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ABSTRACT

Log-Structured Merge-Trees (LSM-trees) dominate persistent key-
value storage but suffer from high write amplification from 10X to
30X under random workloads due to repeated compaction. This
overhead becomes prohibitive for large values with uniformly dis-
tributed keys, a workload common in content-addressable storage,
deduplication systems, and blockchain validators. We present TIDE-
HUNTER, a storage engine that eliminates value compaction by
treating the Write-Ahead Log (WAL) as permanent storage rather
than a temporary recovery buffer. Values are never overwritten;
and small, lazily-flushed index tables map keys to WAL positions.
TIDEHUNTER introduces (a) lock-free writes that saturate NVMe
drives through atomic allocation and parallel copying, (b) an op-
timistic index structure that exploits uniform key distributions
for single-roundtrip lookups, and (c) epoch-based pruning that
reclaims space without blocking writes. On a 1 TB dataset with
1KB values, TIDEHUNTER achieves 830K writes per second, that
is 8.4x higher than RocksDB and 2.9% higher than BlobDB, while
improving point queries by 1.7x and existence checks by 15.6x. We
validate real-world impact by integrating TIDEHUNTER into Sui, a
high-throughput blockchain, where it maintains stable throughput
and latency under loads that cause RocksDB-backed validators to
collapse. TIDEHUNTER is production-ready and is being deployed
in production within Sui.

1 INTRODUCTION

Log-Structured Merge-Trees (LSM-trees) are the dominant design
for persistent key-value stores. An LSM-tree buffers writes in mem-
ory and flushes them to disk as sorted files. To bound the number of
files and maintain lookup performance, the storage engine periodi-
cally merges these files in a process called compaction. Compaction
rewrites data to maintain sorted order. For small values, the over-
head is acceptable. For values of several kilobytes, it is not. A com-
mon measure of this inefficiency is write amplification, i.e., bytes
written to disk divided by bytes received from the application. Write
amplification reaches 10X to 30X [23] under random workloads and
grows with dataset size. A store ingesting 100 MB/s of application
data may push 1 GB/s to disk, starving reads of bandwidth.
LSM-trees target hard disk drives (HDDs), where sequential
I/O is 100x faster than random, hence trading write amplification
for sequential access was the recommended approach. Solid-state
drives (SSDs) changed the equation. Sequential-to-random gaps
shrink to 10X or less for large requests, and SSDs expose internal
parallelism that LSM-trees cannot exploit. To make matters worse,
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Figure 1: Mixed workload throughput (50% reads/writes) vs. value size, with
skewed (Zipf 6 = 2) and homogeneous (Zipf 6 = 0) access patterns.

SSD cells also wear out after a finite number of writes, making high
write amplification the culprit of frequent device failures.

A seminal work to address this issue is WiscKey [37]. It intro-
duced key-value separation: keys stay in an LSM-tree, values go to
a separate append-only log. Values stop moving during compaction,
and write amplification drops. However, the LSM-tree remains, and
so do its compaction cost and multi-level lookup overhead. Under
uniform key distributions, lookups traverse multiple levels with
little cache benefit. Additionally, the value log of WiscKey needs
garbage collection, which stalls I/O.

We take a different path. In TIDEHUNTER, the Write-Ahead Log
(WAL), traditionally a temporary buffer for crash recovery, becomes
the permanent store for values. We replace the key LSM-tree with
sharded index tables that flush lazily and answer existence queries
from memory. Our design targets applications with large values
and uniformly distributed keys. These are common requirements
of modern applications. Content-addressable storage systems like
Git and IPFS key objects by cryptographic hashes of their con-
tents [7]. Deduplication systems for backup and archival storage
partition data into chunks and index them by hash, with chunk sizes
typically ranging from 4KB to 64 KB [27, 57]. Object stores and
blob storage systems often use UUIDs or content hashes as keys;
Facebook’s Haystack, for example, stores billions of photos keyed
by unique identifiers with a size of around 8-64 KB [6]. Machine
learning feature stores index embeddings and feature vectors by
entity ID or feature hash, with vectors often reaching several kilo-
bytes [20, 46, 47]. The shift toward immutable, content-addressed,
and UUID-keyed data spans cloud infrastructure, data pipelines,
and application backends. In all these settings, keys lack locality
by design, and values are large enough that LSM-tree compaction
becomes the dominant cost.



We focus on blockchain validators as a concrete evaluation tar-
get because they combine all of these pressures in a single system:
hash-keyed data, kilobyte values, write-heavy ingestion, latency-
sensitive reads, and aggressive pruning. A validator participates
in distributed consensus: it receives transactions, orders them into
blocks, executes them, and stores results for queries. We specifi-
cally chose Sui [9] to integrate TIDEHUNTER. It is a high-throughput
blockchain whose validators handle thousands of transactions per
second and answer queries about history, execution results, and
object state concurrently. Validators write continuously as blocks ar-
rive but must read with low latency, since execution fetches objects,
clients check status, and peers request proofs. They also prune ag-
gressively, keeping only recent epochs; this places significant stress
on the underlying RocksDB store, where ill-timed compactions can
cause performance to plummet.

TIDEHUNTER is built for large values and uniform keys. Figure 1
shows the performance benefit of TIDEHUNTER as the value size
grows, both for skewed and homogeneous access patterns. Three
key insights guided our design towards these results:

(1) Separate values from indices. Values live in a central WAL;
indices are small and separate. Compaction rewrites indices,
not values. Large values are written once and never copied.

(2) Manage indices lazily. Indices load on-demand and unload
under memory pressure, enabling working sets larger than
RAM without manual tuning.

(3) Exploit epoch semantics for garbage collection. Many
workloads, including blockchains, organize data into epochs or
time ranges. TIDEHUNTER reclaims space by dropping entire
WAL segments when their epoch expires, avoiding the I/O cost
of per-record garbage collection.

We evaluate TIDEHUNTER against RocksDB and BlobDB (the
production implementation of WiscKey) on 1 TB datasets. At 1KB
values, TIDEHUNTER sustains 830K writes/sec (8.4X RocksDB, 2.9x
BlobDB), improves point queries by 1.7X, and improves existence
checks by 15.6x (resolved from the index, no value fetch). At 64
bytes, LSM-trees win by 2-2.5x%; the crossover is near 128 bytes.

To validate that synthetic benchmarks translate to real systems,
we integrated TIDEHUNTER into Sui and ran validators under sus-
tained transaction load. With RocksDB, validators show perfor-
mance degradation at around 6,000 transactions per second as disk
utilization rises and latency climbs. Under the same conditions,
TIDEHUNTER maintains stable throughput and lower latency, with
reduced disk pressure and more consistent CPU utilization. Side-by-
side runs show clear differences in disk read and write throughput,
sustained transactions per second, and settlement finality latency.
TIDEHUNTER avoids the I/O saturation that triggers performance
collapse in RocksDB configurations at comparable load.

Contributions. This paper makes the following contributions:

o We present TIDEHUNTER, a storage engine architecture that elim-
inates value compaction by treating the WAL as permanent stor-
age, achieving near 1x write amplification for large values.

e We introduce an optimistic index that exploits uniform key dis-
tributions to achieve single-roundtrip lookups, trading the gen-
erality of LSM-trees for lower tail latencies.
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o We evaluate TIDEHUNTER on synthetic benchmarks and a produc-
tion blockchain, showing 8.4x write throughput over RocksDB
and stable performance where RocksDB-backed systems collapse.

