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Byzantine Fault Tolerance



Consensus on top of Narwhal

Simple Performant

• Zero-message overhead 

• No view-change 

• No common-coin

• Take advantage of Narwhal 

• Exploit periods of synchrony

Goal of this project



Current Designs

• Monolithic protocol sharing transaction data as part of the consensus 

• Optimize overall message complexity of the consensus protocol 

• Complex & Error-prone view-change protocol
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Narwhal
Dag-based mempool



Reaching consensus on metadata is cheap

The mempool is the key
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The workers and the primary
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Byzantine 'Reliable' Broadcast



Narwhal
The primary machine
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Modified Narwhal
Adapt Narwhal for partial-synchronous networks



Modified Narwhal
Even rounds: wait for the leader (or to timeout)
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Modified Narwhal
Odd rounds: wait for enough votes (or to timeout)
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Bullshark
Zero-message partially-synchronous consensus



Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback



Bullshark
Just interpret the DAG
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Bullshark
Deterministic leader every 2 rounds
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The leader needs f+1 links from round r
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The leader needs f+1 links from round r
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One node supports L1!



Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !  
(Nothing is committed at this stage)

L1



Bullshark
Elect the leader of r4
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Bullshark
Leader L2 has enough support
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Bullshark
Leader L2 has links to leader L1
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Implementation

• Written in Rust 

• Networking: Tokio (TCP) 

• Storage: RocksDB 

• Cryptography: ed25519-dalek

https://github.com/asonnino/narwhal



Evaluation
Experimental setup on AWS

m5d.8xlarge



Evaluation
Throughput latency graphConference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

tx size: 512 B
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Conclusion

• Paper: https://sonnino.com/papers/bullshark.pdf 

• Code: https://github.com/asonnino/narwhal

• Zero-message overhead, no view-change, no common-coin 

• Disseminate data with Narwhal, exploits periods of synchrony

Bullshark

https://sonnino.com/papers/bullshark.pdf
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