxs) are certified (l. 28). Moreover,

all the transactions in 𝑣 .PrevTxs must have the same version as the

validator’s current version (l. 30). If so, the validator updates its

budget. For each certified transaction in 𝑣 .PrevTxs, the validator
increases for additions or decreases for subtractions its budget by

𝜂 times the transaction’s value (l. 33). The validator also reclaims

its spent budget for transactions it signed and are now included in

𝑣 .PrevTxs (l. 35), ensuring that budget is not deducted twice. After

the update, the validator’s budget is 𝜂 times the remaining balance

of the bounded counter after executing all certified transactions

minus the values of the transactions that the validator signed but

were not included in 𝑣 .PrevTxs. Finally, the validator updates its
current version to 𝑣 (l. 37).1

Honest Users. The bounded counter protocol allows a user to get

transactions certified concurrently under low contention, i.e., when

the number of concurrent transactions is low. In Alg. 5 (in the ap-

pendix), we specify how an honest user interacts with the bounded

counter. In summary, the honest user ensures the following:

(1) The user sends transactions with the same Version until it

sends a version update request (Alg. 5 l. 11)

(2) For any version, the user does not send transactions exceed-

ing the validators’ budget for that version (Alg. 5 l. 10).

1
In reality, the version identifier stored by the validator and included in each transaction

can be a hash of the version update request. Collision resistance will bind each version

identifier to a unique version update request.

Algorithm 1 Bounded counter for single owner (validator logic)

1: ⊲ Initialize a bounded counter object

2: ⊲ Initial version is 𝑣0 and budget is computed from initial balance

3: procedure InitBC(Bal0)
4: Version← 𝑣0 ⊲ current version for which the validator signs txs

5: Bud← 𝜂 ∗ Bal0 ⊲ remaining budget for signing txs for Version
6: SignedTxs← ∅ ⊲ set of txs signed so far

7: ⊲ Executed upon receiving a transaction

8: procedure ProcessTx(Tx)
9: ⊲ Ensure same transaction is not proceesed twice

10: if Tx ∈ SignedTxs then return sign(Tx)
11: require valid(Tx) ⊲ check Tx has valid signatures

12: require Tx.Version = Version
13: require Bud + Tx.𝛿 ≥ 0

14: ⊲ Decrease the budget if decrement transaction

15: if Tx.𝛿 < 0 then Bud← Bud + Tx.𝛿
16: SignedTxs← SignedTxs ∪ {Tx}
17: return sign(Tx)

18: ⊲ Upon receiving valid certificate signed by 2𝑓 + 1 validators; ensure same certificate

not processed twice

19: procedure ProcessCert(Cert)
20: broadcast(Cert)
21: wait until areExecuted(Cert.Tx.Version.PrevTxs)
22: if valid(Cert) then exec(Cert.Tx) ⊲ execute tx, persist object’s state

23: return sign(Cert) ⊲ send signature to finalize Cert.Tx to user

24: ⊲ Upon receiving version update request signed by the user

25: ⊲ Ensure same request is not processed twice

26: procedure ProcessVersionUpdateReq(𝑣)
27: broadcast(𝑣)
28: require 𝑣.PrevVersion = Version and areCertified(𝑣.PrevTxs)
29: ⊲ Check all txs in 𝑣.PrevTxs have version PrevVersion
30: require allVersionsMatch(𝑣.PrevTxs, 𝑣.PrevVersion)
31: ⊲ Update budget based on txs in 𝑣.PrevTxs
32: for Tx in 𝑣.PrevTxs do
33: Bud← Bud + 𝜂 ∗ Tx.𝛿
34: ⊲ Regain spent budget for txs included in 𝑣.PrevTxs
35: if Tx ∈ SignedTxs and Tx.𝛿 < 0 then Bud← Bud − Tx.𝛿
36: ⊲ Start signing txs for the updated version

37: Version← 𝑣

(3) Upon exhausting the budget for a version (Alg. 5 l. 8), the

user sends a version update request containing pointers to

all transactions it sent for that version (Alg. 5 l. 16).

(4) When the validators’ budget falls to 0 for a certain version

(perhaps due to rounding), the user sends a transaction re-

questing to convert the bounded counter object to a standard

owned object so that the small amount of remaining balance

may be spent through a classic owned object transaction.

An honest user can satisfy these requirements by keeping track of

the current version and the validator’s budget, all of which can be

computed based on the transactions it has sent (see Alg. 5), without

any communication. In App. A, we show that liveness holds for

users that behave as specified by Alg. 5.

4.4 Security Proof
Theorem 4.2. Alg. 1 satisfies validity.

Proof. Validators execute only valid transactions with a valid

certificate (Alg. 1 l. 22). □

Theorem 4.3. Alg. 1 satisfies eventual consistency.

Proof. If one honest validator executes a transaction (Alg. 1 l. 22),

the validator also broadcasts the certificate for the transaction (l. 20).

6

Eventually, all validators also receive the version update request

Cert.Tx.Version (alongwith their certified transactions) correspond-
ing to the certified transaction because at least one honest validator

(who signed the certified transaction) received the request and

broadcast it (l. 27). Thus, eventually, all honest validators will exe-

cute the transaction. □

As a warmup for proving global safety, we first show how Key

Idea 1 ensures that within a single version, any subset of the certified

transactions does not spend too much balance. Refer to Tab. 2 (in

the appendix) for a summary of the notation used in the proof.

Definition 4.4. The value function is defined on a set of transac-

tions S as Δ(S) = ∑
Tx∈S Tx.𝛿 .

Lemma 4.5. For any version 𝑣 , let Bud𝑣 be the average budget of
all honest validators at the time when they set Version to 𝑣 .2 Let C𝑣
be the set of certified transactions with version 𝑣 . Then, for all𝑇 ⊆ C𝑣 :
Δ(𝑇) ≥ − 1

𝜂 Bud𝑣 .

Proof. Let C−𝑣 ⊆ C𝑣 be the set of decrement transactions (Tx
such that Tx.𝛿 < 0). It is sufficient to show that Δ(C−𝑣) ≥ − 1

𝜂Bud𝑣 .
Suppose that 𝑓r ≤ 𝑓 validators are adversarial (so, 𝑛 − 𝑓r =

3𝑓 + 1 − 𝑓r are honest). Each certified transaction has 2𝑓 + 1 sig-
natures, of which at most 𝑓r are from adversarial validators. All

other signatories are honest, thus if Tx ∈ C−𝑣 is certified, at least

(2𝑓 + 1 − 𝑓r) |Tx.𝛿 | is deducted from the total budget of all hon-

est validators (note that Tx.𝛿 < 0). Suppose, for contradiction,

that a set of decrement transactions C−𝑣 are certified such that

Δ(C−𝑣) < − 1

𝜂Bud𝑣 . Then, the average budget of all honest nodes is

Bud ≤ Bud𝑣 + 2𝑓 +1−𝑓r
3𝑓 +1−𝑓r Δ(C

−
𝑣) ≤ Bud𝑣 + 𝑓 +1

2𝑓 +1Δ(C
−
𝑣) < 0. This is a

contradiction because no honest validator signs a transaction that

would cause its budget to fall below 0 (Alg. 1 l. 13), so the average

budget of honest validators cannot fall below 0. □

Next, we will prove that the version updates introduced as Key

Idea 2 preserve global safety. To do this, we first prove that the

versions corresponding to certified transactions form a chain in

which each version is the PrevVersion of the next (Lem. 4.7). This

follows from a quorum-intersection argument and the fact that

the versions of transactions signed by any single honest validator

form a chain. This property allows us to define a linearly growing

history of the bounded counter containing certified transactions

from each version update request’s PrevTxs (Def. 4.8). Using this,

we show that the average budget of honest validators at the time

they update their local Version to 𝑣 is 𝜂 times the balance after

executing transactions in the counter’s history, minus any budget

deducted for certified transactions that were not included in the

history (Lem. 4.9). Combining this with Lem. 4.5, we prove that

the certified transactions across all versions do not spend more

than the initial balance (Thm. 4.10). Since validators only execute

certified transactions, this ensures global safety.

Definition 4.6. For any version 𝑣 ≠ 𝑣0, define the parent version

𝑝 (𝑣) as 𝑣 .PrevVersion.

2
Count a validator’s budget as 0 if it never sets Version to 𝑣.

Lemma 4.7. LetV be the set of versions for which there exists at

least one certified transaction. If V ≠ ∅, then V = {𝑣0, ..., 𝑣 |V |−1}
such that for all 𝑖 = 1, ..., |V| − 1, 𝑝 (𝑣𝑖) = 𝑣𝑖−1.

Proof. If no transactions have been certified,V = ∅. If at least
one transaction is certified, then 𝑣0 ∈ V . This is because initially,

honest validators sign only transactions with version 𝑣0 (Alg. 1 ll. 4

and 12) and will not sign transactions for a different version until

they receive a version update request containing certified transac-

tions (l. 28). Since a certificate requires at least one honest validator’s

signature, at least one certified transaction must have version 𝑣0.

For any honest validator 𝑗 , if it updates Version from 𝑣 to 𝑣 ′, it
must be such that 𝑝 (𝑣 ′) = 𝑣 (Alg. 1 l. 28). Therefore, for all 𝑣 ∈ V ,

there exists a sequence 𝑣0, ..., 𝑣 in which each version is the parent

of the next version. In other words, the versions inV form a tree

rooted at 𝑣0 with parent links as edges.

Now all that remains to show is that this tree is, in fact, a chain.

That is, there is no 𝑣, 𝑣 ′ ∈ V such that 𝑣 ≠ 𝑣 ′ and 𝑝 (𝑣) = 𝑝 (𝑣 ′). This
follows from quorum intersection. If there was 𝑣, 𝑣 ′ ∈ V such that

𝑣 ≠ 𝑣 ′ and 𝑝 (𝑣) = 𝑝 (𝑣 ′), then for both versions 𝑣 and 𝑣 ′, there is a
set of 2𝑓 + 1 validators that signed transactions with that version.