2 BACKGROUND & DESIGN PRINCIPLES

We begin by reviewing LSM-trees and their compaction costs, which
motivate TIDEHUNTER’s design. We then present the high-level
principles that guide TIDEHUNTER’s architecture.

2.1 Log-Structured Merge-Trees

LSM-trees [44] emerged as the dominant architecture for write-
intensive key-value stores. The design reflects a fundamental asym-
metry of hard disk drives: sequential I/O is roughly 100X faster than
random I/O [28, 51]. Rather than update records in place, which
requires random seeks, LSM-trees buffer writes in memory and
flush them sequentially. This batching converts random writes into
sequential at the cost of extra bookkeeping.

An LSM-tree organizes data into levels. Incoming writes first
land in memtable, an in-memory sorted structure such as a balanced
tree or skiplist. When the memtable reaches a size threshold, the
engine flushes it to disk as an immutable Sorted String Table (SST)
file. These flushed files form Level 0 (L0). Unlike deeper levels, L0
files may have overlapping key ranges because each flush produces
an independent file. As L0 accumulates files, read performance
degrades: a lookup checks the memtable, then each LO file from
newest to oldest, because any of them might contain the key. To
bound this, the engine periodically runs compaction, which merges
Lo files into Level 1 (L1). L1 and deeper levels maintain a key in-
variant: within a level, files have non-overlapping key ranges. A
lookup at L1 or beyond touches aa single file per level. Compaction
continues down the tree: when L1 grows too large, files merge into
L2, and so on.

RocksDB [23], a widely deployed LSM-tree implementation,
uses this leveled compaction strategy by default. Each level is
roughly 10x larger than the previous, so a dataset of size N re-
quires O(log N) levels. Compaction is crucial for read performance:
without it, every lookup would scan the entire L0, making reads
linear in the number of flushes.

2.2 Compaction Costs

Compaction maintains read performance but introduces three forms
of overhead that dominate under write-heavy workloads.

Write amplification. Each key-value pair may be rewritten many
times as it moves through levels. When compaction merges files
from Li into Li + 1, every record in those files is read and written
again, even if it has not changed. With a size ratio of 10X between
levels and O(log N) levels, write amplification—bytes written to
disk divided by bytes received from the application—can reach
10X to 30X under random workloads [23]. In Sui’s private testnet,
validators ingesting 40 MB/s of application data generated 500 MB/s
of disk writes, an 8x amplification factor. High write amplification
consumes I/O bandwidth, accelerates SSD wear [30], and limits
throughput scaling.

Read amplification. Although compaction reduces the number
of files a lookup must check, reads still traverse multiple levels. A
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Figure 2: Design evolution of TIDEHUNTER. Each step addresses a limitation of the previous design: (1) append-only log provides fast writes but slow reads;
(2) in-memory index enables fast lookups; (3) persisted index supports datasets larger than memory; (4) relocation reclaims space without blocking writes; (5)

snapshots enable fast recovery; (6) sharding enables concurrent operations.

point query may touch the memtable, one or more L0 files, and one
file per deeper level. Bloom filters mitigate this cost for negative
lookups [23], but positive lookups on cold data incur one disk read
per level. For a 1 TB dataset with 10X level ratios, this means five
or six levels and potentially five or six disk reads per lookup.

Write stalls. Compaction competes with foreground writes for
I/0 bandwidth and CPU cycles. To prevent L0 from growing with-
out bound, RocksDB throttles or blocks writes when compaction
falls behind. These write stalls cause latency spikes and through-
put drops [5, 23]. In extreme cases, writes block entirely until
compaction clears enough space. The result is unpredictable per-
formance: the same workload may sustain high throughput one
minute and stall the next. These costs compound as the dataset
grows and values become larger. In Sui’s testnet, disk I/O utiliza-
tion approached 80%, leaving no headroom to scale throughput.
The bottleneck was not the application—it was the storage engine
rewriting data that had not changed. TIDEHUNTER addresses this
by eliminating value compaction entirely: values land in the WAL
once and never move again.

2.3 TIDEHUNTER Design Principles

The limitations of LSM-Tree-based designs specifically for applica-
tions with large values and uniform keys has guided our design for
TIDEHUNTER. Figure 2 presents our journey towards TIDEHUNTER
by starting from a minimal storage system and incrementally ad-
dressing its limitations. Each step introduces a component that
appears in the final architecture (Figure 2). Three principles guide
every decision: (1) writes append directly to their long-term posi-
tion on disk, (2) values are rarely moved, and (3) compaction never
blocks writes.

Step 1: Append-Only Log. The simplest design stores all data in a
single append-only log. Inserts and updates append the key-value
pair to the end of the log. Deletes append a tombstone marker.
Reads perform a linear scan from the end of the log, returning the
first matching key encountered. This design achieves O(1) writes

but O(n) reads. This is acceptable for write-heavy workloads with
few reads, but impractical otherwise. We need an index.

Step 2: In-Memory Index. We add an in-memory index that maps
keys to their positions in the log. Writes still append to the log, but
now also update the index. Reads consult the index to find the log
position, then fetch the value directly—O(log n) or O(1) depending
on the index structure. However, the index grows with the number
of unique keys. For datasets larger than memory, the index itself
becomes the bottleneck. We need to persist it.

Step 3: Persisted Index. We periodically flush the in-memory in-
dex to disk. The flushed index is a sorted file that can be searched
efficiently. Reads first check the in-memory index for recent writes,
then fall back to the persisted index on disk. Now the system
can handle datasets larger than the RAM. But the WAL grows
unbounded: deleted keys and overwritten values consume space
forever. We need to reclaim it.

Step 4: Relocation. We introduce a relocation process that moves
live entries forward in the log and discards obsolete ones. The re-
locator scans from the oldest entries, checks whether each key is
still live (not deleted or overwritten), and re-appends live entries to
the log tail. Once all live entries in a log segment have been relo-
cated, the segment can be deleted. Crucially, relocation runs in the
background and never blocks writes. Unlike LSM-tree compaction,
which must complete before the system can proceed, TIDEHUNTER’S
relocator simply appends to the same log that serves normal writes.
However, recovery currently requires replaying the entire WAL to
reconstruct the index, which is impractically slow for large datasets.

Step 5: Snapshots. We add periodic snapshots that record the in-
dex state and a WAL position on disk. Recovery loads the snapshot
and replays only the WAL suffix after the snapshot position. Snap-
shots are small because they store only metadata (index positions
and WAL offsets), not the actual index data. They can be taken
frequently without significant overhead. Finally, a single index be-
comes a contention point under concurrent writes: locking it even
for a brief time for updates can severely hinder performance.
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Step 6: Sharded Index. We partition the key space into indepen-
dent cells, each with its own in-memory index, persisted index,
and locks. Operations on different shards proceed in parallel with-
out synchronization. This is TIDEHUNTER in a nutshell. The WAL
remains shared (writes are serialized only at allocation), but in-
dex operations parallelize across shards. Section 3 describes each
component and the challenges that this design overcomes in detail.

