
Walrus: An Efficient Decentralized Storage Network
George Danezis

1,2
, Giacomo Giuliari

1
, Eleftherios Kokoris Kogias

1
, Markus Legner

1
,

Jean-Pierre Smith
1
, Alberto Sonnino

1,2
, Karl Wüst

1

1
Mysten Labs

2
University College London (UCL)

Abstract

Decentralized storage systems face a fundamental trade-off between

replication overhead, recovery efficiency, and security guarantees.

Current approaches either rely on full replication, incurring sub-

stantial storage costs, or employ trivial erasure coding schemes

that struggle with efficient recovery especially under high storage-

node churn. We present Walrus, a novel decentralized blob storage

system that addresses these limitations through multiple technical

innovations.

At the core of Walrus is Red Stuff, a two-dimensional erasure

coding protocol that achieves high security with only 4.5x repli-

cation factor, while enabling self-healing recovery that requires

bandwidth proportional to only the lost data (𝑂 (|𝑏𝑙𝑜𝑏 |/𝑛) versus
𝑂 (|𝑏𝑙𝑜𝑏 |) in traditional systems). Crucially, Red Stuff is the first

protocol to support storage challenges in asynchronous networks,

preventing adversaries from exploiting network delays to pass ver-

ification without actually storing data.

Walrus also introduces a novel multi-stage epoch change proto-

col that efficiently handles storage node churn while maintaining

uninterrupted availability during committee transitions. Our sys-

tem incorporates authenticated data structures to defend against

malicious clients and ensures data consistency throughout stor-

age and retrieval processes. Experimental evaluation demonstrates

that Walrus achieves practical performance at scale, making it

suitable for a wide range of decentralized applications requiring

high-integrity, available blob storage with reasonable overhead.

1 Introduction

Blockchains support decentralized computation through the State

Machine Replication (SMR) paradigm [36]. However, they are prac-

tically limited to distributed applications that require little data

for operation. Since SMR requires all validators to replicate data

fully, it results in a large replication factor ranging from 100 to 1000,

depending on the number of validators in each blockchain.

While full data replication is practically needed for comput-

ing on state, it introduces substantial overhead when applications

only need to store and retrieve binary large objects (blobs) not

computed upon
1
. Dedicated decentralized storage [6] networks

emerged to store blobs more efficiently. For example, early net-

works like IPFS [30] offer robust resistance to censorship, enhanced

reliability and availability during faults, via replication on only a

small subset of nodes [46].

Decentralized blob storage is invaluable to modern decentralized

applications. We highlight the following use-cases:

• Digital assets, managed on a blockchain, such as non fungible

tokens (NFTs) need high integrity and availability guarantees

1
A recent example includes ‘inscriptions’ on bitcoin and other chains, see https:

//medium.com/@thevalleylif e/crypto- terms-explained-exploring-bitcoin-

inscriptions-51699dc218d2.

provided by decentralized blob stores. The current practice of

storing data off-chain on traditional stores only secures metadata,

while the actual NFT data remains vulnerable to removal or

misrepresentation depending on the browser
2
.

• Digital provenance of data assets is also increasingly important

in the age of AI: to ensure the authenticity of documentary mate-

rial; to ensure training data sets are not manipulated or polluted;

and to certify that certain models generated specific instances of

data [44]. These applications benefit from authenticity, traceabil-

ity, integrity and availability decentralized stores provide.

• Decentralized apps, whether web-based or as binaries, need

to be distributed from decentralized stores. Today, the major-

ity of decentralized apps rely on traditional web hosting to

serve their front ends and client-side code, which offers poor

integrity and availability. Decentralized stores may be used to

serve web and dapps content directly while ensuring its integrity

and availability. Similarly, decentralized stores can ensure binary

transparency for software and support the storage needs of full

pipelines of reproducible builds to support the strongest forms

of software auditing and chain of custody [22, 29].

• Decentralized storage plays a critical role in ensuring data avail-

ability for roll-ups [1], the current scaling strategy of Ethereum.

In this setting, storage nodes hold the data temporarily allowing

blockchain validators to recover it for execution. As a result, the

system imposes replication costs solely on the netted state of

the roll-up, rather than the full sequence of updates (e.g. transac-

tions).

• Decentralized social network platforms [18] are trying to chal-

lenge centralized incumbents. But the nature of social network-

ing requires support for rich media user content, such as long

texts, images or videos. Beyond social, collaborative platforms as

well as civic participation platforms [4] need a way to store both

public interest data and the application data itself in credibly

neutral stores such as decentralized stores.

• Finally, the integration of decentralized storage with encryp-

tion techniques marks a significant paradigm shift [19]. This

approach offers users comprehensive data management aligned

with the Confidentiality, Integrity, and Availability (CIA) triad,

eliminating the need to rely on cloud services as fiduciaries. This

integration unlocks numerous promising applications, including

sovereign data management, decentralized data marketplaces,

and computational operations over encrypted datasets. Although

this paper does not focus on these applications, our decentralized

storage system, Walrus, can naturally function as the storage

layer for encrypted blobs. This approach provides a structured,

layered framework that allows encryption overlays to focus on

2
A recent proof of concept attack is described here: https://moxie.org/2022/01/07/web3-

first-impressions.html

https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://medium.com/@thevalleylife/crypto-terms-explained-exploring-bitcoin-inscriptions-51699dc218d2
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html

Danezis et. al

creating a secure and efficient Key Management System (KMS)

without worrying about data availability.

In brief, secure decentralized blob stores are critical for all appli-

cations where data is relied upon by multiple mutually distrustful

parties, and needs to stored in a credibly neutral store that provides

high authenticity, integrity, auditability and availability – all this

at a reasonable cost and low complexity.

Approaches to Decentralized Storage

Protocols for decentralized storage generally fall into two main

categories. The first category includes systems with full replication,

with Filecoin [30] and Arweave [45] serving as prominent examples.

The main advantage of these systems is the complete availability

of the blob on the storage nodes, which allows for easy access and

seamless migration if a storage node goes offline. This setup enables

a permissionless environment since storage nodes do not need to

rely on each other for file recovery. However, the reliability of these

systems hinges on the robustness of the selected storage nodes.

For instance, assuming a classic 1/3 static adversary model and an

infinite pool of candidate storage nodes, achieving “twelve nines” of

security – meaning a probability of less than 10
−12

of losing access

to a file – requires storing more than 25 copies on the network
3
.

This results in a 25x storage overhead. A further challenge arises

from Sybil attacks [16], where malicious actors can pretend to store

multiple copies of a file, undermining the system’s integrity.

The second category of decentralized storage services [23] uses

Reed-Solomon (RS) encoding [32]. RS encoding reduces replication

requirements significantly. For example, in a system similar to

blockchain operations, with𝑛 nodes, of which 1/3may bemalicious,

and in an asynchronous network, RS encoding can achieve sufficient

security with the equivalent of just 3x storage overhead. This is

possible since RS encoding splits a file into smaller pieces, that we

call slivers, each representing a fraction of the original file. Any set

of slivers greater in total size to the original file can be decoded

back into the original file.

However, an issue with erasure coding arises when a storage

node goes offline, and needs to be replaced by another. Unlike fully

replicated systems, where data can simply be copied from one node

to another, RS-encoded systems require that all existing storage

nodes send their slivers to the substitute node. The substitute can

then recover the lost sliver, but this process results in 𝑂 (|blob|)
data being transmitted across the network. Frequent recoveries can

erode the storage savings achieved through reduced replication,

which means that these systems need a low churn of storage nodes

and hence be less permisionless.

Regardless of the replication protocol, all existing decentral-

ized storage systems face an additional challenges: the need for a

continuous stream of challenges to ensure that storage nodes are

incentivized to retain the data and do not discard it. This is crucial

in an open, decentralized system that offers payments for storage

and goes beyond the honest/malicious setting. Current solutions

always assume that the network is synchronous such that the ad-

versary cannot read any missing data from honest nodes and reply

to challenges in time.

3
The chance that all 25 storage nodes are adversarial and delete the file is 3

−25 =

1.18 × 10
−12

.

Introducing Walrus

We introduceWalrus, a new approach to decentralized blob storage.

It follows the erasure codes type of architecture in order to scale

to 100s of storage nodes providing high resilience at a low storage

overhead. At the heart of Walrus, lies a new encoding protocol,

called Red Stuff that uses a novel two-dimensional (2D) encoding

algorithm that is self-healing. Specificaly, it enables the recovery

of lost slivers using bandwidth proportional to the amount of lost

data (𝑂 (|blob |𝑛) in our case). Moreover, Red Stuff incorporates

authenticated data structures to defend against malicious clients,

ensuring that the data stored and retrieved remains consistent.

One unique feature of Red Stuff is its ability to work in an

asychronous network while supporting storage challenges, making

it the first of its kind. This is only possible thanks to the two-

dimensional encoding that allows for different encoding thresholds

per dimension. The low-threshold dimension can be used from

nodes that did not get the symbols during the write flow to recover

what they missed, whereas the high-threshold dimension can be

used for the read flow to prevent the adversary from slowing down

honest nodes during challenge periods and collecting sufficient

information to reply to challenges.

One final challenge for Walrus, and in general, any encoding-

based decentralized storage system is operating securely across

epochs each managed by a different committee of storage nodes.

This is challenging because we want to ensure uninterrupted avail-

ability to both read and write blobs during the naturally occurring

churn of a permissionless system, but if we keep writing data in the

nodes about to depart, they keep needing to transfer them to the

nodes that are replacing them. This creates a race for the resources

of those nodes, which will either stop accepting writes or fail to ever

transfer responsibility. Walrus deals with this through its novel

multi-stage epoch change protocol that naturally fits the principles

of decentralized storage systems.

In summary, we make the following contributions:

• We define the problem of Asynchronous Complete Data-Sharing

and propose Red Stuff, the first protocol to solve it efficiently

even under Byzantine Faults (Section 3)

• We present Walrus, the first permissionless decentralized stor-

age protocol designed for low replication cost and the ability to

efficiently recover lost data due to faults or participant churn

(Section 4).

• We show how Walrus leverages Red Stuff to implement the

first asynchronous challenge protocol (Section 4.6)

• We provide a production-ready implementation of Walrus and

deploy a public testnet of Walrus. We then measure its perfor-

mance and scalability in a real environment (Section 6).

2 Models and Definitions

Walrus relies on the following assumptions.

Cryptographic assumptions.Throughout the paper, we useℎ𝑎𝑠ℎ()
to denote a collision resistant hash function. We also assume the

existence of secure digital signatures and binding commitments.