These two sets of 2𝑓 +1 validators have at least 2(2𝑓 +1) −𝑛 = 𝑓 +1
validators in common (since 𝑛 = 3𝑓 + 1). However, since at most 𝑓

validators are adversarial, at least one honest validator signed both

transactions with version 𝑣 and 𝑣 ′. However, this is a contradiction
because once the honest validator signs a transaction for version 𝑣 ,

it will never sign a transaction for version 𝑣 ′ since there is no path

𝑣, ..., 𝑣 ′ in which each is a parent of the next one. □

Definition 4.8. Define the history 𝐻𝑣 of a version as 𝐻𝑣0 = ∅ and
𝐻𝑣≠𝑣0 = 𝐻𝑝 (𝑣) ∪ 𝑣 .PrevTxs.

Let C𝑖 = C𝑣1∪ ...∪C𝑣𝑖 be the set of certified transactions with ver-
sions up to 𝑣𝑖 . Let 𝐻𝑣𝑖 = C𝑖 \𝐻𝑣𝑖 be the set of certified transactions

not included in the history. For any set of transactions S, S− ⊆ S
contains transactions Tx such that Tx.𝛿 < 0, and S+ = S \ S− .

Lemma 4.9. For any version 𝑣𝑖 ∈ V , the average budget of all

honest validators at the time they upgrade to version 𝑣𝑖 satisfies

Bud𝑣𝑖 ≤ 𝜂 (Bal0 + Δ(𝐻𝑣𝑖) + Δ(𝐻−𝑣𝑖)).

Proof. Throughout the execution, an honest validator i) starts

with an initial budget of𝜂Bal0, then ii) decreases its budget for every
decrement transaction signed (Alg. 1 l. 15), iii) updates its budget

for every certified transaction included in a version update request

(l. 33), and iv) reclaims its budget for every certified decrement

transaction it had previously signed that is included in a version

update request (l. 35). Suppose that 𝑓r ≤ 𝑓 validators are adversarial

(so,𝑛−𝑓r = 3𝑓 +1−𝑓r are honest). Combining these four components,

the average budget of all honest validators at the time they update

to version 𝑣𝑖 is

Bud𝑣𝑖 ≤ 𝜂Bal0 +
2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(C𝑖−) + 𝜂Δ(𝐻𝑣𝑖) −

2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(𝐻−𝑣𝑖)

= 𝜂 (Bal0 + Δ(𝐻𝑣𝑖)) +
2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(𝐻−𝑣𝑖)

≤ 𝜂 (Bal0 + Δ(𝐻𝑣𝑖) + Δ(𝐻−𝑣𝑖)) .

□
7

Theorem 4.10. The bounded counter protocol (validator code:

Alg. 1) satisfies global safety.

Proof. For any given subset of honest validators, let 𝑇 be the

set of transactions executed by some validator in this subset. Let

𝑣𝑘 be the latest version in 𝑇 . Since validators only execute certified

transactions (Alg. 1 l. 22), 𝑇 ⊆ C𝑘 . Moreover, validators execute

transactions in 𝑣𝑘 .PrevTxs before executing transactions with ver-

sion 𝑣𝑘 (Alg. 1 l. 21), so 𝑇 ⊇ 𝐻𝑣𝑘 .

Recall that we partitioned C𝑘−1 = 𝐻𝑣𝑘 ∪ 𝐻−𝑣𝑘 ∪ 𝐻+𝑣𝑘 , that is,
certified transactions with versions up to 𝑣𝑘−1 may be in the history

of version 𝑘 , and those that are not may be either increments or

decrements. Given these constraints, it is sufficient to prove that

Bal0 + Δ(𝑇) ≥ 0 for the worst case 𝑇 = 𝐻𝑣𝑘 ∪ 𝐻−𝑣𝑘 ∪ C
−
𝑣𝑘

where all

decrement transactions and no increment transactions beyond 𝐻𝑣𝑘

are executed.

Δ(𝑇) = Δ(𝐻𝑣𝑘) + Δ(𝐻−𝑣𝑘) + Δ(C
−
𝑣𝑘
) (1)

≥ Δ(𝐻𝑣𝑘) + Δ(𝐻−𝑣𝑘) −
1

𝜂
Bud𝑣𝑘 (Lem. 4.5) (2)

≥ −Bal0 (Lem. 4.9) (3)

□

5 Concurrency with Multiple Owners
So far, we have seen designs to improve concurrency for trans-

actions with owned objects. However, these techniques and prior

consensus-less systems require that all owned objects accessed in

a transaction have the same owner. Stingray enhances object pro-

grammability on the fast path using two ingredients: (i) multi-owner

transactions, and (ii) collective objects.

5.1 Multi-Owner Transactions
Sui requires all owned objects in a transaction to be ‘owned’ by

the same address [13]. Stingray lifts this restriction: a transaction

can reference owned objects from multiple owners. Validators must

still ensure that each owned object referenced by a transaction

is correctly authorized before signing a transaction. For example,

consider an atomic swap transaction that takes object 𝐴 owned by

Alice and object 𝐵 owned by Bob and exchanges their ownership.

For the transaction to be authorized we need two signatures over

the full transaction (or a hash), one from an authorized signer of 𝐴

(i.e., Alice) and one from an authorized signer of 𝐵 (i.e., Bob).

However, enabling multi-owner transactions makes Stingray

more susceptible to owned objects being locked through error or

malicious behavior. For example, consider the previous scenario. If

Alice signs Tx first, Bob may refuse to sign, denying Alice access

to her object. If Alice loses patience and tries to use 𝐴 in another

transaction Tx′, then Bob may sign Tx and race Alice’s attempt

to build a certificate. Now both Tx and Tx′ contain 𝐴 and conflict

which can lead to 𝐴 (and 𝐵) being locked. Sui unlocks such objects

after one day, at epoch change. But multi-owner transactions in

Stingray make such conflicts more likely, so the latency of one

day is unacceptable. Thus, we develop the FastUnlock protocol

described in Sec. 6.1 that provides a resolution in seconds.

Algorithm 2 Collective bounded counter (validator logic)

1: ⊲ InitBC, ProcessTx, ProcessCert, ProcessVersionUpdateReq same as Alg. 1

2: ⊲ Upon receiving version merge request signed by the user

3: procedure ProcessVersionMergeReq(𝑣)

4: ⊲ Check current version is one of the versions being merged

5: require Version ∈ 𝑣.PrevVersions
6: ⊲ Update budget based on all txs in the history of 𝑣.PrevVersions, except those

that have already been considered

7: for Tx in pendingTxsInHistory(𝑣) do
8: Bud← Bud + 𝜂 ∗ Tx.𝛿
9: ⊲ Regain spent budget for txs included in 𝑣.PrevTxs
10: if Tx ∈ SignedTxs and Tx.𝛿 < 0 then Bud← Bud − Tx.𝛿
11: ⊲ Start signing txs for the updated version

12: Version← 𝑣

5.2 Collective Objects
The second interesting class of objects that Stingray uses are Col-

lective Objects. These objects can be accessed by multiple users

concurrently, that is, a transaction on such an object can be autho-

rized by any party (or a subset of parties) from a given set (the set

may be infinite). Yet, they are processed on the fast path.

Applications for this include an NFT sale where users can add

themselves to a collective set of users that will receive the NFT or

an auction where users can add their bids as long as the auction is

still running. If there is no limit on the size of the set or the number

of bids, then we can simply use an add-only-set data structure to

process these transactions concurrently without any contention.

However, if there is a limit, we must use a collective bounded counter.

5.3 Collective Bounded Counter
Following the owned bounded counter (Sec. 4), our collective bounded

counter allows multiple owners to send transactions and version

updates. This works well as long as the concurrent transactions sent

by all the owners together never exceed validators’ budgets; then

they all get certified, irrespective of the order in which they arrive.

However, the bounded counter may get locked and lose liveness

under any of these conditions:

• The owners attempt to spend more than the validators’ bud-

get in any version: In this case, honest validators may ex-

haust their budget by signing different transactions so that

no transaction gets certified.

• The owners send two conflicting version update requests,

i.e., neither request transitively includes transactions from

the other version. In this case, honest validators may be split

across the two versions, with neither group of validators will-

ing to switch to the other version, causing neither version’s

transactions to get certified.

These circumstances would not occur if a single owner sending

transactions follows the protocol specifications (Alg. 5). However,

a misconfigured owner or multiple owners who do not coordinate

may cause such scenarios.

In this section, we show how owners can unlock the bounded

counter object, without consensus under optimistic conditions, by

issuing a version merge request (Alg. 2). When the owners send a

version merge request that contains a set of versions PrevVersions to
merge, a validator processes the request if its current local Version
is one of PrevVersions (Alg. 2 l. 5). This allows validators locked on

any of the conflicting versions to adopt the merged version while

8

also ensuring that each validator processes versions in a linear

order. Just as in version update requests, the validator updates its

budget by 𝜂 times the value of every pending transaction in the

history of the merged versions (Alg. 2 l. 8). In this case, the history

contains all transactions included in the version update requests

for PrevVersions recursively, and pending are the ones for which

the budget has not been updated previously. As in version update

requests, the validator reclaims its budget for transactions in the

history that it had signed (Alg. 2 l. 10), and finally sets the new

version to be 𝑣 (l. 12).

If the owners accidentally sent two conflicting version update

requests, upon sending a version merge request, validators locked

on either version will switch to signing transactions for the merged

version, restoring liveness. Finally, if the owners sent transactions

spending more than the budget, the owners can send a version

merge request containing only one previous version. This will cause

validators to update their version without changing their budget (no

new certified transactions included). The owners can then reissue

transactions, ensuring this time not to send transactions spending

more than the budget. Thus, in optimistic cases, where a single

owner was misconfigured or crashed, or the bounded counter had

temporary high contention, the bounded counter can be unlocked

without requiring consensus among the validators. In cases of con-

tinuously high contention, owners must use FastUnlock (Sec. 6)

which uses consensus to unlock their bounded counter. In App. B,

we prove the safety of the collective bounded counter.

