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Abstract

The impressive growth of the field of communication technology leads to the expansion of wearable

devices and embedded systems. This upgrowth has turned the focus towards low power consumptions,

small sizes and extremely embedded designs. Though higher efforts in these fields grant the boon of

better usability, performances and user’s experience, the price is often paid in terms of security and

user’s privacy.

While wearable devices, often deprived of operating systems, possess only a small embedded processor

with minimal computational power, the computer server has the capability to execute advanced and

expensive computations. In this paper, we describe an architecture of a privacy enhancing technology,

exploiting an anonymous credential system based on the protocols developed by [13]. This architecture

involves a server issuing and verifying the anonymous credentials, a user’s wearable, and RF beacons

for indoor positioning. The design of each entity remains flexible, generic and scalable in order to

encourage further enhancements and easy integration into real-world applications. This project also

presents an example of the architecture’s hardware prototype and provides directions towards the

realisation of a final industrial system.

Keywords: Secure Wearable Devices, Secure Embedded Systems, Anonymous Credentials, Pri-

vacy Enhancing Technologies, Private Indoor Positioning.
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Introduction and Motivations

Why do we need security on wearable devices ? The primary reason comes from the fact that,

being in direct contact with the user, wearable devices have access to very private and sensitive

user’s information more often than traditional technologies. The huge and increasing diversity of

wearable technologies makes almost any kind of information at risk, going from medical records

to personal habits and lifestyle. For that reason, when considering wearables, it is particularly

important to introduce appropriate technologies to protect these data, and it is primary that both

the user and the engineer are aware of the exact amount of collected information as well as the

potential threats pending on the user’s privacy. Moreover, it has also to be considered that the

privacy of the wearable’s user is not the only one at risk. In fact, more and more devices are not

limited to record the user’s activity, but can also gather information about people standing around

[33, 23, 12].

For the above reasons, one of the most today’s expanding trends concerns the realisation of pri-

vacy enhancing technologies (PET), which allows to protect personally identifiable information and

preserve the user’s privacy while benefitting of many advantages of the most modern technologies.

In that purpose, constructions like anonymous credentials [10, 11, 14, 15, 27] have been developed.

These technologies allow authenticated transactions between users and servers to remain anonymous,

and for that reason, consist in powerful tools for the user’s privacy protection.

Finally, the large diversity of today’s wearable devices includes applications going from automatic

doors opening to as far as the field of health monitoring [31]. For that reason, it is particularly

complicated to rely on a common standard architecture ensuring security and efficiency at the

same time. It is therefore necessary to possess a set of reliable constructions in order to select the

most appropriate depending on the application. As described in section 1.1, many new challenges

appeared with the introduction of wearable and embedded technologies that are just waiting to be

overcome.
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Contribution

This paper presents a flexible privacy enhancing system from its architecture to the prototyping level.

The system takes advantage from anonymous credentials and is based on the protocols developed by

[13]. Three main entities are involved in the system: a main server, wearable devices and localisation

beacons. In this multi-purpose architecture, the server firstly issue some anonymous credentials to

the wearables. Then, each time a wearable reach a particular physical location (gets close to a

localisation beacon) where it desires to perform an action, it starts presenting its credentials in

order to ask the server the execution of that a particular action.

Both the design of the wearable and the server remain generic and scalable in order to encourage

further enhancements and easy integration into real-world applications; i.e., the central server can

manage an arbitrary number of devices, each device can posses an arbitrary number of credentials

and the coverage area of the localisation system is arbitrarily extendable.

Paper’s Structure

This paper is divided in three main parts. The first, the literature review, starts by describing the

main new challenges brought by wearable devices and embedded technologies, and by exposing some

good examples of today’s privacy enhancing embedded devices. Then, the fundamental concepts

needed for a good understanding of this thesis are derived.

The second part focusses on the realised architecture and explains in dept its functionalities as well

as its security characteristics and the potential threats pending on the system.

Finally, the third part is completely devoted to the hardware prototype. This part starts by de-

veloping the system’s conceptual model and then explains in details the hardware and software

implementation. This part ends by presenting the prototype’s performances and limitations, and

by showing the direction to transform the prototype into a fully industrial system.

Appendix A illustrates the design’s steps and the strategy adopted during the realisation of this work,

the main challenges that had to be overcome, and justifies the choice the hardware components.
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Chapter 1

Literature Review

Intuitively, wearable devices can be seen as objects embedded with electronic circuitry and software,

that can be incorporated into clothing and accessories, and capable of connectivity with a remote host

without the need of humans. Wearable computing is becoming more and more popular and certainly

constitutes one of the biggest improvements of this generation. Nevertheless, as any emerging field,

it comes with new challenges, which are developed below [24, 12]. Then, some examples of today’s

privacy enhancing embedded devices are presented in section 1.2, and finally, the fundamental

concepts needed for a good understanding of this thesis are derived.

1.1 New Challenges Brought by Wearable Technologies

This sections aims to present the main problematics brought by wearable and embedded technologies

that were not significant in traditional computer systems. In fact, the following considerations

raise concerns around the whole security community and present excellent opportunities for today’s

security engineers.

Challenge 1 - Very Limited Resources

When considering wearable devices, the designer should pay a special attention to the limit of the

device’s resources. Indeed, common wearable devices’ requirements consist in predefined shapes,

long battery life and small sizes, which lead to the construction of technologies with extremely low

resources [8]. Getting short in them may lead to the catastrophic choice of having to redesign the

system from the beginning or cutting off on security.

Commonly, moving heavy computations from the wearable to a remote server is an interesting way

of mitigating that above problem. Nevertheless, this delegation is not without risks since the server
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needs to be thrusted or security countermeasures have to be implemented. Moreover, the wearable-

to-server communication needs protection as well. To that purposes, many researchers developed

secure-friendly architecture that, depending on the application, might mitigate this situation [31, 8].

However, most of these architectures do not focus on data privacy at all. Note that identifying

which parts of the system could be better optimized in hardware instead of in software and taking

advantage as much as possible from all cryptographic CPU instructions are also part of the key

features of modern embedded systems.

Challenge 2 - Huge Diversity Among Devices

One of the key particularities of wearable devices distinguishing them from other technologies is

their very wide diversification. Indeed, wearable devices can differ from each others in terms of

application, size, shape, material, utility, and many other characteristics. This huge diversification

introduces new challenges never seen before. For instance, wearables do not always have a screen and

keyboard to enter a password and authenticate the user or retrieve sensitive data. Engineers need

therefore to innovate and design new appropriate security mechanisms withstanding the required

level of security [12].

Moreover, diversity and new mechanisms always introduce usability problems. First of all, they must

enhance universal access; i.e., any kind of users, regardless their abilities, origins or characteristics

should be able to use it. Secondly, if a mechanism is new and changes from device to device, the

user might potentially never have seen it before. Hence, it is again, more than ever, important

to design intuitive systems [12, 37]. This latter consideration should be taken into account even

more seriously when designing security. In fact, the benefits of security are an avoided negative

instead of a gained positive, and being secure is rarely the primary goal of the system. Therefore,

people are not motivated by security and if it requires an excessive workload, users will simply try

to circumvent it, which might lead to catastrophic consequences [3].

As last comment, the large variety of wearables and their huge range of possible applications make

difficult to rely on a common standard architecture. Therefore, an additional challenge involves the

design of a secure and efficient architecture, taking into account all the limitations and needs specific

to the device. Indeed, no matter how secure is the underlying implementation, if the architecture is

7



University College London (UCL) Chapter 1. Literature Review

vulnerable, the entire system could be broken.

Challenge 3 - Unprecedented Connectivity

The next particularity of wearable devices pointed out in this section concerns their unprecedented

connectivity. When systems with high connectivity are considered, security automatically becomes

a key problem. Devices must only allow access to authorized users and must also keep the commu-

nication secure when transmitting or receiving personal or private information [31]. Therefore, a

complete access control cannot be avoided and communications should be protected.

Challenge 4 - Emerging Field

The last point of this section aims to quickly recall the hidden dangers of new research fields. Indeed,

due to their novelty, emerging fields lack in standards and, trying to solve new problems using well-

known grounded concepts is a typical ways to proceed. Nevertheless, adapting these concepts to a

new domain is not a trivial task, and even if the mathematical primitives or the architecture on top

are reliable, a bad implementation can completely break the system [24]. The above problematic

also raises the concern of the lack of libraries for embedded and OS-deprived devices. Indeed,

most of the known cryptographic library have been implemented and widely tested on standard

computer; i.e, devices with a reliable timer, a high CPU speed and talking on various abstraction

layers. Therefore, it is not always possible to import these libraries as-they-are into wearables and

embedded technologies due to the fact that most of them do not posses an OS, a proper timer and

need specific hardware optimisations.

Moreover, an additional danger of emerging fields, more specific to wearable devices, concerns the

risk’s awareness. The continuous use of wearables involves a variety of privacy concerns that might

not be understood yet and, since the usage of these devices is relatively recent, users are not aware

of the potential privacy implications of their wearables [33].
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1.2 Examples of Privacy Enhancing Embedded Devices

This section continues the literature review by presenting some examples of embedded devices fo-

cussing on privacy technologies.

One of the most cited paper concerning anonymity on embedded devices is referenced in [36]. The

authors present a Java implementation of the DAA anonymous authentication protocols for smart

cards [7] . One of the main aspects of this paper is that it understands and high-lines the problem-

atic of the very limited resources of embedded devices, even more applicable when considering the

inherently inefficiency execution of Java Card. Therefore, mathematically complex cryptographic

protocols like the DAA scheme would be far too slow for practical use. However, the paper managed

to identify performance bottlenecks and comes with workarounds that allow to obtain a reasonably

fast implementation. The main point of this paper is its approach: it consists in taking advantage

of the embedded functionalities of a simplified Java virtual machine and of the tamper resistance

of the card’s code in order to speed up the system without cutting off on security. In conclusion,

their smart cards needs about 4.2 seconds to achieve a complete authentication (on a card running

the version 2.2.1 of the Java Card standard). However, since their bottleneck is due to modular

multiplications and exponentiations, their system could be further improved by using Elliptic Curve

Cryptography (ECC), as discussed in section ?? of this thesis.

Around the same topic, some researchers from Brown University discuss how to bring Electronic

cash schemes (e-cash) with all their privacy and physical benefits on constrained devices such as a

MetroCard by investigating the well-known Pay-As-You-Go (PAYG) system [2, 20, 60]. Therefore,

their biggest challenge comes from the very thigh processing time constraints of transportation

payments as well as from the necessity to keep the hardware as cheap as possible due to the high

system’s volume and the need to replace cards frequently. The PAYG system has been of great

inspiration for this master project since the scope of the authors is similar to this thesis; i.e.,

bridge the gap between theoretical cryptographic constructions and practical implementations on

embedded devices. Many version of the PAYG system are available today [60] and combines ECC

with efficient and provably secure constructions of blind signatures with attributes, in order to

achieve authentications in a few seconds on relatively cheap hardware.
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1.3 Fundamental Concepts

In this section, the fundamentals of the realised system are inspected. The scope of this section is to

provide the reader with all the background concepts needed for a good understanding of this thesis.

1.3.1 Fundamental Concepts - Elliptic Curve Cryptography

Elliptic curves are more and more used in cryptography [22, 30]. Indeed, for a given level of security,

it requires shorter encryption keys than traditional systems. This allows a great spare of resources

[25]. The points on the elliptic curves are all those who satisfy Eq.(1.1).

E = {(x, y) | y2 = x3 + ax+ b} ∪ {O} (1.1)

with a, b ∈ Fp | a3 + 27b2 6= 0

where Fp is a finite field of prime order p and O is the point at infinity [16, 29]. Three main

operations are defined for elliptic curves’ points. The first, the point addition, defines how to add

two points. The second, the point doubling, defines how to double a point (add a point to itself),

and the third, the point multiplication, defines how to multiply a point by a scalar [22, 16, 25].

The security of ECC depends on the fact that, given two points P and Q on the curve E such that

Q = kP (∀k scalar), it is computationally infeasible to find k (if it is sufficiently large) [35, 16]. The

main concept behind this is the use of the so-called one-way functions. A one-way function is a

function for which it is relatively easy to compute the image of some elements in the domain but it

is extremely difficult to reverse this process and determine the original element solely based on the

given image [21]. In the case of ECC, the one-way function is the fact that multiplying k and P is

easy, but recomputing k from P and Q = kP is computationally infeasible.

1.3.2 Fundamental Concepts - Anonymous Credentials Protocol

This subsection aims to quickly summarise the essentials of the anonymous credentials protocol,

called Algebraic MACs and Keyed-Verification Anonymous Credentials, described in [13]. This

protocol focusses on the problem of constructing anonymous credentials in situations where the

issuer of the credentials is also the verifier.
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The goal of this protocol is to set up a system where users can be known in different environments

under different names, but their behaviour under these names should remain unlinkable. In other

words, no one should be able to recognise that two different names were actually used by the same

person, yet the users should be able to prove possession of a credential issued to one given name to

any other user, without revealing that name.