Network and adversarial assumptions. Walrus runs in epochs,

each with a static set of storage nodes. At the end of the epoch

𝑛 = 3𝑓 + 1 storage nodes are elected as part of the the storage

Walrus

Table 1: Comparing Replication Algorithms

Replication for 10
−12

Security Write/Read Cost Single Shard Recovery Cost Asychronous Challenges

Replication 25x 𝑂 (𝑛 |𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |) Unsupported

Classic ECC 3x 𝑂 (|𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |) Unsupported

RedStuff 4.5x 𝑂 (|𝑏𝑙𝑜𝑏 |) 𝑂 (|𝑏𝑙𝑜𝑏 |𝑛) Supported

committee of the epoch and each one controls a storage shard such

that a malicious adversary can control up to 𝑓 of them.

The corrupted nodes can deviate arbitrarily from the protocol.

The remaining nodes are honest and strictly adhere to the protocol.

If a node controlled by the adversary at epoch 𝑒 is not a part of the

storage node set at epoch 𝑒 + 1 then the adversary can adapt and

compromise a different node at epoch 𝑒 + 1 after the epoch change

has completed.

We assume every pair of honest nodes has access to a reliable

and authenticated channel. The network is asynchronous, so the

adversary can arbitrarily delay or reorder messages between honest

nodes, but must eventually deliver every message unless the epoch

ends first. If the epoch ends then the messages can be dropped.

Our goal is not only to provide a secure decentralized system

but to also detect and punish any storage node that does not hold

the data that it is assigned. This is a standard additional assumption

for dencentralized storage system to make sure that honest parties

cannot be covertly compromised forever.

Erasure codes. As part of Walrus, we propose Asynchronous

Complete Data Storage (ACDS) that uses an erasure coding scheme.

While not necessary for the core parts of the protocol, we also

assume that the encoding scheme is systematic for some of our

optimizations, meaning that the source symbols of the encoding

scheme also appear as part of its output symbols.

Let Encode(𝐵, 𝑡, 𝑛) be the encoding algorithm. Its output are 𝑛

symbols such that any 𝑡 can be used to reconstruct 𝐵. This happens

by first splitting 𝐵 into 𝑡 symbols of size 𝑂 (|𝐵 |𝑡) which are called

source symbols. These are then expanded by generating 𝑛 − 𝑡 repair
symbols for a total of 𝑛 output symbols. On the decoding side,

anyone can call Decode(𝑇, 𝑡, 𝑛) where𝑇 is a set of at least 𝑡 correctly

encoded symbols, and it returns the blob 𝐵.

Blockchain substrate. Walrus uses an external blockchain as

a black box for all control operations that happen on Walrus. A

blockchain protocol can be abstracted as a computational black

box that accepts a concurrent set of transactions, each with an

input message 𝑇𝑥 (𝑀) and outputs a total order of updates to be

applied on the state 𝑅𝑒𝑠 (𝑠𝑒𝑞,𝑈). We assume that the blockchain

does not deviate from this abstract and does not censor 𝑇𝑥 (𝑀)
indefinitely. Any high-performance modern SMR protocol satisfies

these requirements, in our implementation we use Sui [8] and have

implemented critical Walrus coordination protocols in the Move

smart contract language [7].

3 Asynchronous Complete Data Storage (ACDS)

We first define the problem of Complete Data Storage in a dis-

tributed system, and describe our solution for an asynchronous

network which we refer to as Asynchronous Complete Data Stor-

age (ACDS). Secondly, we show its correctness and complexity.

3.1 Problem Statement

In a nutshell a Complete Data Storage protocol allows a writer to

write a blob to a network of storage nodes (Write Completeness),

and then ensures that any reader can read it despite some failures

and byzantine behaviour amongst storage nodes (Validity); and

read it consistently, despite a potentially byzantine writer (Read

Consistency). More formally:

Definition 1 (Complete Data Storage). Given a network of𝑛 = 3𝑓 +1
nodes, where up to 𝑓 are byzantine, let 𝐵 be a blob that a writer𝑊

wants to store within the network, and share it with a set of readers

𝑅. A protocol for Complete Data Storage guarantees three properties:

• Write Completeness: If a writer𝑊 is honest, then every honest node

holding a commitment to blob 𝐵 eventually holds a part 𝑝 (derived

from 𝐵), such that 𝐵 can be recovered from O
(
|𝐵 |
|𝑝 |

)
parts.

• Read Consistency: Two honest readers, 𝑅1 and 𝑅2, reading a suc-

cessfully written blob 𝐵 either both succeed and return 𝐵 or both

return ⊥.
• Validity: If an honest writer𝑊 successfully writes 𝐵, then an honest

reader 𝑅 holding a commitment to 𝐵 can successfully read 𝐵.

We present the ACDS protocols in a context where the storage

node set is fixed and static. And in subsequent sections describing

its use within Walrus, we discuss how it is adapted to allow for

churn into the committees of storage nodes.

3.2 Strawman Design

In this section, we iterate first through two strawman designs and

discuss their inefficiencies.

Strawman I: Full Replication. The simplest protocol uses full

replication in the spirit of Filecoin [30] and Arweave [45]. The

writer𝑊 broadcasts its blob 𝐵 along with a binding commitment to

𝐵 (e.g.,𝐻𝐵 = ℎ𝑎𝑠ℎ(𝐵)), to all storage nodes and then waits to receive
𝑓 + 1 receipt acknowledgments. These acknowledgments form an

availability certificate which guarantees availability because at least

one acknowledgement comes from an honest node. The writer𝑊

can publish this certificate on the blockchain, which ensures that it

is visible to every other honest node, who can then request a Read(𝐵)

successfully. This achieves Write Completeness since eventually

all honest nodes will hold blob 𝐵 locally. The rest of the properties

also hold trivially. Notice that the reader never reads ⊥.
Although the Full Replication protocol is simple, it requires the

writer to send an O(𝑛 |𝐵 |) amount of data on the network which is

also the total cost of storage. Additionally, if the network is asyn-

chronous, it can cost up to 𝑓 + 1 requests to guarantee a correct

Danezis et. al

S31

S11

S21

S41

Encode:
from f+1 to nslivers

Figure 1: Encoding a Blob in one dimension. First the blob is

split into 𝑓 + 1 systematic slivers and then a further 2𝑓 repair

slivers are encoded

replica is contacted, which would lead to O(𝑛 |𝐵 |) cost per recov-
ering storage node with a total cost of O(𝑛2 |𝐵 |) over the network.
Similarly, even a read can be very inefficient in asynchrony, as the

reader might need to send 𝑓 + 1 requests costing O(𝑛 |𝐵 |).

Strawman II: Encode & Share. To reduce the upfront data dissem-

ination cost, some distributed storage protocols such as Storj [38]

and Sia [42] use RS-coding [32]. The writer𝑊 divides its blob 𝐵

into 𝑓 + 1 slivers and encodes 2𝑓 extra repair slivers. Thanks to the

encoding properties, any 𝑓 +1 slivers can be used to recover 𝐵. Each

sliver has a size of O(|𝐵 |𝑛). The writer𝑊 then commits to all the

slivers using a binding commitment such as a Merkle tree [27] and

sends each node a separate sliver together with a proof of inclusion
4
.

The nodes receive their slivers and check against the commitment;

if the sliver is correctly committed, they acknowledge reception

by signing the commitment. The writer𝑊 can then generate an

availability certificate from 2𝑓 + 1 signatures and post it on the

blockchain.

A reader continuously requests slivers from the nodes until it

receives 𝑓 + 1 valid replies (i.e., replies that are verified against

the commitment). The reader is guaranteed to receive them since

at least 𝑓 + 1 honest nodes have stored their sliver. The reader

then reconstructs blob 𝐵 from the slivers and then additionally, re-

encodes the recovered value and recomputes the commitment [10,

27]. If writer 𝑊 was honest, the recomputed commitment will

match the commitment from the availability certificate and the

reader outputs 𝐵. Otherwise, writer𝑊 may not have committed to

a valid encoding, in which case the commitments do not match and

the reader outputs ⊥.
As before, the nodes that did not get slivers during the sharing

phase can recover them by reading 𝐵. If the output of the read

operation is ⊥, the node returns ⊥ on all future reads. Otherwise,

the node stores their encoded sliver and discards the rest of 𝐵. Note

this recovery process is expensive: recovery costs O(|𝐵 |) even if

the storage cost afterwards is O(|𝐵 |𝑛).
This second protocol reduces the dissemination costs signifi-

cantly at the expense of extra computation (encoding/decoding

and committing to slivers from 𝐵). Disseminating blob 𝐵 only costs

O(|𝐵 |)5, which is the same cost as reading it. However, complete

dispersal still costs O(𝑛 |𝐵 |), because as we saw the process of re-

covering missing slivers requires downloading the entire blob 𝐵.

4
Writer𝑊 could prove consistency among all slivers, but this is overkill for ACDS.

5
There may be an extra O(log𝑛) cost depending on the commitment scheme.

Given that there can be up to 𝑓 storage nodes that did not manage

to get their sliver from writer𝑊 and need to invoke the recov-

ery protocol, the protocol has O(𝑛 |𝐵 |) total cost. This is not only
important during the initial dispersal, but also in cases where the

storage node set changes (at epoch boundaries) as the new set of

storage nodes need to read their slivers by recovering them from

the previous set of storage nodes.

3.3 Final design: Red Stuff

The encoding protocol above achieves the objective of a low over-

head factor with very high assurance, but is still not suitable for

a long-lasting deployment. The main challenge is that in a long-

running large-scale system, storage nodes routinely experience

faults, lose their slivers, and have to be replaced. Additionally, in

a permissionless system, there is some natural churn of storage

nodes even when they are well incentivized to participate.

Both of these cases would result in enormous amounts of data

being transferred over the network, equal to the total size of data

being stored in order to recover the slivers for new storage nodes.

This is prohibitively expensive. We would instead want the system

to be self-healing such that the cost of recovery under churn is

proportional only to the data that needs to be recovered, and scale

inversely with 𝑛.

To achieve this, Red Stuff encodes blobs in two dimensions (2D-

encoding). The primary dimension is equivalent to the RS-encoding

used in prior systems. However, in order to allow efficient recovery

of slivers of 𝐵 we also encode on a secondary dimension. Red Stuff

is based on linear erasure coding (see section 2) and the Twin-code

framework [31], which provides erasure coded storagewith efficient

recovery in a crash-tolerant setting with trusted writers. We adapt

this framework to make it suitable in the byzantine fault tolerant

setting with a single set of storage nodes, and we add additional

optimizations that we describe further below.