3 THE TIDEHUNTER ARCHITECTURE

Figure 3 illustrates the architecture. The system consists of sev-
eral interacting components. This section describes the interaction
between these components to serve reads and writes as well as
ensuring efficient crash-recovery.

3.1 Write Flow

Figure 4 details the write path by expanding the Value WAL Con-
troller of Figure 3. The write path is designed to minimize latency
while providing clear durability guarantees. It contains a synchro-
nous path that completes fast (solid arrows on Figure 4), and asyn-
chronous background operations (dotted arrows on Figure 4).

The Client flow. The client starts by sending a write operation
(insert or delete) to the synchronous controller, which allocates a
position in the Value WAL, that is, a contiguous region where the
entry will be written, to ensure concurrent writers do not overwrite
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each other (@). Its role is to monitor which WAL positions have
been fully processed (i.e., both written to the WAL and indexed
in the Large Table). It then memory-map writes the entry to the
Value WAL, persisting it to disk (®). The client then updates the
Large Table, the in-memory index that maps keys to their WAL
positions, so that subsequent reads can locate the value directly
without scanning the entire WAL (®). This allows multiple clients
to start the write flow concurrently. The synchronous controller
allocates WAL positions through a fast atomic counter and after
that, the clients run the rest of the write flow in parallel.

When the update completes, the asynchronous controller is no-
tified that this position is now fully processed, meaning the entry
is both durable in the WAL and indexed in the Large Table (@). It
updates the highest WAL offset for which all preceding entries have
been processed. This position, along with a snapshot of the Large
Table, is periodically persisted to the Control Region to facilitate
efficient crash recovery (see Section 3.4).

The Value WAL is organized into memory-mapped regions called
maps, each covering a contiguous range of positions. Multiple en-
tries are written to the same map before it is finalized. When all
positions in a map have been processed and the next map has begun
receiving writes, the asynchronous controller asynchronously final-
izes the map. The asynchronous controller serves three purposes:
it manages the lifecycle of these memory maps, handles garbage
collection of old WAL files, and calls fsync to finalize maps. For
map lifecycle, it maintains a buffer of pre-allocated maps so that
writes never block waiting for map creation. When a map is final-
ized, it prepares the next map in the buffer; it then asynchronous
calls fsync on finalized maps, ensuring data is persisted to stable
storage (®). By isolating this blocking operation in background
threads, the write path remains fast and non-blocking. For garbage
collection, when relocation advances the minimum required WAL
position, the asynchronous controller deletes obsolete WAL files
that are no longer needed for recovery (see Section 4.4).

Durability Guarantees. This design cleanly separates the synchro-
nous write path: allocation, memory-map write, and index update,
from the asynchronous durability and cleanup operations. Writes
complete without waiting for fsync, while background threads
ensure data eventually reaches stable storage and stale files are
reclaimed. TIDEHUNTER provides durability against application
crashes as soon as step ® completes, when data is written to the
memory-mapped region. Even if the application crashes before the
Large Table is updated, the kernel will eventually flush the page
cache to disk. Upon recovery, TIDEHUNTER replays the WAL from
the last checkpointed position, reconstructing any index entries
that were not yet reflected in the Large Table. For durability against
kernel crashes, TIDEHUNTER relies on explicit fsync operations
performed asynchronously by the background asynchronous con-
troller. Applications requiring stronger durability guarantees can
invoke explicit flush operations. Having the synchronous controller
separated from the asynchronous controller allows for a multi-tier
performance/durability trade-off. The former finishes fast and pro-
vides persistence at the OS page cache, while the latter batches
fsync calls and handles cleanup in the background.

Deletes. Deleting a key is analogous to writing a special tomb-
stone value. If concurrent operations occur (e.g., a delete and an
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insert for the same key), the operation with the higher WAL posi-
tion wins. This ensures consistency regardless of the order in which
operations are applied to the Large Table. Tombstones serve three
purposes: they ensure deletes survive crash recovery (replaying
the tombstone removes the key), they allow correct conflict resolu-
tion with concurrent writes, and they enable the relocator to skip
deleted entries when compacting the Value WAL (Section 4.4).

Atomic batch writes. TIDEHUNTER supports atomic batch writes,
allowing multiple inserts and deletes to be applied as a single unit.
A batch is constructed by accumulating updates in memory, then
committed in two phases. First, a batch-start marker is written to
the Value WAL, followed by all entries in the batch. The Value WAL
Controller uses a single allocation for the entire batch, ensuring they
are treated as a unit for position tracking. Then, each entry is applied
to the Large Table in sequence. If a crash occurs after the WAL write
but before all Large Table updates complete, recovery replays the
batch: the batch-start marker indicates how many entries follow,
ensuring partial batches are reconstructed. This provides atomicity,
either all or no update in the batch is visible after recovery.

3.2 Read Flow

Figure 5 shows the read path in TIDEHUNTER by expanding the
Large Table of Figure 3. When a client issues a read operation,
TIDEHUNTER follows a tiered lookup strategy.

It first consults an in-memory LRU cache that stores recently
accessed values (@). If the key is found, the value is returned imme-
diately. This is the fastest path, requiring no index lookup or WAL
access. If the LRU cache misses, the system checks a bloom filter ().
If the bloom filter indicates the key is definitely not present, the
lookup returns immediately, avoiding unnecessary index access.
This is fundamentally different from RocksDB-style LSMs, where
queries traverse multiple levels of SSTables regardless of whether
the key exists. If the bloom filter does not rule out the key, the sys-
tem consults the Large Table (®). If the relevant index is resident in
memory, the lookup completes immediately; otherwise, the system
reads the index from the Index Store on disk (®). If the key is found,
the index provides a WAL position, and the system reads the value
directly from the Value WAL at that position (®). The value is then
added to the LRU cache to accelerate future accesses. In practice,

frequently accessed data remains in the operating system’s page
cache, making most reads memory-speed operations.

When a cell’s index resides on disk rather than in memory, the
system must typically load the entire index before performing a
lookup. However, for uniformly distributed keys, TIDEHUNTER can
locate entries directly on disk without loading the full index. For
large cells, this is wasteful when only a single key is needed. TIDE-
HUNTER exploits a key property of its workload: keys are either
cryptographic hashes or prefixed by such hashes, and thus uni-
formly distributed across the keyspace. This allows the system to
estimate where a key would appear in a sorted, serialized index. The
algorithm treats the key as an integer and computes its fractional
position within the full key range, for example, a key starting with
byte 0x80 lies roughly at the midpoint. Multiplying this fraction by
the index file size yields an estimated byte offset.

The system then reads a small window around this offset. If
the target key falls within the range covered by the window, bi-
nary search locates the entry. Otherwise, the window is shifted
toward the beginning or end of the file based on key comparison,
and the process repeats. For uniformly distributed keys, this typi-
cally converges within 1-3 iterations, reading only a few kilobytes
rather than potentially megabytes of index data. We call this ap-
proach the optimistic index and detail its statistical foundation in
Section 4.2. This optimization is particularly valuable during re-
covery and cold-start scenarios, where most cells are unloaded.
It allows TIDEHUNTER to serve read requests immediately after
opening the database, without waiting for indices to be loaded into
memory (see Section 3.4).