The following equations rewrites the original algorithms using ECC, as introduced in the previous

paragraph. For the rest of this thesis, vectors are written in bold and ECC points are uppercase

letters.

The MACGGM Message Authentication Code

The papers introduces a new Message Authentication Code (MAC) in prime-order groups1, called

MACGGM . First of all, this MAC considers a list of n messages m = (m1, . . . ,mn) ∈ Fnp known to

both the issuer and the user. Then, the MAC can be defined with the following four algorithms.

• SetupGGM(1k) :

1. choose a cryptographically secure k-bit prime number p

2. select a cryptographically secure elliptic curve E

3. choose two points H and G from E\{O}

4. output (E , p,G,H)

• KeyGenGGM(params) :

1. choose a secret key sk = x ∈ Fn+1
p

2. compute X1 = x1H, . . . ,Xn = xnH

3. output the list (X1, . . . , Xn)

• MACGGM(sk,m) :

1. choose a point U ∈ E\{O}
1Actually, the paper presents two MACs, but only the MAC used in the rest of this work is presented here.
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2. compute U ′ = Hx(m)U , where Hx(m) = x0 +
∑n

i ximi

3. output the tag σ = (U,U ′)

• VerifyGGM(sk,m, σ) :

1. parse σ = (U,U ′) as U ∈ E and U ′ ∈ E

2. accept if U 6= O and U ′ = Hx(m)U

This MAC is the fundamental on which the credentials’ issuance and the credentials’ presentation

algorithms are based.

Credential’s Issuance

The credentials’ issuance over the attributes m is based on the following two algorithms, given the

construction of a MACGGM as described above.

• Setup(1k) :

1. output (E , p,G,H) ← SetupGGM(1k)

• CredKeyGen(params) :

1. parse params as (E , p,G,H)

2. compute the MAC keys as (X,x) ← KeyGenGGM(params)

3. pick x̃0 ∈ Fp

4. commit to the secret x0 by forming Cx0 = x0G+ x̃0H

5. output (Cx0 ,X) and sk = (x, x̃0)

After this two algorithms have been successfully run, the issuance finishes by outputting

(U,U ′)← MACGGM(sk,m)

along with the proof π1 that certifies that (U,U ′) is a valid MAC with respect to the system’s and

issuer’s parameters.

π1 := PK

{
(x, x̃0) : U ′ = x0U +

n∑

i=1

xi(miU) ∧ Cx0 = x0G+ x̃0H ∧ Xi = xiH

}

∀i ∈ {1, . . . , n}

12
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The complete development and details of the proof of knowledge π1 can be found in appendix B.1.

Credential’s Presentation

Similarly to the previous paragraph, the credentials’ presentation is based on the two following

algorithms:

• Show(params,Cx0 ,X, φ, cred,m) :

1. choose (r, z1, . . . , zn) ∈ Fn+1
p

2. parse cred = (U,U ′)

3. compute CU ′ = U ′ + rG and Cmi = miU + ziH ∀i ∈ {1, . . . , n}

4. send σ = (Cm, CU ′) and a proof of knowledge π2 as follow:

π2 := PK

{
(m, z,−r) : φ(m) = 1 ∧ Cmi = miU + ziH ∧ V =

(
n∑

i=1

ziXi

)
− rG

}

∀i ∈ {1, . . . , n}

• ShowVerify(params,X, Cx0 , φ,x, σ, π2) :

1. parse σ = (Cm, CU ′)

2. compute V = (x0U +
∑n

i=1 xiCmi) / (CU ′)

3. verify π2 using V (see appendix B.2 for details)

4. output Cm if the proof is valid, ⊥ otherwise

The complete development and details of π2 can be found in appendix B.2. Note that this protocol

loses its anonymity properties if a dishonest issuer delivers to each users credentials associated to a

different MAC key. Indeed, the issuer (who is also the verifier) will then be able to distinguish users

during the credentials’ showing process by observing which key verifies the associated MAC.
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1.3.3 Fundamental Concepts - Set Membership and Proof of Range

Researchers from IBM and EPFL published a paper considering the problem of proving in zero-

knowledge that a value σ belongs to a set Φ, given a commitment on σ. This problem is also

denoted by the set membership proof [9]. The proof is based on Boneh-Boyen signatures [5] and

works under the q-Strong Diffie-Helmann assumption [6], where q is the number of elements in

Φ. The communication complexity of this protocol depends on on q. The following algorithms

summarise the set membership and range proofs protocol in ECC.

Firstly, the algorithms Parampublic and Paramprover generate respectively the public and the prover’s

parameters.

• Parampublic(1k) :

1. select (p, E , H,G) as described in the first paragraph of section 1.3.2

2. consider a set Φ of q elements

3. output (E , p,G,H,Φ)

• Paramprover(E , p,G,H,Φ, σ) :

1. parse (E , p,G,H,Φ, σ) and verify σ ∈ Φ

2. pick r ∈ Fp

3. commit to the attribute σ by forming C = σG+ rH

4. output C

Then, the exchanges below between the verifier V and the prover P complete the proof.

• Exchange 1. V → P :

1. pick x ∈ Fp

2. compute Y = xG and Ai = (x+ i)−1G ∀i ∈ Φ

3. send (Y,A)

• Exchange 2. P → V :

14
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1. pick v ∈ Fp

2. compute V = (Aσ)v

3. send V

At that point, the prover and the verifier run the proof π below (the complete development of this

proof can be found in [9]).

π := PK
{

(σ, r, v) : C = σG+ rH ∧ V = v(x+ σ)−1G
}

1.3.4 Fundamental Concepts - RF Positioning System

This last paragraph discusses the principles of RF positioning systems. As illustrated by Fig.(1.1),

RF positioning systems use beacons as set-points and the users localise themselves with respect to

beacon 1

beacon 2

start

end

Figure 1.1: Sketch of RF positioning system

them. Basically, each beacon

emits a short-range signal with

its name and when the user de-

tects it, he knows he is close to

that beacon and localises himself

within an internal map. Beacon-

based systems have many advan-

tages: cost-effectiveness, unre-

markable hardware, flexibility to

integration into existing infras-

tructures, work where other po-

sitioning techniques do not have signals (e.g., in the basements), do not require much user-side

computational power to determine the location, and finally, their precision is arbitrarily increasable

by adding additional beacons [88, 32].

However, this very simple design comes with many security flaws. For instance, the system should

incorporate a protection against an adversary trying to replicate a beacon’s signal to confuse a user.

For that reason, simply emitting the beacon’s name is not enough and more advanced schemes based

on digital signatures as discussed in sections 3.1 and 3.2 should be used.
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Chapter 2

System’s Architecture

This chapter starts by explaining the system’s architecture by focussing on the role of each entity

and the kind of connections between them. Then, it ends with the system’s security analysis.

2.1 Architecture’s Presentation

The complete system’s architecture can be modelled as depicted in Fig.(2.1). Roughly speaking,

the server starts by issuing some anonymous credentials granting a privilege level j to a wearable.

WEBSITE

ADMIN

• login
• manage credentials
• manage users & devices

USER

• login
• display credentials

• prove authorisation

EXT. ENTITY

SERVER BEACON

• execute action
SERVERDB

WEARABLE

• update location
• prove authorisation

• data exchanges

• issue credentials
• update credentials

encrypted and authenticated

authenticated

Wi-Fi, Ethernet, …

radio waves

anonymous
short range

long range

Figure 2.1: Overview of the complete system’s architecture

16



University College London (UCL) Chapter 2. System’s Architecture

Then, each time this wearable reaches some particular physical location (gets close to a localisation

beacon) where it desires to perform an action requiring a privilege level of j, it starts presenting its

credentials in order to ask the server the execution of that particular action. In fact, the attributes

of the credentials represent the privilege level of the wearable’s user. More specifically, a privilege

level j is determined by a set Φj , such that if the user possesses an attributes mi ∈ Φj , then he has

a privilege level of j. Therefore, this user can ask the server to execute an action requiring such

privileges.

The credentials’ showing protocol comes from [13] and operates as described in section 1.3.2. In

general, the aMAC’s function φ(m) is devoted to prove some statements over the attributes and is

here used to perform a set of membership proof as described in section 1.3.3. In other words, the

wearable proves to the server that it possesses credentials over some attributes included in the set Φj

(without revealing them), and that these credentials have been previously issued by the server itself.

Note that the system preserves anonymity only if many users are involved (for each privilege level),

but this is a classic requirement of anonymous systems. As a supplement, appendix H presents a

discussion around possible revocation mechanisms for the currently implemented design.

A concrete example of utilisation of this systems could be associating the external entity to an

automatic office door. Therefore, each employee working on that office possesses a wearable with

the credentials to access it. Subsequently, when an authorised employee steps close to the door, the

device automatically detects its position, knows it is close to the door, and correctly presents the

credentials to the server. Then, after credentials’ verification, the server opens the door. Note the

usability advantage of having such common operations executed automatically and based on the

location; i.e, the user does not even need to present a smart card since the wearable reacts by its

own.

2.1.1 Architecture’s Presentation - Web Administration

A web interface is used to manage and display the device’s functions. From that interface, each user

and admin access the system. The admin’s role consists in granting credentials to the users and

in managing the devices’ assignments, while standard users are only able to observe the credentials

they own. The website is securely connected to the main server (e.g., using SSL) which possesses a

17



University College London (UCL) Chapter 2. System’s Architecture

database storing all the needed information; e.g., the list of users and their associated device, the

device’s credentials, etc. A presentation of this web interface can be found in appendix C.

2.1.2 Architecture’s Presentation - Credentials’ Issuance

During the setup phase, the server issues the credentials to a selected device according to the

algorithms presented in section 1.3.2. The credentials’ issuance is a short-range process. In fact,

the wearable needs to be physically close to the server to allow the admins to physically verify, once

and for all, the identity of the wearables’ users. In order to improve security and battery life, the

wearable only communicates using extremely low-power and short-range radio waves (dotted line

on Fig.(2.1)).

2.1.3 Architecture’s Presentation - Credentials’ Showing

The server beacons can be seen as continuities of the main server and have essentially two roles: the

first is to operate as an interface between the wearables and the server, and the second is to act as

the RF localisation system explained in section 1.3.4.

When approaching these beacons, the wearable receives a location’s update. To that purpose, it

starts an unilateral authentication mechanism defined by the ISO 9798-3 standard where only the

beacon is authenticated [38]. This process allows the wearable to accepts only authenticated loca-

tion’s code and to negotiate a symmetric key with the beacon without compromising its anonymity.

At that point, if the user possesses some credentials allowing him to perform a particular action at

that location, the device automatically presents these credentials in order to anonymously prove to

the server that it has the required privilege level. The wearable does not talk directly to the server

but uses the beacon as interface instead. Then, it starts the credentials’ showing protocol by sending

all the needed information encrypted under the derived shared key (for instance, using classic block

ciphers like AES in CBC mode [18]). The beacon receives these information and decrypts them.

Since both the server and the beacon are under the admins’ control, they can easily share a symmetric

key. The beacon uses this key to forward the received credentials’ data directly to the server using

an Authenticated Encryption with Associated Data (AEAD) scheme, like GCM-AES [28]. In fact,
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these AEAD schemes can be implemented extremely efficiently on industrial hardware [26]. This

communication does not need to be performed on radio frequencies. Moreover, this beacon-server

symmetric key can also be useful for completely different purposes like beacon’s code updates.

2.1.4 Architecture’s Presentation - Action’s Execution

Finally, once the credentials have been successfully verified by the server, the server issues a signed

request to an external entity (which can be, for instance, an automatic door, an alarm system or any

compatible IoT entity) to perform the requested action. This last interaction between the server

and the external entity is signed along with a fresh random nonce with the server’s public key.

2.2 Security Analysis

This section is firstly devoted to the Security Policy and Threat Model, which are key elements in

the statement of security. Then, the security arguments put in place to ensure the policy remains

unviolated are summarised along the list of the elements in the Trusted Computing Base (TCB).

2.2.1 Security Analysis - Security Policy

When considering building any secure system, one of the most important questions is about what

should be protected. The concept of Security Policy can be summarised as a statement setting up

the security objectives of a system and specifying the assets [1, 19]. Nevertheless, due to its vast

versatility, writing down the Security Policy is a step requiring particular attention and should be

specifically tailored for each system. Tab.(2.1) defines the Security Policy of this system.

Principals • The wearable’s users;

• The admins of the main server.

Assets • The wearable device;
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Principals

• The main server;

• The localisation beacons (composing the positioning system);

• The credentials embedded in the wearables;

• The external entity performing the commanded actions;

• The communication channels (frequency bands).

Policy • No one can tamper with the wearable’s code;

• Only authorised admins access the server;

• External entities accept only authorised commands from the server;

• Wearables accept location’s updates only from authentic beacons;

• Users anonymity (credentials showing unlinkability) is ensured with

respect to the server, as intended in section 1.3.2.

Table 2.1: System’s Security Policy

2.2.2 Security Analysis - Threat Model

The Threat Model defines all the resources and capabilities the adversary can have; i.e., the parts

of the system he can observe, tamper, as well as the parties he can corrupt. To make a long story

short, the Threat Model describes what the adversary can or cannot do. More specifically, applying

this concept to the current system, the Threat Model is depicted in Tab.(2.2) below.