6 Fast Unlock Protocol
As discussed in Sec. 5, concurrency for multi-owner transactions

and collective objects does not come free. They increase the chance

that transactions diverge the view of the validators, leading to a loss

of liveness. This is already a problem in Sui [30] and Mysticeti [5]

for clients that run buggy software and may issue conflicting trans-

actions on an owned object, i.e., transactions operating on the same

version of an owned object (cf. Sec. 2.1). Their current solution

is to wait until the end of the epoch, at which point they run an

atomic snapshot sub-protocol as part of the epoch change and then

drop all partial states. As a result, at the start of the new epoch, all

validators have exactly the same state, and all objects can be safely

accessed again. In Sui, epoch changes occur once per day. Since

multi-owner transactions and collective objects make locks more

likely, the latency of one day is unacceptable. To remedy this issue,

Stingray introduces a FastUnlock functionality. On a high level, Fas-

tUnlock is a generalization of the merge functionality introduced in

Sec. 5.3. The merge operation in Sec. 5.3 requires an honest owner

to drive it to completion and only applies to commutative transac-

tions. For arbitrary transactions, we require consensus to decide

which among conflicting transactions to accept.

6.1 Baseline FastUnlock Protocol
For simplicity, we show how the user can unlock a single object by

executing a no-op or adopting one of the conflicting transactions.

App. D extends the basic protocol to execute a new transaction

instead of a no-op. Additionally, we describe at the end of this

section how validators can detect two conflicting transactions on

the system and automatically trigger an unlock.

validator 1

validator 2

validator 3

validator 4

client
1 3

4

5

6

2

Byzantine
agreement

sign
UnlockReq

make
UnlockReq

assemble
UnlockCert

process
UnlockCert

assemble effect
certificate

sequence

Figure 3: FastUnlock interactions between a user and valida-
tors to unlock an object.

Algorithm 3 Process unlock requests

1: ⊲ Handle UnlockRqt messages from users.

2: procedure ProcessUnlockTx(UnlockRqt)
3: ⊲ Check (3.1): Check Auth. (Sec. 6.1)

4: if !valid(UnlockRqt) then return error

5: ⊲ Step (3.2): Check for certificates.

6: ObjectKey← UnlockRqt.ObjectKey
7: Cert← LockDb[ObjectKey] ⊲ can be None
8: ⊲ Step (3.3): Record the decision to unlock.

9: UnlockVote← sign(UnlockRqt,Cert)
10: UnlockDb[ObjectKey] ← Unlocked
11: return UnlockVote

New Persistent Data Structures. Each Stingray validator main-

tains a set of persistent tables abstracted as key-value maps, with

the usual contains, get, and set operations. The table

LockDb[ObjectKey] → Cert or None

maps ObjectKey = (ObjectId,Version), an object’s identifier and

version, to a certificate Cert, or None if the object’s version exists

but the validator does not hold a certificate for it. The map

UnlockDb[ObjectKey] → Unlocked, Confirmed, or None

records whether a transaction over the specified object version is

involved in a current FastUnlock instance (Unlocked), has been se-

quenced by consensus (Confirmed), or none of the above (None).
All new owned object entries start with UnlockDb[ObjectKey]

set to None. Once a transaction certificate is sequenced through

consensus, it is always executed (whether it is for a shared object

transaction or an owned-object-only transaction) and all owned

object entries have UnlockDb[ObjectKey] set to Confirmed.

FastUnlock Protocol Description. To safely unlock an object,

the user interactively constructs a proof, called a no-commit certifi-

cate, that no transaction modifying that object has been committed

or will be committed on the fast path. This proof consists of a mes-

sage signed by a quorum of validators attesting that they have not

already executed a transaction on ObjectKey, and promising that

they will not execute any transaction onObjectKey in the fast path.

After that, only certificates sequenced over consensus may affect

such an ObjectKey.
Fig. 3 illustrates the FastUnlock protocol allowing a user to in-

struct validators to unlock a specific object. A user first creates an

unlock request specifying the object they wish to unlock:

UnlockRqt(ObjectKey,Auth)
This message contains the object’s key ObjectKey to unlock (acces-

sible as UnlockRqt.ObjectKey) and an authenticator Auth ensuring

9

the user is authorized to unlock ObjectKey. The authenticator is
composed of two parts: (i) a transaction that mutates the object in

question (and potentially additional objects) which is signed by the

object owner, and (ii) a proof that the party requesting the unlock

can modify the object in question. The authenticator prevents rogue

unlock requests for objects that are either not under contention (the

transaction shows there exists a transaction that uses the object) or

by parties not authorized to act on the objects. The user broadcasts

this UnlockRqt message to all validators (Fig. 3 ➊).

Each validator handles the UnlockRqt as follows (Alg. 3). A val-

idator first checks (Check (3.1)) the validity of UnlockRqt by ver-

ifying the authenticator Auth. Specifically, Auth must contain a

valid transaction includingObjectKey, and a signature on the trans-

action by the owner of ObjectKey. Otherwise, the validator stops
processing. The validator attempts to retrieve a certificate Cert for
a transaction on ObjectKey if it exists (Step (3.2)), or sets Cert to
None. Then, the validator records that the object in UnlockRqt
can only be included in transactions in the consensus path (l. 10)

by setting its entry in UnlockDb[ObjectKey] to Unlocked (Step
(3.3)). It finally returns a signed unlock vote UnlockVote to the user:

UnlockVote(UnlockRqt,Option(Cert))
This message contains the authorized UnlockRqt and the cer-

tificate Cert for some transaction consuming ObjectKey that the

validator executed (Fig. 3 ➋). If the validator has not executed any

transaction on ObjectKey, then Cert = None.

UnlockCert(UnlockRqt,Option(Cert)) .
There are two cases in the creation of UnlockCert:

(1) At least one UnlockVote carries a certificate. This scenario
indicates that a correct validator has already executed a trans-

action, which implies that the object is not locked. However,

this is not a proof of finality and subsequent steps may in-

validate this execution.

(2) No UnlockVote carries a certificate. This scenario is a ‘no-

commit’ proof as there are 𝑓 + 1 honest validators that will
not process certificates (UnlockDb holds Unlocked), thus
no certificate will be executed in the fast path.

The user submits this UnlockCert for sequencing by the consensus

engine (➌).

Algorithm 4 Process unlock certificates

1: ⊲ Handle UnlockCert message from consensus.

2: procedure ProcessUnlockCert(UnlockCert)
3: ⊲ Check (4.1): Check no transaction already processed (Sec. 6.1).

4: if UnlockDb[ObjectKey] = Confirmed then return
5: ⊲ Check (4.2): Check cert validity (Sec. 6.1).

6: if !valid(UnlockCert) then return error

7: ⊲ Execute Cert or None (4.3).
8: Cert← UnlockCert.Cert
9: if Cert ≠ None then Tx← Cert.Tx
10: else Tx← No-Op
11: EffectSign← exec(Tx,UnlockCert)
12: ⊲ Prevent execution overwrite.

13: UnlockDb[ObjectKey] ← Confirmed
14: return EffectSign

All correct validators observe a consistent sequence ofUnlockCert
messages output by consensus (➍) and process them in order as

follows (Alg. 4). A validator performs the following checks and if

any fail, they ignore the certificate:

• Check (4.1) They ensure they did not already process

another transaction to completion (i.e. UnlockDb is not

Confirmed) or a differentUnlockCert for the sameObjectKey.
• Check (4.2) They check UnlockCert is valid, that is, (i) it
is correctly signed by a quorum of authorities, and (ii) the

certificate Cert it contains is valid or None.

The validator then executes the transaction referenced by Cert
(Step 4.3) if one exists. Otherwise, if Cert is None, the validator
undoes any transaction locally executed on the object

3
, then exe-

cutes a no-op, that is, the object contents remain unchanged but its

version number increases by one. The validator finally marks every

object key as Confirmed to prevent future unlock certificates or

checkpoint certificates from overwriting execution (l. 13) and re-

turns an EffectSign to the user (➎). The user assembles a quorum

of 2𝑓 + 1 EffectSign messages into an effect certificate EffectCert
that determines finality (➏).

App. D.1 details the use of gas objects in the context of FastUn-

lock and App. C proves the safety and liveness of the Stingray

system using FastUnlock. The key insight is that an UnlockCert
forces transactions on the owned object to go through consensus.

There, either a transaction certificate or an unlock certificate will be

sequenced first and executed. If a transaction is finalized, an unlock

certificate will always cause the execution of that transaction.

Auto-Unlock. The basic FastUnlock scheme presumes that the

request to unlock an object is authenticated by the owner(s) of the

object. This ensures that only authorized parties can interfere with

the completion of a transaction, but it also restricts who can initiate

unlocking in case of loss of liveness. Alternatively, an ‘AutoUnlock’

can be issued by validators if the fast-path protocol is embedded in

the consensus protocol, as proposed by Mysticeti [5]. In such a pro-

tocol, the presence of conflicting transactions in the causal history

of a consensus block is evidence of loss of liveness. Upon seeing

such evidence, validators can start locally processing a virtual un-

lock request posting the signed unlock requests as transactions in

the consensus protocol and forming unlock certificates.

7 Implementation
We base our implementation of Stingray on Sui [30] as it is, to our

knowledge, the only blockchain currently supporting consensus-

less transactions. Specifically, we fork the research codebase of

Mysticeti [31], which is a fork of the production codebase of Sui,

but without irrelevant features such as Admission control, RPC

endpoints, support for light clients, enforcement of correct genesis,

etc. Our implementation only modifies the block and transaction

processing logic by adding the bounded counter, keeping the net-

working, storage, and cryptography layers untouched. We open-

source our implementation of Stingray and our orchestration tools

to ensure reproducibility of our results
4
.

3
The UnlockCert with Cert being None ensures such execution could not have been

finalized; only a single layer of execution can ever be undone, and no cascading aborts

can happen.

4
https://github.com/asonnino/mysticeti/tree/stingray (commit 0ae4bb5)

10

https://github.com/asonnino/mysticeti/tree/stingray

8 Evaluation
We evaluate the throughput and latency of Stingray through exper-

iments conducted on Amazon Web Services (AWS), demonstrating

its performance improvements over the state-of-the-art.

We compare Stingraywith the consensus-less fast path of Sui [30],

calledMysticeti-FPC [5] as to our knowledge, Sui is the only blockchain

supporting consensus-less transactions. We did not compare with

other consensus-less systems, including FastPay [10], Astro [21],

Zef [11], and Brick [4] because they only support payments and are

thus not adapted to showcase loads under high concurrency
5
. Fur-

thermore, these systems lack a mechanism to unlock transactions

and thus cannot optimistically handle contention.

