Bullshark

DAG BFT Protocols Made Practical

Alberto Sonnino



L zaf \
- -~
>

| Nl D
Alexander
Spiegelman

Acknowledgements

Neil Alberto
Giridharan Sonnino

Work done at Facebook Novi

Lefteris
Kokoris-Kogias



Byzantine Fault Tolerance

-
—
N—
-
——
N—
-
——
N

-
——
N—
-
—
N

-
—
N
-
——
N—



« NO common-coin

Consensus on top of Narwhal

Goal of this project

Simple Performant
» Zero-message overhead - Take advantage of Narwhal
- No view-change « Exploit periods of synchrony




Current Designs

« Monolithic protocol sharing transaction data as part of the consensus
« Optimize overall message complexity of the consensus protocol

» Complex & Error-prone view-change protocol



Current Designs

Typical leader-based protocols

VYV YV




Current Designs

Typical leader-based protocols

YYYYY Yy




Current Designs

Typical leader-based protocols

-VW - ’VWV







The mempool is the key

Reaching consensus on metadata is cheap



Narwhal

The workers and the primary

h ( Narwhal mempool \
Worker 1
Worker 2
Client |
transactions Primary
|
|
|
Worker n
Yy \_ Y.




Narwhal

The workers and the primary

A ( Narwhal mempool \

Transactions

> Worker 1

Transactions

> Worker 2

Client

: Primary
transactions

Transactions

> Worker n




Narwhal

The workers and the primary

A ( Narwhal mempool \
Transactions Batch
> Worker 1
Transactions Batch
> Worker 2
Client :
: Primary
transactions
|
|
|
Transactions ‘ Batch

> Worker n




Narwhal

The workers and the primary

A ( Narwhal mempool \
Transactions Batch
> Worker 1
........................ Digest .
Transactions Batch
> Worker 2
\ 4
Cllent .............. > Prlmary
transactions Digest
| 3
!
|
Digest
Transactions ‘ Batch
> Worker n
y \_ Y




Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n




Narwhal

The primary machine

block header

H




Narwhal

The primary machine

block header certificate




Narwhal

The primary machine

block header certificate




Narwhal

The primary machine

block header certificate

| Round 1




Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast




Narwhal

The primary machine

b A
“(ﬁ”ﬁ,w




Modified Narwhal

Adapt Narwhal for partial-synchronous networks




Modified Narwhal

Even rounds: wait for the leader (or to timeout)

s
w-@

\g




Modified Narwhal

Odd rounds: wait for enough votes (or to timeout)

N NN
R
N




Bullshark

Zero-message partially-synchronous consensus



Bullshark

Zero-message partially-synchronous consensus

* without asynchronous fallback



Bullshark

Just interpret the DAG

2

Vi

W

\
AN\




Bullshark

Deterministic leader every 2 rounds

2

&‘

\
AN\

m




Bullshark

The leader needs f+1 links from round r

r2 r3

)‘
R

m




Bullshark

The leader needs f+1 links from round r

r2 r3

J

4
X

\

L1




Bullshark

The leader needs f+1 links from round r

AN YA
R




Bullshark

Elect the leader of r4

WX
oy

S




k
1
ullsha

B

upport rs
ough e;
r L2 has in ( Lz /
Leader2
%
\th n
-

X \ﬁ@




Bullshark

Leader L2 has links to leader L1

Y
ae




Bullshark

Commit all the sub-DAG of the leader

o
A -
i




Bullshark

Commit all the sub-DAG of the leader

NN XX

w« /




Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal



Evaluation

Experimental setup on AWS




|
()]
.
T
F U
3 =
@
L
 ©
-l

Evaluation
Throughput latency graph

U
©
|

h
©
l

w
©
|

Hotstuff, 10 nodes —$— Tusk, 10 nodes —$— Bullshark, 10 nodes
Hotstuff, 20 nodes == Tusk, 20 nodes == Bullshark, 20 nodes
Hotstuff, 50 nodes -®- Tusk, 50 nodes -®- Bullshark, 50 nodes

B B B E—" AN R — |

tx size: 512 B

75k 100k

150k 175k |




Evaluation

Performance under faults

Hotstuff, 10 nodes (1 faulty)
Hotstuff, 10 nodes (3 faulty)
—$— Tusk, 10 nodes (1 faulty)
—$- Tusk, 10 nodes (3 faulty)
—&— Bullshark, 10 nodes (1 faulty)
-~ Bullshark, 10 nodes (3 faulty)

60k 80k 100k 120k |




Conclusion

ulishark

- Zero-message overhead, no view-change, no common-coin

- Disseminate data with Narwhal, exploits periods of synchrony

« Paper: https://sonnino.com/papers/bullshark.pdf

» Code: https://github.com/asonnino/narwhal


https://sonnino.com/papers/bullshark.pdf

alberto@mystenlabs.com

Alberto Sonnino



