
Modern Blockchains through
the Lens of Network Security

Alberto Sonnino

Byzantine Fault Tolerance

Byzantine Fault Tolerance

 > 2/3

1. make transaction

2. submit transaction

1. make transaction

2. submit transaction

3. sequence

and verify

1. make transaction

2. submit transaction

3. sequence

and verify

1. make transaction

4. Execute

and store

• Distributed Systems

• But not like a DB running in my datacenter

• Adversarial network and Byzantine adversaries

• Systems Security

• Both network and systems security

• Interaction between networked components

• Programming Languages

• Execute the smart contract & ensure determinism

• Solidity, Move

• Cryptography

• Validators cannot use secrets to execute smart contracts

• Anonymous credentials, ZK-proofs

• Distributed Systems

• But not like a DB running in my datacenter

• Adversarial network and Byzantine adversaries

• Systems Security

• Both network and systems security

• Interaction between networked components

• Programming Languages

• Execute the smart contract & ensure determinism

• Solidity, Move

• Cryptography

• Validators cannot use secrets to execute smart contracts

• Anonymous credentials, ZK-proofs

Security Properties

LivenessSafety

Undesirable things never
happen

Desirable things eventually
happen

Adversary

• Synchronous: A message sent will be delivered
before a maximum (known) delay.

• Asynchronous: A message sent will eventually
be delivered at an arbitrary time before a
maximum (unknown) delay.

• Partial Synchronous: the network is
asynchronous but after some time it enters a
period of synchrony.

•

ChallengesProperties

#1 The Network: Worst possible schedule

• Theoretical models: Need careful implementation to
ensure we approximate them, e.g., retransmissions.

• Memory: Naive implementations use infinite buffers.
Identify conditions after which retransmissions are
not necessary and buffers can be freed.

• Asynchrony means the protocol should maintain
properties for any re-ordering of message deliveries.

• Unknown delay means delay should be adaptive to
ensure robustness.

Adversary

• Correct / honest / good: Will remain live and follow
the protocol as specified by the designers of the
system.

• Byzantine: will deviate arbitrarily from the protocol.
May respond incorrectly or not at all.

ChallengesProperties

#2 Bad Nodes: Arbitrary behaviour

• Crash & recover: still a correct validators with very
high latency. Need persistence to ensure this

• Rational: honest validators may have some
discretion. They may use it to maximise profit

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator
client

validator

…

client

client

client

client

client

Network Security
Challenge #1: Nodes

• Validators are exposed (not in datacenter no on beefy machines)

Network Security
Challenge #1: Nodes

• Validators are exposed (not in datacenter no on beefy machines)

• Highly dynamic set of nodes

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator
client

validator

…

client

client

client

client

client

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator

validator

…

full node
light client

Network Security
Challenge #2: Clients

• Different types of target links: clients-validator and validator-validator

Network Security
Challenge #2: Clients

• Different types of target links: clients-validator and validator-validator

• Highly dynamic clients

Network Security
Challenge #2: Clients

• Different types of target links: clients-validator and validator-validator

• Highly dynamic clients

• Clients have no fixed identity

Network Security
Challenge #2: Clients

• Different types of target links: clients-validator and validator-validator

• Highly dynamic clients

• Clients have no fixed identity

• Unclear validator selection algorithm

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator
client

validator

…

client

client

client

client

client

Package,
function

Arguments

Object Inputs

Gas
Information

Signature

Coin::Send

Alice’s account

Bob’s account,
Balance=5

0.001, max=0.005

Transaction’s
content

• Unique ID

• Version number

• Ownership Information

• Type

Objects:

Example Transaction

T1

Inputs: O1, O2, O3

Output: Mutate O1, Transfer O2, Delete O3, Create O4

Example Transaction

T1

Inputs: O1, O2, O3

Output: Mutate O1, Transfer O2, Delete O3, Create O4

e.g., Mutate a
coin to pay for

gas

e.g., Transfer
my warrior to

friend

e.g., Delete a
disease caught
by my warrior

e.g., Be
rewarded with a

mystery gift

Network Security
Challenge #3: Admission Control

• No established way to run pre-checks on input transactions

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator
client

validator

…

client

client

client

client

client

• Round number

• Author

• Payload (transactions)

• Signature

r1 r2

r1 r2

• Link to previous blocks

L1

r1 r2

• Wait for the leader

• All validators run in parallel

r1 r2

L1

Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?

r1 r2 r3 r4 r5 r6 r7

L1

L4

L7

End Goal

L1

L2L4

Ordering leaders

• We focus on ordering leaders: L1 L4 L7

L7

L1

L4

• We focus on ordering leaders:

• Linearising the sub-DAG is simple

L1 L4 L7

L7

End Goal
Ordering leaders

r1 r2 r3

L1

How is it done?

r1 r2 r3

L1

r1 r2 r3

L1

Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?

• DoS against the leader are particularly effective

r1 r2 r3

L1

Message not received in order?

• Bad leader?

• Or bad network?

Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?

• DoS against the leader are particularly effective

• Reordering messages causes massive slowdowns

Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?

• DoS against the leader are particularly effective

• Reordering messages causes massive slowdowns

• Nodes don’t know whether they are connected to a malicious node

Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?

• DoS against the leader are particularly effective

• Reordering messages causes massive slowdowns

• Nodes don’t know whether they are connected to a malicious node

• Bad nodes have access to insider information (committee addresses)

validator

validator

validator

validator

router

router

router

router

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator

validator

…

client

client

client

client

client

client

Example Transaction

T1

Inputs: O1, O2, O3

Output: Mutate O1, Transfer O2, Delete O3, Create O4

Check transaction, assign locks

O1

O2

O3

Version = 10

Owner = Alice

Version = 27

Owner = Alice

Version = 1001

Owner = Alice

Checks

Input objects exist

Function call details

Signature of Alice

Execute in parallel

O1

O2

O4

Execute T1

• O1 mutated

• O2 transferred

• O3 deleted

• O4 created

Version = 11

Owner = X

Version = 28

Owner = Bob

Version = 1

Owner = Alice

Admission
Control Ordering Execution Persistence

validator

client

validator

…

client

client

client

client

client

Pre-
Execution

Pre-
Execution

Execution

Execution

Network Security
Challenge #5: Execution

• Intra-datacenter connections but on low power machines

Network Security
Challenge #5: Execution

• Intra-datacenter connections but on low power machines

• Load drastically varies: need elasticity

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator

validator

…

client

client

client

client

client

client

Root

O1 O2 O3 O4
• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

Root

O1 O2 O3 O4

H(O1,O2) H(O3,O4)

• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

• Digest

• Metadata

• Content

Admission
Control Ordering Execution Persistence

validator

client

validator

…

client

client

client

client

client

Persistence

Persistence

Network Security
Challenge #6: Persistence

• Need low-latency networking to distribute the tree creation

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator

validator

…

client

client

client

client

client

client

Admission
Control Ordering Execution Persistence

validator

Admission
Control Ordering Execution Persistence

validator

…

validator

full node

light client

Network Security
Challenge #7: Reads

• Potentially very large number of readers (>400)

Network Security
Challenge #7: Reads

• Potentially very large number of readers (>400)

• Unpredictable, may read arbitrary data

Network Security
Challenge #7: Reads

• Potentially very large number of readers (>400)

• Unpredictable, may read arbitrary data

• Sometimes require extreme performance

Network Security
Challenge #7: Reads

• Potentially very large number of readers (>400)

• Unpredictable, may read arbitrary data

• Sometimes require extreme performance

• Most reads must be free

validator

validator

router

router

router

router

router

router

router

router

router

router

alberto@mystenlabs.com