3.3 State Snapshots

TIDEHUNTER periodically captures snapshots in the background to
enable efficient crash recovery. A snapshot records the state of the
system at a point in time, allowing recovery to start from that point
rather than replaying the entire Value WAL from the beginning. For
each cell in the Large Table, a snapshot stores the Index Store posi-
tion where the cell’s most recently flushed index resides (if any) and
areplay position indicating how much of the Value WAL is reflected
in that flushed index. The snapshot also records a global replay-
from position, the minimum replay position across all cells which
marks the starting point for Value WAL replay during recovery. The
snapshot engine operates as a background thread that periodically
flushes cells that have accumulated significant updates and writes
this metadata atomically to the Control Region, a dedicated region
on disk (Figure 3). More frequent snapshots reduce recovery time
by minimizing the Value WAL segment that must be replayed, but
increase write I/O during normal operation; TIDEHUNTER balances
this trade-off by flushing only cells that exceed a configurable dirty
threshold. Unlike LSM-trees based systems [39] that snapshot en-
tire data structures, TIDEHUNTER snapshots contain only positions
rather than actual index data. As a result, they are small and can be
rewritten frequently without significant overhead.

3.4 Crash Recovery

When TIDEHUNTER starts after a crash or normal shutdown, it
performs a recovery sequence. The system first reads the Control
Region from disk. This contains the most recent snapshot: for each



cell, the Index Store position where its flushed index resides, and a
global replay-from position marking where Value WAL replay must
begin. The system then opens both the Value WAL and the Index
Store. These append-only logs survived the crash; their contents
remain intact. The Large Table is initialized from the snapshot
metadata. Each cell starts in an unloaded state, but the cell knows
where its serialized index resides in the Index Store. This allows
recovery to proceed without loading all indices upfront as they
are loaded on demand during normal operation. Starting from the
replay-from position recorded in the snapshot, the system iterates
through the Value WAL and replays each entry into the Large Table,
reconstructing any updates that occurred after the snapshot was
taken. Once replay completes, the system starts the background
components: the Value WAL Controller, the Index Store Controller,
the flusher threads, the relocator, and the snapshot thread. The
database is now ready to serve client requests.

4 RESOURCE MANAGEMENT

This section describes how TIDEHUNTER manages resources to
scale beyond available memory. We examine the Large Table’s
organization, which allows the index to partially reside on disk;
index flushing, which persists updates to relieve memory pressure;
and relocation, which reclaims disk space by pruning obsolete
entries without blocking writes.

4.1 The Large Table

The Large Table mainly serves as TIDEHUNTER’s in-memory index,
mapping keys to their corresponding positions in the Value WAL.
Its design enables memory-efficient operation by allowing portions
of the index to reside on disk while supporting concurrent access
through fine-grained locking.

Partitioning and concurrency. Supporting datasets larger than
memory while maintaining high concurrency presents two chal-
lenges: the index cannot fit entirely in RAM, and a single lock would
serialize all operations. TIDEHUNTER addresses both by partition-
ing keys into cells, each representing a contiguous range of keys.
This partitioning enables two key properties: cells can be individu-
ally loaded or evicted to manage memory, and cells can be locked
independently to maximize concurrency. Applications define one
or more key spaces at database creation, each configured with a
distribution type. For uniformly distributed keys (such as crypto-
graphic hashes), cells are pre-allocated as a fixed-size array. For
keys with common prefixes, cells are stored in a B-tree that grows
dynamically. This latter organization suits composite keys such as
(tenant_id, record_id) or (namespace, key), enabling efficient range
scans within a prefix while accommodating new prefixes without
pre-allocation. Within each key space, cells are grouped into rows
protected by sharded mutexes, allowing concurrent operations on
different key ranges to proceed without contention.

Cell states. A naive approach would load an entire cell’s in-
dex into memory on first access, but this is prohibitive for write-
heavy workloads: a single write to a cold cell could trigger loading
megabytes of index data. TIDEHUNTER avoids this with a DirtyUn-
loaded state that buffers new writes in memory without loading
the existing on-disk index. Each cell maintains one of five states
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governing memory residency. A cell starts Empty and transitions
to Loaded when it receives data that is fully resident in memory.
When evicted under memory pressure, it becomes Unloaded, with
its index existing only on disk. DirtyLoaded indicates an in-memory
index with unpersisted changes, while DirtyUnloaded buffers recent
writes while the bulk of the index remains on disk. When a write ar-
rives for an Unloaded cell, the system transitions to DirtyUnloaded
and buffers only the new entry. Reads check this in-memory buffer
first; if the key is not found, the system performs a point lookup into
the on-disk index without loading the entire structure (Section 3.2).
This trades slightly higher per-lookup cost for substantially lower
memory consumption.

4.2 Optimistic Index Lookup

When a cell’s index resides on disk, lookups typically require load-
ing the index into memory or using a multi-level directory structure
requiring multiple I/O operations. TIDEHUNTER avoids both by ex-
ploiting a statistical property of uniform key distributions: the
position of a key in a sorted array can be estimated from its value.

Consider N keys sampled uniformly from [0, 22°®) and sorted
into an array. For a key k, its expected position is k - N/22%°. More
precisely, the i-th order statistic of N uniform samples follows a
Beta distribution, Beta(i, N — i + 1), which provides confidence
intervals for the key’s location. This statistical foundation allows
TIDEHUNTER to bound the search region with high probability.

The on-disk index format is deliberately simple: a sorted array
of fixed-size entries, each containing a 32-byte key and an 8-byte
WAL position (40 bytes total). No headers, directories, or multi-
level structures are needed. This simplicity enables direct position
estimation: given a key k and an index containing N entries, the
system computes the fractional position p = k/22%¢ and estimates
the byte offset as p X 40N.

To perform a lookup, the system reads a window of W entries
(800 by default, approximately 32 KB) centered at the estimated
offset. If the target key falls within the key range covered by the
window, binary search locates the entry. If not, the window shifts
toward the beginning or end of the file based on key comparison,
and the process repeats. For uniformly distributed keys, this typ-
ically converges in one to three iterations. The approach works
because modern SSDs exhibit a batch read property: reading 32 KB
incurs essentially the same latency as reading a single byte, due
to internal page sizes and command overhead. A window of 800
entries provides greater than 99% probability of containing the
target key for indices with 10K-100K entries. The window size is
configurable, trading off between hit rate (larger windows miss
less often) and I/O volume (smaller windows read fewer bytes per
iteration). We evaluate this trade-off in Section 6.

4.3 Index Flushing

When a cell accumulates too many dirty entries, the system must
persist them to disk. A naive approach would block the cell dur-
ing this flush, but this is unacceptable for write-heavy workloads
where cells receive continuous updates. TIDEHUNTER flushes asyn-
chronously: the flusher captures a snapshot of the dirty index and
dispatches persistence to background threads, while the cell re-
mains available for new writes.
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The flusher performs one of two operations depending on the
cell’s state: for DirtyLoaded cells, it serializes the complete in-
memory index; for DirtyUnloaded cells, it first loads the existing
on-disk index, merges it with the dirty entries, and serializes the
combined result. The flusher may also remove obsolete entries.
Once the index is prepared, the flusher hands it to the Index Store
Controller for persistence. The Index Store shares the same append-
only implementation as the Value WAL (Section 3.1), differing only
in the data it stores (serialized indices rather than key-value en-
tries). It then notifies the Large Table with the new index position,
so the cell can record where its on-disk index is stored for future
reads. The cell performs an unmerge operation: it removes from its
in-memory buffer all entries included in the flush, retaining only
entries that arrived after the flush began. If no entries remain, the
cell becomes to Unloaded; otherwise, it remains in DirtyUnloaded
with the updated on-disk pointer.

