ConsenStress: A Framework to Torture Test Consensus

Protocols
Pasindu Tennage* Shailesh Mishra Alberto Sonnino
EPFL EPFL Mysten Labs, UCL
Switzerland Switzerland United Kingdom
Lefteris Kokoris Kogias Philipp Jovanovic Bryan Ford
Mysten Labs EPFL
Greece United Kingdom Switzerland

Abstract

Consensus protocols serve as the foundation for strongly
consistent and fault-tolerant distributed systems. Despite the
theoretical guarantees of safety and liveness, most consen-
sus protocol implementations have robustness issues that
often go unnoticed until a major failure occurs in production,
causing significant financial losses.

We propose ConsenStress, a novel black-box testing frame-
work tailored for detecting robustness issues in consensus
protocols. Unlike existing frameworks that only allow test-
ing of one or a few protocols, ConsenStress enables seamless
testing of unmodified binaries of arbitrary consensus proto-
cols. ConsenStress introduces a novel attack “interface” that
allows users to write complex attack scenarios using a novel
high-level API, eliminating the need to handle low-level im-
plementation details. Finally, ConsenStress includes more
than 30 concrete attack implementations and supports 16
consensus protocol integrations, enabling a wide range of
attacks across different types of consensus protocols.

Our preliminary evaluation identifies previously undis-
covered robustness issues in existing consensus protocol
implementations, demonstrating ConsenStress’s capability
to detect complex robustness issues in consensus protocol
implementations.

Keywords: Consensus, Robustness, Testing.

1 Introduction

Consensus allows a group of distributed replicas to agree on
a single history of commands, providing the foundation for
fault-tolerant systems [4]. Consensus protocols, however, ex-
perience outages, which contradict the liveness guarantees
stated in their formal specifications. These outages are often
caused by protocol implementation issues, such as deviations
from the protocol specification, optimizations that focus only
on the failure-free case while neglecting the correct imple-
mentation of subtle features like view change subroutines
[21] and synchronizers [15]. These outages have caused sig-
nificant problems, as seen in the Cloudflare incident [10],
where a protocol bug in the Raft [23] implementation led to
a cloud outage affecting many systems, and in the Solana

blockchain [5], where failures resulted in over 150 hours of
downtime, causing substantial financial losses.

Software testing has long held promise to detect robust-
ness issues. Existing methods for detecting robustness issues,
black-box and white-box testing, have several limitations
that prevent them from effectively identifying robustness
issues. First, black-box approaches, such as Jepsen[14], of-
ten have a limited set of tests that do not cover the full
range of scenarios a consensus protocol may encounter and
therefore, cannot detect subtle robustness problems in con-
sensus algorithms. Second, white-box testing approaches
[18, 32] often require programmers to write specifications
in machine-proving languages, which limits its widespread
adoption. Moreover, white-box approaches face state space
explosion due to the many execution paths in complex con-
sensus protocols, limiting the scope of testing. Due to these
limitations, effectively testing the robustness of consensus
protocol implementations remains an open research prob-
lem.

This paper proposes ConsenStress, a novel framework
for detecting robustness issues in consensus protocol im-
plementations. ConsenStress supports the seamless integra-
tion of any consensus protocol, making it a generic testing
framework. ConsenStress enables testing of unmodified con-
sensus protocol binaries without requiring any changes to
the source code. ConsenStress introduces a novel attack in-
terface that allows programmers to define arbitrary testing
strategies using a high-level APL

Contributions

e We present the design of ConsenStress, a novel, generic,
and extendable framework for evaluating the robust-
ness of unmodified consensus protocol binaries.

e We design and implement 30 different attack scenarios,
covering a wide range of failures observed in practical
distributed system deployments.

e We provide a prototype of ConsenStress in Go [20] and
evaluated 16 consensus protocols using a ConsenStress
deployment running on Sphere-Testbed [26].

e We identify more than 10 previously undiscovered
robustness issues in existing public consensus protocol
implementations, demonstrating the effectiveness of
ConsenStress.



EuroSys 20, March 2025, Rotterdam, Netherlands

Consensus
Protocol
I —

—_— Attacker —
Consensus Client Consensus
Protocol Protocol

t
Attacker Attacker
Client Client
Attacker

Controller

Figure 1. ConsenStress architecture.

2 ConsenStress design

ConsenStress is a distributed system, as shown in Fig. 1. Con-
senStress employs "attacker client"s that are collocated with
the consensus replica processes. Attacker client runs as a
separate process and interacts with the consensus process
solely through system interrupts and network manipulation
calls. The "attacker controller” node runs the attack script
and sends timely actions to attacker clients, which enforce
them on the corresponding consensus protocol process. This
design enables ConsenStress to remain oblivious to the proto-
col under test and allows seamless integration of unmodified
consensus protocol binaries.

2.1 ConsenStress attack interface

ConsenStress abstracts the distributed consensus protocol
deployment as a graph, with consensus replicas as vertices
and network links (TCP/UDP connections) as edges. Con-
senStress provides an "attack node interface" and an "attack
link interface", which offer methods to manipulate both con-
sensus replica processes and the network links connecting
consensus processes, respectively. These interfaces enable
users to write custom testing scenarios, foregoing low-level
attack implementation details.