Adversaries • Insiders (or intruders) trying to make the external entity to

perform an action, without having the suitable credentials;

• Server’s admins trying to invade user’s privacy by observing

their position or the actions their wearable ask to perform.
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Capabilities • The adversary could try to tamper with the wearable’s code;

• The adversary could try to access the server without

authorisation;

• The adversary could try to impersonate the server to activate

and external entity without authorisations;

• The adversary could try to move the localisation beacons or

to impersonate it;

• The server’s admins may identify which user is presenting

the credentials (privacy invasion);

• The adversary could try to tamper or copy the beacon-server

communication;

• The adversary could try to tamper or copy the communication

between the beacon and the wearable.

Threats to Assets • Unauthorised activation of an external entity;

• The server’s admins could try to violate user’s privacy (as

intended in section 1.3.2).

Table 2.2: System’s Threat Model

In addition to the above elements, some examples of more sophisticated attacks against the system

are described in appendix G along with some possible mitigations.

2.2.3 Security Analysis - Security Arguments

The Security Arguments are rigorous arguments that the mechanisms put in place to ensure the

Security Policy is not violated are indeed effective [19]. Here, these mechanisms are listed below:

• The little size of the embedded device’s memories prevents attackers from extracting its source
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code and to tampering with it;

• A proper login system with secured connection and database as depicted in Fig.(2.1) of section

2.1 is realised to ensure only authorised persons access the server;

• The external entities accept only requests signed by the main server in order to prevent server’s

impersonation;

• To avoid beacon’s impersonation, wearables accepts only signed location updates and the

beacons are strongly anchored in the walls to prevent attackers from moving them;

• The implementation of the protocol depicted in [13] ensures the privacy requirements of the

system;

• The beacon-server communication is authenticated and encrypted to prevent sniffing and tam-

pering;

• The very short range of the wearable-beacon communication make difficult for an attacker

to tamper or sniff it. However, to enforce even more this statement, the beacon-wearable

communication is encrypted.

2.2.4 Security Analysis - Trusted Computing Base

The elements of the Trusted Computing Base (TCB) are the foundations on which the Security

Policy relies on. If something goes wrong in the TCB, the policy may be violated [19]. In the case,

these elements are listed here below.

• The wearable’s user, in the sense that he is trusted to no give his wearable to someone else;

• The physical position of the localisation beacons, in the sense that they are placed at the

correct locations;

• The server’s admins during the credentials’ issuance, in the sense that they are trusted to not

issue credentials to non-authorised wearables and to use the same aMAC key for each wearable

(see section 1.3.2).
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Chapter 3

Prototyped System

Despite all the blocks and interactions described in section 2.1 are essential to ensure a fully industrial

system, the prototype had to be realised with some simplifications due to hardware limitations. More

specifically, the prototype’s architecture becomes as shown in Fig.(3.1) below, instead of the original

one pictured in Fig.(2.1) of section 2.1.

WEBSITE

ADMIN

• login
• manage credentials
• manage users & devices

USER

• login
• display credentials

• show credentials

EXT. ENTITY

SERVER BEACON

• execute action
SERVERDB

WEARABLE

• update location
• show credentials

• issue credentials
• update credentials

encrypted and authenticated

authenticated

Wi-Fi, Ethernet, …

radio waves

anonymous
short range

long range

• data exchanges

Figure 3.1: Overview of the prototyped system’s architecture

The first difference concerns the wearable-beacon communication. Indeed, it is computationally to

heavy to perform all the protocols described in section 2.1. Therefore, instead of deriving a shared
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key and encrypting the credentials’ showing data, the wearable sends clear data but still accepts

only signed location’s updates. Moreover, the server-beacon is also left unencrypted and the web

interface could not be tested on the system’s server. Finally, the prototype communicates entirely

through 2.4GHz radio waves.

3.1 Prototype’s Conceptual Model

The prototype’s architecture is firstly explain in general in order to provide the reader with a good

overview of all the data transfers between each entities. Then, a more deep explanation through

complete block diagrams illustrates the ideal prototype’s behaviour.

3.1.1 Prototype’s Conceptual Model - Communication’s Overview

The realised prototype’s interactions can be depicted as shown in Fig.(3.2). It is composed of
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Figure 3.2: Prototype’s communications overview

four main parts: the main server, the wearable devices, the positioning system (beacons), and the

external entities. First of all, the server sends a sync packet to the suitable wearable in order to start
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the credentials’ issuance phase. Therefore, the wearable gets automatically ready for receiving the

new credentials. At that point, the server proceeds with the credential’s issuance and the wearable

verifies the issuance process according to the algorithm described in section 1.3.2. The wearable

sends then a final packet acknowledging whether the new credentials have been accepted or not.

Afterwards, once the wearable approaches a localisation beacon, it receives a location-sync packet

and the acquisition of a new location is negotiated: the wearable challenges the beacon with a

short-range fresh random number and waits for the reception of a signed string made of the hash of

the concatenation of the challenge and the beacon’s location code area (which can be seen as the

beacon’s name). If the signature is valid, the new location is accepted and the device updates its

current position.

If the wearable possesses any credentials that could be used at the new location, it enters in the

credentials’ showing phase and provides the beacon with all information needed to present the

credentials to the server. As explained before, the beacon acts like a bridge between the server

and the wearable. The first step of this phase is to send a showing-sync packet to the server.

Then, the wearable applies the credentials’ showing protocol, and finally, the server sends back an

acknowledgement packet, through the beacon, telling the wearable whether or not the credentials

have been correctly verified.

The last interaction is then performed between the server and the external entity. If the credentials

shown by the wearable where successfully verified, the server sends a signed request to the entity

demanding it to perform a specific action (this last step is very similar to the beacon-wearable

location update).

The following paragraphs explain in details the behaviour of each block by focussing on the com-

munications between them.

3.1.2 Prototype’s Conceptual Model - Server and Wearable Communication

The communication between the server and the wearable device is illustrated in Fig.(3.3). As ex-

plained above, the server-wearable communication has essentially two roles: the credentials’ issuance

and the credentials’ showing. However the second operation is performed though the beacon and is
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explained in the next paragraph.

For the credentials’ issuance, the server starts by transmitting a sync packet made of seven bytes.

The first byte indicates the kind of sync (in this case, it indicates the start of the credentials’

issuance) and contains the hexadecimal value 0x10, while the other six bytes contain the server’s

address (arrow 1.).
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Figure 5: Credential Issuance - Conceptual Model

Eq.(2) below.

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

U [ point ]

U 0 [ point ]

Xi [ point’s array ]

Cx0 [ point ]

c [ scalar ]

r [ scalar’s array ]

(2)

The parameters U , U 0, Xi and Cx0 are exactly those referenced in section 4.2 and come from [9], while

c and r represent respectively the challenge of the responses of the associated Non-Interactive Zero-

Knowledge (NIZK) proof. Finally, the wearable verifies the received proof and, if the verification

is successful it acknowledges the server by sending back a 1-byte packet containing the value 0x11.

On the contrary, if the verification is unsuccessful, an ack packet containing 0x12 is sent back.

The credentials’ showing operation is very similar to the previous one but is initiated by the wearable.

Indeed, the operation also starts with a 7-byte sync packet, where the first byte is 0x13 (indicating
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the beginning of the credentials’ showing operation) and the other six are the wearable’s address.

Then, the following data are transmitted to the server:

8
>>>>>>>>><
>>>>>>>>>:

Ua [ point ]

CU 0
a [ point ]

Cmi [ point’s array ]

c [ scalar ]

s [ scalar’s array ]

(3)

As before, the parameters Ua, CU 0
a and Cmi are exactly those referenced in section 4.2 and come

from [9], while c and s represent the challenge of the responses of the associated NIZK proof. Finally,

the server acknowledges the reception by sending back respectively the byte 0x14 or 0x15, depending

on the credentials validity. Fig.(6) below depicts this process.

23

SERVER

OS Server 
board SPI

nRF
24

+
-

BEACON

CPU
SPI

nRF
24

+
-

Figure 3.3: Server and wearable communication

Then, the server sends all the information needed to communicate the credentials in zero knowledge,

as shown by Eq.(3.1) below (arrow 2.).





U [ point ]

U ′ [ point ]

Xi [ point’s array ]

Cx0 [ point ]

c [ scalar ]

r [ scalar’s array ]

(3.1)

The parameters U , U ′, Xi and Cx0 are exactly those referenced in section 1.3.2 and come from

[13], while c and r represent respectively the challenge of the responses of the associated Non-

Interactive Zero-Knowledge (NIZK) proof. Finally, the wearable verifies the received proof, and if

the verification is successful it acknowledges the server by sending back a 1-byte packet containing

the value 0x11. On the contrary, if the verification is unsuccessful, an ack packet containing 0x12 is

sent back (arrow 3.).

26



University College London (UCL) Chapter 3. Prototyped System

3.1.3 Prototype’s Conceptual Model - Wearable and Beacon Communication

This paragraph is devoted to the communication between the wearable device and the localisation

beacons composing the RF positioning system. As explained in section 1.3.4, the localisation beacons

are continuously transmitting sync packets. Fig.(3.4) shows these 7-byte packets are composed of

an indicator packet (0x16 indicates the location-sync) followed by the beacon’s address (arrow 4.).
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the beginning of the credentials’ showing operation) and the other six are the wearable’s address.

Then, the following data are transmitted to the server:

8
>>>>>>>>><
>>>>>>>>>:

Ua [ point ]

CU 0
a [ point ]

Cmi [ point’s array ]

c [ scalar ]

s [ scalar’s array ]

(3)

As before, the parameters Ua, CU 0
a and Cmi are exactly those referenced in section 4.2 and come

from [9], while c and s represent the challenge of the responses of the associated NIZK proof. Finally,

the server acknowledges the reception by sending back respectively the byte 0x14 or 0x15, depending

on the credentials validity. Fig.(6) below depicts this process.
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Figure 3.4: Wearable and beacon communication

When the wearable gets one of these packets1, it answers with a fresh low-power random challenge

(arrow 5.). Finally, when the beacon receives the challenge it responds with the Digital Signature

Algorithm (DSA) signature represented in Eq.(3.2).

signsk{H(challenge || location)} (3.2)

This signed string results from the hash (SHA-256) of the concatenation of the wearable’s challenge

and the beacon’s location code, which is used by the wearable to determine its current location

(arrow 6.).

If the signature is successfully verified and the wearable possesses any credentials applicable at this

specific location, it starts the credentials’ showing phase and provides the beacon with all the needed

information to transmit to the server (arrow 7.). Afterward, the beacon forwards an ack packet from

the server to wearable (arrow 11.). These lasts steps are further explained in the next paragraph.

1Note that each wearable shares the same RX address in order to preserve their anonymity.
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3.1.4 Prototype’s Conceptual Model - Server and Beacon Communication

This operation is analogue to the credentials’s issuance but is initiated by the wearable when it

decides to show its credentials. Indeed, this process also starts with a 7-byte sync packet, where the

first byte is 0x13 (indicating the beginning of the credentials’ showing operation) and the other six

are the wearable’s address (arrow 8.).
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Eq.(2) below.

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

U [ point ]

U 0 [ point ]

Xi [ point’s array ]

Cx0 [ point ]

c [ scalar ]

r [ scalar’s array ]

(2)

The parameters U , U 0, Xi and Cx0 are exactly those referenced in section 4.2 and come from [9], while

c and r represent respectively the challenge of the responses of the associated Non-Interactive Zero-

Knowledge (NIZK) proof. Finally, the wearable verifies the received proof and, if the verification

is successful it acknowledges the server by sending back a 1-byte packet containing the value 0x11.

On the contrary, if the verification is unsuccessful, an ack packet containing 0x12 is sent back.

The credentials’ showing operation is very similar to the previous one but is initiated by the wearable.

Indeed, the operation also starts with a 7-byte sync packet, where the first byte is 0x13 (indicating
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the beginning of the credentials’ showing operation) and the other six are the wearable’s address.

Then, the following data are transmitted to the server:

8
>>>>>>>>><
>>>>>>>>>:

Ua [ point ]

CU 0
a [ point ]

Cmi [ point’s array ]

c [ scalar ]

s [ scalar’s array ]

(3)

As before, the parameters Ua, CU 0
a and Cmi are exactly those referenced in section 4.2 and come

from [9], while c and s represent the challenge of the responses of the associated NIZK proof. Finally,

the server acknowledges the reception by sending back respectively the byte 0x14 or 0x15, depending

on the credentials validity. Fig.(6) below depicts this process.
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Figure 3.5: Server and beacon communication

Then, the following data are transmitted to the server, through the beacon (arrow 9.):





Ua [ point ]

CU ′a [ point ]

Cmi [ point’s array ]

c [ scalar ]

s [ scalar’s array ]

(3.3)

The parameters Ua, CU
′
a and Cmi are exactly those referenced in section 1.3.2 and come from [13],

while c and s represent the challenge and the responses of the associated NIZK proof. Finally, the

server acknowledges the reception by sending back respectively the byte 0x14 or 0x15, depending

on the credentials’ validity (arrow 10.). This ack packet is directly forwarded to the wearable.