Encoding. Our starting point is the second strawman design that

splits the blobs into 𝑓 + 1 slivers. Instead of simply encoding repair

slivers, we first add one more dimension to the splitting process:

the original blob is split into 𝑓 + 1 primary slivers (vertical in

the figure) into 2𝑓 + 1 secondary slivers (horizontal in the figure).

Figure 2 illustrates this process. As a result, the file is now split into

(𝑓 + 1) (2𝑓 + 1) symbols that can be visualized in an [𝑓 + 1, 2𝑓 + 1]
matrix.

Given this matrix we then generate repair symbols in both di-

mensions. We take each of the 2𝑓 + 1 columns (of size 𝑓 + 1) and
extend them to 𝑛 symbols such that there are 𝑛 rows. We assign

each of the rows as the primary sliver of a node (Figure 2a). This

almost triples the total amount of data we need to send and is very

close to what 1D encoding did in the protocol in Section 3.2. In

order to provide efficient recovery for each sliver, we also take the

initial [𝑓 + 1, 2𝑓 + 1] matrix and extend with repair symbols each

of the 𝑓 + 1 rows (of size 2𝑓 + 1) and extend them to 𝑛 symbols

(Figure 2b) using our encoding scheme. This creates 𝑛 columns,

which we assign as the secondary sliver of each node, respectively.

Handling Metadata. For each sliver (primary and secondary),

𝑊 also computes vector commitments over its symbols. For each

primary sliver, the commitment commits to all symbols in the

expanded row, and for each secondary sliver, it commits to all

Walrus

S31

S11

S21

S41

S32

S12

S22

S42

S33

S13

S23

S43

Encode columns:
from f+1 to n

primary
slivers

(a) Primary Encoding in two dimensions. The file is split into 2𝑓 + 1 columns

and 𝑓 + 1 rows. Each column is encoded as a separate blob with 2𝑓 repair

symbols. Then each extended row is the primary sliver of the respective node.

S14

S24

S11

S21

S12

S22

S13

S23

Encode rows:
from 2f+1 to n

secondary slivers

(b) Secondary Encoding in two dimensions. The file is split into 2𝑓 +1 columns

and 𝑓 + 1 rows. Each row is encoded as a separate blob with 𝑓 repair symbols.

Then each extended columns is the secondary sliver of the respective node.

Figure 2: 2D Encoding / Red Stuff

symbols in the expanded column. As a last step, the client creates

a commitment over the list of these sliver commitments, which

serves as a blob commitment.

These vector commitments for each sliver form the blob meta-

data. Using these, nodes can later, when queried for a single symbol,

prove that the symbol they return is the symbol originally written.

However, these proofs require the opening of the commitments for

the respective sliver as well as of the blob commitment w.r.t. the

respective sliver commitment.

A node that holds all of their slivers can easily recompute the

sliver commitment and its openings, but to open the blob commit-

ment, all sliver commitments from all nodes are required.

If we naively replicate this metadata to every single storage node

to enable secure self-healing, we create a large overhead that is

quadratic in the number of nodes, since each node needs to store

the sliver commitments of all nodes. Especially for small blobs, this

can make a large difference in the relative overhead. For example,

using 32B hashes in a system of 1000 nodes would require storing

an additional 64kB on each node, or 64MB in total.

To reduce the overhead, storage nodes maintain an encoded

version of the metadata. Since all storage nodes need to get the

metadata in full when they invoke a write or recovery process,

there is no need for the client to perform the encoding or to do a

2D encoding. Instead, storage nodes can simply locally encode the

metadata with an 1D (f+1)-out-of-n encoding and keep the shard

assigned to them
6
. This reduces the overhead to a constant per

node, i.e., from quadratic to linear system-wide overhead.

Write protocol. The Write protocol of Red Stuff uses the same

pattern as the RS-code protocol. The writer𝑊 first encodes the

blobs and creates a sliver pair for each node. A sliver pair 𝑖 is the

pair of 𝑖th primary and secondary slivers. There are 𝑛 = 3𝑓 +1 sliver
pairs, as many as nodes.

6
They should also compute a commitment and an opening proof of their sliver.

Then,𝑊 sends all of sliver commitments to every node, along

with their respective sliver pair. The nodes check their own sliver in

the pair against the commitments, recompute the blob commitment,

and reply with a signed acknowledgment. When 2𝑓 + 1 signatures
are collected,𝑊 generates a certificate and posts it on-chain to

certify the blob will be available.

In theoretical asynchronous network models with reliable deliv-

ery the above would result in all correct nodes eventually receiving

a sliver pair from an honest writer. However, in practical protocols

the writer may need to stop re-transmitting. It is safe to stop the

re-transmission after 2𝑓 + 1 signatures are collected, leading to at

least 𝑓 + 1 correct nodes (out of the 2𝑓 + 1 that responded) holding
a sliver pair for the blob.

Read Protocol. The Read protocol is the same as for RS-codes.

In order to allow for asychronous challenge nodes only use their

secondary sliver. If this is not necessary, we can use the primary

sliver and have a faster reconstruction threshold of 𝑓 + 1.
𝑅 first collects the metadata, i.e., the list of sliver commitments

for the blob commitment. To do so, 𝑅 requests the 1D encoded

metadata parts from its peers along with the opening proofs.

After the metadata is decoded, 𝑅 checks that the returned set

corresponds to the blob commitment. Then 𝑅 requests a read for

the blob commitment from all nodes and they respond with the

secondary sliver they hold (this may happen gradually to save

bandwidth). Each response is checked against the corresponding

commitments in the commitment set for the blob. When 2𝑓 + 1
correct secondary slivers are collected 𝑅 decodes 𝐵 and then re-

encodes it to recompute the blob commitment and check that it

matches the blob commitment. If it is the same with the one𝑊

posted on chain then 𝑅 outputs 𝐵, otherwise it outputs ⊥.

Sliver recovery. The big advantage of Red Stuff compared to the

RS-code protocol is its self-healing property. This comes into play

when nodes that did not receive their slivers directly from𝑊 try to

recover their sliver. Any storage node can recover their secondary

sliver by asking 𝑓 + 1 storage nodes for the symbols that exist in

their row, which should also exist in the (expanded) column of the

requesting node (fig. 3b and fig. 3c). This means that eventually all

2𝑓 + 1 honest nodes will have secondary slivers. At that point, any

node can also recover their primary sliver by asking the 2𝑓 +1 honest
nodes for the symbols in their column (Figure 3d) that should also

exist in the (expanded) row of the requesting storage node. In each

case, the responding node also sends the opening for the requested

symbol of the commitment of the source sliver. This allows the

receiving node to verify that it received the symbol intended by the

writer𝑊 , which ensures correct decoding if𝑊 was honest.

Since the size of a symbol is O(|𝐵 |
𝑛2
) each, and each storage node

will download O(𝑛) total symbols, the cost per node remains at

O(|𝐵 |𝑛) and the total cost to recover the file is O(|𝐵 |) which is

equivalent to the cost of a Read and of a Write. As a result by

using Red Stuff, the communication complexity of the protocol is

(almost
7
) independent of 𝑛 making the protocol scalable.

Red Stuff is an ACDS. Section 5 provides proofs that Red Stuff

satisfies all properties of a ACDS. Informally, Write Completeness

7
Depends on the commitment scheme used.

Danezis et. al

S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S43

(a) Nodes 1 and 3 collectively hold two rows and two columns

S14

S31

S11

S21

S41

S32

S12

S33

S13

S23

S23

S34

(b) Each node sends the intersection of their row/column with the column/row

of Node 4 to Node 4 (Red). Node 3 needs to encode the row for this.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover
from f+1

(c) Node 4 uses the 𝑓 + 1 symbols on its column to recover the full secondary

sliver (Green). It will then send any other recovering node the recovered inter-

sections of its column to their row.

S14

S24

S31

S11

S23

S41

S32

S12

S22

S42

S33

S13

S23

S43

S34

S44

Recover from 2f+1

(d)Node 4 uses the 𝑓 +1 symbols on its row aswell as all the recovered secondary

symbols send by other honest recovering nodes (Green) (which should be at

least 2𝑓 plus the 1 recovered in the previous step) to recover its primary sliver

(Dark Blue)

Figure 3: Nodes 1 and 3 helping Node 4 recover its sliver pair

is ensured by the fact that a correct writer will confirm that at

least 𝑓 + 1 correct nodes received sliver pairs before stopping re-

transmissions. And the sliver recovery algorithm can ensure that

the remaining honest nodes can efficiently recover their slivers

from these, until all honest nodes eventually hold their respective

sliver, or can prove that the encoding was incorrect. Validity holds

due to the fact that 2𝑓 + 1 correct nodes wil eventually hold correct

sliver pairs, and therefore a reader that contacts all nodes will

eventually get enough slivers to recover the blob. Read Consistency

holds since two correct readers that decode a blob from potentially

different sets of slivers, re-encode it and check the correctness of

the encoding. Either both output the same blob if it was correctly

encoded or both output ⊥ if it was incorrectly encoded.

4 The Walrus Decentralized Secure Blob Store

Walrus is the integration of a blockchain as a control plane for

meta-data and governance, with an encoding and decoding algo-

rithm run by a separate committee of storage nodes handling blob

data contents. This architecture uses the Red Stuff encoding/de-

coding algorithm described in section 3.3, Merkle trees [27] as set

commitments, and the Sui blockchain [8] . Walrus can, however, be

generalized to any blockchains and encoding/decoding algorithm

that satisfies the minimal requirements described in Section 2.

We first describe Walrus flows in a single epoch and then we

discuss howwe allow for storage node dynamic availability through

reconfiguration. Finally, we look into going beyond honest-malicius

and providing storage challenges. During an epoch, the interactions

of Walrus with the clients is through (a) writing a blob and (b)

reading a blob.

4.1 Writing a Blob

The process of writing a blob in Walrus can be seen in Algorithm 3

and Figure 4.

The process begins with the writer (➊) encoding a blob using Red

Stuff as seen in Figure 2. This process yields sliver pairs, a list of

Blockchain

N1

N2

N4

N3

User

4

5

3

1

2

build
blob id

buy
space

collect
acks

publish
PoA

build
PoA

Figure 4: Walrus write flow. The user generates the blob id of the file

they wish to store; acquire storage space through the blockchain; submit the

encoded file to Walrus; collect 2𝑓 + 1 acknowledgements; and submit them as

proof of availability to the blockchain.

commitments to slivers, and a blob commitment. The writer derives

a blob id 𝑖𝑑𝐵 by hashing the blob commitment with meta-data such

as the length of the file, and the type of the encoding.