2.1.1 ConsenStress concrete attacks. As a first step in
identifying factors affecting the robustness of consensus pro-
tocol implementations, we conducted a detailed study of
network and node failures in the cloud [1, 2, 8, 25]. Based
on this analysis, we identified key scenarios that affect the
robustness of consensus protocols: (1) changing link prop-
erties (delay, bandwidth, jitter), (2) network partitions, (3)
stragglers (slow nodes), (4) timeout and failure detector er-
rors, and (5) node crashes. While we observed other factors
influencing robustness, we determined that these five cate-
gories accurately summarize the most relevant root causes
affecting the robustness of consensus protocols.

Using the ConsenStress attack interface, we implemented
these attack scenarios and their variations. On average, each
attack required only 20 lines of code, demonstrating that
ConsenStress enables easy implementation of new attacks.

Tennage et al.

At the time of writing this extended abstract, we have imple-
mented over 30 concrete attack scenarios, uncovering more
than 10 previously unknown issues in consensus protocol
implementations.

2.2 Seamless integration of consensus protocols

ConsenStress enables the rapid integration of unmodified
consensus protocol binaries written in any programming
language. To integrate a new protocol into ConsenStress, a
user must implement the following three methods.

copyConsensus (nodes)
bootstrap (nodes [], duration)
extractOptions () options

"copyConsensus” defines how the protocol is copied to
each remote node, including all consensus-specific configu-
ration files. "bootstrap” defines how the protocol should be
started in n replicas, and "extractOptions" specifies how to
interpret the logs generated by the protocol during execu-
tion. Currently, ConsenStress readily integrates 16 different
consensus protocols, both from the crash fault tolerant do-
main (Raft [23], Multi Paxos [16], Baxos [28], Rabia [24],
SADL-RACS [30], EPaxos [22, 31], Mencius [19], General-
ized Paxos [17], QuePaxa [29], ETCD Raft [7], and ZooKeeper
[11]) and byzantine fault tolerant domain (Mahi-Mahi [12],
Codial-Miners [13], Mysticeti [3], Jolteon [9], HotStuff [33],
Tusk [6], Bullshark [27]). These implementations include
industry-used protocols (ZooKeeper [11] and ETCD [7]),
publicly deployed blockchains (HotStuff [33], Mysticeti [3],
Narwhal [6]), and academic prototypes. On average, Consen-
Stress requires approximately 250 lines of code to integrate
a given consensus protocol, confirming its seamless integra-
tion capability.

3 Evaluation and Future Work

We implemented ConsenStress in Go [20] using approxi-
mately 3,000 lines of code. Our preliminary evaluation re-
vealed several robustness issues across multiple consensus
protocol implementations, including (i) a leader election
problem in Raft [23], (ii) high bandwidth overhead and even-
tual execution halt in DAG-based protocols under stragglers
and high-delay links [3, 12], (iii) high commit delay in Hot-
Stuff [33] even with just a single replica crash, and (iv) com-
plete loss of liveness in Rabia [24] when the network topol-
ogy is asymmetrical. In the future, we plan to extend our
evaluation to cover all 16 consensus protocols.

References

[1] Michael Alicea and Izzat Alsmadi. 2021. Misconfiguration in firewalls
and network access controls: Literature review. Future Internet 13, 11
(2021), 283.

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer
Al-Kiswany. 2018. An analysis of {Network-Partitioning} failures
in cloud systems. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 51-68.



ConsenStress: A Framework to Torture Test Consensus Protocols

[3] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-

[10

[11

[12

[13

[19

[20
[21

[22

[l

—

—

[t

—

—

[t

=

—

]

—_

Kogias, and Alberto Sonnino. 2024. Mysticeti: Low-Latency DAG
Consensus with Fast Commit Path. arXiv:2310.14821 [cs.DC]
Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. In-
troduction to Reliable and Secure Distributed Programming. Springer
Science and Business Media.

CryptoManiaks. 2025. Solana Outage: A List of Failures on the SOL
Blockchain Mainnet. https://cryptomaniaks.com/crypto-news/solana-
outage-list-failures-sol-blockchain-mainnet Accessed: 2025-02-03.
George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and
efficient BFT consensus. In EuroSys °22: Seventeenth European Con-
ference on Computer Systems, Rennes, France, April 5 - 8, 2022. ACM,
34-50.

etcd-io. 2025. etcd-io Raft: An implementation of the Raft consensus
algorithm. https://github.com/etcd-io/raft Accessed: 2025-02-04.
Peter Garraghan, Renyu Yang, Zhenyu Wen, Alexander Romanovsky,
Jie Xu, Rajkumar Buyya, and Rajiv Ranjan. 2018. Emergent failures:
Rethinking cloud reliability at scale. IEEE Cloud Computing 5, 5 (2018),
12-21.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander
Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fallback. In 26th
International Conference on Financial Cryptography and Data Security:
(FC) (Grenada). Springer, 296-315.