A second challenge is serving reads during a flush. Because
the Index Store is append-only, new indices are appended rather
than overwriting existing ones. During a flush, the cell continues
pointing to the previous index position, so concurrent reads safely
access the old version. Only after the write completes does the
flusher atomically update the cell’s pointer. Readers and writers
thus operate on disjoint regions, requiring no coordination beyond
the final pointer update.

4.4 Relocation

As writes accumulate in the Value WAL, obsolete entries, overwrit-
ten values and deleted keys, consume space that can no longer
be reclaimed by simply truncating the log. TIDEHUNTER reclaims
this space through a process called relocation, which moves live
entries forward in the WAL, allowing old segments to be deleted.
Relocation operates by scanning the WAL, identifying entries that
are still live, re-writing them to new positions at the tail of the
WAL, updating the Large Table index to point to the new positions,
and finally deleting the old WAL segments. The key challenge is
ensuring correctness in the presence of concurrent writes: if a client
updates a key while relocation is in progress, the relocated entry
must not overwrite the newer value. TIDEHUNTER solves this with
a compare-and-set mechanism. When relocation reads an entry
at position P and prepares to relocate it to position P’, it captures
the last processed value L—the highest contiguous WAL position
where all write operations have been written to the WAL and their
corresponding index updates have been applied to the Large Ta-
ble. When applying the update, it only replaces the index entry if
the current position is less than L. If a concurrent write updated
the key to position P”” > L, the relocation update is ignored, and
the index continues to point to P”’. This allows relocation to run
concurrently with normal writes without locks or coordination.
Space is reclaimed at file granularity. The Value WAL is organized
as a sequence of files; once all live entries in a file have been re-
located (or were already beyond the file’s range), the file can be
deleted. The GC watermark tracks the oldest position that may still
be referenced, ensuring files are not deleted prematurely.
TIDEHUNTER supports two relocation strategies: WAL-based re-
location and index-based relocation. WAL-based relocation scans
the Value WAL sequentially from the oldest entry. For each entry,

it checks whether the key still exists in the index and points to
this WAL position—if so, the entry is live and must be relocated.
This approach is simple and processes entries in WAL order, but
must read each entry from disk. Index-based relocation iterates
through cells in the Large Table. For each cell, it loads the index,
identifies entries whose WAL positions fall below the target cutoff
(a configurable position that determines how much of the WAL to
reclaim), reads their values from the WAL, and decides which to
relocate. This approach can be more efficient when only a subset
of cells contain old entries. Both strategies support an optional
relocation filter, an application-provided callback that decides for
each entry whether to keep it, remove it, or stop relocation. This
enables application-specific compaction logic, such as retaining
only the latest version of each key or pruning entries based on
business rules.

A key architectural difference between TIDEHUNTER and LSM-
tree databases like RocksDB is the role of compaction. In LSM-
trees, compaction is essential for read performance: without it,
reads must search through multiple levels of SSTables, and read
amplification grows with the number of levels. Compaction merges
levels, reducing the search space and keeping reads fast. In TIDE-
HUNTER, read performance is independent of WAL fragmentation.
The Large Table index provides direct access to any value’s WAL
position—whether that position is at the beginning or end of the
WAL, the read cost is the same (one index lookup plus one WAL
read). Fragmentation does not degrade read latency. This means
relocation in TIDEHUNTER serves a single purpose: reclaiming disk
space. Unlike LSM-tree compaction, which repeatedly rewrites data
across levels, TIDEHUNTER writes each value to the WAL only once
during normal operation. Additional writes occur only when relo-
cation reclaims space, and even then, only live entries are rewritten.
Because relocation is optional and can be deferred when disk space
is abundant, applications can maintain near-1X write amplification.

Unlike LSM-tree compaction, which trades write amplification
for read performance, TIDEHUNTER’s relocation trades write ampli-
fication purely for disk space. Applications with ample storage can
defer or skip relocation entirely without impacting read latency.

5 IMPLEMENTATION

We provide a production-ready implementation of TIDEHUNTER in
Rust [41], currently being deployed in the Sui blockchain to replace
RocksDB, comprising approximately 14,000 lines of code (excluding
tests). The implementation leverages several key libraries that align
with the system’s design goals: memmap2 for memory-mapped I/O,
enabling direct writes to WAL fragments without explicit system
calls; parking_lot for high-performance mutexes with support for
Arc-based guards, used in the guard-based position tracking mech-
anism; arc-swap for atomic swapping of Arc pointers, allowing
lock-free reads of shared data structures such as the WAL’s mem-
ory map registry; crc32fast for efficient CRC32 checksums on WAL
entries; bloom for per-cell Bloom filters that accelerate negative
lookups; Iru for the value cache; and rayon for parallel initializa-
tion of the Large Table during recovery. Unsafe code is limited to
memory-mapped I/O operations and carefully encapsulated within
the WAL module. The codebase includes approximately 160 unit



tests, stress tests with shadow-state verification, and a failpoint
infrastructure for deterministic concurrency testing.

TIDEHUNTER employs a fixed set of background threads to han-
dle asynchronous operations. Each WAL Controller (Value and
Index) runs three dedicated threads: a tracker that monitors po-
sition completion via the guard-based mechanism, a mapper that
manages memory-mapped region lifecycle and garbage collection,
and a syncer that issues fsync calls on finalized fragments. A config-
urable pool of flusher threads handles index persistence, allowing
multiple cells to be flushed concurrently. A single relocator thread
performs background compaction, moving live entries forward in
the Value WAL to reclaim space. Finally, a snapshot thread peri-
odically captures consistent checkpoints of the Large Table for
crash recovery. In total, a typical deployment runs 8 background
threads plus the configured number of flushers. The design deliber-
ately avoids per-client or per-request thread spawning to minimize
scheduling overhead and maintain predictable resource usage.

6 EXPERIMENTAL EVALUATION

We answer the following questions about TIDEHUNTER:

(1) How does the read-write ratio influence the performance of
TIDEHUNTER?

(2) How does the type of read operation (get, exists, scan) influence
the performance of TIDEHUNTER?

(3) How does workload skew influence the performance of TiDE-
HUNTER?

(4) How does value size influence the performance of TIDEHUNTER?

(5) How does relocation influence the performance of TIDEHUNTER?

(6) How does our optimistic index perform against the naive index?

6.1 Experimental Setup

We run our experiments on a Medium v4 OpenMetal instance [45]
equipped with two Intel Xeon Silver 4510 processors providing 24
CPU cores (48 threads) at 2.4-4.1 GHz, 256 GB of DDR5 4400 MHz
RAM, and a 6.4 TB NVMe drive.