Then, the writer (➋) submits a transaction on the blockchain

to acquire sufficient space for the blob to be stored during a se-

quence of epochs, and to register the blob. The size of the blob and

blob commitment are sent, which can be used to rederive 𝑖𝑑𝐵 . The

blockchain smart contract needs to secure sufficient space to store

both the encoded slivers on each node, as well as store all metadata

associated with the commitments for the blob. Some payment may

be sent along with the transaction to secure empty space, or empty

space over epochs can be a resource that is attached to this request

to be used. Our implementation allows for both options.

Once the register transaction commits (➌), the writer informs

the storage nodes of their obligation to store the slivers of the blob

identified by 𝑖𝑑𝐵 , sending them the transaction together with the

Walrus

commitments and the primary and secondary slivers assigned to

the respective storage nodes along with proofs that the slivers are

consistent with the published 𝑖𝑑𝐵 . The storage node verifies the

commitments and responds with a signed acknowledgment over

𝑖𝑑𝐵 once the commitments and the sliver pairs are stored.

Finally, the writer waits to collect 2𝑓 + 1 signed acknowledg-

ments (➍), which constitute a write certificate. This certificate is

then published on-chain (➎) which denotes the Point of Availability

(PoA) for the blob in Walrus. The PoA signals the obligation for

the storage nodes to maintain the slivers available for reads for the

specified epochs. At this point, the writer can delete the 𝑏𝑙𝑜𝑏 from

local storage, and go offline. Additionally, this PoA can be used as

proof of availability of the 𝑏𝑙𝑜𝑏 by the writer to third-party users

and smart-contracts.

Nodes listen to the blockchain for events indicating that a blob

reached its PoA. If they do not hold sliver pairs for this blobs they

execute the recovery process to get commitments and sliver pairs

for all blobs past their PoA. This ensures that eventually all correct

nodes will hold sliver pairs for all blobs.

4.2 Reading a Blob

In the read path, a reader may ask any of the storage nodes for

the commitments and secondary sliver (1) for a blob by 𝑖𝑑𝐵 . Once

they collect 2𝑓 + 1 replies with valid proofs against 𝑖𝑑𝐵 (2) they

reconstruct the blob. Then (3) the reader re-encodes the blob and

re-computes a blob id 𝑖𝑑′
𝐵
. If 𝑖𝑑𝐵 = 𝑖𝑑′

𝐵
it outputs the blob, otherwise

the blob is inconsistent and the reader outputs ⊥.
Reads happen consistently across all readers thanks to the prop-

erties of Red Stuff. When no failures occur, reads only require

downloading sliver data slightly larger than the byte length of the

original blob in total.

4.3 Recovery of Slivers

One issue with writing blobs in asynchronous networks or when

nodes can crash-recover is that not every node can get their sliver

during the Write. This is not a problem as these protocols can func-

tion without completeness. Nevertheless, in Walrus we opted to

use a two-dimensional encoding scheme because it allows for com-

pleteness, i.e., the ability for every honest storage node to recover

and eventually hold a sliver for every blob past PoA. This allows (1)

better load balancing of read requests all nodes can reply to readers,

(2) dynamic availability of storage nodes, which enables reconfigu-

ration without needing to reconstruct and rewrite every blob, and

(3) the first fully asynchronous protocol for proving storage of parts

(described in Section 4.6).

All these benefits rely on the ability for storage nodes to recover

their slivers efficiently. The protocol closely follows the Red Stuff

recovery protocols illustrated in Figure 3. When a storage node sees

a certificate of a blob for which they did not receive slivers, it tries

to recover its sliver pair from the rest of the storage nodes. For this,

it requests from all storage nodes the symbols corresponding to the

intersection of the recovering node’s primary/secondary sliver with

the signatory nodes’ secondary/primary slivers. Given that 2𝑓 + 1
nodes signed the certificate, at least 𝑓 + 1 will be honest and reply.

This is sufficient for all 2𝑓 + 1 honest nodes to eventually hold their

secondary slivers. As a result, when all honest nodes hold their

secondary slivers, they can share those symbols corresponding to

the recovering nodes’ primary slivers, who will then get to the

2𝑓 + 1 threshold and also recover their primary sliver.

4.4 Handling Inconsistent Encoding from

Malicious Writers

One last case we need to discuss is when the client is malicious

and uploads slivers that do not correspond to the correct encoding

of a blob. In that case, a node may not be able to recover a sliver

that is consistent with the commitment from the symbols that it

received. However, in this case it is guaranteed to generate a third

party verifiable proof of inconsistency, associated with 𝑖𝑑𝐵 .

The read process executed by a correct reader rejects any incon-

sistently encoded blob by default, and as a result sharing this proof

is not a necessity to ensure consistent reads. However agreeing

on the inconsistency allows nodes to delete this blobs’ data and

excluding it from the challenge protocol (section 4.6). To prove

inconsistency, the storage node shares the inconsistency proof—

consisting of the symbols that it received for recovery and their

inclusion proofs—with the other nodes who can verify it by per-

forming a trial recovery themselves. After verifying this fraud proof,

the node attests on-chain that 𝑖𝑑𝐵 is invalid. After observing a quo-

rum of 𝑓 + 1 such attestations, all nodes will subsequently reply

with ⊥ to any request for the inconsistent blob’s slivers, along with

a pointer to the on-chain evidence for the inconsistency.

4.5 Committee Reconfiguration

Walrus is a decentralized protocol, hence it is natural that the

set of storage nodes will fluctuate between epochs. When a new

committee replaces the current committee between epochs, recon-

figuration takes place. The goal of the reconfiguration protocol

is to preserve the invariant that all blobs past PoA are available,

no matter if the set of storage nodes changes. Subject of course

to 2𝑓 + 1 nodes being honest in all epochs. Reconfiguration may

take hours if a significant amount of data needs to be transferred

between nodes. In that period, Walrus must continue to perform

reads and writes for blobs to ensure no downtime.

Core Design. At a high-level the reconfiguration protocol of Wal-

rus is similar to the reconfiguration protocols of blockchain sys-

tems, since Walrus also operates in quorums of storage nodes.

However, the reconfiguration of Walrus has its own challenges

because the migration of state is orders of magnitude more expen-

sive than classic blockchain systems. The main challenge is the

race between writing blobs for epoch 𝑒 and transferring slivers

from outgoing storage nodes to incoming storage nodes during

the reconfiguration event between 𝑒 and 𝑒 + 1. More specifically,

if the amount of data written in epoch 𝑒 is greater than the ability

of a storage node to transfer them over to the new storage node,

then the epoch will never finish. This problem is exacerbated when

some of the outgoing storage nodes of 𝑒 are unavailable, as this

means that the incoming storage nodes need to recover the slivers

from the committee of epoch 𝑒 . Fortunately, by using Red Stuff,

the bandwidth cost of the faulty case is the same as that of the

fault-free case. but it still requires more messages to be sent over

the network and more computation to verify proofs and to decode

symbols to slivers.

Danezis et. al

To resolve this problem without shutting off the write path, we

take a different approach by requiring writes to be directed to the

committee of 𝑒 + 1 the moment the reconfiguration starts, while

still directing reads to the old committee, instead of having a single

point at which both reads and writes are handed over to the new

committee. This can unfortunately create challenges when it comes

to reading these fresh blobs, as during the handover period it is

unclear which nodes store the data. To resolve this, we include in

the𝑚𝑒𝑡𝑎𝑑𝑎 of every 𝑏𝑙𝑜𝑏 the epoch in which it was first written.

If the epoch is 𝑒 + 1 then the client is asked to direct reads to the

new committee; otherwise, it can direct reads to the old committee.

This happens only during handover period (when both committees

need to be live and secure).

Once a member of the new committee has bootstrapped their

part of the state, i.e., they have gotten all slivers for their shard, they

signal that they are ready to take over. When 2𝑓 + 1 members of

the new committee have signaled this, the reconfiguration process

finishes and all reads are redirected to the storage nodes of the new

committee.

Security arguments: In a nutshell, reconfiguration ensures all

ACDS properties across epochs. The key invariant is: the reconfig-

uration algorithm ensures that if a blob is to be available across

epochs, in each epoch 𝑓 +1 correct storage nodes (potentially differ-
ent ones) hold slivers. This is the purpose of the explicit signaling

that unlocks the epoch change by 2𝑓 + 1 nodes. Therefore, even-
tually all other honest storage nodes can recover their sliver pairs,

and in all cases, 𝑓 + 1 honest nodes in the next epoch are able to

recover correct sliver pairs as a condition to move epochs.

4.6 Storage Challenges

Walrus uses a challenge protocol to prevent cheating nodes that

trivially never store or serve data from receiving rewards and to

incentivize honest nodes. To the best of our knowledge, we present

here the first storage proof protocol to make no assumptions about

network synchrony. It leverages the completeness property of Red

Stuff and the ability to reconstruct blobs with 2𝑓 + 1 threshold. In
this section, we first present the simple protocol that is theoretically

secure but costly. Then we discuss a relaxation that makes the se-

curity probabilistic but reduces the cost of challenging significantly

and can be tuned dynamically if reads start to fail.

Fully Asynchronous Challenge Protocol. Close to the end of the

epoch, the storage nodes witness a “challenge start” event on-chain,

such as a specific block height. At that point, they stop serving read

and recovery requests and broadcast an acknowledgment. When

2𝑓 +1 honest nodes have entered the challenge phase, the challenges
start.

Every challenged node sends the common symbols per blob to

each other along with a proof against the commitment of the writer

of the blob. The receiving nodes check the symbols and send a

confirmation signature. When the proving storage node collects

2𝑓 + 1 signatures, it forms a certificate, which it submits on-chain.

When 2𝑓 + 1 certificates are valid, the challenge period ends, and

the reads and recovery are re-enabled.

During the challenge period, the nodes that witnessed the chal-

lenge start message do not respond to read or recovery requests.

Since the threshold for starting a challenge is 2𝑓 + 1, at least 𝑓 + 1

honest will not reply after the challenged files are determined. As

a result, even if the adversary has 𝑓 slivers stored and has slowed

down 𝑓 honest nodes to not see the challenge start message, it

can only get 2𝑓 symbols from their secondary slivers and then 2𝑓

signatures on its certificate. These are not enough to recover the

full secondary sliver and convince the rest of the honest nodes to

sign the certificate, and as a result, it will fail the challenge. The

proof can be seen in Section 5.4.

Relaxations. Although this protocol is secure, it has the caveat

that no reads are served during the challenge period and that a full-

blown challenge requires bandwidth equal to the amount stored. To

reduce its impact, we plan to trade-off security for allowing most

blobs to be readable and not under a challenge.