3.1.5 Prototype’s Conceptual Model - Server and Ext. Entity Communication

The last communication to analyse is the one between the server and the external entity. Once the

wearable has successfully presented his credentials to the server in order to ask him to perform a
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specific action, the server is in charge of ordering its execution. Indeed, all the external entities

accept only signed orders coming from the main server. In that purpose, a communication scheme

similar to the beacon-wearable dialog has been set up (see Fig.(3.6) below).
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11. ack (showing)
0x14           
    0       

0x15           
    0       

or
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the beginning of the credentials’ showing operation) and the other six are the wearable’s address.

Then, the following data are transmitted to the server:

8
>>>>>>>>><
>>>>>>>>>:

Ua [ point ]

CU 0
a [ point ]

Cmi [ point’s array ]

c [ scalar ]

s [ scalar’s array ]

(3)

As before, the parameters Ua, CU 0
a and Cmi are exactly those referenced in section 4.2 and come

from [9], while c and s represent the challenge of the responses of the associated NIZK proof. Finally,

the server acknowledges the reception by sending back respectively the byte 0x14 or 0x15, depending

on the credentials validity. Fig.(6) below depicts this process.

23

SERVER

OS Server 
board SPI

nRF
24

+
-

13. challenge

12. sync (action)

14. sign action

EXT. ENT.

IoT compatible 
entity 

0x17           server addr         
    0       1             …              6    

signsk {H(challenge||action)}

Figure 3.6: Server and external entity communicationl

First of all, the server issues the classic 7-byte sync packet with the first byte equal to 0x17 (arrow

12.). Then, the external entity answers with a fresh new random challenge (arrow 13.), and similarly

to the previous case, the server transmits a signed request as described by Eq.(3.4) below.

signsk{H(challenge || action)} (3.4)

The signed request if composed of the hash of the concatenation of the server’s challenge and the

action’s identifier (arrow 14.).

3.2 Prototype’s Implementation

This section is completely dedicated to the software and hardware implementation of the prototype.

From the software perspective, this system is based on many different building blocks, some coming

from standard and well-tested libraries while others had to be completely built from scratch. As

indicated in the code files, the libraries come from [49, 48, 47]. Fig.(3.7) below provides an overview

of the blocks composing the system. Each module considers 32-bit data type for prototyping purpose

(which is not cryptographically secure), but section 3.4 explains how to address this problem.
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custom code
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completed & 
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Figure 3.7: System’s software building blocks

Moreover, each time randomness is needed, the software refers to a common function get random,

which has been implemented for testing purposes and is not cryptographically secure. The prob-

lematic of randomness is not part of this work but is further discussed in section 3.4.

First of all, the underlying drivers used by all the entities to communicate are presented, and then

the block server, wearable and beacon are detailed. Appendix D presents an example of external

entity’s implementation. To facilitate the reading, Finite State Machines (FSM) are used to explain

the software instead of displaying raw programming code.

3.2.1 Prototype’s Implementation - Underlying Hardware Drivers

The server, the wearables and the localisation beacons possess a nRF24 module allowing them to

communicate with other entities using 2.4GHz radio waves.

Hardware Design

The nRF24 module is based on the nRF24l01+ chip [43] which is a great trade off between perfor-

mance, range, low power and cost (see section 3.3 and appendix A for further details). Fig.(3.8)

displays a view of the module’s hardware reference design. Ideally, the chip has to be powered at

3.3V, but it tolerates an input voltage from 1.9V to 3.6V. In order to communicate with the CPU,

the module understands the standard Serial Peripheral Interface (SPI) and possesses an internal
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FIFO to store data waiting to be transmitted. The SPI master output (slave input) and master

IRQ
MISO

MOSI

CSN

VCC

CLK

CE

GND

Figure 3.8: nRF24 module hardware reference design [52]

input (slave output) respectively cor-

respond to the PINs MOSI and MISO.

Since the nRF24 module is a RF

transceiver, it is able to either send

data or receive them. To that pur-

pose, the PIN CE is used to set

the module in transmitter or receiver

mode. The last two PINs, CSN and

SCK, are respectively the standard

chip-select-not and the synchronous clock input. The nRF24 module comes with four possible

modes of operations, called 0x00, 0x01, 0x02 and 0x03. Tab.(3.1) summarises the main differences

between these modes2.

Modes DC current Data Rate BER

0x03 11.3 mA 2 Mbps ≤ 0.1%

0x02 9 mA 2 Mbps 1%

Modes DC current Data Rate BER

0x01 7.5 mA 1 Mbps 1%

0x00 7 mA 250 kbps 1%

Table 3.1: nRF24 module’s characteristics summary [43]

The second column indicates the chip’s current consumption, the third indicates the theoretical

data rate, and the last column provides the Bit Error Rate (BER). However, these characteristics

2Actually, in order to save even more power, the module has a special stand-by mode which has not been used in

this project. More information about this mode can be found in [43].
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are ideal and section 3.3 provides a more extensive analysis of the system’s practical behaviour. In

order to provide a design as flexible as possible, the desired mode of operation can be selected in

the configuration files and all the rest is taken care of automatically.

Software Design

One of the most time-consuming parts of this thesis was about writing the drivers for the nRF24

module in order to make it compatible with both the ARM1176JZF-S CPU of the Raspberry Pi

B+ and the ATMEGA328P CPU of the Arduino UNO. A great help in this task was the draft open

source library found in [46], which has been completed and optimised in order to produce two drivers,

one working on Linux (compilable by g++ through a custom Makefile) and one working on Arduino

(compilable by the Arduino IDE [67]). At this point, in order to have a design as generic as possible

RF24 WRAPPER

void set_TX( byte RX_addr[6] )

bool send( void* load, uint8_t length )

bool receive( void* load, uint8_t length )

bool get_sync( byte packet[SYNC_LEN] )

bool send_sync( byte packet )

bool send_byte( byte load )

void change_power_level( byte power_level)

bool ping()

void pong()

void print_details()

methods

constructor
RF24_wrapper( byte RX_addr[6] )

Figure 3.9: RF24 driver wrapper outline

and to encourage further usages, a single

nRF24 driver wrapper has been built. The

scope of this additional abstraction layer

is to automatically select (through pre-

processor macros) which driver has to be

compiled, given the underlying hardware.

Therefore, any developer can now create a

nRF24 wrapper’s object and benefit from

the functions shown in Fig.(3.9) without

having to worry about the implementation

and the underlying hardware.

First of all, the driver is initialised with a

fixed 6-byte RX address; i.e., the address

used for reception. Afterwards, the user

is free to call the method set TX as many

times as needed to set the destination address. The wrapper possesses a simple send function to

transmit the desired data. To facilitate even further the wrapper’s utilisation, this method accepts

a pointer to any kind of data: the developer is then free to send a pointer to his own custom
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data structure. The only limitation is about the load length, which is limited to 32 bytes by the

hardware (the maximum size of the internal nRF24l01+ FIFO is 32 bytes). In addition, this method

includes an automatic Cycle Redundancy Check (CRC) and an ack functionality that allows the

user to detect if his packet has correctly been received. The function receive works similarly to

the previous one. In order to make these two methods as flexible as possible, the timeout values

for reception (RX TIMEOUT) and transmission (TX TIMEOUT) are arbitrarily configurable through a

pre-processor macro, whose default values are 1 s and 200 ms, respectively.

The method get sync allows to automatically receive a sync packet of length SYNC LEN. In the

default configuration, SYNC LEN has been set to seven bytes: one byte determining the kind of

request and six bytes identifying the message’s transmitter. Similarly, send sync sends a sync

request to a target device. Without surprise, the method change power level is used to change

the transceiver mode (0x00, 0x01, 0x02 or 0x03) according to Tab.(3.1) above.

The last three methods, ping, pong and print details have debugging purposes. Indeed, they are

used to ping a target device and to display debugging information on the standard output.

3.2.2 Prototype’s Implementation - Server’s Hardware and Software

This subsection focusses on the server’s implementation. As before, the hardware needed to build

the server is discussed in the first paragraph and the software implementation in the second.

Hardware Design

Fig.(3.10) here below presents the full hardware design. The server is powered at 5V and implements

the SPI interface with the nRF24 module from PINs 16, 20, 22, 24, 25 and 26.

The nRF24 module is powered by the Raspberry Pi through a lm1117-3.3 voltage regulator. In

fact, as explained in section 3.2.1, the nRF24 has to be powered at 3.3V. However, the Raspberry

Pi’s power PIN 3.3V does not provide a current stable enough to reliably run the nRF24l01+ chip.

For that reason, the voltage regulator is in charge of converting the 5V coming from the Raspberry

Pi’s PIN 1 to a suitable 3.3V output to feed the nRF24 module. For further stabilisation, three

capacitors are designed to smooth the power signal as much as possible.
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Figure 3.10: Server hardware reference design [58, 52]

It is of utmost importance to reduce the transmitting power of the server when issuing new cre-

dentials in order to give them only to a close targeted wearable, and not to all the devices around.

Ideally, this interaction should have a range of a few centimetres. To that purpose, a potentiome-

ter is used to regulate the server’s transmitting power by limiting the current flowing through the

regulator.

Software Design

Fig.(3.11) presents the methods available when a server object is created. With regard to the

RF24 wrapper, the server is initialised with its 6-byte RX address and possesses the methods

set TX, send, receive, send sync, send byte, ping and pong. The method synchronize is a

an extension of the RF24 wrapper’s methods get sync that automatically updates the TX address
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according to the address received in the last sync packet. The methods send credentials and

SERVER

methods

constructor
server( byte RX_addr[6] )

void set_TX( byte RX_addr[6] )

bool send( void* load, uint8_t length )

bool receive( void* load, uint8_t length )

bool synchronise( byte packet[SYNC_LEN] )

bool send_sync( byte packet )

bool send_byte( byte load )

bool ping()

void pong()

bool send_credentials()

bool check_credentials()

void MAC_GGM_keygen()

void MAC_GGM(...)

bool verify_GGM(...)

void issue_credentials(...)

bool verify_credentials_presentation(...)

WEARABLE

methods

constructor
wearable( byte RX_addr[6] )

void set_TX( byte RX_addr[6] )

bool send( void* load, uint8_t length )

bool receive( void* load, uint8_t length )

bool synchronise( byte packet[SYNC_LEN] )

bool send_sync( byte packet )

bool send_byte( byte load )

bool ping()

void pong()

bool get_location()

bool verify_credentials()

bool show_credentials()

bool verify_credentals(...)

void credentials_presentations(...)

Figure 3.11: Server software outline

check credentials rely on all other pri-

vate functions to issue and verify the user’s

credentials. These methods implement the

algorithms described in section 1.3.2.

The FSM shown in Fig.(3.12) completely

illustrates the server’s software behaviour.

Once the server is turned on, it starts by

initialising all its modules and peripherals.

Then, it issues the targeted credentials and

enters in a main loop. This loop runs for-

ever and its purpose is to detect when the

server needs to react. In fact, the main

loop is waiting for the reception of a sync

packet addressed to the server’s RX ad-

dress. Then, if the sync indicates a wear-

able is willing to show its credentials, the

server verifies them and if the verification

succeeds, it contacts the external entity as

explained in section 3.1.4. Similarly, when the server is pinged, it answers with a pong packet.

else

init

cred. 
issue

check sync

send 
pong

check 
cred.

send 
action 
sync

ping 
received

showing 
request 

start here

check sync

send 
pong

check 
cred.

contact 
ext. ent.

ping received

showing 
request 

init

start here

check 
web

cred. 
issue

else

else

issuance 
order

wait send 
sign.challenge 

received

timeout
cred. ok

else

cred. ok

else

Figure 3.12: Server software FSM
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3.2.3 Prototype’s Implementation - Wearable’s Hardware and Software

This section describes in details the complete wearable’s hardware and software implementation.

Hardware Design

Similarly to the previous section, Fig.(3.13) below illustrates the wearable’s reference hardware de-

sign. The SPI is interfaced with the Arduino through the PINs 7, 8, 11, 12 and 13. Exactly as for the

-+
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OUT
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4.7uF
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CE

VCC - 5V
GND
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+

+

-

-

+

-

5V
GND

SPI

10uF

Figure 3.13: Wearable hardware reference design [56, 52]

server, the nRF24 is pow-

ered through a lm1117-3.3

voltage regulator. Note

that the real-world wear-

able should store the issued

credentials in a non-volatile

memory (like an EEPROM

or a flash memory) in order

to not lose these data after

each device’s reboot. For

the more enthusiastic read-

ers, appendix I illustrates

the final hardware design of

the industrial wearable.