Our evaluation demonstrates the following claims:

• C1: Clients of Stingray submitting a commutative load expe-

rience a lower latency and higher throughput than those of

the Sui baseline.

• C2: There is no noticeable performance difference between

Sui using owned objects and Stingray using bounded coun-

ters for loads with no contention (i.e., parallel). In other

words, there is no performance trade-off in adopting Stingray.

• C3: Operations under (crash) faults do not overly penalize

Stingray in comparison to Sui. That is, both systems observe

similar performance degradation when validators are faulty.

Note that evaluating the performance of BFT protocols in the pres-

ence of Byzantine faults is an open research question [8], and state-

of-the-art evidence relies on formal proofs.

8.1 Experimental Setup
We deploy all systems on a geo-distributed network of validators,

each running on a dedicated machine. App. E details the precise

machine specs, validator configuration, and the network setup.

In the following graphs, each data point is the p50 latency and

the error bars represent the p90 latency (error bars are sometimes

too small to be visible on the graph). We instantiate several geo-

distributed benchmark clients within each validator, submitting

transactions at a fixed rate for 5 minutes. We increase the load of

transactions sent to the systems and record the throughput and

latency. As a result, each plot illustrates the ‘steady state’ latency

of the system under low load and the maximum throughput it can

serve after which latency grows steeply. Transactions in the bench-

marks contain 512 bytes. The ping latency between the validators

varies from 50ms to 250ms.

By latency, we mean the time between when the client submits

the transaction and when the transaction is finalized by the valida-

tors. By throughput, we mean the number of transactions finalized

per second during the run.

8.2 Benchmark under Commutative Load
Fig. 4 compares the throughput and latency experienced by clients

of Sui and Stingray submitting a load of commutative transactions.

In Sui, these transactions are implemented using operations on the

same owned object [30], whereas, in Stingray, they rely on bounded

counter withdrawals with values much lower than the available

5
Parallelizing payments issued from an account can be achieved by splitting the

available balance into multiple accounts before initiating the payments.

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

Client-Perceived Throughput (tx/s)

L
a
t
e
n
c
y
(
s
)

Sui - 10 nodes Sui - 50 nodes

Stingray- 10 nodes Stingray- 50 nodes

Figure 4: Comparing throughput and latency of Sui and
Stingray with a commutative load. WAN measurements with
10 and 50 validators.

Protocols 1 tx 10 tx 100 tx

Sui 400-500ms 4-5s ≈ 50s

Stingray < 500ms < 500ms < 500ms

Table 1: Average total time required to submit a load of 1, 10,
and 100 commutative transactions to Sui and Stingray.

balance (Sec. 4). Specifically, we measure the maximum rate at

which a client can submit these transactions and the corresponding

end-to-end latency. Both systems operate in a failure-free wide-area

network (WAN) environment, configured with committees of 10

and 50 validators to reflect small and large committee setups.

As expected, Sui clients can submit only about two commutative

transactions per second. This is because Sui fails to exploit the

commutativity of these transactions and processes them sequen-

tially because it detects false dependencies based on memory access

patterns. Consequently, a client must wait approximately 500ms

for one transaction to complete before submitting the next. Despite

Sui’s low baseline latency [5, 30], this commutative load results

in a latency proportional to the number of transactions submitted.

Consequently, clients perceive significantly higher overall latency

as the transaction count increases. For example, as shown in Tab. 1,

a single transaction incurs the state-of-the-art latency of 500 ms,

but submitting 100 of these transactions causes the total latency to

grow linearly to 50 seconds.

In contrast, Fig. 4 demonstrates that Stingray enables parallel sub-

mission of commutative transactions, maintaining latencies under

500 ms. This performance holds even for workloads of 10-20k com-

mutative transactions with a large committee of 50 validators (note

the log scale on the x-axis) or 100k transactions with a smaller com-

mittee of 10 validators. This improvement stems from Stingray’s

use of the bounded counter, which processes transactions concur-

rently. As a result, transaction latency remains unaffected by the

submission rate until the system reaches saturation. Throughout

these benchmarks, the CPU utilization of the validators of both

systems remains roughly below 20% and the validators consume

less than 10GB of memory (when experiencing the highest loads).

These results validate our claim C1: clients of Stingray experi-

ence lower latency and higher throughput than those of the Sui

baseline when handling commutative transaction loads.

11

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

Client-Perceived Throughput (tx/s)

L
a
t
e
n
c
y
(
s
)

Sui - 10 nodes Sui - 50 nodes

Stingray- 10 nodes Stingray- 50 nodes

Figure 5: Comparing throughput and latency of Sui and
Stingray with a parallel load. WAN measurements with 10

and 50 validators.

8.3 Benchmark under Parallel Load
Fig. 5 compares the throughput and latency experienced by clients

of Sui and Stingray submitting a load of independent transactions.

Both systems operate in a failure-free wide-area network (WAN)

environment, configured with committees of 10 and 50 validators.

In contrast to the previous benchmark, the transactions in this

benchmark are implemented using operations on different owned

objects. As a result, both systems process these transactions concur-

rently, and the throughput and latency experienced by the clients of

both systems are similar. In both cases, clients experience a latency

of less than 500 ms and a throughput of 10-20k transactions per sec-

ond with a large committee of 50 validators and 100k transactions

per second with a small committee of 10 validators.

This result validates our claim C2: there is no noticeable per-

formance difference between Sui and Stingray for loads with no

contention (in this case, both systems use owned objects), i.e., there

is no performance trade-off in adopting Stingray.

8.4 Benchmark under Faults
Fig. 6 compares the throughput and latency experienced by clients

of Sui and Stingray submitting a load of independent transactions

when a committee of 10 validators experiences 3 (crash) faults,

which is the maximum number of faults that can be tolerated in

this systems’ configuration. The results show that both systems

observe similar performance degradation when validators are faulty.

In both cases, the throughput drops to about 70k transactions per

second, and the latency increases to about 1 second. This result

validates our claimC3: operations under (crash) faults do not overly
penalize Stingray’s clients in comparison to Sui’s.

9 Related Work
Stingray is closely related to three research directions: consensus-

less (fast path) blockchains, parallel execution engines, and repli-

cated data types. Consensus-less blockchains were originally pro-

posed for payments both theoretically [3, 21, 25] and in practice [10]

and achieve the lowest possible latency. However, these systems

support only payments and no programmability, and do not sup-

port validators’ reconfiguration. Similarly, Groundhog [39] fore-

goes consensus for commutative transactions but doesn’t allow

non-commutative ones. The Sui Lutris system [13], implemented

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

Client-Perceived Throughput (tx/s)

L
a
t
e
n
c
y
(
s
)

Sui - 10 nodes Sui - 10 nodes (3 faults)

Stingray- 10 nodes Stingray- 10 nodes (3 faults)

Figure 6: Comparing throughput and latency of Sui and
Stingray with a parallel load. WAN measurements with 10

validators, 3 faults.

in the Sui blockchain [30], combines FastPay [10] and the Bull-

shark [43] consensus protocol to deliver low-latency payments and

full programmability. Further, Mysticeti [5] addresses Sui’s redun-

dant broadcasting and high signature verification costs. However,

all these works adopt a conservative approach to the consensus-less

path, limiting it to transactions involving state owned by a single

account which avoids contention unless the account owner equivo-

cates. The generic broadcast [38, 40] framework uses consensus-less

broadcast for non-conflicting messages and consensus for others,

but does not specify which transactions conflict. Stingray expands

the design space by allowing transactions that are commutative or

have a low risk of contention to run on the consensus-less path.

In case of contention, Stingray leverages FastUnlock to restore

liveness efficiently.

Parallel execution in blockchains is a relatively new research

area led by Solana [45] and FuelVM
6
. On the research side, Block-

STM [24] focuses on shared memory and executes blocks of trans-

actions instead of streaming. This creates a tension between high-

throughput and low latency as high-throughput needs a high batch

size, but collecting this batch increases the latency. On the other

hand, Pilotfish [29] focuses onmulti-machine execution and follows

Sui’s streaming architecture. Sui also supports parallel execution

in a single machine but only for transactions accessing different

memory locations. Stingray improves upon the state of the art by

enabling the parallel execution of transactions that access the same

memory location, as long as they do not conflict. While this paper

emphasizes parallelization on the consensus-less path, the same

principles apply even more easily post-consensus as there is no risk

of losing liveness due to equivocation.

Another closely related research area is replicated data types. Un-

like conflict-free data types (CRDTs) [32, 41], our bounded counter

supports non-commutative and non-inflationary state transitions.

While some previous work [2, 16–19, 23, 27, 36, 46] developed

Byzantine fault-tolerant CRDTs and others developed bounded

counters that are safe under no faults [9, 37] and crash faults [7],

our work achieves the best of both through the first Byzantine fault-

tolerant bounded counter. RDTs with non-commutative operations

inherently require coordination among the replicas [6, 12, 28], even

without Byzantine faults. Accordingly, our bounded counter also

6
https://docs.fuel.network/docs/intro/what-is-fuel/

12

requires coordination but the number of rounds of coordination is

at most logarithmic in the counter’s initial value.

RapidLane [34] enables concurrent transactions by deferring

execution and instead predicting transaction outcomes without

reading the object’s state. This allows optimistic concurrent pro-

cessing, including bounded counters. In contrast, Stingray ensures

correct execution upfront, avoiding the need for rollbacks due to

incorrect predictions. Bazzi et al. [12] enable concurrent payments

using small random disjoint quorums to certify each transaction.

However, their approach is probabilistic and tolerates only 1/8
faulty validators, while Stingray is deterministic and tolerates up

to 1/3 faulty validators.

Acknowledgments
This work is sponsored by Mysten Labs. This work was done

partly when Srivatsan Sridhar was interning with Mysten Labs.

We thank George Danezis for initial discussions and feedback and

Igor Zablotchi, David Tse, and Roger Wattenhofer for feedback.

References
[1] Paulo Sérgio Almeida and Carlos Baquero. 2019. Scalable eventually consistent

counters over unreliable networks. Distributed Comput. 32, 1 (2019), 69–89.