Baselines. We compare TIDEHUNTER against the following state-
of-the-art key-value stores:

e RocksDB [39]: An LSM-tree-based embedded key-value store
widely used in production systems.

o BlobDB [38]: RocksDB’s integrated blob storage extension in-
spired by WiscKey [37], which separates large values from the
LSM-tree to reduce write amplification.

Methodology. We evaluate TIDEHUNTER against the baselines
using a custom benchmark consisting of two phases: a fill phase
and a measurement phase. In the fill phase, we populate the database
with random keys and values. We use a fixed key size of 32 bytes,
while the value size is a configurable parameter. We insert entries
until the database reaches 1TB of data; specifically, we divide 1 TB
by the entry size (key size plus value size) to determine the number
of insertions. After the fill phase, we allow a 10-minute cooldown
period for the system to stabilize (e.g., for relocation to settle). In the
measurement phase, we perform operations for a fixed duration of
10 minutes. The following workload parameters are configurable:

o Read-write ratio: We evaluate three configurations—100% writes,
50% reads with 50% writes, and 100% reads.
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Figure 6: Throughput comparison across workloads. The 50% read cases
include 50% writes. Top: homogeneous access distribution (0 = 0). Bottom:
skewed distribution (0 = 2).

e Read operation type: We consider three read operations: get
(returns the value for a key if it exists), exists (returns whether a
key exists), and reverse iterator (returns the key-value pair with
the largest key smaller than the query key, if one exists).

o Skew: A homogeneous workload selects keys uniformly at ran-
dom, while a skewed workload favors more recently inserted
keys. We implement skew using a Zipfian distribution with pa-
rameter 6 = 0 (homogeneous) or 6 = 2 (skewed). We use “ho-
mogeneous” rather than “uniform” for access patterns to avoid
confusion with uniformly distributed keys.

o Value size: We evaluate both large values (1 KB) and small values
(64 bytes and 128 bytes).

e Relocation: Relocation can be enabled or disabled to measure its
impact on performance. Unless stated otherwise, all benchmark
results were obtained with relocation enabled.

6.2 Benchmark Results

We present benchmark results for TIDEHUNTER, RocksDB, and
BlobDB across various workload configurations.

6.2.1 Large Values. The results for large values are in Figure 6.

Write Performance. Under write-only workloads (Figure 6a, left-
most bars), TIDEHUNTER achieves 830K ops/sec, outperforming
RocksDB by 8.4x and BlobDB by 2.9x. This substantial advantage
stems from TIDEHUNTER’s append-only WAL design: each write
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requires only a single sequential disk operation, whereas LSM-tree-
based systems must eventually compact and rewrite data multiple
times. BlobDB partially mitigates this overhead by separating large
values from the LSM-tree, explaining its intermediate performance.

Read Performance. For homogeneous read workloads, TIDEHUNTER
maintains a consistent advantage across all operation types. On
get operations (Figure 6a), TIDEHUNTER achieves 392K ops/s com-
pared to RocksDB’s 227K ops/s, a 1.7x improvement. The exists
operation (Figure 6a) reveals an even more pronounced advan-
tage: TIDEHUNTER reaches 3.55M ops/s, outperforming RocksDB
by 15.6X. This dramatic difference occurs because TIDEHUNTER can
resolve existence queries directly from the index without fetching
the actual value, while LSM-trees must traverse multiple levels
regardless of whether the value is needed.

For reverse iterator operations (Figure 6a), TIDEHUNTER main-
tains a 3.3x advantage over RocksDB (400K vs 122K ops/s). However,
all systems show reduced throughput compared to point queries,
as range operations require examining multiple entries.

Mixed Workloads. At a 50/50 read-write ratio, TIDEHUNTER con-
tinues to lead with 616K ops/s for get operations, compared to
RocksDB’s 193K ops/s. The performance gap narrows relative to
write-only workloads but remains substantial (3.2X), demonstrating
that TIDEHUNTER’s design also benefits mixed read-write paths.

Effect of Skew. Under skewed workloads (Figure 6b), where ac-
cesses favor recently inserted keys, all systems benefit from caching
effects. For read-only get operations with skew, RocksDB achieves
4.07M ops/s, approaching TIDEHUNTER’s 3.98M ops/s. This con-
vergence occurs because hot data resides in memory across all
systems—RocksDB’s block cache and TIDEHUNTER’s large table
both serve frequently accessed entries without disk I/O. However,
TIDEHUNTER maintains its advantage for write-heavy and mixed
workloads even under skew, as its write path remains fundamen-
tally more efficient.

Summary. For large values, TIDEHUNTER consistently outper-
forms LSM-tree-based alternatives. The advantage is most pro-
nounced for write-heavy workloads (up to 8.4X) and existence
checks (up to 15.6X), and remains significant for read-heavy ho-
mogeneous workloads (1.7x). These results validate TIDEHUNTER’s
design goal of minimizing data movement.

6.2.2 Small Values. The results for small values are in Figure 7.
For small values, the performance characteristics differ substan-
tially from the large-value case, revealing the trade-offs inherent in
TIDEHUNTER’s design.

Write Performance. Under write-only workloads (Figure 7a, left-
most bars), RocksDB and BlobDB achieve approximately 500K ops/s,
outperforming TIDEHUNTER’s 255K ops/s by nearly 2X. This rever-
sal occurs because the overhead of TIDEHUNTER’s separate index
becomes proportionally more significant when values are small.
LSM-trees amortize their metadata costs across sorted runs and
benefit from efficient compression of small, collocated entries.

Read Performance. The gap widens for read operations under
homogeneous access patterns. For get operations at 100% reads
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Figure 7: Throughput comparison for small values (64 bytes). The 50% read
cases include 50% writes. Top: homogeneous access distribution (6 = 0). Bottom:
skewed distribution (0 = 2).

(Figure 7a, rightmost bars), RocksDB achieves 223K ops/s com-
pared to TIDEHUNTER’s 88K ops/s—a 2.5X advantage. This differ-
ence reflects LSM-trees’ superior cache efficiency: sorted runs pack
many small entries into each cached block, whereas TIDEHUNTER's
position-based lookups may incur more cache misses when en-
tries are scattered across the WAL. Notably, TIDEHUNTER’s exists
operation (Figure 7a) shows improved relative performance, achiev-
ing 258K ops/s at 100% reads compared to RocksDB’s 215K ops/s.
This demonstrates that TIDEHUNTER’s existence check optimization
provides value even for small entries.

Effect of Skew. Skewed workloads (Figure 7b) reveal an important
exception to LSM-trees’ small-value advantage. Under read-only
workloads with high skew, TIDEHUNTER achieves 5.03M ops/s for
get operations, surpassing RocksDB’s 4.43M ops/s by 14%. For exists
operations, TIDEHUNTER’s advantage grows to 33% (5.31M vs 4.00M
ops/s). This reversal occurs because TIDEHUNTERs in-memory large
table efficiently caches hot entries, and the WAL’s append-only
structure means recently written (and frequently accessed under
skew) entries are contiguous, improving cache locality.