Ittai Abraham Heidi Howard. 2020. Raft does not Guarantee Liveness
in the face of Network Faults. https://decentralizedthoughts.github.
i0/2020-12-12-raft-liveness-full-omission/.

Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.
2010. {ZooKeeper}: Wait-free Coordination for Internet-scale Sys-
tems. In 2010 USENIX Annual Technical Conference (USENLX ATC 10)
(Boston).

Philipp Jovanovic, Lefteris Kokoris Kogias, Bryan Kumara, Alberto
Sonnino, Pasindu Tennage, and Igor Zablotchi. 2024. Mahi-Mahi: Low-
Latency Asynchronous BFT DAG-Based Consensus. arXiv preprint
arXiv:2410.08670 (2024).

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. 2023. Cordial
Miners: Fast and Efficient Consensus for Every Eventuality. In 37th
International Symposium on Distributed Computing (DISC 2023).

Kyle Kingsbury. 2013-2025. Jepsen: Distributed Systems Safety Re-
search. https://jepsen.io/. Accessed: 2025-02-04.

Mysten Labs. 2024. Mysticeti: Low-latency dag consensus with fast
commit path. https://github.com/asonnino/mysticeti.

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 32 (12 2001), 51-58.

Leslie Lamport. 2005. Generalized Consensus and Paxos. (2005).
Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Daniar H
Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye,
Tanakorn Leesatapornwongsa, et al. 2019. Flymc: Highly scalable
testing of complex interleavings in distributed systems. In Proceedings
of the Fourteenth EuroSys Conference 2019. 1-16.

Yanhua Mao, Flavio Junqueira, and Keith Marzullo. 2008. Mencius:
Building Efficient Replicated State Machines for WANS. In 8th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 08)
(San Diego).

Jeff Meyerson. 2014. The Go programming language. IEEE Software
31,5 (2014), 104-104.

Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. EPaxos
go-lang. https://github.com/efficient/epaxos/.

Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013.
There Is More Consensus in Egalitarian Parliaments. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles
(Koblenz , Germany). 358-372.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

EuroSys 20, March 2025, Rotterdam, Netherlands

Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In 2014 USENIX Annual Technical
Conference ATC14) (Philadelphia). 305-319.

Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang, Yicheng Shen,
Xiong Zheng, Joseph Tassarotti, Lewis Tseng, and Roberto Palmieri.
2021. Rabia: Simplifying State-Machine Replication Through Ran-
domization. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (Virtual Event Germany). 472-487.
Rahul Potharaju and Navendu Jain. 2013. When the network crumbles:
An empirical study of cloud network failures and their impact on ser-
vices. In Proceedings of the 4th annual Symposium on Cloud Computing.
1-17.

SPHERE Project. 2025. SPHERE Merge Portal. https://launch.sphere-
testbed.net/ Accessed: 2025-02-04.

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris
Kokoris-Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In
CCS °22: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security.

Pasindu Tennage, Cristina Basescu, Eleftherios Kokoris Kogias, Ewa
Syta, Philipp Jovanovic, and Bryan Ford. 2022. Baxos: Backing off for
Robust and Efficient Consensus. arXiv preprint arXiv:2204.10934 (4
2022).

Pasindu Tennage, Cristina Basescu, Lefteris Kokoris-Kogias, Ewa Syta,
Philipp Jovanovic, Vero Estrada, and Bryan Ford. 2023. QuePaxa:
Escaping the Tyranny of Timeouts in Consensus. Proceedings of the
29th Symposium on Operating Systems Principles (SOSP) (Oct. 2023).
Pasindu Tennage, Antoine Desjardins, and Eleftherios Kokoris Ko-
gias. 2022. Mandator and Sporades: Robust Wide-Area Consensus
with Efficient Request Dissemination. arXiv preprint arXiv:2209.06152
(2022).

Sarah Tollman, Seo Jin Park, and John K Ousterhout. 2021. EPaxos
Revisited. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). 613-632.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu,
Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.
2009. MODIST: Transparent model checking of unmodified distributed
systems. In NSDI 2009. 213-228.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. 2019. HotStuff: BFT Consensus with Linearity and Re-
sponsiveness. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing (Toronto ON Canada). 347-356.


https://arxiv.org/abs/2310.14821
https://arxiv.org/abs/2310.14821
https://arxiv.org/abs/2310.14821
https://cryptomaniaks.com/crypto-news/solana-outage-list-failures-sol-blockchain-mainnet
https://cryptomaniaks.com/crypto-news/solana-outage-list-failures-sol-blockchain-mainnet
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://github.com/etcd-io/raft
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.26
https://jepsen.io/
https://github.com/asonnino/mysticeti
https://github.com/efficient/epaxos/
https://launch.sphere-testbed.net/
https://launch.sphere-testbed.net/
https://dl.acm.org/doi/abs/10.1145/3548606.3559361

	Abstract
	1 Introduction
	2 ConsenStress design
	2.1 ConsenStress attack interface
	2.2 Seamless integration of consensus protocols

	3 Evaluation and Future Work
	References

