
Arke

Alberto Sonnino

Scalable and Byzantine Fault Tolerant Privacy-
Preserving Contact Discovery

your contacts all users

discovery

your contacts all users

discovery + Privacy

• 10 Million requests / day • Decentralisation

Web2 Needs Web3 Needs

• O(1) — independent of the total number of users

• Byzantine Fault Tolerant

Arke

0

30

60

90

120

WhatsApp Needs

req/s

0

400

800

1,200

1,600

WhatsApp Needs Arke

req/s

0

400

800

1,200

1,600

WhatsApp Needs Arke

req/s

50 nodes

0

400

800

1,200

1,600

WhatsApp Needs Arke

req/s

50 nodes
< 0.5s latency

How does it work?

user A

user B

authorities

setup

setup

user A

user B

authorities

setup

setup

key generation

key generation

user A

user B

authorities

setup

setup

key generation

key generation

setup email

shared key

?

user A

user B

available storeauthorities

setup

setup

key generation

key generation

write

user A

user B

available storeauthorities

setup

setup

key generation

key generation

write

read

What about blockchains?

user

Google Apple

Twitch Slack

zkLogin

user

Google Apple

Twitch Slack

zkLogin

blockchain

user

Arke
setup

blockchain

user user

Arke
setup

derive
shared key

user

Google Apple

Twitch Slack

zkLogin

More than private chats

• Decentralised messaging

• Bootstrap multi-user gaming sessions

• Airdrops / payments even before recipient has an account

alberto@mystenlabs.com

Paper

alberto@mystenlabs.com

Paper setup
email

key

?

L-Graphs

Performance

also cheap; it takes about 350 ms on our AWS instance and 20
ms on our M1 Macbook Pro, mostly spent verifying the user’s
key request. Assembling a quorum of blind partial keys into
a full private key (performed by the user) takes about 600 ms
on our AWS instance and 41 ms on our M1 Macbook Pro. We
implement this operation pessimistically requiring the user to
verify each blind partial key before aggregation.

B. The Arke Custom Store

We implement a networked multi-core Arke store au-
thority as described in Section V-A. It uses tokio [1] for
asynchronous networking and persists data structures using
Rocksdb [2]. Our implementation uses TCP to achieve reli-
able point-to-point channels, necessary to correctly implement
the distributed system abstractions.

We particularly aim to demonstrate the performance claims
of Section II-C, reformulated as follows. (C1) Arke scales well
with the committee size. (C2) Arke achieves low latency even
under high load, in the WAN, and with large committee sizes.
(C3) Arke achieves enough throughput to operate at planetary
scale. (C4) Arke is robust when some parts of the system
inevitably crash-fail. Note that evaluating BFT protocols in
the presence of Byzantine faults is still an open question [9].

Experimental setup. We deploy a Arke testbed on AWS, using
m5d.8xlarge instances across 10 different AWS regions: N.
Virginia (us-east-1), Oregon (us-west-2), Canada (ca-central-
1), Frankfurt (eu-central-1), Ireland (eu-west-1), London (eu-
west-2), Mumbai (ap-south-1), Singapore (ap-southeast-1),
Tokyo (ap-northeast-1), and Sydney (ap-southeast-2). All data
are persisted on the NVMe drives provided by the AWS
instance (rather than the root partition).

In the following graphs, each data point in the latency
graphs is the average of the latency of all operations of the
run, and the error bars represent one standard deviation (error
bars are sometimes too small to be visible on the graph). We
instantiate one benchmark client colocate with each authority
submitting client requests at a fixed rate for 3 minutes. We
benchmark two operations; (i) write and (ii) write followed by
synchronize (see Section V-A); we do not benchmark read as it
is a simple database query common to many classic systems.
When referring to latency, we mean the time elapsed from
when the client submits the write request to when it assembles
a certificate over the request (resp. when it is notified that a
quorum of authorities is synchronized).

Benchmark in the common case. Figure 5 illustrates the
latency and throughput of Arke for varying numbers of au-
thorities. Every authority runs one shard (it thus runs on a
single machine). We observe virtually no performance differ-
ence between runs with 10, 20, or even 50 authorities, thus
validating our claim (C1). Arke can process about 1,500 req/s
with sub-second latency in all configurations. As expected the
difference between simple write requests and write followed
by synchronize is minimal. The latter displays a slightly higher
latency due to the extra round-trip required to synchronize
the authorities (about 100-200 ms) but throughput remains
the same. This observation validates our claim (C2). Based
on the system usage estimates for the large-scale end-to-
end encrypted messaging service WhatsApp (Section I), we
would arrive at the requirement to process around 120 req/s.

