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Byzantine Fault Tolerance
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« NO common-coin

Consensus on top of Narwhal

Goal of this project

Simple Performant
» Zero-message overhead - Take advantage of Narwhal
- No view-change « Exploit periods of synchrony




Current Designs

« Monolithic protocol sharing transaction data as part of the consensus
« Optimize overall message complexity of the consensus protocol

» Complex & Error-prone view-change protocol



Current Designs

Typical leader-based protocols
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Current Designs

Typical leader-based protocols
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Current Designs

Typical leader-based protocols
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The mempool is the key

Reaching consensus on metadata is cheap



Narwhal

The workers and the primary
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Narwhal

The workers and the primary
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The workers and the primary
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Narwhal

The workers and the primary
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Client
transactions

The workers and the primary
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Narwhal

The primary machine

block header
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Narwhal

The primary machine

block header certificate
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The primary machine
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Narwhal

The primary machine

block header certificate
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Narwhal

The primary machine

block header certificate

| Round 1
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Narwhal

The primary machine
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Modified Narwhal

Adapt Narwhal for partial-synchronous networks




Modified Narwhal

Even rounds: wait for the leader (or to timeout)
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Modified Narwhal

Odd rounds: wait for enough votes (or to timeout)
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Bullshark

Zero-message partially-synchronous consensus



Bullshark

Zero-message partially-synchronous consensus

* without asynchronous fallback



Bullshark

Just interpret the DAG
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Bullshark

Deterministic leader every 2 rounds
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Bullshark

The leader needs f+1 links from round r
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Bullshark

The leader needs f+1 links from round r
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Bullshark

The leader needs f+1 links from round r
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Bullshark

Elect the leader of r4
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Bullshark

Leader L2 has links to leader L1
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Bullshark

Commit all the sub-DAG of the leader
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Bullshark

Commit all the sub-DAG of the leader
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Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal



Evaluation

Experimental setup on AWS
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Evaluation
Throughput latency graph
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Evaluation

Performance under faults

Hotstuff, 10 nodes (1 faulty)
Hotstuff, 10 nodes (3 faulty)
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Conclusion

ulishark

- Zero-message overhead, no view-change, no common-coin

- Disseminate data with Narwhal, exploits periods of synchrony

« Paper: https://sonnino.com/papers/bullshark.pdf

» Code: https://github.com/asonnino/narwhal
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