[2] Paulo Sérgio Almeida and Ehud Shapiro. 2024. The Blocklace: A

Universal, Byzantine Fault-Tolerant, Conflict-free Replicated Data Type.

arXiv:2402.08068v3 [cs.DC]

[3] Alex Auvolat, Davide Frey, Michel Raynal, and François Taïani. 2020. Money

Transfer Made Simple: A Specification, a Generic Algorithm, and its Proof. Bull.

EATCS 132 (2020).

[4] Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Dionysis

Zindros. 2021. Brick: Asynchronous Incentive-Compatible Payment Channels.

In Financial Cryptography (2) (LNCS, Vol. 12675). Springer, 209–230.

[5] Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis, Lef-

teris Kokoris-Kogias, Arun Koshy, Alberto Sonnino, and Mingwei Tian.

2023. Mysticeti: Reaching the Limits of Latency with Uncertified DAGs.

arXiv:2310.14821v4 [cs.DC]

[6] Peter Bailis, Alan D. Fekete, Michael J. Franklin, Ali Ghodsi, JosephM. Hellerstein,

and Ion Stoica. 2014. Coordination Avoidance in Database Systems. Proc. VLDB

Endow. 8, 3 (2014), 185–196.

[7] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo

Rodrigues, and Nuno M. Preguiça. 2015. Extending Eventually Consistent Cloud

Databases for Enforcing Numeric Invariants. In SRDS. IEEE Computer Society,

31–36.

[8] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li,

Avery Ching, and Dahlia Malkhi. 2020. Twins: BFT Systems Made Robust.

arXiv:2004.10617v2 [cs.CR]

[9] Daniel Barbará and Hector Garcia-Molina. 1994. The Demarcation Protocol: A

Technique for Maintaining Constraints in Distributed Database Systems. VLDB

J. 3, 3 (1994), 325–353.

[10] Mathieu Baudet, George Danezis, and Alberto Sonnino. 2020. FastPay: High-

Performance Byzantine Fault Tolerant Settlement. In AFT. ACM, 163–177.

[11] Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, and George Danezis. 2023.

Zef: Low-latency, Scalable, Private Payments. In WPES@CCS. ACM, 1–16.

[12] Rida Bazzi and Sara Tucci-Piergiovanni. 2024. Fractional Payment Transac-

tions: Executing Payment Transactions in Parallel with Less than f+1 Validations.

arXiv:2405.05645v1 [cs.DC]

[13] Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris

Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto

Sonnino, Brandon Williams, and Lu Zhang. 2024. Sui Lutris: A Blockchain

Combining Broadcast and Consensus. In CCS. ACM, 2606–2620.

[14] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The Latest Gossip on BFT

Consensus. arXiv:1807.04938v3 [cs.DC]

[15] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to

reliable and secure distributed programming. Springer Science & Business Media.

[16] Margarita Capretto, Martín Ceresa, Antonio Fernández Anta, Antonio Russo, and

César Sánchez. 2022. Setchain: Improving Blockchain Scalability with Byzantine

Distributed Sets and Barriers. In Blockchain. IEEE, 87–96.

[17] Margarita Capretto, Martín Ceresa, Antonio Fernández Anta, Antonio Russo,

and César Sánchez. 2024. Improving Blockchain Scalability with the Setchain

Data-Type. Distributed Ledger Technol. Res. Pract. 3, 2 (2024), 12.

[18] Hua Chai and Wenbing Zhao. 2014. Byzantine Fault Tolerance for Services with

Commutative Operations. In IEEE SCC. IEEE Computer Society, 219–226.

[19] Vicent Cholvi, Antonio Fernández Anta, Chryssis Georgiou, Nicolas Nicolaou,

Michel Raynal, and Antonio Russo. 2021. Byzantine-Tolerant Distributed Grow-

Only Sets: Specification and Applications. In FAB (OASIcs, Vol. 92). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2:1–2:19.

[20] Circle. 2025. Fully Backed Digital Dollars. https://www.circle.com/usdc.

[21] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo

Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, An-

drei Tonkikh, and Athanasios Xygkis. 2020. Online Payments by Merely Broad-

casting Messages. In DSN. IEEE, 26–38.

[22] ethereum.org. 2024. The Complete Guide to Ethereum. https://ethereum.org/en/

Last accessed: Dec 24, 2024.

[23] Davide Frey, Lucie Guillou, Michel Raynal, and François Taïani. 2024. Process-

commutative distributed objects: From cryptocurrencies to Byzantine-Fault-

Tolerant CRDTs. Theor. Comput. Sci. 1017 (2024), 114794.

[24] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li,

Dahlia Malkhi, Yu Xia, and Runtian Zhou. 2023. Block-STM: Scaling Blockchain

Execution by Turning Ordering Curse to a Performance Blessing. In PPoPP. ACM,

232–244.

[25] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and Dragos-

Adrian Seredinschi. 2019. The Consensus Number of a Cryptocurrency. In PODC.

ACM, 307–316.

[26] Martin Kleppmann. 2021. Thinking in Events: From Databases to Distributed

Collaboration Software: Keynote at the 15th ACM International Conference on

Distributed and Event-Based Systems (DEBS). In DEBS. ACM, 15–24.

[27] Martin Kleppmann. 2022. Making CRDTs Byzantine fault tolerant. In Pa-

PoC@EuroSys. ACM, 8–15.

[28] Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual Consistency and

the Fundamental Limits of Peer-to-Peer Databases. arXiv:2012.00472v1 [cs.DC]

[29] Quentin Kniep, Lefteris Kokoris-Kogias, Alberto Sonnino, Igor Zablotchi, and

Nuda Zhang. 2024. Pilotfish: Distributed Transaction Execution for Lazy Block-

chains. arXiv:2401.16292v2 [cs.DC]

[30] Mysten Labs. 2022. Build Without Boundaries. https://sui.io.

[31] Mysten Labs. 2024. Mysticeti. https://github.com/asonnino/mysticeti.

[32] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks, and

Joseph M. Hellerstein. 2022. Keep CALM and CRDT On. Proc. VLDB Endow. 16, 4

(2022), 856–863.

[33] Linera. 2022. Unlocking the Power of Decentralization. https://linera.io.

[34] George Mitenkov, Igor Kabiljo, Zekun Li, Alexander Spiegelman, Satyanarayana

Vusirikala, Zhuolun Xiang, Aleksandar Zlateski, Nuno P. Lopes, and Rati

Gelashvili. 2024. Deferred Objects to Enhance Smart Contract Programming

with Optimistic Parallel Execution. arXiv:2405.06117v1 [cs.DC]

[35] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf Last accessed: Dec 24, 2024.

[36] Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2023. Orderless-

Chain: A CRDT-based BFT Coordination-free Blockchain Without Global Order

of Transactions. In Middleware. ACM, 137–150.

[37] Patrick E. O’Neil. 1986. The Escrow Transactional Method. ACM Trans. Database

Syst. 11, 4 (1986), 405–430.

[38] Fernando Pedone and André Schiper. 2002. Handling Message Semantics with

Generic Broadcast Protocols. Distributed Comput. 15, 2 (2002), 97–107.

[39] Geoffrey Ramseyer and David Mazières. 2024. Groundhog: Linearly-

Scalable Smart Contracting via Commutative Transaction Semantics.

arXiv:2404.03201v1 [cs.DC]

[40] Pavel Raykov, Nicolas Schiper, and Fernando Pedone. 2011. Byzantine Fault-

Tolerance with Commutative Commands. In OPODIS (LNCS, Vol. 7109). Springer,

329–342.

[41] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-Free Replicated Data Types. In SSS (LNCS, Vol. 6976). Springer, 386–400.

[42] Jakub Sliwinski and Roger Wattenhofer. 2019. ABC: Proof-of-Stake without

Consensus. arXiv:1909.10926v3 [cs.CR]

[43] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-

Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In CCS. ACM,

2705–2718.

[44] MatthewWeidner and Paulo Sérgio Almeida. 2022. An Oblivious Observed-Reset

Embeddable Replicated Counter. In PaPoC@EuroSys. ACM, 47–52.

[45] Anatoly Yakovenko. 2018. Solana: A New Architecture for a High Performance

Blockchain v0. 8.13. Whitepaper (2018).

[46] Wenbing Zhao. 2016. Optimistic Byzantine Fault Tolerance. Int. J. Parallel

Emergent Distributed Syst. 31, 3 (2016), 254–267.

13

https://arxiv.org/abs/2402.08068v3
https://arxiv.org/abs/2310.14821v4
https://arxiv.org/abs/2004.10617v2
https://arxiv.org/abs/2405.05645v1
https://arxiv.org/abs/1807.04938v3
https://www.circle.com/usdc
https://ethereum.org/en/
https://arxiv.org/abs/2012.00472v1
https://arxiv.org/abs/2401.16292v2
https://github.com/asonnino/mysticeti
https://arxiv.org/abs/2405.06117v1
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2404.03201v1
https://arxiv.org/abs/1909.10926v3

Algorithm 5 Bounded counter for single owner (user logic)

1: procedure Init(Bal0)
2: Version← 𝑣0
3: Bud← 𝜂 ∗ Bal0
4: sentTxs← ∅

5: ⊲ Invoked when application requires updating the bounded counter

6: procedure Update(𝛿)
7: if Bud + 𝛿 < 0 then ⊲ If update exceeds the budget

8: VersionUpdate()
9: ⊲ Abort if update exceeds the budget even after version update

10: if Bud + 𝛿 < 0 then return Error

11: Tx← {Version : Version, 𝛿 : 𝛿 }
12: if 𝛿 < 0 then Bud← Bud + Tx.𝛿
13: sendToValidators(Tx)
14: sentTxs← sentTxs ∪ {Tx}

15: procedure VersionUpdate()
16: 𝑣 ← {PrevVersion : Version, PrevTxs : sentTxs}
17: for Tx in sentTxs do
18: Bud← Bud + 𝜂 ∗ Tx.𝛿
19: if Tx.𝛿 < 0 then Bud← Bud − Tx.𝛿
20: ⊲ Send a version update request if there is enough remaining budget, otherwise

request to convert the bounded counter to an owned object

21: if Bud ≥ minBudget then sendToValidators(𝑣)
22: else sendToValidators(convertToOwnedObject(sentTxs))
23: Version← 𝑣

A Algorithms and Proofs for the Bounded
Counter

In Alg. 5, we provide a pseudocode of how an honest user interacts

with the bounded counter (corresponding to the description in

Sec. 4.3).