Summary. For small 64-byte values with homogeneous access
patterns, LSM-tree-based systems outperform TIDEHUNTER by 2—
2.5x. However, TIDEHUNTER regains the advantage under skewed
read workloads where caching effects dominate. This suggests that
TIDEHUNTER is better suited for workloads with larger values or
significant temporal locality, while LSM-trees remain preferable for
small-value workloads with homogeneous access patterns.
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Figure 8: Throughput comparison for small values (128 bytes). The 50%
read cases include 50% writes. Top: homogeneous access distribution (6 = 0).
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The results for 128-byte values are in Figure 8. The 128-byte
value size represents a transitional point between small and large
value performance characteristics, where neither architecture holds
a decisive advantage across all workloads.

Write Performance. Under write-only workloads (Figure 8a, left-
most bars), all systems achieve comparable throughput: TIDEHUNTER
at 437K ops/s, RocksDB at 430K ops/s, and BlobDB at 423K ops/s.
This near-parity suggests that 128 bytes approaches the crossover
point where TIDEHUNTER’s single-write advantage begins to offset
LSM-trees’ efficient small-entry handling.

Read Performance. For homogeneous read workloads, LSM-trees
maintain an advantage for value-fetching operations. At 100% reads,
RocksDB achieves 217K ops/s for get operations compared to TIDE-
HUNTER’s 102K ops/s (Figure 8a). However, TIDEHUNTER excels at
existence checks: at a 50/50 read-write ratio, TIDEHUNTER achieves
598K ops/s for exists operations, outperforming RocksDB’s 329K
ops/s by 1.8x (Figure 8a). This demonstrates that TIDEHUNTER’S
optimized existence check provides substantial benefits.

For reverse iterator operations (Figure 8a), TIDEHUNTER leads
under write-heavy workloads (439K vs 382K ops/s) but trails under
read-heavy workloads (102K vs 127K ops/s), reflecting the mixed
nature of this transitional value size.

Effect of Skew. Under skewed access patterns (Figure 8b), TIDE-
HUNTER’s in-memory caching provides a consistent advantage for
read-heavy workloads. For get operations at 100% reads with skew,
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TIDEHUNTER achieves 4.91M ops/s versus RocksDB’s 4.46M ops/s
(10% improvement). The advantage is more pronounced for exists
operations, where TIDEHUNTER reaches 5.31M ops/s compared to
RocksDB’s 4.42M ops/s (20% improvement).

Summary. At 128 bytes, TIDEHUNTER and LSM-tree systems
show more balanced performance compared to smaller values. TIDE-
HUNTER matches or exceeds LSM-trees for write-heavy workloads
and existence checks, while LSM-trees retain an advantage for read-
heavy homogeneous access patterns. This transitional behavior
indicates that TIDEHUNTER’s advantages grow progressively as
value sizes increase beyond this threshold.

6.2.3  Effect of Relocation. To evaluate relocation’s impact on stor-
age efficiency and performance, we ran a delete-heavy workload
(100% deletes) under both uniform (6=0) and skewed (6=2) access
patterns (Figure 9), after the database has been pre-filled with 1 TB
of data. We used large values (1 KB). Without relocation, deleted en-
tries leave gaps that accumulate, consuming 1148 GB and 1157 GB
respectively. With relocation enabled, storage drops to 335 GB (uni-
form) and 933 GB (skewed)—a 71% and 19% reduction. The smaller
savings under skew occur because only frequently accessed keys
are deleted, leaving fewer reclaimable gaps. Throughput overhead
remains minimal: 3% for uniform and 4% for skewed workloads.

6.3 Index Format Comparison

We microbenchmark the lookup performance of TIDEHUNTER’s two
persistent index formats: the optimistic index and a naive baseline.

e Header-based index: This format uses a fixed-size header of
128 entries (1 KB total) to partition keys into micro-cells based
on their prefix. Each header entry stores offsets pointing to a
contiguous region of sorted key-value pairs. A lookup requires
exactly two I/O operations: reading the 8-byte header entry to
determine the data region, followed by reading and binary search-
ing the data region.

e Optimistic index (Section 4.2): This format assumes a uniform
key distribution to estimate the probable location of a key within
the sorted index file. It uses a window-based search strategy
with a default window size of 800 entries. The search begins at
the estimated offset and iteratively moves the window until the
target key falls within bounds, then performs a binary search.
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This approach eliminates header overhead and can achieve single-
roundtrip lookups when the distribution estimate is accurate.

Data Generation. We generate 25 000 separate index files, each
containing 1000 000 randomly populated entries. Each entry con-
sists of a 32-byte key generated uniformly at random and an 8-byte
WAL position. The indices are serialized to disk using their respec-
tive formats, resulting in approximately 1 TB of data per format.

Benchmark Configuration. The benchmark performs 1000 000
lookups per run across 10 independent runs. Lookups are grouped
into batches of 1000 operations for timing measurements. The
window size for the optimistic index is set to 800 entries. We evalu-
ate both single- and multi-threaded configurations, and optionally
enable direct I/O to bypass the operating system’s page cache.

Workload. The benchmark uses a random access pattern where
each lookup selects a uniformly random index from the 25 000 avail-
able indices and queries a randomly generated 32-byte key. Since
the lookup keys are generated independently of the keys stored
in the indices, this workload consists predominantly of negative
lookups (keys not present in the index), which represents a worst-
case scenario for the optimistic index as it may require multiple
window movements to determine key absence.

Results. Figure 10 shows the throughput scaling behavior of both
index formats as a function of thread count. For the optimistic index,
we use the optimal window size for each configuration (which
varies from 1600 at low thread counts to 200-400 at high thread
counts). For the header-based index, window size does not affect
its performance.

With direct I/O enabled, the optimistic index outperforms the
header-based index at all thread counts, achieving up to 194K
lookups/s at 48 threads compared to 156K for the header-based
index—a 24% improvement. Without direct I/O, both indices plateau
at high thread counts due to page cache contention, with the op-
timistic index achieving 71K lookups/s compared to 57K for the
header-based index.

Figure 10 shows the sensitivity of the optimistic index to win-
dow size across different thread counts. The header-based index
maintains constant throughput regardless of window size (since
it always performs exactly two I/O operations per lookup), while
the optimistic index exhibits a clear trade-off: smaller windows
require more iterations but read less data per iteration, while larger
windows reduce iterations but increase I/O volume. The optimal
window size decreases as thread count increases, reflecting the
benefits of smaller I/O operations under high concurrency.

6.4 Case Study: Sui Blockchain

To demonstrate real-world performance, we integrated TIDEHUNTER
into the Sui blockchain, which currently uses RocksDB as its data-
base backend. We replaced Sui’s validator storage layer with TIDE-
HUNTER to evaluate performance impact and demonstrate produc-
tion readiness. We deployed Sui in a test cluster of 150 geographi-
cally distributed machines under an artificial load of 6,000 transac-
tions per second.

All hosts started the experiment using RocksDB and at 12:30
switched to using TIDEHUNTER. These results are presented in Fig-
ures 11 and 12. The first thing to notice is that under the sustained
load of 6,000 TPS, RocksDB performance degrades after several
hours, resulting in significant latency increases (Figure 11 before
12:30). In contrast, once TIDEHUNTER is deployed the same hosts
maintain stable latency throughout the test period (Figure 11, af-
ter 12:30). The same characteristics are also present in the disk
I/O utilization (Figure 12), where the high write amplification of
RocksDB results in 1-4GB/s write throughput demand, whereas the
need to search deep inside the LSM-Tree results in 0.2-0.8 GB/s read
throughput demand. In contrast, once TIDEHUNTER is enabled the
demand of the disk resource drops to less than 100MB/s for both
reads and writes.