For the lighweight challenge protocol, we require the storage

nodes to setup a random coin with a 2𝑓 +1 reconstruction threshold.
This is possible using any kind of asynchronous DKG [13, 14, 20]

or randomness generation protocol [17, 39].

The coin is used to seed a pseudo-random function (PRF) that

defines which blobs need to be challenged per storage node. Any

blob not in the set can be accessible directly again. The number

of blobs challenged needs to be sufficiently large compared to the

total number of blobs such that storage nodes have a negligible

probability of holding all the challenged blobs unless they hold the

overwhelming majority of blobs. For example, if a storage node

holds 90% (99%) of the blobs, it has less than a 10
−30

probability of

success in a 640 (7000) file challenge.

If we notice that reads fail although challenges pass, it means that

we do not challenge enough files. In this case, Walrus will increase

the challenges up to the point of reenabling the full challenge

protocol. However, for this to happen, it means that the malicious

storage nodes have minimal storage savings (less than a constant

factor), which is unlikely to have a real impact on their resource

cost.

5 Red Stuff and Walrus Proofs

This section completes Section 3 by showing that Red Stuff satis-

fies all the properties of a ACDS. The casual reader can skip it.

5.1 Write Completeness

We show that Red Stuff satisfies Write Completeness. Informally,

if an honest writer writes a blob 𝐵 to the network, every honest

storage node eventually holds a primary and secondary correctly

encoded sliver of 𝐵. For this part we assume the writer is honest

and provides a correct vector commitment𝑀 .

Lemma 1 (Primary Sliver Reconstruction). If a party holds a set

of (2𝑓 + 1) symbols {𝐸 (𝑖, ∗)}
2𝑓 +1from a primary sliver 𝑆 (𝑝,𝑖) , it can

obtain the complete primary sliver 𝑆 (𝑝,𝑖) .

Proof. The proofs directly follows from the reconstruction

property of erasure codes with reconstruction threshold (2𝑓 +
1). □

Lemma 2 (Secondary Sliver Reconstruction). If a party holds a set

of (𝑓 + 1) symbols {𝐸 (∗, 𝑖)}𝑓 +1 from a secondary sliver 𝑆 (𝑠,𝑖) , it can

obtain the complete secondary sliver 𝑆 (𝑠,𝑖) .

Walrus

Proof. The proofs directly follows from the reconstruction

property of erasure codes with reconstruction threshold (𝑓 +1). □

Theorem 1. Red Stuff satisfies Write Completeness (Definition 1).

Proof. To write a blob 𝐵, an honest writer𝑊 sends at least

(2𝑓 + 1) correctly encoded slivers (parts) to different storage nodes,

along with a binding vector commitment𝑀 over those slivers. For

these nodes the property holds by definition. Now let’s assume a

node 𝑗 that is not in the initial 2𝑓 + 1 recipients. The node will ask
every node 𝑖 for their shared symbols in its primary (i.e., 𝐸 (𝑗, 𝑖)) and
secondary (i.e., 𝐸 (𝑖, 𝑗)) sliver. Given the binding vector commitment

𝑀 node 𝑖 can either send the true symbols or not reply. Given that

at least 2𝑓 + 1 nodes acknowledged𝑀 then 𝑗 will get 𝑓 + 1 correct
symbols for its primary sliver {𝐸 (𝑗, ∗)}𝑓 +1 and 𝑓 +1 correct symbols

for its secondary sliver {𝐸 (∗, 𝑗)}𝑓 +1. From Lemma 2 this means that

𝑗 will reconstruct its full secondary sliver 𝑆 (𝑠,𝑗) .
Since this reasoning applies to any generic node 𝑖 , it holds for all

nodes. As a result, eventually all 2𝑓 +1 honest nodes will reconstruct
their secondary slivers 𝑆 (𝑠,∗) . Every time a node reconstructs their

secondary sliver, they also reply to node 𝑗 with the shared symbol

which is part of the primary sliver of 𝑗 (i.e., 𝐸 (𝑗, ∗)) . As a result,

eventually 𝑗 will go from {𝐸 (𝑗, ∗)}𝑓 +1 to {𝐸 (𝑗, ∗)}2𝑓 +1 This allows
node 𝑗 to apply Lemma 1 and reconstruct its primary sliver 𝑆 (𝑝,𝑗) .

Since this reasoning applies to any generic node 𝑖 , it holds for all

nodes and concludes the proof that all honest nodes will eventually

hold both their primary and secondary sliver.

□

5.2 Read Consistency

We prove that Red Stuff satisfies Read Consistency. Informally,

if two honest readers read a blob 𝐵 written to the network, they

either both eventually obtain 𝐵 or both eventually fail and obtain

⊥.

Theorem 2. Red Stuff satisfies Read Consistency (Definition 1).

Proof. Notice that the encoding scheme is deterministic and

the last step of reading is to re-run the encoding and reconstruct

𝑀 . As a result, a reader that accepts the read as correct needs to

output 𝐵.

The challengewith Read Consistency is if thewriter can convince

different readers that collect different slivers to output 𝐵 and ⊥.
Let’s assume that two honest readers 𝑅1 and 𝑅2 read a blob 𝐵 from

the network and 𝑅1 eventually obtains 𝐵 while 𝑅2 eventually fails

and obtains ⊥.
There are two scenarios for 𝑅2 to output ⊥:

(1) 𝑅2 gets 2𝑓 + 1 replies matching 𝑀 and tries to reconstruct.

During reconstruction, the commitment does not much𝑀

(2) Some node failed to reconstruct their secondary sliver. By the

algorithm this nodes will hold a proof of inconsistency, which

it will send to 𝑅2

In either scenario 𝑅1 during their reconstruction should have

also detected the inconsistency and output ⊥ otherwise the bind-

ing property of the vector commitment does not hold. Hence a

contradiction.

□

5.3 Validity

We prove that Red Stuff satisfies Validity. Informally, if an honest

writer writes a correctly encoded blob 𝐵 to the network, every

honest reader eventually obtains 𝐵.

Theorem 3 (Validity). Red Stuff satisfies Validity (Definition 1).

Proof. To write a blob 𝐵, an honest writer𝑊 construct𝑛 correct

encoded slivers (parts) along with a binding vector commitment𝑀

over those slivers. Since the writer is honest from Theorem 1 all (at

least 2𝑓 + 1) honest storage nodes will hold their respective slivers.

Let’s note by nodes the entire set of storage nodes. An honest

reader queries each storage node 𝑛 ∈ nodes for their secondary

sliver, verifies them against𝑀 and when it holds 2𝑓 + 1 uses them
to reconstruct the 𝐵. Since all honest storage nodes will eventually

reply to the reader and𝑊 was honest, the reader will eventually

obtain 𝐵. □

5.4 Asychronous Challenges

We prove that no malicious storage node that does not hold all

slivers of blobs will succeed in replying to a challenge. We note

that storage nodes of the adversary can collude and hold a single

version of their common symbols. However, they would still need

to hold 2𝑓 + 1 symbols per sliver which is effectively the cost of a

full sliver as far as storage is concerned.

Theorem 4 (Secure Challenge Protocol). No malicious storage node

running Walrus that does not hold all slivers of blobs will succeed in

replying to a challenge.

Proof. We assume there exists a storage node that deletes a

symbol it is supposed to hold and the respective symbol is held by

an honest node. At challenge time it will need to send this symbol to

the honest node to get a certificate. To do so, it will need to recover

the sliver. For this it will get 𝑓 − 1 symbols from the other malicious

storage nodes. It can also get 𝑓 symbols from slow, honest nodes

through the read path. However 𝑓 + 𝑓 − 1 = 2𝑓 − 1. From lemma 1

the node need 2𝑓 + 1 to reconstruct the primary sliver and get this

symbol. Hence it will fail to reply.

If it fails to reply then it cannot get a certificate as only the

2𝑓 −1 node mentioned above plus its self-signature will be collected,

resulting in 2𝑓 < 2𝑓 + 1 signatures.
□

6 Evaluation

We implement a production-ready networked multi-core Walrus

storage node in Rust. All networking usesHTTPS through axum [35],

it uses fastcrypto [21] for cryptography, rocksdb [28] for storage,

and reed-solomon-simd [24] for erasure coding. We opt to connect

our implementation to Sui [40] as an example of fast blockchain.

We release the codebase as open-source
8
.

We evaluate Walrus’s performance and scalability on the real,

publicly available, testnet. This is the most realistic evaluation set-

ting, exposing the system to real-world conditions, real users, and

infrastructure outside our control. We observe the Walrus testnet

over a period of 60 days, ending the 22nd of March.

Our evaluation aims at demonstrating the following claims:

8
https://github.com/mystenLabs/walrus

https://github.com/mystenLabs/walrus

Danezis et. al

eu
-n
or
th

eu
-ea

st

eu
-w
es
t

ca
-ce
nt
ra
l

us
-w
es
t

us
-ea

st

sa
-ea

st

ap
-so
ut
he
as
t

un
kn
ow
n

0

100

200

300

Sh
ar
ds

Figure 5: Geo-distribution of shards.

Het
zn

er

Ch
er

ry
 se

rv
er

s

Le
as

ew
ebOvh

Web
nx

Wor
lds

tre
am

Sk
ys

kip
pe

r

Sy
nli

nq

Int
er

se
rv

er

Unk
no

wn

Te
rra

sw
itc

h b
ar

em
et

al

Reg
.ru

Ato
mic

se
rv

er
s

Te
ra

sw
itc

h

La
tit

ud
e
Aws

Co
loc

at
ion

Alib
ab

a c
lou

d

Dat
a p

ac
ke

t
Gcp

Se
lf-

Hos
te

d

Int
er

se
rv

er.
ne

t
Ve

lia
0

50

100

150

Sh
ar

ds

Figure 6: Distribution of shards by hosting providers.

(1) C1 (low latency):Walrus achieves low latency, bounded by

network delay.

(2) C2 (throughput): Walrus clients achieve high read and write

throughput.

(3) C3 (scalability): Walrus’s total capacity scales with the num-

ber of storage nodes.

6.1 Experimental Setup

TheWalrus testbed is decentralized, comprising 105 independently

operated storage nodes and 1,000 shards. All reported measure-

ments are based on data voluntarily shared by node operators.