Refer to Tab. 2 for a summary of the notation used in the security

proof for the bounded counter (proof in Sec. 4.4).

𝑓 maximum number of adversarial validators

Bal0 initial balance of bounded counter

Bud validator’s signing budget

Bud𝑣 average budget of honest validators for version 𝑣

𝜂 ≜ 𝑓 +1
2𝑓 +1 fraction of Bal0 assigned to Bud

Tx.𝛿 quantity added by Tx to the bounded counter

Δ(S) sum of the quantities of transactions in the set S
𝑣0 initial version of the bounded counter

𝑝 (𝑣) parent version of 𝑣 , same as 𝑣 .PrevVersion
V set of versions with at least one certified transaction

C𝑣 set of certified transactions with version 𝑣

𝐻𝑣 history of 𝑣 : transactions included in the version

update requests of 𝑣 and all previous versions

𝐻𝑣 certified transactions with 𝑣 and all previous ver-

sions, except those in 𝐻𝑣

S+, S− Increment, decrement transactions in the set S
Table 2: Table of notation

A.1 Liveness Proof for the Owned Bounded
Counter

TheoremA.1. The bounded counter protocol (validator code: Alg. 1,

user code: Alg. 5) satisfies liveness. If the user sends only decrement

transactions, all transactions sent by an honest user will be executed

by honest validators in O(log(Bal0)) rounds.

Proof. First, we show that when the user runs Alg. 5, the budget

Bud computed by the user matches the budget computed by each

honest validator. Let Bud𝑐𝑣 be the budget computed by the user and

let Bud𝑗𝑣 be the budget computed by a validator 𝑗 at the time when

they each update their local Version to 𝑣 . We will first show that

for all validators 𝑗 , Bud𝑗𝑣 = Bud𝑐𝑣 = 𝜂 (Bal0 + 𝐻𝑣).
To show this, first note that for every honest validator 𝑗 , Bud𝑗𝑣 =

𝜂 (Bal0 + 𝐻𝑣). This can be seen from Lem. 4.9 along with the ob-

servation that 𝐻−𝑣 = ∅, i.e., there are no certified transactions not

included in the history of the latest version update, because the user

includes all transactions it sent in the version update (Alg. 5 l. 16).

Second, we see that Bud𝑐𝑣 = 𝜂 (Bal0+𝐻𝑣). This is because, as argued
above,𝐻𝑣 is exactly the set of transactions ever sent by the user, and

for each sent transaction, the user’s budget updates in Alg. 5 ll. 12,

18 and 19 have the net effect of updating the budget by 𝜂 ∗ Tx.𝛿 for

each transaction Tx sent by the user.

Finally, for any given version 𝑣 , the set of decrement transactions

S the user sends satisfies Bud𝑐𝑣 + Δ(S) ≥ 0 (Alg. 5 ll. 10 and 12).

Therefore, every honest validator signs these transactions eventu-

ally (once all messages are delivered). If at most 𝑓 validators are

adversarial, every transaction gets certified, and thus eventually

executed by honest validators.

Within a given version, all transactions sent by the user get certi-

fied concurrently, without any additional rounds of communication.

At each version update, validators must wait to execute transactions

with the previous version before executing transactions with the

new version, thus successive versions are processed sequentially. If

the user sends only decrement transactions, at each version update,

the budget gets scaled by a factor 𝜂 < 1. Thus, after O(log(Bal0))
version updates, the budget will fall below a pre-specified bound

minBudget, after which the user can convert the bounded counter

object to a standard owned object to spend the remaining balance

in a single transaction. □

B Safety Proof for the Collective Bounded
Counter

In this section, we prove the safety properties of the collective

bounded counter (described in Sec. 5.3, Alg. 2).

Eventual consistency (Thm. 4.3) continues to hold because when

an honest validator executes a transaction upon seeing a certificate,

it broadcasts the certificate to all other validators. Similarly, validity

continues to hold for the collective bounded counter.

To prove global safety, we begin by noting that Lem. 4.5 holds for

the collective bounded counter in the same way as for the owned

bounded counter. That is, within a single version, any subset of the

certified transactions does not spend too much. For clarity, Lem. 4.5

is recapped below. The proof is the same as for the owned bounded

counter because the rules for signing a transaction within a given

version are the same in the collective bounded counters.

Lemma B.1. For any version 𝑣 , let Bud𝑣 be the average budget of
all honest validators at the time when they set Version to 𝑣 . Let C𝑣 be
the set of certified transactions with version 𝑣 . Then, for all 𝑇 ⊆ C𝑣 :
Δ(𝑇) ≥ − 1

𝜂 Bud𝑣 .
14

We now extend the remainder of the owned bounded counter’s

security proof (Sec. 4.4) to the collective bounded counter. Since

the collective bounded counter allows merging multiple versions

to create a new version, we consider the directed acyclic graph

(DAG) formed by the versions, in which, unlike the owned bounded

counter, each version may have multiple parents.

In the collective bounded counter, versions can be changed

through a version update request (as in Alg. 1) or through a version

merge request (as in Alg. 2). Def. B.5 generalizes the definition of a

version’s parent to capture both these cases.

Definition B.2. For any version 𝑣 ≠ 𝑣0, define the set of par-

ent versions 𝑃 (𝑣) as {𝑣 .PrevVersion} if 𝑣 is a version update and

𝑣 .PrevVersions is 𝑣 is a version merge.

Even though the structure of the DAG formed by the versions

is different, the key property of Lem. 4.7 continues to hold. That

is, the set of versions for which there exists at least one certified

transaction forms a chain. However, these versions may not be

consecutive in the chain.

Definition B.3. There exists a path from 𝑣 to 𝑣 ′, indicated by

𝑣 → 𝑣 ′, if for some 𝑘 ≥ 1, there exists a sequence 𝑣1, ..., 𝑣𝑘 such

that 𝑣1 = 𝑣 ′, 𝑣𝑘 = 𝑣 , and for all 1 < 𝑖 ≤ 𝑘 , 𝑣𝑖−1 ∈ 𝑃 (𝑣𝑖). If 𝑣 → 𝑣 ′

doesn’t hold, we write 𝑣 ̸→ 𝑣 ′.

Lemma B.4. LetV be the set of versions for which there exists at

least one certified transaction. IfV ≠ ∅, thenV = {𝑣1, ..., 𝑣 |V | } such
that 𝑣1 → 𝑣0 and for all 𝑖 = 2, ..., |V|, 𝑣𝑖 → 𝑣𝑖−1.

Proof. If no transactions have been certified, V = ∅. If at
least one transaction is certified, then 𝑣1 → 𝑣0. This is because

initially honest validators sign only transactions with version 𝑣0
(Alg. 1 ll. 4 and 12) and will not sign transactions for a different

version until they receive a version update request containing cer-

tified transactions (Alg. 1 l. 28) or a version merge request in which

𝑣0 ∈ PrevVersions (Alg. 2 l. 5).
For any honest validator 𝑗 , if it updates Version from 𝑣 to 𝑣 ′, it

must be such that 𝑣 ∈ 𝑃 (𝑣 ′) (Alg. 1 l. 28, Alg. 2 l. 5). Therefore, for
all 𝑣 ∈ V , there exists a sequence 𝑣0, ..., 𝑣 in which there is a path

from each version to the next version. In other words, the versions

inV are part of a tree rooted at 𝑣0 with parent links as edges.

Now all that remains to show is that this tree is, in fact, a chain.

That is, there is no 𝑣, 𝑣 ′ ∈ V such that 𝑣 ̸→ 𝑣 ′ and 𝑣 ′ ̸→ 𝑣 . This

follows from quorum intersection. If there was 𝑣, 𝑣 ′ ∈ V such that

𝑣 ̸→ 𝑣 ′ and 𝑣 ′ ̸→ 𝑣 , then for both versions 𝑣 and 𝑣 ′, there is a set of
2𝑓 + 1 validators that signed transactions with that version. These

two sets of 2𝑓 + 1 validators have at least 2(2𝑓 + 1) − 𝑛 = 𝑓 + 1
validators in common (since 𝑛 = 3𝑓 + 1). However, since at most 𝑓

validators are adversarial, at least one honest validator signed both

transactions with version 𝑣 and 𝑣 ′. However, this is a contradiction
because an honest validator will not sign transactions for both

versions 𝑣 and 𝑣 ′ since there is no path from 𝑣 to 𝑣 ′ or from 𝑣 ′ to
𝑣 . □

Further, we generalize the history of a version (Def. 4.8) to cap-

ture version update and version merge requests. Like the owned

bounded counter, the collective bounded counter too updates val-

idators’ budgets accounting for all transactions in the history of

the new version. So, the proof of Lem. 4.9 carries forward similarly

in Lem. B.6.

Definition B.5. Define the history 𝐻𝑣 of a version as 𝐻𝑣0 = ∅,
𝐻𝑣≠𝑣0 = 𝐻𝑝 (𝑣) ∪ 𝑣 .PrevTxs if 𝑣 is a version update, and 𝐻𝑣≠𝑣0 =⋃

𝑣′∈𝑃 (𝑣) 𝐻𝑣′ .

Lemma B.6. For any version 𝑣𝑖 ∈ V , the average budget of all

honest validators at the time they upgrade to version 𝑣𝑖 satisfies

Bud𝑣𝑖 ≤ 𝜂 (Bal0 + Δ(𝐻𝑣𝑖) + Δ(𝐻−𝑣𝑖)).

