DoS Attacks in the Age of Bockchain

Alberto Sonnino

This talk shows the problems

- DoS attacks are vastly ignored in the blockchain community
- A tour of blockchain (consensus) protocols
- Highlights general DoS weaknesses of blockchains
- Not a novelty per se but opportunities to provide DoS protections
- Blockchains present unique DoS challenges
- How SCION-like architecture fit in

2. submit transaction

1. make transaction

2. submit transaction 1. make transaction

2. submit transaction 1. make transaction

Blockchain Properties (informal)

- Safety -> No double spend, transactions are totally ordered
- Liveness -> The protocol (eventually) makes progress

ictions are totally ordered Ily) makes progress

Blockchain Attack Surface: Client <-> Node

Blockchain Attack Surface: Node <-> Node

- No fixed identity
- Nodes join and leave at will (permissionless) or frequently (quorum-based)
- Run by different entities connected via the internet
- Leased lines / private WAN solutions very costly and inflexible

Challenges

- Neglected threats:
 - DDoS
 - Outages ullet
 - Routing hijacks

Challenges

[from ETH Zurich]

Network Model Sync | Partial-Sync | Async

• Synchronous

node 1 send message

Network Model Sync | Partial-Sync | Async

• Partially Synchronous

node 1 send message node 2 received message

no time guarantee, but eventually delivered

node 2 received message

Network Model Sync | Partial-Sync | Async

Asynchronous

no time guarantee, but eventually delivered

- LibraBFT / DiemBFT
- Tendermint
- PBFT

Leader-Based Protocols Typical pattern

Leader-Based Protocols If the leader fail?

- Wait for a timer (5 30 sec)
- Complex view-change protocol
- Start over with a new leader

Leader-Based Protocols If the leader fail?

- Problem: DoS on node <-> node links
- Safety attack (double-spend) if synchronous protocol
- Liveness attack (never commit) if partially-synchronous protocol

nks nchronous protocol partially-synchronous protocol

Side Chains Lock Fundings

Side Chains Off-chain Transfers

sig(2, idx)

sig(4, idx+1)

Side Chains Settle

Side Chains Settle

Side Chains

- Problem: DoS on client <-> node
- Synchronous protocols
- Only in Lightning Network: 140,000,000 USD

• If Bob is under DoS and misses the deadline, Alice can lies and steal coins

SCION **Improve Security**

- Nodes communicate over IP & SCION
- Communication between SCION nodes with strong guarantees
 - Packet authentication
 - DDoS resilience
 - Internet fault-independence

No upgrades to the consensus protocol

[from ETH Zurich]

SCION Improve Performance under Attack

- High availability, secure against DDoS and routing attacks
- Fast failover & multipath
- High efficiency through path optimization
- Works in distributed scenarios
- Fault-independent from today's Internet

Lightning Filter Guarantee Network performance and availability

- Filtering service that is deployed upstream of protected end server
- Performs:
 - Packet authentication (DRKey) → authentic source AS
 - Duplicate suppression (using Bloom Filter) \rightarrow no duplicates
 - Per-AS history collection (using Cuckoo hash table)
 - History-based resource allocation and filtering during DoS \rightarrow fair resource allocation based on previous usage
- Result: collateral damage only for hosts within attacker-controlled AS

[from ETH Zurich]

Conclusion

- A lot of money is involved and many things can go wrong • An emerging field with many opportunities
- DoS attacks against blockchains are vastly ignored ullet