Shards are allocated based on each operator’s stake, reflecting the

mainnet deployment model. Satisfying the 𝑓 + 1 quorum requires

collaboration from at least 19 nodes; the 2𝑓 + 1 quorum requires

38 nodes. No operator controls more than 18 shards. Nodes span

at least 17 countries, including Lithuania, USA, France, Canada,

Netherlands, Thailand, Ireland, Russia, and others. Eleven operators

did not disclose their location. Figure 5 details the shard distribution

by region. The “eu-west” region aggregates shards from at least

five countries. Roughly 220 shards are labeled “unknown” due to

missing regional data. Figure 6 shows shard distribution by hosting

providers. “Self-Hosted” nodes run on-premises, while “Unknown”

indicates missing provider information.

Most nodes run Ubuntu (22.04 or 24.04) with at least 16 CPU

cores, 128 GB RAM, and 1 Gbps bandwidth. Hardware varies across

Intel and AMD CPUs and HDD, SSD, and NVMe storage. Node

storage ranges from 15 to 400 TB (median 56.9 TB, P90 69.98 TB).

0 20M 40M 60M 80M 100M 120M 140M
Blob Size (B)

0

25

50

75

100

125

La
te

nc
y

(s
)

read write

Figure 7: Latency for different blob sizes.

6.2 System Performance

We evaluate performance from the client’s perspective, deploying

two clients on AWS m5d.8xlarge instances (10 Gbps bandwidth,
32 vCPUs, 128 GB RAM, Ubuntu 22.04). One client runs in US East

(N. Virginia), the other in Canada Central.

Walrus Latency. Figure 7 illustrated the end-to-end latency expe-

rienced by the client. We start measuring before the client encodes

the blob and finish when it observes a proof-of-availability con-

firmation on the blockchain. Each point represents the p50 over 5

minutes of runs; error bars indicate p90.

The graph shows that read latency remains low, even for large

blobs. For small blobs (less than 20 MB), the latency stays below 15

seconds. For large blobs (130 MB), the latency increases to around

30 seconds.

Write latency is consistently higher than read latency. For small

blobs (less than 20 MB), write latency remains relatively flat and

stays under 25 seconds. This overhead is primarily due to the

blockchain interaction and the need to upload metadata to all stor-

age nodes, rather than the blob size itself. For large blobs (greater

than 40 MB), latency grows linearly with the blob size as network

transfer becomes the dominant cost. Figure 8 and Figure 9 illus-

trate this behavior by breaking down the latency for small blobs

(1 KB) and large blobs (130 MB), respectively. Each write operation

consists of five key steps: encoding (time to erasure-code the blob),

check status (time to check the blob’s current state), get info (time to

fetch blob status and reserve space), store (time to upload slivers to

storage nodes), and publish PoA (time to commit the proof of avail-

ability to the blockchain). For small blobs, the fixed overhead from

metadata handling and blockchain publication dominates, adding

roughly 6 seconds—about 50% of the total write latency. For large

blobs, the storage phase dominates due to network transfer, while

metadata operations and blockchain interaction remain relatively

constant.

These results validate our claimC1:Walrus achieves low latency

and is bounded by network delays.

Single Client Throughput. Figure 10 illustrates the throughput

that can be achieved by a single client in bytes per second. As

expected, read throughput scales linearly with blob size as it is

mostly network interactions. Write throughput plateaus around

18 MB/s because of the need to interact with the blockchain and

the storage nodes multiple times. This does not mean that a user

cannot upload faster, as Sui supports a much higher throughput in

transactions per second, but that a single blob cannot be uploaded

faster. For much larger blobs, a user can deploy multiple clients,

Walrus

Encoding Check Status Get Info Store Publish PoA
0

2

4

6

La
te

nc
y

(s
)

Figure 8: Latency breakdown for small blobs (1KB).

Encoding Check Status Get Info Store Publish PoA
0

25

50

75

100

125

La
te

nc
y

(s
)

Figure 9: Latency breakdown for large blobs (130MB).

0 20M 40M 60M 80M 100M 120M 140M
Blob Size (B)

0

20M

40M

60M

Cl
ie

nt
 T

hr
ou

gh
pu

t
(B

/s
)

read write

Figure 10: Single client throughput for different blob sizes.

each uploading a chunk of data in parallel, effectively creating a

fan-out pattern.

These results validate C2: Walrus enables clients to read and

write at high throughput.

6.3 Scalability

Over 60 days, Walrus stores a median of 1.18 TB of slivers (P90 1.08

TB) and 221.5 GB of blob metadata (P90 46.34 GB). As described in

Section 6.1, each storage node contributes between 15 and 400 TB

of capacity. Yet, the system as a whole can store over 5 PB—a key

feature of Walrus. Figure 11 illustrates howWalrus’s total storage

capacity scales with the committee size. This result supports our

final claim C5: the system’s capacity grows proportionally with the

number of storage nodes.

7 Related Work

Censorship resistant storage and blob data dissemination motivated

much of the early peer-to-peer movement and the need for decen-

tralization. Within academia Anderson proposed the Eternity ser-

vice [3] in 1996, to ensure documents cannot be suppressed. Within

the commercial and open source communities systems like Nap-

ster [9], Gnutella [33], and Free Haven [15] and early Freenet [11]

used nodes in an unstructured topology to offer storage, routing and

distribution largely of media files. These systems operated on the

0 20 40 60 80 100
Storage Nodes

0

1P

2P

3P

4P

5P

St
or

ag
e

Ca
pa

ci
ty

 (
B)

Figure 11: Storage capacity versus committee size.

basis of centralized or flood fill algorithms for lookup and search;

and full replication of files, often on node used to route responses.

These provide best effort security and poor performance.

Later research, in the early 2000s, proposed structured peer-to-

peer topologies in the form of distributed hash tables (DHT), such

as Chord [37], Pastry [34], Kademlia [26], largely to improve lookup

performance, as well as reduce the replication factor for each file.

DHTs remarkably do not require consensus or full state machine

replication to operate. However, have been shown to be susceptible

to a number of attacks: Sybil attacks [16] were named and identified

within the context of these systems first; and they are hard to defend

against routing attacks [43]. Many attacks affect current systems

that use them [41]. Bittorrent [12] eventually came to dominate the

file dissemination application space, in part due to its simplicity

and built-in incentives. It initially used a full replication strategy

for storage and centralized trackers for node coordination. It later

added decentralized trackers based on Kademlia.

In contrast to these early system Walrus maintains a full and

consistent list of all nodes through using the Sui [8] blockchain, as

well as their latest meta-data. It assumes these are infrastructure

grade nodes and will not suffer great churn, but rather operate to

get incentives and payments, and come in and out of the system

based on a reconfiguration protocol.

In the blockchain era, IPFS [5] provides a decentralized store

for files, and is extensively being used by blockchain systems and

decentralized apps for their storage needs. It provides content ad-

dressable storage for blocks, and uses a distributed hash table (DHT)

to maintain a link between file replicas and nodes that store them.

Publishers of files need to pin files to storage nodes, to ensure files

remain available, usually against some payment. The underlying

storage uses full replication on a few nodes for each file.

Filecoin [30] extends IPFS, using a longest chain blockchain and a

cryptocurrency (FIL) used to incentivize storage nodes to maintain

file replicas. Publishers acquire storage contracts with a few nodes,

and payments are made in the cryptocurrency. Filecoin mitigates

the risk that these nodes delete the replicas by requiring storage

nodes to hold differently encoded copies of the file, and performing

challenges against each other for the encoded files. These copies are

encoded in such a way that it is slow to reproduce them from the

original copy, to avoid relay attacks. As a result, if the user wants to

access the original file, it needs to wait a long time for the decoding

of a copy, unless some storage node has a hot copy. Since, there

is no in-built incentive for storing hot copies, this service usually

costs extra.

Arweave [45] mitigates slow reads through a Proof-of-Access

algorithm that incentives storage nodes to have as many files as

Danezis et. al

possible locally to maximise rewards. This is implemented in con-

junction with a full replication strategy, and results in replication

levels almost equal to classic state machine replication. Addition-

ally, the system only allows file to be stored ‘for ever’, through a

mechanisms of pre-payment - which lacks the flexibility to control

lifetime and deletion, and is capital inefficient since payment is

upfront.

In contrast to Filecoin and Arweave, Walrus uses erasure coding

to maintain a very low overhead of 4.5x while ensuring data sur-

vives up to 2/3 of any shards being lost, and continues to operate by

allowing writes even if up to 1/3 of shards are unresponsive. Furthe-

more, Walrus does not implement its own separate blockchain to

do node management and provide incentives, but uses Sui instead.

Storj [38] represents another decentralized storage solution that

leverages encoding to achieve a low replication factor. The system

implements a Reed-Solomon based erasure coding scheme with a

29/80 configuration, wherein a file is encoded into 80 parts, with

any 29 sufficient for reconstruction. This approach results in a 2.75𝑥

replication factor, offering a substantial reduction in storage costs

compared to prior systems. However, a key limitation of Storj lies

in its inability to efficiently heal lost parts. The system relies on

users to reconstruct the full file and subsequently re-encode it to

facilitate the recovery of lost parts. In contrast Walrus’s use of Red

Stuff incorporates an efficient reconstruction mechanism which

is critical for the efficient healing of the erasure coding scheme,

especially due to churn which is naturally occuring in a permission-

less system. Red Stuff builds on the Twin-code framework [31],

which uses two linear encodings of data to enhance the efficiency

of sliver recovery. However, unlike the Twin-code framework [25],

Red Stuff encodes data across differently sized dimensions and

integrates authenticated data structures, achieving Completeness

(as defined in Section 2) and ensuring Byzantine Fault Tolerance.

Modern blockchains provide some storage, but it is prohibitively

expensive to store larger blobs due to the costs of full replication

across all validators, as well as potentially long retention times to

allow verifiability. Within the Ethereum eco-system specifically, the

current scaling strategy around L2s involves posting blobs of trans-

actions on the main chain, representing bundles of transactions to

be executed, and verified either via zero-knowledge or fraud proofs.

Specialised networks, such as Celestia based on availability sam-

pling [2], have emerged to fulfill this need off the main Ethereum

chain. In Celestia, two dimensional Reed-Solomon codes are used to

encode blobs, and code words distributed to light nodes to support

‘trustless’ availability. However, all blobs are fully replicated across

the validators of the system, for a limited time period of about

month. Walrus instead offers proofs of availability with arbitrarily

long retention periods and a reduced cost of storage per node which

allows the system to scale inpexpensively.

8 Conclusion

We introduce Walrus, a novel approach to decentralized blob stor-

age that leverages fast erasure codes and a modern blockchain

technology. By utilizing the Red Stuff encoding algorithm and the

Sui blockchain, Walrus achieves high resilience and low storage

overhead while ensuring efficient data management and scalabil-

ity. Our system operates in epochs, with all operations sharded

by 𝑏𝑙𝑜𝑏𝑖𝑑 , enabling it to handle large volumes of data effectively.

