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• Validators cannot use secrets to execute smart contracts  

• Anonymous credentials, ZK-proofs
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Security Properties

LivenessSafety

Undesirable things never 
happen

Desirable things eventually 
happen



Adversary

• Synchronous: A message sent will be delivered 
before a maximum (known) delay. 

• Asynchronous: A message sent will eventually 
be delivered at an arbitrary time before a 
maximum (unknown) delay. 

• Partial Synchronous: the network is 
asynchronous but after some time it enters a 
period of synchrony. 

•

ChallengesProperties

#1 The Network: Worst possible schedule 

• Theoretical models: Need careful implementation to 
ensure we approximate them, e.g., retransmissions. 

• Memory: Naive implementations use infinite buffers. 
Identify conditions after which retransmissions are 
not necessary and buffers can be freed. 

• Asynchrony means the protocol should maintain 
properties for any re-ordering of message deliveries. 

• Unknown delay means delay should be adaptive to 
ensure robustness.



Adversary

• Correct / honest / good: Will remain live and follow 
the protocol as specified by the designers of the 
system. 

• Byzantine: will deviate arbitrarily from the protocol. 
May respond incorrectly or not at all.

ChallengesProperties

#2 Bad Nodes: Arbitrary behaviour

• Crash & recover:  still a correct validators with very 
high latency. Need persistence to ensure this 

• Rational: honest validators may have some 
discretion. They may use it to maximise profit
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Network Security
Challenge #2: Clients

• Different types of target links: clients-validator and validator-validator 

• Highly dynamic clients 

• Clients have no fixed identity 

• Unclear validator selection algorithm
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Package, 
function

Arguments

Object Inputs 

Gas 
Information

Signature

Coin::Send

Alice’s account

Bob’s account, 
Balance=5

0.001, max=0.005

Transaction’s 
content

• Unique ID 

• Version number 

• Ownership Information 

• Type

Objects:



Example Transaction

T1 

Inputs: O1, O2, O3 

Output: Mutate O1, Transfer O2, Delete O3, Create O4



Example Transaction

T1 

Inputs: O1, O2, O3 

Output: Mutate O1, Transfer O2, Delete O3, Create O4

e.g., Mutate a 
coin to pay for 

gas

e.g., Transfer 
my warrior to 

friend

e.g., Delete a 
disease caught 
by my warrior

e.g., Be 
rewarded with a 

mystery gift



Network Security
Challenge #3: Admission Control

• No established way to run pre-checks on input transactions
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• Round number 

• Author 

• Payload (transactions) 

• Signature

r1 r2



r1 r2

• Link to previous blocks



L1

r1 r2

• Wait for the leader



• All validators run in parallel

r1 r2

L1



Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node?



r1 r2 r3 r4 r5 r6 r7

L1

L4

L7



End Goal
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Ordering leaders

• We focus on ordering leaders: L1 L4 L7
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L1

L4

• We focus on ordering leaders:  

• Linearising the sub-DAG is simple

L1 L4 L7

L7

End Goal
Ordering leaders



r1 r2 r3

L1

How is it done?
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Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node? 

• DoS against the leader are particularly effective



r1 r2 r3

L1

Message not received in order?

• Bad leader? 

• Or bad network?
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Network Security
Challenge #4: Ordering

• How to find the best path to send the block to another node? 

• DoS against the leader are particularly effective 

• Reordering messages causes massive slowdowns 

• Nodes don’t know whether they are connected to a malicious node 

• Bad nodes have access to insider information (committee addresses)
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Example Transaction

T1 

Inputs: O1, O2, O3 

Output: Mutate O1, Transfer O2, Delete O3, Create O4



Check transaction, assign locks

O1

O2

O3

Version = 10 

Owner = Alice

Version = 27 

Owner = Alice

Version = 1001 

Owner = Alice

Checks 

Input objects exist 

Function call details 

Signature of Alice



Execute in parallel

O1

O2

O4

Execute T1 

• O1 mutated 

• O2 transferred 

• O3 deleted 

• O4 created

Version = 11 

Owner = X

Version = 28 

Owner = Bob

Version = 1 

Owner = Alice
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Network Security
Challenge #5: Execution

• Intra-datacenter connections but on low power machines 

• Load drastically varies: need elasticity
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Root
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Network Security
Challenge #6: Persistence

• Need low-latency networking to distribute the tree creation
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Network Security
Challenge #7: Reads

• Potentially very large number of readers (>400) 

• Unpredictable, may read arbitrary data 

• Sometimes require extreme performance 

• Most reads must be free
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