Software Design

Fig.(3.14) presents the methods available when a wearable object is created. Most of them have

already been discussed. Without surprise, the methods get location, get credentials and

show credentials rely on the other private functions to respectively verify the beacon’s location,

verify the validity of new credentials and show the credentials to the server. The underlying methods

are the exact implementation of the protocols described in section 1.3.2. The wearable’s method

synchronize is implemented exactly as the server’s one.
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The FSM of Fig.(3.15) illustrates the wearable’s behaviour. When the wearable is turned on, it

SERVER

methods

constructor
server( byte RX_addr[6] )

void set_TX( byte RX_addr[6] )

bool send( void* load, uint8_t length )

bool receive( void* load, uint8_t length )

bool synchronise( byte packet[SYNC_LEN] )

bool send_sync( byte packet )

bool send_byte( byte load )

bool ping()

void pong()

bool send_credentials()

bool check_credentials()

void MAC_GGM_keygen()

void MAC_GGM(...)

bool verify_GGM(...)

void issue_credentials(...)

bool verify_credentials_presentation(...)

WEARABLE

methods

constructor
wearable( byte RX_addr[6] )

void set_TX( byte RX_addr[6] )

bool send( void* load, uint8_t length )

bool receive( void* load, uint8_t length )

bool synchronise( byte packet[SYNC_LEN] )

bool send_sync( byte packet )

bool send_byte( byte load )

bool ping()

void pong()

bool get_location()

bool verify_credentials()

bool show_credentials()

bool verify_credentals(...)

void credentials_presentations(...)

Figure 3.14: Wearable software outline

starts by testing the connection with the

main server by pinging it. Once a sync

packet indicates the credentials’ issuance

process, the wearable leaves the main loop,

gets the credentials and verifies them: if

the verification succeeds, it tests immedi-

ately the new credentials. Similarly, when

a new location is received, the wearable

challenges the beacon as described in sec-

tion 3.1.3, and if the location is legitimate,

it starts the credentials’ showing phase.

The wearable’s software had to be mas-

sively optimised in order to fit the very lim-

ited Arduino’s resources. For instance, one

of the main optimisations was to play with

the program and dynamic memory (see sec-

tion 3.3.2).
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Figure 3.15: Wearable software FSM
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3.2.4 Prototype’s Implementation - Beacon’s Hardware and Software

The last part of this section describes the beacons composing the localisation system. The beacon’s

hardware reference design is exactly the same as the wearable’s design presented in Fig.(3.13).

Software Design

The beacon’s software FSM is simpler than the previous one. Indeed, after the initialisation phase,

the beacon enters in a main loop where it sends a location sync packet and then waits for a wearable

check 
channel

anomaly 
detected

warn 
server

else

stop

end here

wait

send 
sign

send 
cred.

challenge 
received

(server ack received) || 
(timeout)

send 
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start here
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timeout

timeout

credentials 
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wait
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send 
cred.
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received

(server ack received) || 
(timeout)

send 
sync

init

start here

wait wait

ack 
wearable

timeout

timeout

credentials 
received

Figure 3.16: Beacon software FSM

to answer. If an answer is

received, the beacon com-

putes a DSA signature from

the hash of the challenge

and its location code, as

explained in section 3.1.3.

Afterwards, the FSM gets

ready to play as interface

between the wearable and

the server for a possible cre-

dentials’ showing process. If the wearable decides to presents its credentials, the beacon transfers

them to the server and then waits for an ack to pass back to the wearable.

3.3 Prototype’s Resources and Performances

This subsection is devoted to the system’s resources and performances. More specifically, the system

will be analysed in term of financial cost, speed, temperature dependency, operational range and its

sensitivity to radio interferences. Screenshots of the final prototype can be found in appendix E.

3.3.1 Prototype’s Resources and Performances - Financial Cost

One of the main objective during the realisation of these prototypes was to keep them as cheap as

possible. Indeed, concerning the software development, only free software have been used during
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the whole projects. As explained in appendix A, the simulator has been realised with Apple Xcode

7 [66]. The Arduino boards have been programmed with the free Arduino IDE [67] and debugged

with Saleae Logic [70] (free software compatible with many logic analysers).

From the hardware point of view, the prices of each component composing the system are detailed

in appendix F, and Tab.(3.2) here under summarises the total cost of the system3.

Server Wearable Localisation Beacon

£33.25 £4.89 £4.89

Table 3.2: Summary of the prototype’s financial cost

On one hand, the implementation of the server requires two 10uF capacitors, a 4.7uF capacitor,

a nRF24L01+ based module, a lm1117-3.3, a potentiometer, 9 jumpers and the Raspberry Pi4.

Therefore, it is responsible for more than 75% of the total cost, which is quite a lot but is needed in

only one exemplar. On the other hand, each wearable and beacon cost less than £5 and are built

from two 10uF capacitors, a 4.7uF capacitor, a nRF24L01+ based module, a lm1117-3.3, 9 jumpers

and an Arduino board.

3.3.2 Prototype’s Resources and Performances - Memory Usage

This paragraph gives a special focus on the wearable and on the beacons, since it is the entity

requiring the most delicate optimization due to all the problematics debated in section 1.1. The

embedded system’s memory has two main parts: the program memory and the dynamic memory.

The first one is what limits the size of the code, while the dynamic memory is what actually consists

in the device resources during execution. Tab.(3.3) below reports the exact memory usage of the

3Some irrelevant costs like ethernet cables, plug adapters, USB cables and breadboards have been neglected.
4For better understanding, these references should be read in parallel with section 3.2, which provides a full detailed

diagram of each entity.
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wearable device and of the localisation beacons (about 5 KB of program memory are due to the

boot loader). The memory usage of the server is comparable to the wearable, since the implemented

code is analog.

Program Memory Dynamic Memory

Wearable 20.080 KB 284 B

Localisation Beam 14.422 KB 196 B

Table 3.3: Wearable’s memory usage

As explained in section ?? the code as been optimized to move all fixed variables on the program

memory (which is much wider than the dynamic memory). However, this choice has to be carefully

balanced since program memory is not volatile5, and is therefore much slower to read and consumes

more power.

3.3.3 Prototype’s Resources and Performances - Power Consumption

Contrarily to the memory usage, the power consumption is much harder to determine (at least,

without the appropriate tools). Nevertheless, a theoretical approximation can be made based on

the circuits presented in section 3.2. Therefore, the following results represent the ideal behaviour

and consist in a lower bond approximation.

The first load consuming power is the nRF24 module. More specifically, as explained before, the

nRF24l01+ chip has four modes of power operation that allow the user can programatically trade

the amount of power drawn by the chip for higher range or reliability. In fact, the nRF24l01+ can

be programmed to sink a current Isink of 7, 7.5, 9 or 11.3 mA [43]. Therefore, knowing that the

5For modern devices, the program memory is generally made of flash or EEPROM memory, but old systems may

still use EPROM.
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core chip is powered at VnRF24 = 3V, Eq.(3.5) provides the total power PnRF24 consumed by the

chip [43].

PnRF24 = Isink ∗ VnRF24 (3.5)

As explained in section 3.2, the nRF24 module is connected to the 5V Vcc Arduino PIN through

a voltage regulator, which consumes a non-negligible amount of power. Indeed, the power Pvolt reg

dissipated by the lm1117 voltage regulator6 can be calculated as given by Eq.(3.6).

Pvolt reg = (Vin − Vout) ∗ (Isink + IQuiescent) (3.6)

where IQuiescent equals 5 mA [45], Vin is the 5V source of the Arduino board, Vout equals 3.3V

(since the selected voltage regulator model is the lm1117-3.3 [45]), and Isink is the current sunk by

the nRF24 module7. Tab.(3.4) here below summarises the power consumption for the four possible

nRF24’s modes of operation.

Modes Isink PnRF24 Pvolt reg Total

0x03 11.3 mA 33.9 mW 27.71 mW 61.61 mW

0x02 9 mA 27.0 mW 23.80 mW 50.80 mW

0x01 7.5 mA 22.5 mW 21.25 mW 43.75 mW

0x00 7 mA 21.0 mW 20.04 mW 41.04 mW

Table 3.4: Transceiver’s power consumption (nRF24l01+ and lm1117-3.3)

6For easy understanding the following equation should be read in parallel with Fig.(3.13) of section 3.2.3.
7For the sake of completeness, it has to be mentioned that the nRF24 module has an on-chip additional voltage

regulator dropping the input voltage from 3.3V to 3.0V, but its power dissipation is negligible and has been ignored.
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Therefore, the total power saved by selecting the nRF24 mode 0x00 instead of the 0x03 is

∆0x03−0x00 = Ptot 0x03 − Ptot 0x00

= 61.61[mW ]− 41.04[mW ] (3.7)

= 20.57[mW ]

where Ptot 0x03 and Ptot 0x00 are found in the last column of Tab.(3.4) at the first and last row,

respectively. The result provided by Eq.(3.7) is not negligible knowing that a standard Coin Lithium

Battery provides about 90 mAh. The above calculations have to be preciously kept since they will

be unchanged during a future migration to an industrial system (see section 3.4).

Concerning the prototyped system, an original Arduino UNO board can source at most a current

Imax of 200mA from its 5V Vcc PIN [62, 61], delivering then a maximum power Pard PIN of

Pard PIN = Imax ∗ Vcc

= 200[mA]× 5[V ] (3.8)

= 1[W ]

Therefore, Eq.(3.8) proofs that the Arduino board is theoretically strong enough to power the nRF24

module connected through the voltage regulator in any mode of operation. Note that the Arduino

boards also posses a 3.3V Vcc PIN which has not been used in the wearable’s design for the two

following reasons:

• The 3.3V Vcc PIN can source at maximum 100 mA;

• The 5V Vcc PIN provides a far more stable DC current.

Now, the total power consumption8 of the wearable device and the localisation beacons can be

computed by adding to the results of Tab.(3.4) the power consumed by the Arduino CPU itself.

Indeed, an Arduino UNO board that comes, as in the current case, with an ATMEGA328P CPU,

a resonator oscillating at 16 MHz and powered (through USB) at 5V, draws a current Iard CPU of

16.32 mA [40]. Therefore, the total power Pard CPU dissipated by the board is

Pard CPU = Iard CPU ∗ VUSB = 81.6[mW ] (3.9)

8The losses due to the jumper cables, socket solders and other board’s imperfections are ignored.
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Unfortunately, the power consumption of the Raspberry Pi is much harder to estimate due to the

complexity of its design. However, a rapid over-approximation of the power PRPi consumed by the

board when the HDMI is disabled, all LEDs are disabled, an ethernet cable is plugged in but unused,

leads to an upper bond of

PRPi ≤ 1[W ] (3.10)

which is far bigger than the power consumed by the nRF24 module [39, 65]. Moreover, the maximum

current that can be drawn from the board is 700mA [65], which is again enough to power the nRF24

module connected through the voltage regulator in any mode of operation.

Finally, from the above equations and the results displayed in Tab.(3.4), the final power consumption

of each entity of the prototyped system is summarised by Tab.(3.5) below .

nRF24 Operation Server Wearable &

Modes Beacon

0x03 ≤ 1.062 W ≈ 143.21 mW

0x02 ≤ 1.051 W ≈ 132.40 mW

0x01 ≤ 1.044 W ≈ 125.35 mW

0x00 ≤ 1.041 W ≈ 122.64 mW

Table 3.5: Summary of the system’s power consumption

3.3.4 Prototype’s Resources and Performances - System’s latency

This paragraph is devoted to analyse the latency of the system. In that purpose the server’s and

wearable’s speed are summarised by the box plots of Figs.(??) and (??), respectively. These figures

have been realised from data taken in the following working conditions:

• The tests have been realised at room temperature (25 °C);
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• The transmitter and the receiver where situated exactly three meters apart;

• Each box of the box plot is generated from 50 independent samples.

Fig.(3.17) illustrates the timing of

the methods send credentials,

get credentials and get location

(see sections 3.2.2 and 3.2.3), and shows

that sending the credentials is slower

than verifying them. Moreover, the

wearable can get a location’s update

about three time faster than how it gets

new credentials. Fig.(3.18) presents the

timing for the credentials’ presentation,

which is by far the slowest process.
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Figure 3.17: Credentials’ issuance latency

The server’s methods issue credentials and verify credential presentation have not been

pictured because their latency is negligible. However, contrarily to the server’s case, the two wear-
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Figure 3.19: Wearable’s inner methods
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able’s methods verify credentials and credential presentation (which are direct implemen-

tations of [13]) don’t have a negligible latency due to the limited CPU resources of the wearable,

but are still much faster than the methods displayed in the other plots.

In addition to the purely experimental data illustrated above, there is a theoretical maximal latency

that can be computed for the current implementation of the credentials’ showing and issuance, as

well as for the reception of a new location. Indeed, each of these methods has a maximum timeout

as described in section 3.2.1 that can be exploited for Denial of Service (DoS) attacks (see appendix

G.4 for further details). Tab.(3.6) below summarises this theoretical maximum latency for each of

these methods. This table has been computed using the default RX and TX timeout values (1s and

200 ms, respectively).