Fig. 5. Arke WAN latency-throughput with 10, 20, and 50 authorities (no
faults); one shard per authority.

Fig. 6. Arke WAN latency-throughput with 10 validators (0, 1, and 3 faults);
one shard per authority

Thus Arke exceeds by over 10x the throughput required to
operate at this scale which validates claim (C3). Assuming
Facebook Messenger, Signal, and Telegram have similar usage
to WhatsApp, Arke can process the combined load of these
services and thus operate at a planetary scale.

Benchmark under faults. Figure 6 shows the performance
of Arke for a 10-authorities deployment when the system is
experiencing (crash-)faults; after running without faults for
one minute, 0, 1, and 3 authorities permanently crash. Every
authority runs a single shard (each authority thus runs on a
single machine). The figure shows that there is no noticeable
throughput drop under crash faults. Arke can finalize around
1,500 req/s with a sub-second latency. The latency slightly
increases with the number of faulty authorities (by at most
200 ms). Clients finalize operations as soon as the fastest
quorum of authorities replies (see Section V-A); as authorities
crash, clients are thus left with fewer authority replies from
which to assemble certificates. This observation validates our
claim (C4). The performance of Arke shines compared to
traditional consensus systems [10], [20], [21], [22], [27], [91]
that are known to suffer 10x or 20x performance drop when
experiencing leader failures [8], [21], [37], [47], [74], [80],
[83].

VII. RELATED WORK

We review related work under two different lenses. We first
survey existing contact discovery schemes. Then, we review
related cryptographic techniques to the ones used in Arke.

A. Contact Discovery

Arke implements private contact discovery in a fundamen-
tally different manner to related work. The literature contains
a large body of private contact discovery protocols based

12

Performance

also cheap; it takes about 350 ms on our AWS instance and 20
ms on our M1 Macbook Pro, mostly spent verifying the user’s
key request. Assembling a quorum of blind partial keys into
a full private key (performed by the user) takes about 600 ms
on our AWS instance and 41 ms on our M1 Macbook Pro. We
implement this operation pessimistically requiring the user to
verify each blind partial key before aggregation.

B. The Arke Custom Store

We implement a networked multi-core Arke store au-
thority as described in Section V-A. It uses tokio [1] for
asynchronous networking and persists data structures using
Rocksdb [2]. Our implementation uses TCP to achieve reli-
able point-to-point channels, necessary to correctly implement
the distributed system abstractions.

We particularly aim to demonstrate the performance claims
of Section II-C, reformulated as follows. (C1) Arke scales well
with the committee size. (C2) Arke achieves low latency even
under high load, in the WAN, and with large committee sizes.
(C3) Arke achieves enough throughput to operate at planetary
scale. (C4) Arke is robust when some parts of the system
inevitably crash-fail. Note that evaluating BFT protocols in
the presence of Byzantine faults is still an open question [9].

Experimental setup. We deploy a Arke testbed on AWS, using
m5d.8xlarge instances across 10 different AWS regions: N.
Virginia (us-east-1), Oregon (us-west-2), Canada (ca-central-
1), Frankfurt (eu-central-1), Ireland (eu-west-1), London (eu-
west-2), Mumbai (ap-south-1), Singapore (ap-southeast-1),
Tokyo (ap-northeast-1), and Sydney (ap-southeast-2). All data
are persisted on the NVMe drives provided by the AWS
instance (rather than the root partition).

In the following graphs, each data point in the latency
graphs is the average of the latency of all operations of the
run, and the error bars represent one standard deviation (error
bars are sometimes too small to be visible on the graph). We
instantiate one benchmark client colocate with each authority
submitting client requests at a fixed rate for 3 minutes. We
benchmark two operations; (i) write and (ii) write followed by
synchronize (see Section V-A); we do not benchmark read as it
is a simple database query common to many classic systems.
When referring to latency, we mean the time elapsed from
when the client submits the write request to when it assembles
a certificate over the request (resp. when it is notified that a
quorum of authorities is synchronized).

