
Bullshark

Alberto Sonnino

DAG BFT Protocols Made Practical

Acknowledgements

Alberto
Sonnino

Work done at Facebook Novi

Alexander
Spiegelman

Lefteris
Kokoris-Kogias

Neil
Giridharan

 > 2/3

Byzantine Fault Tolerance

Consensus on top of Narwhal

Simple Performant

• Zero-message overhead

• No view-change

• No common-coin

• Take advantage of Narwhal

• Exploit periods of synchrony

Goal of this project

Current Designs

• Monolithic protocol sharing transaction data as part of the consensus

• Optimize overall message complexity of the consensus protocol

• Complex & Error-prone view-change protocol

Current Designs
Typical leader-based protocols

Current Designs
Typical leader-based protocols

Current Designs
Typical leader-based protocols

Narwhal
Dag-based mempool

Reaching consensus on metadata is cheap

The mempool is the key

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'

Narwhal
The primary machine

G1

G2

G3

block header

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal
The primary machine

r1 r2 r3 r4 r5

Modified Narwhal
Adapt Narwhal for partial-synchronous networks

Modified Narwhal
Even rounds: wait for the leader (or to timeout)

L1

r1 r2 r3 r4 r5

L2

Modified Narwhal
Odd rounds: wait for enough votes (or to timeout)

L1

r1 r2 r3 r4 r5

L2

Bullshark
Zero-message partially-synchronous consensus

Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark
Just interpret the DAG

r1 r2

Bullshark
Deterministic leader every 2 rounds

r1 r2

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

One node supports L1!

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

L1

Bullshark
Elect the leader of r4

r1 r2 r3

L1

L2

r4

Bullshark
Leader L2 has enough support

r1 r2 r3

L1

r4 r5

L2

Bullshark
Leader L2 has links to leader L1

r1 r2 r3

L1

r4 r5

L2

First commit L1 Then commit L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Implementation

• Written in Rust

• Networking: Tokio (TCP)

• Storage: RocksDB

• Cryptography: ed25519-dalek

https://github.com/asonnino/narwhal

Evaluation
Experimental setup on AWS

m5d.8xlarge

Evaluation
Throughput latency graphConference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

tx size: 512 B

Evaluation
Performance under faults

Conference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

Conclusion

• Paper: https://sonnino.com/papers/bullshark.pdf

• Code: https://github.com/asonnino/narwhal

• Zero-message overhead, no view-change, no common-coin

• Disseminate data with Narwhal, exploits periods of synchrony

Bullshark

https://sonnino.com/papers/bullshark.pdf

alberto@mystenlabs.com
Alberto Sonnino