The innovative two-dimensional BFT encoding protocol of Red

Stuff allows for efficient data recovery, load balancing, and dy-

namic availability of storage nodes, addressing key challenges faced

by existing decentralized storage systems.

Furthermore, Walrus introduces storage proofs that ensure data

availability without relying on network synchrony assumptions,

and its committee reconfiguration protocol guarantees uninter-

rupted data availability during network evolution. By combining

these features, Walrus offers a scalable, and resilient decentral-

ized storage, providing high authenticity, integrity, auditability, and

availability at a reasonable cost. Our contributions include defining

the problem of Asynchronous Complete Data-Sharing, presenting

the Red Stuff protocol, and proposing an asynchronous challenge

protocol for efficient storage proofs, paving the way for future

advancements in decentralized storage technologies.

Acknowledgments

We would like to express our gratitude to Dmitry Perelman, Sadhan

Sood, Zue Wu, He Liu, and Pei Deng for their invaluable contribu-

tions in bringing Walrus to production. We also extend our sincere

appreciation to Damir Shamanaev for his assistance in constructing

the smart contracts that connect Walrus with the Sui blockchain.

Lastly, we would like to extend a special thank you to Joachim

Neu for identifying a serious vulnerability in our previous Testnet

implementation. This vulnerability was related to its utilization of

RaptorQ for erasure coding and lead us to replace it with RS Codes.

References

[1] Mustafa Al-Bassam. 2019. Lazyledger: A distributed data availability ledger with

client-side smart contracts. arXiv preprint arXiv:1905.09274 (2019).

[2] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. 2021.

Fraud and data availability proofs: Detecting invalid blocks in light clients. In

Financial Cryptography and Data Security: 25th International Conference, FC

2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25. Springer,

279–298.

[3] Ross Anderson. 1996. The Eternity Service. In Proceedings of Pragocrypt ’96.

[4] Pablo Aragón, Andreas Kaltenbrunner, Antonio Calleja-López, Andrés Pereira,

Arnau Monterde, Xabier E Barandiaran, and Vicenç Gómez. 2017. Deliberative

platform design: The case study of the online discussions in Decidim Barcelona.

In Social Informatics: 9th International Conference, SocInfo 2017, Oxford, UK, Sep-

tember 13-15, 2017, Proceedings, Part II 9. Springer, 277–287.

[5] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv

preprint arXiv:1407.3561 (2014).

[6] Nazanin Zahed Benisi, Mehdi Aminian, and Bahman Javadi. 2020. Blockchain-

based decentralized storage networks: A survey. Journal of Network and Computer

Applications 162 (2020), 102656.

[7] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd

Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al.

2019. Move: A language with programmable resources. Libra Assoc (2019), 1.

[8] Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris

Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto

Sonnino, et al. 2023. Sui lutris: A blockchain combining broadcast and consensus.

arXiv preprint arXiv:2310.18042 (2023).

[9] Bengt Carlsson and Rune Gustavsson. 2001. The rise and fall of napster-an

evolutionary approach. In International Computer Science Conference on Active

Media Technology. Springer, 347–354.

[10] Dario Catalano and Dario Fiore. 2013. Vector commitments and their applications.

In Public-Key Cryptography–PKC 2013: 16th International Conference on Practice

and Theory in Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013.

Proceedings 16. Springer, 55–72.

[11] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. 2001.

Freenet: A distributed anonymous information storage and retrieval system.

In Designing privacy enhancing technologies: international workshop on design

issues in anonymity and unobservability Berkeley, CA, USA, July 25–26, 2000

Proceedings. Springer, 46–66.

[12] Bram Cohen. 2003. Incentives build robustness in BitTorrent. In Workshop on

Economics of Peer-to-Peer systems, Vol. 6. Berkeley, CA, USA, 68–72.

Walrus

[13] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Prac-

tical asynchronous high-threshold distributed key generation and distributed

polynomial sampling. In 32nd USENIX Security Symposium (USENIX Security 23).

5359–5376.

[14] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.

In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518–2534.

[15] Roger Dingledine, Michael J Freedman, and David Molnar. 2001. The free haven

project: Distributed anonymous storage service. In Designing Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and Unob-

servability Berkeley, CA, USA, July 25–26, 2000 Proceedings. Springer, 67–95.

[16] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer

systems. Springer, 251–260.

[17] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and

Alin Tomescu. 2021. Aggregatable distributed key generation. In Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques.

Springer, 147–176.

[18] Martin Kleppmann, Paul Frazee, Jake Gold, Jay Graber, Daniel Holmgren, Devin

Ivy, Jeromy Johnson, Bryan Newbold, and Jaz Volpert. 2024. Bluesky and the

AT protocol: Usable decentralized social media. arXiv preprint arXiv:2402.03239

(2024).

[19] Eleftherios Kokoris Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Svetolik

Jovanovic, Ewa Syta, and Bryan Alexander Ford. 2021. Calypso: Private data

management for decentralized ledgers. Proceedings of the VLDB Endowment 14,

4 (2021), 586–599.

[20] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Ran-

domness, Consensus, and Threshold Signatures.. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security. 1751–1767.

[21] Mysten Labs. 2025. Fastcrypto. =https://github.com/MystenLabs/fastcrypto.

[22] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increasing the

integrity of software supply chains. IEEE Software 39, 2 (2021), 62–70.

[23] Chuanlei Li, Minghui Xu, Jiahao Zhang, Hechuan Guo, and Xiuzhen Cheng. 2024.

SoK: Decentralized Storage Network. Cryptology ePrint Archive (2024).

[24] malair. 2025. Reed-Solomon SIMD. =https://github.com/AndersTrier/reed-

solomon-simd.

[25] Ninoslav Marina, Aneta Velkoska, Natasha Paunkoska, and Ljupcho Baleski.

2015. Security in twin-code framework. In 2015 7th International Congress on

Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).

IEEE, 247–252.

[26] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. In International workshop on peer-to-peer

systems. Springer, 53–65.

[27] Ralph C Merkle. 1987. A digital signature based on a conventional encryption

function. In Conference on the theory and application of cryptographic techniques.

Springer, 369–378.

[28] Metar. 2025. Rocksdb. =https://rocksdb.org.

[29] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. {CHAINIAC}:
Proactive {Software-Update} transparency via collectively signed skipchains

and verified builds. In 26th USENIX Security Symposium (USENIX Security 17).

1271–1287.

[30] Yiannis Psaras and David Dias. 2020. The interplanetary file system and the

filecoin network. In 2020 50th Annual IEEE-IFIP International Conference on De-

pendable Systems and Networks-Supplemental Volume (DSN-S). IEEE, 80–80.

[31] KV Rashmi, Nihar B Shah, and P Vijay Kumar. 2011. Enabling node repair in

any erasure code for distributed storage. In 2011 IEEE international symposium

on information theory proceedings. IEEE, 1235–1239.

[32] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),

300–304.

[33] Matei Ripeanu. 2001. Peer-to-peer architecture case study: Gnutella network. In

Proceedings first international conference on peer-to-peer computing. IEEE, 99–100.

[34] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Middleware 2001:

IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,

Germany, November 12–16, 2001 Proceedings 2. Springer, 329–350.

[35] The Tokio rs team. 2025. Axum. =https://github.com/tokio-rs/axum.

[36] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),

299–319.

[37] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-

to-peer lookup protocol for internet applications. IEEE/ACM Transactions on

networking 11, 1 (2003), 17–32.

[38] I Storj Labs. 2018. Storj: A decentralized cloud storage network framework.

[39] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. 2017. Scalable bias-

resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy

𝐸 (𝑖, 𝑗) Symbol at position (𝑖, 𝑗) of an encoded blob

𝑆𝑝 The set of primary slivers

𝑆𝑠 The set of secondary slivers

𝑆 (𝑝,𝑛) The primary sliver held by storage node 𝑛

𝑆 (𝑠,𝑛) The secondary sliver held by storage node 𝑛

{𝑆 (𝑝,∗) }𝑓 +1 Any set of 𝑓 + 1 primary slivers

𝑀𝑝
Metadata associated with the primary slivers

𝑀𝑠
Metadata associated with the secondary slivers

𝐷𝑛
The set of shards handled by node 𝑛

Table 2: Main notations

(SP). Ieee, 444–460.

[40] The Sui team. 2025. Build Beyond. =https://sui.io.

[41] Juan Pablo Timpanaro, Thibault Cholez, Isabelle Chrisment, and Olivier Festor.

2011. Bittorrent’s mainline dht security assessment. In 2011 4th IFIP International

Conference on New Technologies, Mobility and Security. IEEE, 1–5.

[42] David Vorick and Luke Champine. 2014. Sia: Simple decentralized storage.

Retrieved May 8 (2014), 2018.

[43] Dan S Wallach. 2002. A survey of peer-to-peer security issues. In International

symposium on software security. Springer, 42–57.

[44] Karl Werder, Balasubramaniam Ramesh, and Rongen Zhang. 2022. Establishing

data provenance for responsible artificial intelligence systems. ACM Transactions

on Management Information Systems (TMIS) 13, 2 (2022), 1–23.

[45] SamWilliams, Viktor Diordiiev, Lev Berman, and Ivan Uemlianin. 2019. Arweave:

A protocol for economically sustainable information permanence. Arweave Yellow

Paper (2019).

[46] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. 2014.

Heading Off Correlated Failures through {Independence-as-a-Service}. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).

317–334.

A Detailed Algorithms

This section supplements Section 4 by providing detailed algo-

rithms for clients (Algorithm 1) and storage nodes operations (Al-

gorithm 3).

In additional to the helper functions specified in Algorithm 2,

these algorithms also leverages the following (intuitive) functions:

ByteSize(𝐵) to compute the size of a blob𝐵 in bytes;MerkleTree(𝑣)
to compute a merkle tree over a vector input 𝑣 ; Hash(·) to compute

a cryptographic hash; ErasureEncode(𝐵), ErasureReconstruct(·),
and ErasureDecode(·), to respective erasure encode a blob 𝐵, re-

construct a blocb from enough erasure coded parts, and erasure

decode a blob as described in Section 3.3; HandledShards(𝑛) to
get the shards handled by a node 𝑛; and SplitIntoMatrix(·) to
reshape a matrix into the specified size.