Methods Median Theoretical Max

send credentials 357.94 ms 1.2 s

get credentials 286.75 ms 2.0 s

get location 89.19 ms 1.0 s

show credentials 1283.3 ms 1.2 s

check credentials 966.9 ms 2.0 s

verify credentials 27.96 ms -

credentials presentation 60.89 ms -

Table 3.6: Median and maximal theoretical latency

The power mode of the nRF24 module influences directly the data rate of the transceiver, allowing

a transmission from 250 kbps to 2 Mbps (see Tab.(3.1) of section 3.2.1). However, the experiments

showed that it does not influence the system’s latency significantly.
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3.3.5 Prototype’s Resources and Performances - Operational Range

This paragraph aims to analyse the prototype’s range of operation. In that purpose, the error rate

(computed as the percentage of

the number of failures divided

by the number of successes) has

been observed for each nRF24’s

mode of operation and reported

in Fig.(3.20). The dots on the

graphs represent the experimen-

tal data and the dotted lines

are a cubic splines interpolation.

The splines show a quasi ex-

ponential relation between the

error rate and the operational

range.
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Figure 3.20: Influence of the distance on the error rate

More specifically, the tests have been run under the following conditions:

• The tests have been realised at room temperature (25 °C);

• A success is accounted only when the complete operation chain is observed on the wearable:

get credentials from the server → get location from the beacons → show credentials to the

server.

The above experiment show a high error rate when the distance reaches barely 10 meters. Indeed,

it is likely to have a single failure during one of the transmissions. However, this range is perfectly

sufficient since the architecture requires the wearable to perform only short-ranges communications.

A last additional ping test has been run to purely test the range of the nRF24l01+ chip9. In this

last case, the nRF24 modules were able to ping each other up to a distance of 46 meters while

9To avoid any possible radio interferences, this test has been realised inside the Eurostar, when passing through

the Eurotunnel (at about 40m under the sea bed) [63, 64].
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keeping an error rate below 5%. This last test shows that the weak link in the communication chain

is probably the unofficial Arduino board. A possible explanation is that the board struggles with

communicating large data through SPI to the nRF24 module fast enough to avoid errors.

3.3.6 Prototype’s Resources and Performances - Temperature Dependency

The next analysis concerns the system’s temperature dependency. For that experiment, the wearable

has been placed into an oven to experimentally test its temperature dependence. The following test

settings have been applied:

• The wearable was situated inside the oven;

• The transmitter and the receiver were situated exactly one meter apart;

• A success is accounted only when the complete operation chain is observed on the wearable:

get credentials from the server → get location from the beacons → show credentials to the

server.

Fig.(3.21) shows the results of

the tests. As before, the dots

on the graphs represents the ex-

perimental data and the dotted

lines are a cubic splines inter-

polation. The graph shows that

the system is completely stable

until about 38◦C and then the

error rate suddenly increases.

However, in theory, the wear-

able should work correctly until

85◦C. Indeed, the nRF24 mod-

ule, the voltage regulator, the
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Figure 3.21: Influence of the temperature on the error rate
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Arduino USB chip and the ATMEGA328P are designed to operate until 85◦C, 125◦C, 85◦C and

85◦C, respectively [43, 45, 41, 40].

This huge performance’s difference could be explained by the fact that despite all the chips have

been designed to withstand such temperatures, the other (cheap) components composing the board

are not. Indeed, the following well-known facts are always applicable:

• The resonator’s frequency may derive and not produce the exact value (16 MHz);

• IO protocols like I2C and SPI may perform badly;

• Resistors may not produce the exact value (may change up to 8%);

• The jumpers’ resistivity increases with temperature;

• Capacitors may not produce the exact value (may change by a lot more than 8%).

The first and the last point are the most problematic. Indeed, the resonator regulates the CPU

operations and the role of the capacitors in the Arduino board are to smooth the signals arriving to

the CPU. If these operations are poorly performed, the CPU’s behaviour may become unpredictable.

With the above considerations in mind, an additional test that produced a very noticeable result

has been run on the board at a temperature around 40 - 45◦C: despite the location beacons were

switched off, the wearable started showing its credentials, by its own, at a rate of about 0.5% !

This observation consists in an important vulnerability and is further discussed in section G.3. The

server’s temperature dependency has not been analysed since servers generally remain all the time

locked in temperature-controlled rooms.

3.3.7 Prototype’s Resources and Performances - Sensitivity to Interferences

This last paragraph aims to analyse the system’s sensitivity to radio interferences in order to test

the system’s resistance to trivial DoS (jamming).

Fig.(3.22) shows the results of these tests. As usual, the dots on the graphs represents the experi-

mental data and the dotted lines are a cubic splines interpolation. The graph shows a critical point

48



University College London (UCL) Chapter 3. Prototyped System

at around 0.7 m. Indeed, the sys-

tem seems sensitive to jamming

only when the jammer is situated

at less than 0.7 m from the me-

dian formed by the transceivers. In

fact, once this this critical point is

reached, the system appears to be

immune to interferences.

Moreover, even when the jammer

is placed right in between the two

transceivers (at position 0), the er-

ror rate does not exceed 45%.
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Figure 3.22: Influence of radio interferences on the error rate

This experiment has been run with the setup shown in Fig.(3.23) and each transceiver were set to

the power mode 0x01. As usual, the test has been run at room temperature and under the same

success’ conditions as in the previous paragraphs.
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Figure 3.23: Sensitivity to radio interferences experiment setup
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3.4 From the Prototype to an Industrial System

This section explains how to transform the studied prototype into a fully real-world system. In-

deed, the extremely limited resources of the unofficial Arduino boards make impossible to meet any

industrial requirements.

On one hand, the server needs to migrate to a more powerful platform and bridge the gap between the

prototyped implementation and the web interface depicted in appendix C (fairly straightforward).

On the other hand, the wearables and the beacons should be modified in order to include all

the functionalities from the original architecture shown in Fig.(2.1) of section 2.1 that have been

skipped in the prototype. To that purpose, all Arduinos should be replaced by a Microchip PIC32MZ

Figure 3.24: Example of Mi-

crochip PIC32MZ [57]

(Fig.(3.24)), the latest Microchip PIC32 release that has been na-

tively designed for security. Indeed, in addition to various hard-

ware implementations of AES and DES (CBC, ECB, CTR, CFB,

OFB, as well as AES-GCM), the chip also provides a hardware im-

plementation of SHA-2, a pseudorandom number generator, a true

random number generator and a 512-byte OTP array not readable

from other memory spaces (ideal for storing cryptographic keys)

[42]. Moreover, Microchip has recently released a next version of

its free IDE, MPLAB Harmony, allowing an automatic inclusion of

the WolfSSL library [69, 51]. In conclusion, the modifications to migrate the wearables from the

Arduino to the PIC32MZ can be summarised as follow:

1. Replace the software implemented SHA function by the PIC32MZ hardware implementation

and the current prototype ECC library by the original WolfSSL;

2. Encrypt all wearable-beacon and server-beacon data transfers as discussed in section 2.1 using

the hardware implementations of AES, AES-GCM and WolfSLL.

3. Link the prototype’s get random function to the MCU hardware random number generator;

A full Printed Circuit Board (PCB) of the final industrial wearable can be found in appendix I.
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Conclusion and Further Directions

This paper presented a flexible privacy enhancing system from its architectural to its prototyping

level, based on the anonymous credentials protocols developed by [13]. Three kind of entities are

involved in this system: a main server, wearable devices and localisation beacons. In this multi-

purpose architecture, the server firstly issues some anonymous credentials to the wearables. Then,

when the wearable reaches a particular location, it automatically presents its credentials to command

the server the execution of a particular action. Both the architecture of the wearable and of the

server remain generic and scalable in order to encourage further enhancements and easy integration

into real-world applications.

In this work

This work started by presenting the complete system’s architecture and the security analysis. Af-

terwards, the prototype’s behaviour is explained through analysis of the communication between

each entity. Then, the hardware and software implementation have been discussed as well as all

the components needed to build the system. The prototype has been widely tested to carefully

determine the resources it requires and its performances under different circumstances. Finally, this

work ends by showing how to migrate from the current prototype to a fully industrial system.

Further Works

The final goal of this architecture is its implementation on industrial hardware. Moreover, a further

improvement would consists in modifying the current Non-Interactive Zero Knowledge (NIZK) proof

to add a proof of non-negativity over the credentials’ attributes. Indeed, a proof of non-negativity

would allow the wearable to keep in memory a single attribute representing the maximum user’s

authorisation, and use it to perform diverse actions. Even further, the introduction of this proof

would make possible the implementation of a full Bell-LaPadula model [4]. Finally, an additional

improvement would consist in the integration of a credentials’ revocation mechanism and in applying

the architectural improvements suggested in appendix G in order to improve the system’s security.
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A Appendix. Design Steps and Strategy

This appendix is devoted to the explanations of the design steps and methodology applied during

the realisation of this work. The design strategy can be separated in the heigh main steps detailed

below.

Step 1 - Background Researches

The first step realised during this term was about summarising all the main papers and researches in

the target area in order to build a literature review on the field of wearable security and anonymous

credentials for embedded devices. This literature review gave a pretty complete idea of what are

the existing tools, what has already been done, and what is still missing. Therefore, this first step

indicated the main directions to follow and is the foundation of the whole project.

Step 2 - Architecture and Security Analysis

The next step consisted in designing the system’s architecture and in setting up the desired security

properties. The summary of the work done during this step can be found in section 2.2.

Step 3 - Anonymous Credential Protocol Choice

Many anonymous credential protocols are available and well documented. However, since the current

system is an example of situation where the issuer of the credentials is also the verifier, the aMAC

protocol [13] is a great choice due to its simplicity and the elegance of its design. This step also

required to write down all the Zero-Knowledge proofs involved in the protocol and translating them

into Elliptic Curve Cryptography (EEC) to allow efficient implementations (see sections 1.3.1 and

1.3.2).

Step 4 - Simulator’s Construction

Now that all the theoretical parts have been done and the problematic is correctly understood, the

first building step was the construction of a software simulator on a standard desktop computer.
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Indeed, the debugging tools available on computers, the code auto-completion tools and syntax anal-

ysers greatly facilitated the software development, since they are not available when programming

Figure 25: Illustration of user-friendly debugging tools

for embedded processors.

The simulation has been de-

veloped on Apple Xcode 7

[66]. As shown by the

screenshot on Fig.(25), the

debugging tool automati-

cally displays the resource

usages and permits to ex-

ecute the program step by

step in order to gain a com-

plete and deep control over

the software under develop-

ment. However, spending

to much time developing a first simulator happened to be a mistake. Indeed, most of the code

realised during this step could not be embedded into the wearables because of their very limited

amount of memory. A better approach would have been to first select the hardware, and then

simulate only small portions of the code at a time in order to test them directly on the device and

verify that they meet all the hardware constraints.

Step 5 - Hardware Choice

The fifth step consisted in selecting the hardware to build the prototypes. Due to their very advan-

tageous costs, efficiency and flexibility, the main server has been prototyped on a Raspberry Pi B+

and the other entities have been implemented on unofficial Arduino UNO boards [65, 61].

However, many different possibilities had to be investigated for the component’s interactions and for

the localisation system. More specifically, the communication methods for the server-wearable link

and the kind of positioning system had to be carefully chosen since the software implementation

strictly depends on it. Many choices like Wi-Fi, Bluetooth, RF 433MHz or RF 2.4GHz technologies
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were available and have been considered in term of cost, power consumption and operational range.

A summary of all the possible options for the communications technologies can be found in Tab.(7)

below10.

Technologies Advantages Drawbacks

Wi-Fi Standard technology; Hard to set up with cheap

(P2P) components;

Low range;

Wi-Fi Standard technology; Need to trust the router;

(with router) High range achievable with Hard to set up with cheap

low power; components;

Range hard to control;

Bluetooth Standard technology; Low range;

Low power;

Cheap (£3.85);

XBee Easy to set up; Expensive (£25.58);

Low power;

10This analysis has been done with some of the cheapest and most common components on the market. The

considered Wi-Fi, Bluetooth, XBee, RF 433MHz and RF 2.4GHz modules are respectively referenced by [74], [75],

[76], [77] and [78].
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RF 433MHz Very cheap module (∼ £1); Big and need and external

Easy to ensure security (low antenna (about 17 cm);

level protocols); High power consumption;

Low range;

RF 2.GHz Very cheap module (∼ £1); Hard to set up;

Easy to ensure security (low Need circuit drivers;

level protocols); Need very stable current;

High range;

Low power;

Table 7: Possible server-wearable communication technologies

A careful investigation led to the choice of RF 2.4GHz waves for the localisation system and all the

communications11. On a more organisational side, the very high shipping delay needed to receive the

components in London was under serious consideration. In fact, some piece of hardware achieving

the best trade-off between performances and price required more than 45 working days to arrive

and had to be regretfully discarded.

Step 6 - Migration to Embedded Systems

Once all the electronic components have been chosen, it is time to assemble de system. This step was

one of the most complicated tasks of the project for all the reasons explained in section 1.1. Moreover,

specific and targeted drivers had to be built in order to make all the peripherals communicate with

other specifics embedded CPUs.

11Actually, this choice is mainly due to the thigh current restriction imposed by the unofficial Arduino, that made

impossible to plug more than one module on a single board. A more evolute version with hardware of better quality

is encouraged and investigated in section 3.4.
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An additional difficulty came from the lack of debugging tools available for embedded systems: there

are no nice and user-friendly debuggers like the ones discussed in step 4. In fact, when dealing with

embedded systems, often, the only tool available is a logic analyser (see Fig.(26)).