Proof. Throughout the execution, an honest validator i) starts

with an initial budget of 𝜂Bal0, then ii) decreases its budget for

every decrement transaction signed (Alg. 1 l. 15), iii) updates its

budget for every certified transaction included in a version update

request (Alg. 1 l. 33) or transitively included in a version merge

request (Alg. 2 l. 8), and iv) reclaims its budget for every certified

decrement transaction it had previously signed that is included in

a version update request (Alg. 1 l. 35) or transitively included in a

version merge request (Alg. 2 l. 10). Suppose that 𝑓r ≤ 𝑓 validators

are adversarial (so, 𝑛− 𝑓r = 3𝑓 + 1− 𝑓r are honest). Combining these

four components, the average budget of all honest validators at the

time they update to version 𝑣𝑖 is

Bud𝑣𝑖 ≤ 𝜂Bal0 +
2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(C𝑖−) + 𝜂Δ(𝐻𝑣𝑖) −

2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(𝐻−𝑣𝑖)

= 𝜂 (Bal0 + Δ(𝐻𝑣𝑖)) +
2𝑓 + 1 − 𝑓r

3𝑓 + 1 − 𝑓r
Δ(𝐻−𝑣𝑖)

≤ 𝜂 (Bal0 + Δ(𝐻𝑣𝑖) + Δ(𝐻−𝑣𝑖)) .
□

Theorem B.7. The collective bounded counter protocol (validator

code: Alg. 2) satisfies global safety.

Proof. For any given subset of honest validators, let 𝑇 be the

set of transactions executed by some validator in this subset. Let

𝑣𝑘 be the latest version in 𝑇 . Since validators only execute certified

transactions (Alg. 1 l. 22), 𝑇 ⊆ C𝑘 . Moreover, validators execute

transactions in 𝑣𝑘 .PrevTxs before executing transactions with ver-

sion 𝑣𝑘 (Alg. 1 l. 21), so 𝑇 ⊇ 𝐻𝑣𝑘 .

Recall that we partitioned C𝑘−1 = 𝐻𝑣𝑘 ∪ 𝐻−𝑣𝑘 ∪ 𝐻+𝑣𝑘 , that is,
certified transactions with versions up to 𝑣𝑘−1 may be in the history

of version 𝑘 , and those that are not may be either increments or

decrements. Given these constraints, it is sufficient to prove that

Bal0 + Δ(𝑇) ≥ 0 for the worst case 𝑇 = 𝐻𝑣𝑘 ∪ 𝐻−𝑣𝑘 ∪ C
−
𝑣𝑘

where all

decrement transactions and no increment transactions beyond 𝐻𝑣𝑘

are executed.

Δ(𝑇) = Δ(𝐻𝑣𝑘) + Δ(𝐻−𝑣𝑘) + Δ(C
−
𝑣𝑘
) (4)

≥ Δ(𝐻𝑣𝑘) + Δ(𝐻−𝑣𝑘) −
1

𝜂
Bud𝑣𝑘 (Lem. B.1) (5)

≥ −Bal0 (Lem. B.6) (6)

□

C Security Arguments for FastUnlock
We argue about the safety and liveness of FastUnlock. Intuitively,

FastUnlock does not invalidate the finality guarantees of the normal

fast path operations. That is, a client holding an effect certificate

can be assured that its transaction will never be reverted.

15

Theorem C.1. If there exists an effect certificate EffectCert over a
transaction Tx, the execution of Tx is never reverted.

Proof. We assume that the execution of Tx is reverted and show
a contradiction. The transaction can only be reverted if there exists

an UnlockCert carrying an empty certificate over an ObjectKey
modified by Tx. From Check (3.2) of Alg. 3 a correct validator only

signs an UnlockVote with an empty Cert only if it has not executed
anything for ObjectKey. From our assumption that ObjectKey did

admit a no-op there should be 𝑓 + 1 honest validators that did not

partake in the generation of the EffectCert of Tx and hence passed

the check. Additionally, for the EffectCert to exist by definition it

has 2𝑓 + 1 signatories over the ObjectKey in question, at least 𝑓 + 1
of them being honest. This implies a total of at least 𝑓 +1+ 𝑓 +1+ 𝑓 =

3𝑓 + 2 > 3𝑓 + 1 validators, hence a contradiction. □

The converse also applies, that is, if an UnlockCert exists, then
no EffectCert over the ObjectKey will be generated in the fast path.

The proof works analogously by adding an extra check during

EffectCert generation in which correct validators refuse to process

certificates when they recorded Unlocked in their UnlockDb.

Next, we show that validators that might process on the consen-

sus path both a Cert (through checkpointing) and UnlockCert will
arrive at the same execution result. We prove the case where an

UnlockCert is ordered first. For this, we need to enhance the proto-

col of checkpointing in Sui to check the value ofUnlockDb[ObjectKey]
and ignore a Cert that tries to process a Confirmed ObjectKey,
which is a straightforward change.

Theorem C.2. If a correct validator executes an UnlockCert cer-
tificate over ObjectKey as sequenced by the SMR engine, no correct

validator will subsequently execute a conflicting Cert as sequenced
by the SMR engine.

Proof. The proof directly follows from the safety property of

the SMR engine that all validators will process certificates in the

same order. Hence, upon processing UnlockCert, all honest val-
idators mark the execution of ObjectKey as confirmed by setting

UnlockDb[ObjectKey] ← Confirmed (l. 13 of Alg. 4). Then,

Check (4.1) of Alg. 4 (and its dual added at the checkpoint algorithm)

ensures that if any further Cert or UnlockCert with a conflict is

given as input to the execution engine it is rejected. □

The converse can be proven in the same manner since we en-

hance the execution of Cert during the checkpoint process with

updating UnlockDb[ObjectKey] ← Confirmed after processing.

Then allUnlockCert on theObjectKeywill be rejected at the Check
(4.1) of Alg. 4.

Based on the above theorems, we can prove safety of the overall

Stingray system that uses FastUnlock.

Theorem C.3. Stingray satisfies safety (Def. 3.3).

Proof. Validity holds because validators execute only transac-

tions with valid certificates.

Next, we prove global safety. For any given object𝑂 , let𝑇𝑂
𝑝 (𝑡) be

the set of transactions executed on that object by validator 𝑝 up to

time 𝑡 . Due to Thm. C.2, for any two validators 𝑝, 𝑞,𝑇𝑂
𝑝 (𝑡) ⊆ 𝑇𝑂

𝑞 (𝑡)
or 𝑇𝑂

𝑞 (𝑡) ⊆ 𝑇𝑂
𝑝 (𝑡). Thus,

⋃
𝑝 honest

𝑇𝑂
𝑝 (𝑡) is the set executed by

some honest validator. Consider the sequence 𝑇𝑂
made by arrang-

ing transactions in this set in the order of the object version. Then,

𝑇𝑂
contains all transactions in

⋃
𝑝 honest

𝑇𝑂
𝑝 (𝑡) and this sequence

respects the application’s validity constraint since an honest val-

idator executed transactions in this sequence. Finally, let 𝑇 be the

merged sequence of 𝑇𝑂
for all objects, where the merge preserves

the partial order for each object. Due to the independence of dif-

ferent objects, 𝑇 also satisfies the validity predicate, thus proving

global safety. □

Liveness argument. Intuitively, we argue that FastUnlock—and its
composition with normal fast path operations—neither deadlocks

nor enables unjustified aborts (which could starve an object from

progress).

Lemma C.4 (Unlock Certificate Availability). A correct user

can obtain an unlock certificate UnlockCert over a valid ObjectKey.

Proof. A correct validator always signs UnlockVote if it passes
the check of Alg. 3. Well-formed UnlockRqt always come with a

valid authentication path (Check (3.1)), and Check (3.2) always

returns an UnlockVote. As a result, if UnlockRqt is disseminated to

2𝑓 + 1 correct validators by a correct user, they will eventually all

return an UnlockVote. The user then aggregates those votes into a

unlock certificate UnlockCert over ObjectKey. □

Theorem C.5 (FastUnlock Liveness). If a correct and autho-

rized user initiates a fast-unlock protocol, the ObjectKey in question

will eventually admit a new transaction.

Proof. A correct and authorized user will eventually generate

an unlock certificate by Lem. C.4. Additionally from the liveness

property of SMR the unlock certificate will either eventually be

added as part of the SMR output or the epoch will end. If the first

happens by agreement of consensus the UnlockCert will be exe-
cuted by all validators, leading to the termination of the fast-unlock

protocol and an updated ObjectKey. If the epoch ends, all locks are

dropped and liveness of all ObjectKey are automatically available

for processing. □

Thm. C.5 is sufficient for correct users as either they will manage

to no-op an incorrect invocation of ObjectKey, drive the tranasction
of a correct Tx to completion, or the epoch end will automatically

unblock them. This means that there will always be an available

ObjectKey to be modified.

Now that we proved that an authorized user will succeed into un-

blocking the ObjectKey we also need to show that an unauthorized

user will not succeed into starving legitimate users from progress

through abusing fast-unlock.

Theorem C.6 (Starvation Freedom). No user can successfully

initiate a fast-unlock on an ObjectKey it cannot produce an Auth for.

Proof. All honest validators check the authorization vector

Auth of the requesting user (l. 4 in Alg. 3). This means that no

honest party will lock an object without an authorization, includ-

ing slow parties that have not yet seen the ObjectKey which will

reject or cache the request for later processing. As a result, by the

model, there will never be sufficient UnlockVote to generate an

UnlockCert driven by an unauthorized user. □
16

Theorem C.7. Stingray satisfies liveness (Def. 3.4).

Proof. First we prove progress (Def. 3.4). Every transaction with

a valid certificate will be eventually executed unless there is an

UnlockCert containing Cert = None. Moreover, if the owners of

the transaction’s input objects do not equivocate, there will be no

UnlockRqt for those object (recall that only the object owners can

issue an UnlockRqt). This ensures progress.
Next, we prove eventual consistency (Def. 3.4). If a validator 𝑝1

executes a transaction, it must have seen the transaction finalized,

i.e., 2𝑓 + 1 validators signed a certificate for that transaction. There-
fore, at least 𝑓 + 1 honest validators must have seen a certificate

Cert for that transaction. If there is no UnlockCert for the trans-
action’s input objects, then eventually, all honest validators will

receive 2𝑓 + 1 signatures on the certificate, and thereafter execute

the transaction. If there is an UnlockCert for one of the transac-
tion’s input objects, then UnlockCert must contain Cert because at
least one honest validator whose signature is in UnlockCert must

have seen Cert. Therefore, even in this case, all honest validators

will eventually execute the transaction. □

Generalization to multi-object unlock. The multi-object unlock

protocol can be seen as a composition of many single-object unlock

protocols (one per object) as well as a single commit protocol (for

the accompanied transaction). As a result, the safety of the protocol

follows from the fact that objects are independent of each other

so if at least one has a prior certificate then the commit flow will

lead to committing that prior certificate (which iteratively applies

to all objects with prior certificates). If on the other hand, no object

has a prior certificate then the workflow is the combination of

the simple FastUnlock per object together with the shared-object

path of committing the transactions of Sui which is safe as proven

in the original Sui paper [13]. Second, we explore liveness. There

are two cases: (1) all objects can be unlocked, (2) one or more

objects are already certified. The first case is exactly the same as

the simple protocol of Sec. 6 and a proof would follow exactly the

same structure. For the second case, we first look into the base case

of a single object that is already certified which is already proven

in the previous sections. For more than one objects we can see

that since the validator adds all certificates in their reply and then

processes each certificate separately when handling the unlock cert

then there is no interaction between certificate processing and can

be considered a batch of independent requests.