Furthermore, the client and storage nodes use the following func-

tions to interact with the blockchain: ReserveBlob(·) to reserve

a blob id on the blockchain; StoreCertificate(·) to store a proof

of storage on the blockchain; IsRegistered(𝑖𝑑) to check if a blob

id 𝑖𝑑 is registered on the blockchain; and ReadCertificate(𝑖𝑑) to
read a proof of storage of blob id 𝑖𝑑 from the blockchain.

Table 2 summarizes the main notations used in the algorithms.

Subscripts of matrices and vectors denote access to a specific index.

=
=
=
=
=

Danezis et. al

Algorithm 1Walrus client operations

1: nodes ⊲ the committee of storage nodes

2: shards ⊲ see Section 4

// Store a blob on the network

3: procedure StoreBlob(𝐵, 𝑒𝑥𝑝𝑖𝑟𝑦)
4: // Step 1: Pay and register the blob id on the blockchain

5: (𝑆𝑝 , 𝑆𝑠) ← EncodeBlob(𝐵)
6: 𝑀 ← MakeMetadata(𝑆𝑝 , 𝑆𝑠)
7: 𝑖𝑑 ← MakeBlobId(𝑀)
8: 𝑠𝑖𝑧𝑒 ← ByteSize(𝐵) ⊲ size in bytes

9: ReserveBlob(𝑖𝑑, 𝑠𝑖𝑧𝑒, 𝑒𝑥𝑝𝑖𝑟𝑦) ⊲ on blockchain

10:

11: // Step 2: Send the encoded slivers to the storage nodes

12: 𝑅 ← { } ⊲ storage requests to send to nodes

13: for 𝑛 ∈ nodes do
14: 𝐷𝑛 ← HandledShards(𝑛) ⊲ shards handed by node 𝑛

15: 𝑆 (𝑝,𝑛) ← [𝑆𝑝
𝑖
: 𝑖 ∈ 𝐷𝑛]

16: 𝑆 (𝑠,𝑛) ← [𝑆𝑠
𝑖
: 𝑖 ∈ 𝐷𝑛]

17: StoreRqst← (𝑖𝑑,𝑀, 𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛))
18: 𝑅 ← 𝑅 ∪ { (𝑛, StoreRqst) }
19: await

2𝑓 +1 : {𝑐 ← Send(𝑛, 𝑟) : (𝑛, 𝑟) ∈ 𝑅} ⊲ wait for 2𝑓 + 1 confirmations

20:

21: // Step 3: Record the proof of storage on the blockchain

22: StoreCertificate({𝑐 }, 𝑖𝑑) ⊲ on blockchain

// Read metadata from the network

23: procedure RetrieveMetadata(𝑖𝑑)
24: MetadataRqst← (𝑖𝑑)
25: 𝐷 ←$ {0, shards}𝑛 ⊲ request all shards
26: 𝑁 ← {𝑛 ∈ nodes s.t. ∃𝑠 ∈ 𝐷 ∩ HandledShards(𝑛) }
27: await

2𝑓 +1 : {𝑀 ← Send(𝑛,MetadataRqst) : 𝑛 ∈ 𝑁 } ⊲ wait for 2𝑓 + 1 responses
28: if ∃𝑀 ∈ {𝑀 } s.t. MakeBlobId(𝑀) = 𝑖𝑑 then return𝑀

29: return ⊥

// Read a blob from the network

30: procedure ReadBlob(𝑖𝑑)
31: 𝑀 ← RetrieveMetadata(𝑖𝑑)
32: SliversRqst← (𝑖𝑑)
33: await

2𝑓 +1 : {𝑆𝑠,𝑛) ← Send(𝑛, SliversRqsts) s.t. 𝑛 ∈ nodes :

VerifySliver(𝑆 (𝑠,𝑛) , 𝑀) }
34: 𝐵 ← DecodeBlob({𝑆 (𝑠,∗) }

2𝑓 +1, 𝑀)
35: return 𝐵

Algorithm 2 Helper functions

1: nodes ⊲ the committee of storage nodes

2: shards ⊲ see Section 4

3: procedure EncodeBlob(𝐵)
4: 𝐸 ← ErasureEncode(𝐵) ⊲ expand size: [(𝑓 + 1) × (2𝑓 + 1)] → [shards × shards]

5: 𝑆𝑝 ← [𝐸 (𝑖,∗) : 𝑖 ∈ [0, shards]] ⊲ encoded primary slivers: [shards × 1]

6: 𝑆𝑠 ← [𝐸 (∗,𝑖) : 𝑖 ∈ [0, shards]]⊤ ⊲ encoded secondary slivers: [1 × shards]
7: return (𝑆𝑝 , 𝑆𝑠)

8: procedure MakeMetadata(𝑆𝑝 , 𝑆𝑠)

9: 𝑀𝑝 ← [Hash(𝑠) : 𝑠 ∈ 𝑆𝑝] ⊲ length: 2𝑓 + 1
10: 𝑀𝑠 ← [Hash(𝑠) : 𝑠 ∈ 𝑆𝑠] ⊲ length: 𝑓 + 1
11: 𝑀 ← (𝑀𝑝 , 𝑀𝑠)
12: return𝑀

13: procedure MakeBlobId(𝑀)

14: (𝑀𝑝 , 𝑀𝑠) ← 𝑀

15: 𝑖𝑑 ← (MerkleTree(𝑀𝑝),MerkleTree(𝑀𝑠))
16: return 𝑖𝑑

17: procedure VerifySliver(𝑆 (∗,𝑛) , 𝑀)

18: (𝑀𝑝 , 𝑀𝑠) ← 𝑀

19: return (Hash(𝑠) = 𝑀
𝑝
𝑛 : ∀𝑠 ∈ 𝑆 (𝑝,𝑛)) ∨ (Hash(𝑠) = 𝑀𝑠

𝑛 : ∀𝑠 ∈ 𝑆 (𝑠,𝑛))

20: procedure DecodeBlob({𝑆 (𝑝,∗) }𝑓 +1, 𝑀)

21: 𝑆𝑝 ← ErasureReconstruct({𝑆 (𝑝,∗) }𝑓 +1) ⊲ reconstruct encoded slivers

22: 𝐸 ← SplitIntoMatrix(𝑆𝑝) ⊲ size: shard × shard

23: 𝑆𝑠 ← [𝐸 (∗,𝑖) : 𝑖 ∈ [0, shards]]⊤
24: 𝑀 ′ ← MakeMetadata(𝑆𝑝 , 𝑆𝑠)
25: if 𝑀 ≠ 𝑀 ′ then return ⊥ ⊲ verify encoding correctness, see Section 4.2

26: 𝐵 ← ErasureDecode(𝐸) ⊲ matrix: (𝑓 + 1) × (2𝑓 + 1)
27: return 𝐵

Algorithm 3 Walrus store operations

1: n ⊲ the identifier of the storage node
2: nodes ⊲ the committee of storage nodes

3: shards ⊲ see Section 4

4: db𝑚 ⊲ perists the metadata

5: db𝑏 ⊲ perists the slivers

// Store slivers

6: procedure StoreSlivers(StoreRqst)

7: (𝑖𝑑,𝑀, 𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ← StoreRqst

8:

9: // Check 1: Ensure the node is responsible for the shards

10: 𝐷𝑛 ← HandledShards(n)
11: if ∃𝑠𝑖 ∈ 𝑆𝑝 ∪ 𝑆𝑠 s.t. 𝑖 ∉ 𝐷𝑛

then return ⊥
12:

13: // Check 2: Verify the blob id is registered on chain

14: if ¬IsRegistered(𝑖𝑑) then return ⊥
⊲ read blockchain

15:

16: // Check 3: Verify the metadata is correctly formed

17: if ¬VerifySliver(𝑆 (𝑝,𝑛) , 𝑀) then return ⊥
18: if ¬VerifySliver(𝑆 (𝑠,𝑛) , 𝑀) then return ⊥
19: 𝑖𝑑′ ← MakeBlobId(𝑀)
20: if 𝑖𝑑 ≠ 𝑖𝑑′ then return ⊥
21:

22: db𝑚 [𝑖𝑑] ← 𝑀 ⊲ persist the metadata

23: db𝑏 [𝑖𝑑] ← (𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ⊲ persist the slivers
24: Send(𝑎𝑐𝑘) ⊲ reply with an acknowledgment

// Server metadata

25: procedure ServeMetadata(MetadataRqst)

26: 𝑖𝑑 ← MetadataRqst

27: return db𝑚 [𝑖𝑑] ⊲ return the metadata or ⊥ if not found

28: Reply(𝑎𝑐𝑘)

// Server slivers

29: procedure ServeSlivers(SliversRqst)

30: 𝑖𝑑 ← SliversRqst

31: if ¬ReadCertificate(𝑖𝑑) then return ⊥ ⊲ proof of storage on the blockchain

32: (𝑆 (𝑝,𝑛) , 𝑆 (𝑠,𝑛)) ← db𝑏 [𝑖𝑑] ⊲ return the slivers or ⊥ if not found

33: Reply(𝑆 (𝑠,𝑛))

// Recover slivers

34: procedure RecoverSlivers(𝑖𝑑)
35: 𝑐 ← Client(nodes, shards) ⊲ build a Walrus client (Algorithm 1)

36: 𝐵 ← 𝑐.ReadBlob(𝑖𝑑)
37: 𝐷n ← HandledShards(n) ⊲ shards handed by node 𝑛

38: 𝑆 (𝑝,n) ← [𝑆𝑝
𝑖
: 𝑖 ∈ 𝐷n]

39: 𝑆 (𝑠,n) ← [𝑆𝑠
𝑖
: 𝑖 ∈ 𝐷n]

40: db𝑚 [𝑖𝑑] ← 𝑀 ⊲ persist the metadata

41: db𝑏 [𝑖𝑑] ← (𝑆 (𝑝,n) , 𝑆 (𝑠,n)) ⊲ persist the slivers

	Abstract
	1 Introduction
	2 Models and Definitions
	3 Asynchronous Complete Data Storage (ACDS)
	3.1 Problem Statement
	3.2 Strawman Design
	3.3 Final design: Red Stuff

	4 The Walrus Decentralized Secure Blob Store
	4.1 Writing a Blob
	4.2 Reading a Blob
	4.3 Recovery of Slivers
	4.4 Handling Inconsistent Encoding from Malicious Writers
	4.5 Committee Reconfiguration
	4.6 Storage Challenges

	5 Red Stuff and Walrus Proofs
	5.1 Write Completeness
	5.2 Read Consistency
	5.3 Validity
	5.4 Asychronous Challenges

	6 Evaluation
	6.1 Experimental Setup
	6.2 System Performance
	6.3 Scalability

	7 Related Work
	8 Conclusion
	References
	A Detailed Algorithms