Figure 26: Illustration of logic analyser [68]

Step 7 - Testing & Validation

The final phase in the realisation of all embedded systems consists in testing and validating the

design. Indeed, before any industrialisation, the complete behaviour of the device should be ver-

ified, even under extreme conditions. Section 3.3 is entirely dedicated to the presentation of the

experimental results performed by the circuit.

Step 8 - Guidelines for an Industrial System

As a complement, this additional step consisted in describing how to transform the developed

prototype into a real-world system meeting industrial standards.
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B Appendix. Credentials’ Issuance and Presentation Proof

This appendix comes as complement of section 1.3.2 by presenting the complete Non-Interactive

Zero Knowledge (NIZK) proofs used in the credentials’ issuance and presentations. This appendix

refers to the same notations defined in section 1.3.2 and is totally inspired from pages 27 and 28 of

[13].

B.1 Credentials’ Issuance and Presentation Proof - Issuance Proof

This section aims to develop the proof π1 introduced section 1.3.2. For easy reference, this proof is

recalled below.

π1 := PK

{
(x, x̃0) : U ′ = x0U +

n∑

i=1

xi(miU) ∧ Cx0 = x0G+ x̃0H ∧ Xi = xiH

}

∀i ∈ {1, . . . , n}

The proof’s development is divided in five parts: the witnesses’ computations, the challenge’s com-

putation, the responses’ computation, the information to send, and finally, the proof’s verification.

• Witnesses Computation :

1. pick at random (w̃0, w1, . . . , wn) ∈ Fn+1
p

2. compute WU ′ = w0 +
∑n

i=1(wimiU)

3. compute WCx0
= w0G+ w̃0H

4. compute WXi = wiH ∀i ∈ {1, . . . , n}

• Challenge’s Computation :

1. compute H
(
Cx0 ||WU ′ ||WCx0

||WXi

)
∀i ∈ {1, . . . , n}, where H is a cryptographically

secure hash function

• Responses Computation :

1. compute rxi = wi − cxi ∀i ∈ {1, . . . , n}

2. compite rx̃0 = w̃0 − cx̃0

58



University College London (UCL)

• Information to Send :

1. send (c, rxi , rx̃0 , Cx0 , Xi, U, U
′) ∀i ∈ {1, . . . , n}, where (U,U ′)← MACGGM

• Verification :

1. recompute WU ′ as follow:

WU ′ = rx0U + cU ′ +
n∑

i=1

(rximiU)

=

(
w0 +

n∑

i=1

(wimiU)

)
− c

(
x0 +

n∑

i=1

(ximiU)

)
+ cU ′

= w0U +
n∑

i=1

(wimiU)

2. recompute WCx0
as follow:

WCx0
= rx0G+ rx̃0H + cCx0

= (w0G+ w̃0H)− c (x0G+ x̃0H) + cCx0

= w0G+ w̃0H

3. recompute WXi ∀i ∈ {1, . . . , n} as follow:

WXi = rxiH + cXi

= wiH − c(xiH) + cXi

= wiH

4. accept the proof if c == H
(
Cx0 ||WU ′ ||WCx0

||WXi

)
∀i ∈ {1, . . . , n}

B.2 Credentials’ Issuance and Presentation Proof - Presentation Proof

Similarly to the previous section, the equations below develop the proof π2 introduced section 1.3.2.

For easy reference, the proof is recalled below.

π2 := PK

{
(m, z,−r) : φ(m = 1) ∧ Cmi = miU + ziH ∧ V =

(
n∑

i=1

ziXi

)
− rG

}

∀i ∈ {1, . . . , n}
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As before, the proof’s development is divided in five parts: the witnesses’ computations, the chal-

lenge’s computation, the responses’ computation, the information to send and finally, the proof’s

verification.

• Witnesses Computation :

1. pick at random (a, r, z1, . . . , zn, wr, wz1 , . . . , wzn , wm1 , . . . , wmn) ∈ F3n+3
p

2. compute Ua = aU

3. compute U ′a = aU ′

4. compute Cmi = miUa + ziH ∀i ∈ {1, . . . , n}

5. compute CU ′ = rG+ U ′a

6. compute WCmi
= wmiUa + wziH ∀i ∈ {1, . . . , n}

7. compute WV = wrG+
∑n

i=1(wziXi)

• Challenge’s Computation :

1. compute H
(
Cmi ||CU ′ ||WCmi

||WV

)
∀i ∈ {1, . . . , n}, where H is a cryptographically

secure hash function

• Responses Computation :

1. compute rs = wr + cr (note the ‘+’ sign)

2. compute szi = wzi − czi ∀i ∈ {1, . . . , n}

3. compute smi = wmi − cmi ∀i ∈ {1, . . . , n}

• Information to Send :

1. send (c, sr, szi , smi , Cmi , CU ′ , Ua) ∀i ∈ {1, . . . , n}

• Verification :
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1. recompute WCmi
∀i ∈ {1, . . . , n} as follow:

WCmi
= smiUa + sziH + cCmi

= (wmiUa + wziH)− c (miUa + ziH) + cCmi

= wmiUa + wziH

2. compute V = x0Ua − Cu′ +
∑n

i=1(xiCmi)

3. recompute WV as follow:

WV = cV + srG+

n∑

i=1

(sziXi)

= cV +

(
wrG+

n∑

i=1

(wziXi)

)
− c

(
−rG+

n∑

i=1

(ziXi)

)

substituting V = x0Ua − (rG+ U ′a) +
∑n

i=1(xi[miUa + ziH]), we obtain:

= c

(
x0Ua − (rG+ U ′a) +

n∑

i=1

(xi[miUa + ziH])

)
+

(
wrG+

n∑

i=1

(wziXi)

)

−c
(
−rG+

n∑

i=1

(ziXi)

)

replacing U ′a = x0Ua +
∑n

i=1(ximiUa), the previous expression becomes:

= c

{
x0Ua −

(
x0Ua + [rG+

n∑

i=1

(ximiUa)]

)
+

n∑

i=1

(xi[miUa + ziH])

}

+

(
wrG+

n∑

i=1

(wziXi)

)
− c

(
−rG+

n∑

i=1

(ziXi)

)

finally, recalling Xi = xiH, we have:

= wrG+
n∑

i=1

(wziXi)

4. accept the proof if c == H
(
Cmi ||CU ′ ||WCmi

||WV

)
∀i ∈ {1, . . . , n}
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Note that the credentials’s verification’s proof in the original paper [13] presents a little mistake at

page 28. Indeed, the expression 3.(b) of appendix E.2 should be

c′ = H(param||{Cmi}ni=1||Cu′ ||{ Ccmi︸︷︷︸
exponent

gsmihszi}ni=1|| V c
︸︷︷︸

exponent

Xsz1 . . . Xszngsr) (11)

instead of

c′ = H(param||{Cmi}ni=1||Cu′ ||{Cmig
smihszi}ni=1||V Xsz1 . . . Xszngsr) (12)
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C Appendix. Web Interface

This appendix presents the web interface and the databases used to manage the system. Two kind

of users can log in in this website: admins and wearables’ users. The admins have the possibility

to grant credentials to the users and to manage the devices’ assignments, while standard users are

only able to observe the credentials they own.

First of all, in oder to include any web interface to the current system, the server’s FSM illus-

trated in Fig.(3.12) of section 3.2.2 should be modified to become as shown in Fig.(27) here below.
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Figure 27: Industrial server’s software FSM

Indeed, the server’s main loop

must listen to potential com-

mands coming from the website.

In the current case, the server

has to be ready to issue some

credentials when demanded by a

logged in admin.

The next sections presents re-

spectively the realised secure lo-

gin system, the web credentials’

management, and some addi-

tional features available through the developed web interface.

C.1 Web Interface - Secure Login System

The PHP secure login system used in this website comes from the panique open source library

referenced in [50]. All the expected login features have been implemented: login form, registration

through email verification, password reset mechanism, edit personal user data, etc.

The login system relies on a SQL database containing the users’ ID, usernames, hashed and salted

passwords, registration date, number of failed login attempts (used for protection agains brute force

attacks), and the role of the user (classic user or administrator).
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(a) Login interface

(b) Account’s registartion (c) Edit account

Figure 28: Login System

C.2 Web Interface - Credentials’ Management

The credentials’ management interface is accessible only after proper login and is different depending

on the type of account. Fig.(29) picture a typical user and an admin account. As explained above,

the user can only see its credentials while the admin can list all the registered users. To that purpose

a second SQL database holds records of the credentials issued to each user. The two buttons under

the Edit column on Fig.(29b) are designed to allow the admin to edit or revoke the user’s credentials.

However, this features are not yet implemented in the prototype.
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(a) Example of user account

(b) Example of admin account

Figure 29: Web credential’s management
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C.3 Web Interface - Additional Features

As additional features, two extra tabs have been added to the website. The first provides an brief

and easy-to-read overview of the system, and the second presents the list of references used in this

work.

(a) Brief system’s overview - Part 1 (b) Brief system’s overview - Part 2

(c) List of references

Figure 30: Website additional features
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D Appendix. Example of External Entity’s Implementation

This appendix presents the detailed hardware and software implementation of an example of external

entity compatible with the developed system.

D.1 Example of External Entity’s Implementation - Hardware Design

The hardware needed to build this entity is close to the circuitry composing the wearable and the

beacon presented in Figs.(3.13) of section 3.2.3.
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Figure 31: External Entity hardware reference design [56, 52]

The Arduino powers the nRF24 module though the usual lm1117-3.3 voltage regulator and activates
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a Laser Diode (LD) simulating a closed door. The LD is oriented directly toward a photoresistor that

is connected to the Arduino’s analog PIN A4: as long as the LD is activated and the photoresistor

registers a high light’s concentration, the door is closed, the system is armed, and no intruders are

detected. If an intruder steps through the doorand interrupts the laser beam, the buzzer (simulating

an alarm) is activated. The red and green LEDs represent the door’s status.

This example of external entity has been realised with the exact same base components as the server,

the wearable or the beacon. The additional hardware as the LD, the photoresistor, the buzzer, the

resistor and the LEDs come from [83], [84], [85], [86], and [87], respectively.

D.2 Example of External Entity’s Implementation - Software Design

The software behaviour of this external entity operates as shown by the FSM of Fig.(32). Once

the entity is powered up, it arms the alarm, closes the door, and enters in a main loop waiting

for a server’s request and verifying the laser’s feedback. Then, as explained in the last paragraph
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else

else
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Figure 32: External Entity software FSM

of section section 3.1.5, when the server contacts the external entity, it sends a 7-byte action-sync

packet composed of the byte 0x17 followed by its RX address. Then, the external entity challenges

the server and waits for a signed request asking to open its specific door (i.e., the door associated

with the action code 0x1A). If the signature’s verification succeeds, the laser beam is interrupted

for a time equal to OPEN DELAY, then the system is armed again.

68



University College London (UCL)

E Appendix. Final Prototype’s Screenshots

This appendix shows some screenshots of the prototype’s console. The first pictures present the

boot message of each entity, then the complete actions’ chain is illustrated from the reception of

new credentials to the credentials’ showing phase.

E.1 Final Prototype’s Screenshots - Boot Messages

Fig.(33) shows the boot messages appearing when starting the system. The beacon, enters in a main

loop issuing location-sync packets until a wearable answers it. For testing purposes, the server has

been configured to issue the credentials when turned on (see Fig.(33c)).

(a) Wearable’s boot message (b) Beacon’s boot message

(c) Server’s boot message - Screenshot

Figure 33: Boot messages
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Both the server and the wearable display the default registered TX and RX addresses, and as

indicated in section 3.2.3, the wearable tests its connection with the server.

E.2 Final Prototype’s Screenshots - Communication Chain

Fig.(34) below depicts the complete prototype’s communication chain. It stats with the wearable

receiving new credentials (Fig.(34a)) and challenging the beacon (Fig.(34b)). Then, the wearable

shows its credentials to the server (Figs.(34c) and (34d)).

(a) Wearable getting new location (b) Beacon sending signed location

(c) Wearable showing credentials (d) Server verifying credentials

Figure 34: Communication chain - Screenshots
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F Appendix. Details of the Prototype’s Hardware Total Cost

This appendix shows the cost’s details of all the components needed to assemble the prototyped

system12. Most of them come from Amazon UK and are referenced in [72, 73, 78, 79, 80, 82, 81].

Component Price Quantity

(Unofficial) Arduino Board £3.39 2

Raspberry PI B+ £31.60 1

nRF24L01+ ∼ £1 3

lm1117-3.3 ∼ £0.20 3

Capacitors (10uF and 4.7uF) ∼ £0.01 9

Potentiometer ∼ £0.15 1

Male-to-Female Jumpers ∼ £0.03 27

Total Cost: £43.01

Table 8: Prototype’s hardware total cost detail [72, 73, 78, 79, 80, 82, 81]

12Some irrelevant costs like ethernet cables, plug adapters, USB cables and breadboards have been neglected.
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G Appendix. Potential Attacks and Mitigations

This appendix is dedicated to the prototype’s limitations and vulnerabilities. More specifically, four

possible attacks are presented as well as some possible mitigations. The scope of this analysis is to

know how to protect as much as possible a future industrial system.