Finally, for liveness the accompanied transaction might need to

acquire locks. This is also an independent invocation of the Sui

fast-path. As a result if the transaction is valid it will either succeed

or blocks. In the latter case, the user will have to invoke fast-unlock

again including in the set of to-unlock objects the newly blocked

objects of the transaction. Given that there is a finite number of

objects a user holds an unlock request will eventually succeed.

D Contention Mitigation
The basic FastUnlock protocol speeds up recovery from loss of

liveness due to mistakes. However, Stingray aims to support work-

loads on the fast path that are truly under contention. In this case,

the basic protocol in Sec. 6 is insufficient, since it can result in

multiple rounds of locking and no-op unlocking without any user

Algorithm 6 Process unlock requests (multi-object)

1: ⊲ Handle UnlockRqt messages from clients.

2: procedure ProcessUnlockTx(UnlockRqt)
3: ⊲ Check (6.1): Check authenticator.

4: if !valid(UnlockRqt) then return error

5: ⊲ Collect certificates.

6: 𝑐 ← None
7: for ObjectKey ∈ UnlockRqt.ObjectKeys do
8: 𝑐 ← 𝑐 ∪ LockDb[ObjectKey]
9: UnlockVote← sign(UnlockRqt, 𝑐)
10: ⊲ Record the decision to unlock.

11: if 𝑐 == None then
12: for ObjectKey ∈ UnlockRqt.ObjectKeys do
13: UnlockDb[ObjectKey] ← Unlocked
14: return UnlockVote

transaction being committed. We present a protocol that proposes

a new transaction during the unlock phase that is executed once

the unlock is sequenced, ensuring liveness.

In the following protocol, we additionally allow users to unlock

multiple objects at once. The multi-object unlock protocol follows

the same general flow as the single-object unlock protocol described

in Sec. 6. We now describe steps ➊-➏ depicted in Fig. 3 for the multi-

unlock protocol.

Protocol description. The user first creates an unlock request

specifying a set of objects to unlock:

UnlockRqt([ObjectKey], Tx,Auth)

This message contains a list of the object’s keys [ObjectKey] to
unlock (accessible as UnlockRqt.ObjectKeys), a new transaction

Tx to execute if the unlock process succeeds, and an authenticator

Auth ensuring the sender is authorized to access all objects in

[ObjectKey]. The user broadcasts this message to all validators (➊).

Alg. 6 describes how each validator handles this unlock request

UnlockRqt. They first perform Check (6.1) l. 4 to check the authen-

ticator Auth is valid with respect to all objects. This check ensures

that the user is authorized to mutate all the objects referenced by

UnlockRqt and to lock all owned object referenced by Tx. The val-
idator then collects any certificates for the objects referenced by

UnlockRqt (l. 8) and adds them to the response as Cert. The valida-
tor then marks the object in UnlockRqt as reserved for transaction

execution through consensus only (l. 13).

The validator finally returns an unlock vote UnlockVote to the

user:

UnlockVote(UnlockRqt, [Option(Cert)])

This message contains the unlock message UnlockRqt itself and
possibly a set of certificates [Cert] on transactions including the

object keys referenced by UnlockRqt (possible empty) (➋). If Cert
is not empty the certified transactions may have been finalized, and

should be executed instead of the new transaction.

The user collects a quorum of 2𝑓 + 1 UnlockVote over the same

UnlockRqt message and assembles them into an unlock certificate

UnlockCert:

UnlockCert(UnlockRqt,Cert)

where UnlockRqt is the user-created certified unlock message and

𝑈Cert is the unions of all set of certificates received in UnlockRqt
17

Algorithm 7 Process unlock certificates (multi-object)

1: ⊲ Handle UnlockCert messages from consensus.

2: procedure ProcessUnlockCert(UnlockCert)
3: ⊲ Check (7.1): Check no transaction already processed.

4: for ObjectKey ∈ UnlockCert.ObjectKeys do
5: if UnlockDb[ObjectKey] = Confirmed then
6: return
7: ⊲ Check (7.2): Check message validity.

8: if !valid(UnlockCert) then return error

9: ⊲ Check (7.3): Can we execute the tx?

10: 𝑣 ← []
11: if UnlockCert.Cert = [] then
12: Tx← UnlockCert.UnlockRqt.Tx
13: EffectSign← exec(Tx,UnlockCert)
14: 𝑣 ← EffectSign
15: for ObjectKey ∈ UnlockCert.ObjectKeys do
16: UnlockDb[ObjectKey] = Confirmed
17: else
18: for Cert ∈ UnlockCert.Cert do
19: EffectSign← exec(Cert)
20: 𝑣 ← 𝑣 ∪ EffectSign
21: for ObjectKey ∈ Cert.ObjectKeys do
22: UnlockDb[ObjectKey] = Confirmed
23: return 𝑣

responses. The user submits this message to the consensus en-

gine (➌) The consensus engine sequences all UnlockCertmessages;

all correct validators observe the same output sequence (➍).

Alg. 7 describes how validators process these UnlockCert mes-

sages after they are sequenced by the consensus engine. The valida-

tor first ensures they did not already process another UnlockCert
or Cert through checkpoint for the same objects keys (l. 5). They

then check UnlockCert is valid, that is, the validator ensures (i)

it is correctly signed by a quorum of authorities, and (ii) that all

certificates [Cert] it contains are valid (l. 8). The validator can only

execute the transaction Tx specified by the user if UnlockCert.Cert
is empty (l. 11). The validator then marks every object key of

[ObjectKey] as Confirmed to prevent any future unlock requests

on theObjectKey from overwriting execution with a different trans-

action (l. 22) and returns a set of EffectSign to the user (➎).

The user assembles an EffectSign from a quorum of 2𝑓 +1 valida-
tors into an effect certificate EffectCert that determines finality (➏).

D.1 Handling Gas Objects
Typical transactions not only mutate objects but also consume a

gas object to pay for the computation. If, however, the transac-

tion is equivocated then this gas is locked as well. For this reason

Stingray requires a fresh gas-object in order for consensus to pro-

cess the unlock request. Specifically together with Alg. 3, the parties

should provide a fresh gas object for their request. This gas object is

checked for validity along with the check in l. 4 and locked for the

unlock transaction in l. 10. When the user collects the no-commit

proof in the second step of the protocol, the 2𝑓 + 1 collected signa-

tures also serve as a certificate for the gas object. The consensus

then checks the validity of the certificate and spends it locally be-

fore entering Alg. 4. Then when consensus executes the transaction,

one of three scenarios may happen:

• The unlock request is valid and includes a certificate. Then

the execution happens as usual and both the gas object for

the unlock and the gas object for the execution are consumed.

• The unlock request is valid and comes with a no-op. Then the

gas object for unlock is consumed. If there was some locked

transaction racing the FastUnlock then the accompanying

gas object is potentially blocked. The user can then explicitly

unlock that gas object by running FastUnlock.

• The unlock request is not processed because a checkpoint

certificate already executed a transaction. Then the gas object

is still consumed without altering the state of the ObjectKey.
Note that if gas objects are implemented using bounded counters,

the same gas object can be spent concurrently for the transaction

and the unlock, thus the above problem wouldn’t exist.

E Detailed Experimental Setup
This section complements Sec. 8.1 by specifying the network setup

and machine specs used in the benchmarks presented in Sec. 8.

We deploy all systems on AWS, using m5d.8xlarge instances

across 13 different AWS regions: N. Virginia (us-east-1), Oregon

(us-west-2), Canada (ca-central-1), Frankfurt (eu-central-1), Ireland

(eu-west-1), London (eu-west-2), Paris (eu-west-3), Stockholm (eu-

north-1), Mumbai (ap-south-1), Singapore (ap-southeast-1), Sydney

(ap-southeast-2), Tokyo (ap-northeast-1), and Seoul (ap-northeast-

2). Validators are uniformly distributed across those regions. Each

machine provides 10Gbps of bandwidth, 32 virtual CPUs (16 physi-

cal cores) on a 3.1GHz Intel Xeon Skylake 8175M, 128GB memory,

and runs Linux Ubuntu server 22.04. We select these machines

because they provide decent performance, are in the price range

of “commodity servers”, and satisfy the minimum required to run a

Sui node as recommended by the Sui Foundation
7
.

7
https://docs.sui.io/guides/operator/validator-config

18

https://docs.sui.io/guides/operator/validator-config

	Abstract
	1 Introduction
	2 Background
	2.1 Data Structures
	2.2 Processing in the Fast Path and Consensus

	3 System Overview
	3.1 Threat Model and Goals
	3.2 Motivating Applications of Stingray
	3.3 Challenges

	4 Concurrency through Commutativiy
	4.1 The Bounded Counter Object
	4.2 Key Ideas for the Bounded Counter
	4.3 Bounded Counter for Single Owner
	4.4 Security Proof

	5 Concurrency with Multiple Owners
	5.1 Multi-Owner Transactions
	5.2 Collective Objects
	5.3 Collective Bounded Counter

	6 Fast Unlock Protocol
	6.1 Baseline FastUnlock Protocol

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Benchmark under Commutative Load
	8.3 Benchmark under Parallel Load
	8.4 Benchmark under Faults

	9 Related Work
	References
	A Algorithms and Proofs for the Bounded Counter
	A.1 Liveness Proof for the Owned Bounded Counter

	B Safety Proof for the Collective Bounded Counter
	C Security Arguments for FastUnlock
	D Contention Mitigation
	D.1 Handling Gas Objects

	E Detailed Experimental Setup