Benchmark in the common case. Figure 5 illustrates the
latency and throughput of Arke for varying numbers of au-
thorities. Every authority runs one shard (it thus runs on a
single machine). We observe virtually no performance differ-
ence between runs with 10, 20, or even 50 authorities, thus
validating our claim (C1). Arke can process about 1,500 req/s
with sub-second latency in all configurations. As expected the
difference between simple write requests and write followed
by synchronize is minimal. The latter displays a slightly higher
latency due to the extra round-trip required to synchronize
the authorities (about 100-200 ms) but throughput remains
the same. This observation validates our claim (C2). Based
on the system usage estimates for the large-scale end-to-
end encrypted messaging service WhatsApp (Section I), we
would arrive at the requirement to process around 120 req/s.

Fig. 5. Arke WAN latency-throughput with 10, 20, and 50 authorities (no
faults); one shard per authority.

Fig. 6. Arke WAN latency-throughput with 10 validators (0, 1, and 3 faults);
one shard per authority

Thus Arke exceeds by over 10x the throughput required to
operate at this scale which validates claim (C3). Assuming
Facebook Messenger, Signal, and Telegram have similar usage
to WhatsApp, Arke can process the combined load of these
services and thus operate at a planetary scale.

Benchmark under faults. Figure 6 shows the performance
of Arke for a 10-authorities deployment when the system is
experiencing (crash-)faults; after running without faults for
one minute, 0, 1, and 3 authorities permanently crash. Every
authority runs a single shard (each authority thus runs on a
single machine). The figure shows that there is no noticeable
throughput drop under crash faults. Arke can finalize around
1,500 req/s with a sub-second latency. The latency slightly
increases with the number of faulty authorities (by at most
200 ms). Clients finalize operations as soon as the fastest
quorum of authorities replies (see Section V-A); as authorities
crash, clients are thus left with fewer authority replies from
which to assemble certificates. This observation validates our
claim (C4). The performance of Arke shines compared to
traditional consensus systems [10], [20], [21], [22], [27], [91]
that are known to suffer 10x or 20x performance drop when
experiencing leader failures [8], [21], [37], [47], [74], [80],
[83].

VII. RELATED WORK

We review related work under two different lenses. We first
survey existing contact discovery schemes. Then, we review
related cryptographic techniques to the ones used in Arke.

A. Contact Discovery

Arke implements private contact discovery in a fundamen-
tally different manner to related work. The literature contains
a large body of private contact discovery protocols based

12

The Crypto

Setup

IdP

user

Blockchain
Prove ownership
of email/phone

number

t1 = H1(nA)w ∈ G1

t2 = H2(nA)w ∈ G2

nA σ1 = ta
1 , m1 = H1(nA)a

σ2 = ta
2 , m2 = H2(nA)a

a ← Zq

w , pkw1
∈ G1 , pkw2

∈ G2

BLS . vrfy(σ1, m1, pkw1
)

SLB . vrfy(σ2, m2, pkw2
)

ms
1 = H1(nA)as

ms
2 = H2(nA)as

user
k1 = H1(nA)s = (ms

1)−a

user

s , pks1
∈ G1 , pks2

∈ G2

k2 = H2(nA)s = (ms
2)−a

Key Derivation

SAB = e(k1, H2(nB)) = e(H1(nA)s, H2(nB))

user A

SBA = e(H1(nB), k2) = e(H1(nB), H2(nA)s)

kAB = KDF(SAB XOR SBA)

key = gtAB
1 , tAB = H(sAB)

val = cAB = AEADk(pkA)

SAB = e(H1(nA), k2) = e(H1(nA), H2(nB)s)

user B

SBA = e(k1, H2(nA)) = e(H1(nB)s, H2(nA))

kAB = KDF(SAB XOR SBA)

key = gtBA
1 , tBA = H(sBA)

val = cBA = AEADk(pkB)

Sui is special

user A

kAB = KDF(SAB XOR SBA)

key = gtAB
1 , tAB = H(sAB)

val = cAB = AEADk(addrA)

1. Create a new owned object with owner hash(key)
2. The object/event contains a single field: val
3. Readers gather all objects owned by a public key
4. Single-owner object structure remains because

there is a single writer for every key

SAB = e(k1, H2(nB)) = e(H1(nA)s, H2(nB))
SBA = e(H1(nB), k2) = e(H1(nB), H2(nA)s)