Since TIDEHUNTER sustained 6,000 TPS without any issue, we
ran a second experiment with a load of 8,500 TPS. The performance
of the same cluster using TIDEHUNTER under this increased load
is demonstrated in Figure 13, where both throughput and latency
remain steady during five hours of sustained load.

As of January 2026, TIDEHUNTER is deployed on Sui’s devnet,
and several testnet full nodes have been permanently migrated
from RocksDB to TIDEHUNTER.

7 RELATED WORK

LSM-Tree Stores. LSM-trees [44] organize data into sorted runs
across multiple levels, trading write amplification for read perfor-
mance through background compaction. Stores like RocksDB [10,
23], LevelDB [19], and PebblesDB [50] have become industry stan-
dards, with various optimizations including lazy leveling [18], opti-
mal Bloom filter allocation [17], and concurrent compaction [24].
Despite these improvements, compaction fundamentally rewrites
data 5-10X across levels. TIDEHUNTER sidesteps this entirely: its
append-only WAL eliminates multi-level compaction, achieving
8.4% higher write throughput than RocksDB.

Key-Value Separation. WiscKey [37] pioneered storing values in
a separate log (vLog), dramatically reducing write amplification
for large values. Production systems including BlobDB [38], Ti-
tan [49], and DiffKV [36] build on this approach, while HashKV [11]
and BVLSM [35] optimize value placement and garbage collection.
Kreon [48] uses memory-mapped KV separation for flash storage,
while BadgerDB [21] implements WiscKey’s design in Go. These
systems still maintain an LSM-tree for keys, inheriting compaction
overhead. TIDEHUNTER differs fundamentally: the WAL serves as
the unified value store with lazy-flushed index tables, avoiding both
LSM compaction and separate vLog management.

B-Tree and Memory-Mapped Stores. LMDB [14] uses copy-on-
write B+ trees with shadow paging, enabling zero-copy reads but
limiting to single-writer concurrency. CedrusDB [55] combines
memory-mapped lazy-tries with WAL, the most architecturally
similar prior work to TIDEHUNTER. Traditional systems like Berke-
leyDB [43] and SQLite [29] use B-trees with logging and locking,
while redb [8] offers a modern Rust implementation. Unlike B-tree
stores requiring in-place updates or copy-on-write, TIDEHUNTER’S
append-only design avoids page splits and tree rebalancing entirely.
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Figure 10: Index lookup throughput vs. window size for different thread counts. The header-based index maintains constant throughput (flat lines), while the
optimistic index performance varies with window size. The optimal window size decreases as concurrency increases.
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Figure 11: Transaction latency comparison on Sui blockchain under 6,000
TPS load. RocksDB (before 12:30) shows latency degradation over time. TIDE-
HUNTER (after 12:30) maintains stable latency.
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Figure 12: Disk 1/0 utilization comparison on Sui blockchain under 6000
TPS load. TIDEHUNTER (after 12:30) achieves significantly lower disk read and
write rates than RocksDB (before 12:30).
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Figure 13: Performance of Sui using TIDEHUNTER under 8500 TPS load.
Metrics remain steady, unlike RocksDB with 6000 TPS (Figure 11, before 12:30).

Hardware-Optimized Stores. KVell [32] maximizes NVMe band-
width via per-CPU slices without data sorting, sharing TIDEHUNTER’s
philosophy of avoiding sort overhead. SpanDB [13] places WAL
on fast NVMe with SPDK for parallel I/O, while FASTER [12] uses
epoch-protected hybrid logs achieving 160M ops/sec. SILK [5] and
TRIAD [4] address LSM write stalls through I/O scheduling and
tiered storage. TIDEHUNTER takes a different approach: rather than
optimizing around LSM limitations, it eliminates them architec-
turally while using standard mmap and O_DIRECT interfaces.

Learned and Adaptive Indexes. Machine learning techniques can
replace traditional index structures with models that predict key
positions. Bourbon [16] adds learned indexes atop WiscKey using
piecewise linear regression for 1.23-1.78x faster lookups. Kraska
et al. [31] propose replacing B-trees and Bloom filters with neural
networks, trading training overhead for lookup speed. ADOC [56]
automatically tunes RocksDB parameters, achieving 87.9% write
stall reduction. TIDEHUNTER uses conventional Bloom filters and
hash-based indexing for predictability, prioritizing write perfor-
mance over learned lookup optimizations.

Alternative Tree Structures. SplinterDB [15] uses size-tiered Be-
trees, achieving 6-10X faster insertions than RocksDB by batching
updates in nodes. TerarkDB [34] uses compressed searchable SSTs
optimized for reduced tail latency. ForestDB [1] uses HB+-tries for
document workloads, while the Bw-Tree [33] achieves lock-freedom
through delta records and epoch-based reclamation. TIDEHUNTER’s
append-only WAL avoids the complexity of tree maintenance en-
tirely, trading sorted iteration for minimal write amplification.

Rust Implementations. Rust’s memory safety guarantees make it
increasingly popular for storage engines. Fjall [25] provides mod-
ern LSM-trees with built-in KV separation. AgateDB [52] ports
BadgerDB’s WiscKey-style design for TiKV. sled [42] uses flash-
optimized Bw-trees with lock-free reads. TIDEHUNTER shares Rust’s
safety benefits while introducing a novel WAL-centric architecture
distinct from these LSM and B-tree based designs.

Blockchain Storage. Blockchain systems require high-throughput
persistent storage with strict durability. TIDEHUNTER was developed
for Sui [3], where transaction objects (typically 1KB—1MB) drive
the large-value workload. Aptos uses JellyfishMerkle [26] sparse
Merkle trees for state management, while Ethereum [54] evolved
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from LevelDB to Pebble for state storage. TIDEHUNTER could serve
as the underlying storage for such Merkle tree implementations.

Write-Ahead Logging. ARIES [40] established foundational WAL

protocols with steal/no-force buffer management for B-tree databases.

Silo [53] uses epoch-based transaction processing with group com-
mit, inspiring TIDEHUNTERs batched WAL syncing. Hekaton [22]
optimizes logging for in-memory OLTP, while NVLogging [2] tar-
gets persistent memory. Unlike traditional systems where WAL
is auxiliary for recovery, TIDEHUNTER’s WAL is the primary data
store with lazy index flushing.

8 CONCLUSION

TIDEHUNTER is a key-value store that eliminates value compaction
by treating the WAL as permanent storage: values are written
once and never moved, while small, lazily-flushed index tables map
keys to WAL positions. On 1KB values, TIDEHUNTER achieves 8.4x
higher write throughput than RocksDB, 1.7X faster point queries,
and 15.6X faster existence checks, with LSM-trees regaining advan-
tage only below 128 bytes. Integration with Sui validators confirms
these gains hold in production, maintaining stable performance
under loads that collapse RocksDB-backed systems. The tradeof is
generality for efficiency on an increasingly common pattern: hash-
keyed, kilobyte-scale, write-heavy workloads found in content-
addressable storage, deduplication, and blockchain systems.
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