G.1 Potential Attacks and Mitigations - Low Noise Amplifier Based Attack

The first and simplest attack consists in amplifying the power emitted by the localisation beacons

Figure 35: Example of Texas

Instruments LNA chip [59]

in order to reach a far away wearable. To realise this attack, two

Low Noise Amplifiers (LNA) are needed to amplify all 2.4GHz radio

waves, without amplifying the associated radio noises. The scope of

this manipulation is to make the wearable believe that it is close to

a localisation beacon, and therefore, making it start the credentials’

showing phase even if the user is far away from the access point.

Moreover, such attacks are very cheap since LNAs as the one shown

in Fig.(35) can be bough for less than £0.50 [44, 59]. A sketch of

this attack is shown in Fig.(36) below. However, this trick is easily detectable. Indeed, amplifying

WEARABLE
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nRF
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+       -

LOC. SYS.

CPU
SPI

nRF
24

+
-

LNALNA

Figure 36: Sketch of LNA based attack

radio waves generates lots of signals that are unlikely to remain undetected for long. To mitigate

this threat, one possible solution could be to exploit the other localisation beacons to detect it.

Indeed, since most of the time they only emit low-power sync packets and wait for a response, their
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code could be easily adjusted to detect any abnormal radio activity on the 2.4GHz radio band and

warn the main server if any. In other words, the beacon’s FSM depicted in Fig.(3.16) of section

3.2.4 would become as illustrated by Fig.(37) below.
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Figure 37: Modified localisation beacon’s FSM

G.2 Potential Attacks and Mitigations - Man-In-The-Middle Attack

A more advanced version of the above attack consists in implementing a Man-In-The-Middle (MITM)

between a localisation beacon and the wearable. This has the advantage of not being detectable
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4. sign (location)

1. sync (location)
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fast communication 
channel

5. show credentials
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Figure 38: MITM attack sketch

as the LNA based attack but comes at the price

of a higher sophistication and cost. As shown in

Fig.(38), this attack demands two actors: one

close to the victim and one close to the targeted

localisation beacon. The first step is to send

a sync-location packet to the victim’s wearable.

The device will then believe being in proximity

of a beacon and issue a challenge. At this point,

the first MITM operator has to quickly (before

the RX timeout occurs) transmit the challenge

to the second operator, who will then present it
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to the beacon. Then, the beacon will output a legitimate signature on that challenge, and the second

MITM operator must quickly retransmit it to the first operator. Finally, the signature is provided

to the wearable, who will start showing the associated credentials.

To defeat this attack, the most straightforward mitigation is to reduce the timeout values in order

to make impossible for the attacker to retransmit the information from one MITM operator to the

other in time (but this requires reliable hardware). The timeouts’ optimal values are discussed at

the end of this appendix.

G.3 Potential Attacks and Mitigations - Temperature Fault Attack

This attack results from the observation made in section 3.3. In fact, experiments showed that when

the wearable is heated above 40◦C, the program flow may become unpredictable. Therefore, the

FSM shown in Fig.(3.15) of section 3.2.3 is no longer applicable. More specifically, the situation of

interest is the one pictured in Fig.(39). Indeed, as specified in section 3.3, this situation happens

with a probability of about 0.5% which is not huge, but big enough to be exploited. When this

situation occurs, the wearable starts showing its credentials without the need of a localisation beacon

in proximity.
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Figure 39: Possible wearable’s FSM under high temperatures

However, it is clear that in practice it is not trivial to heat a person’s wearable device to such tem-

peratures without raising any suspicion, but this can naturally happen in some very hot countries.

The only easy mitigation to that problem is to build the wearable with reliable hardware, and more
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particularly, with resistant resonators and capacitors.

G.4 Potential Attacks and Mitigations - Denial of Service Attack

The last attack discussed in this paper is the Denial of Service (DoS) attack, which is the more

important. Despite the system has been proved resistant against jamming, an attacker could ex-

ploit the TX and RX timeouts (see Tab.(3.6) of appendix 3.3.4) to keep busy the server or the

beacon. Indeed, one of the easiest way to exploit this weakness is to attack the server’s method

while (not RX_TIMEOUT)
if (first load received)

while (not RX_TIMEOUT)
if (second load received) 
{

[perform some actions]
return

}
return

NEW

Figure 40: Pseudocode exploitable for DoS

check credentials, which is structured

as depicted by the pseudocode of Fig.(40).

To fully take advantage of this weakness,

the attacker could send an showing-sync

packet to the server, wait for slightly less

than 1 s, and then send k random byte

(considering some k-byte credentials) to

make the server believe it received the first

load and make him access the second while

loop. In that case, the server will be busy

for about 2 s. Therefore, the attacker would only need to send (7+k) bytes (sync + credentials) each

2 s to keep the server busy. The same attack could be applied to the wearable’s get credentials

method, but this is hardly impossible to exploit since the credentials’ issuance is done in private.

The beacon is the weakest link concerning DoS attacks. Indeed, when acting as an interface between

the wearable and the server, 3 RX and 1 TX timeouts are involved. Exploiting these timeouts

similarly to above, the adversary could keep the beacon busy for 3.2 s at the cost of k+1 bytes

(credentials + ack).

The first easy enhancement to mitigate DoS attacks is to wire all the connection between the server

and the beacons, but this could be expensive and greatly reduces the flexibility of the system. An

alternative solution consists in optimising the timeout values to have the best trade off between

low theoretical latency and good success rates in oder to force the adversary to invest much more

resources in his attack. These optimal timeout values are discussed in the next section.
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Note that the advantage of using raw radio waves instead of Wi-Fi is that it forces the adversary to

come close to the victim to perform the DoS attack, contrarily to the general case scenario where the

attacker can safely stay home and operate through the internet. Being aware of the high sensibility

of embedded systems against DoS attacks [32], this is one of the main reasons why the RF 2.4GHz

waves have been emphasised during this project.

G.5 Potential Attacks and Mitigations - Optimal Timeouts Values

An optimal RX timeout value can be compute by observing the box plots in Figs.(3.17) and (3.18)

of section 3.3.4. Indeed, a possible solution consists in choosing the value RX TIMEOUT as follows:

RX TIMEOUT =
Q3

nRX
(13)

where Q3 is the statistical third quartile and nRX is the number of RX timeouts involved in the

method. In fact, choosing the RX timeout as shown in Eq.(13) guarantees a success rate of about

75%. For instance, the box plot of the method check credentials indicates to choose a RX timeout

of

RXcheck cred =
984

2
= 492ms (14)

Therefore, after this optimisation, the attacker will need to send (7+k) bytes every 984 ms (on

average, (14+2k) bytes very 2 s) to keep the server busy, which requires an investment of twice more

resources than before.

Unfortunately, the TX value has to be determined empirically. Its purpose it to mark a transmitter’s

delay between each sent packet in order to be sure the receiver got it. This value will therefore strictly

depend on the quality of the radio channel and of the receiver’s hardware.
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H Appendix. Proposition of Revocation Mechanisms

This appendix discusses some possibilities of revocation mechanisms for the considered architecture

along with their main advantages and drawbacks. In general, revocation mechanisms are used to

take back a right previously granted. In the current case, it is about taking back some credentials

from a given wearable in order to prevent its user from acting at a previously authorised privilege

level.

Note that when considering revocation in this architecture, the wearable’s user automatically be-

comes a potential attacker since he might try to keep its credentials despite revocation. The Threat

Model depicted in Tab.(2.2) of section 2.2 has therefore to be updated.

• Possibility 1 : Physically take back and reset the device.

This solution consists in reaching out the user and convince him to give back or reset his device.

Depending on the situation, the above could be an acceptable solution. However, it is not always

easy to convince a potentially dishonest user to gently give back his privileges.

• Possibility 2 : Reset all the devices and start over.

In extreme situations, an alternative to the above mechanism is to reset all devices and start over

with the issuance process. Despite this solution is extremely effective, it is often the most expensive.

In the current case, this would consist in deleting the aMAC key, generating a new one, and asking

each authorised user to come over to start the credentials’ issuance process from the beginning.

• Possibility 3 : Embed an expiration date.

The third solution consists in programming the devices with an embedded expiration date such that

once reached, the device stops working. Note that this mechanism works only under the hypothesis

that the devices are tamper-proof, as it is assumed in this architecture (see section 2.2); i.e., the user

cannot modify the device’s expiration date. The drawback of this mechanism is its poor flexibility.

Indeed, the expiration date has to be inserted when programming the device and cannot be easily

changed afterwards.
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• Possibility 4 : Modify the wearable’s software FSM to accept revocation commands.

This last solution is more specific to the current prototype’s implementation. Roughly speaking, a

public UID number has to be associated with each wearable (obviously, to protect its anonymity, the

wearable never shows this ID during the credentials’ showing phase). Then, the wearable’s Finite

State Machine (FSM) depicted in Fig.(3.15) of section 3.2.3 should be modified in order to include

a state where the device checks whether the server commanded a revocation of privileges. This

modified FSM is illustrated in Fig.(41) below.
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Figure 41: Wearable’s FSM enhancement for revocation mechanism

More specifically13, when the main server wishes to revoke a wearable’s credential, it sends a revo-

cation sync packet containing the target UID to each wearable. At that point, the concerned device

reacts and challenges the server with a fresh random nonce. Then, the server answers with a signa-

ture made of a hash of the concatenation of this random nonce, the revocation command, and the

device’s UID. Finally, the wearable verifies the signature, and if it is valid it deletes its credentials.

As in the previous case, this mechanism works only under the assumption of tamper-proof devices.

Note that this server-wearable revocation exchange is very similar to the discussion between the

server and the external entity presented in section 3.1.5.

13For easier understanding what follows should be read in parallel with section 3.2.3.
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The main advantages of this revocation method is its flexibility. Moreover, the above mechanism

could be easily and efficiently implemented on the wearables. However its main drawback is the

fact that the wearable would then need to perform a long-range communication, while the original

design avoided it for efficiency and security reasons. Indeed, such long-range transactions are power-

consuming and more vulnerable to some of the attacks described in appendix G.2.
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I Appendix. Industrial Wearable - Printed Circuit Board

This appendix presents a suggestion of Printed Circuit Board (PCB) for an industrial application

of the presented wearable device.

As explained in section 3.4, the industrial wearable could be implemented around a Microchip

PIC32MZ microcontroller. In particular, the PIC32MZ1024ECH144 has been chosen because, in

addition of coming in a LQFP package (which is relatively easy to solder), it is a good trade

off between price, size and performances. However, the presented PCB remains compatible with

any LQFP package of PIC32MZ0512EC(E/F/K)144, PIC32MZ1024EC(G/H/M/E/F/K)144 and

PIC32MZ2048EC(G/H/M)144 [42]. Fig.(42) below depicts the complete schematic of the design.21/08/16 03:07

Page 1 of 1https://easyeda.com/export_iMX9JjTRq/pic32mz-schematic.print?type=1&penWidthIncrease=0&version=3.8.3&_t=1471745055392
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Figure 42: Industrial wearable’s PCB schematics
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The microcontroller is powered through the same 3.3V voltage regulator used in the prototypes and

the SPI interface with the nRF24 module is achieved through the PINs RA1, RA4, RA5, RA7 and

Figure 43: Industrial wearable’s Printed circuit board

SCK2. As discussed in section 3.2.3,

the final design is equipped with an

EEPROM memory (non-volatile) in

order to permanently store the user’s

credentials. This memory is inter-

faced with another SPI from PINs

SCK1, RB10, RB8 and RB6, as indicated

in Fig.(42). PINs PGEC1, PGED2 and

MCLR are used to program the PIC

through the classic Microchip ICSP.

The PCB pictured in Fig.(43) has

been realised with the free online soft-

ware easyEDA and can be purchased through that same website for less than £314 [71]. Figs.(44a)

and (44b) present respectively a preview of the PCB’s front and back side, as it would come after

manufacturing.

Top Side With Silk Layer Green Gold

Start pic32mz_schematic pic32mz_PCB Photo View

Asonnino

EasyEDA Libs

Supply Flag

Connector

Passive Components

VCC

1 2
3 4

More Libraries...

Preview

Electronic circuit design - EasyEDA https://easyeda.com/editor#id=iMX9JjTRq|LztLFWQ8q

1 of 1 21/08/16 01:10

(a) PCB preview - Front side

Bottom Side With Silk Layer Green Gold

Start pic32mz_schematic pic32mz_PCB Photo View
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VCC

1 2
3 4

More Libraries...

Preview

Electronic circuit design - EasyEDA https://easyeda.com/editor#id=iMX9JjTRq|LztLFWQ8q

1 of 1 21/08/16 01:11

(b) PCB preview - Back side

Figure 44: Industrial wearable’s PCB preview

14Provided that at least five copies of the PCB are purchased. Shipping fees not included.
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