
Efficient DAG-Based Consensus

Alberto Sonnino

Sui Eng Offsite 22

Traditional Designs

• Monolithic protocol sharing transaction data as part of the consensus

• Optimize overall message complexity of the consensus protocol

Observation

Current Designs
Typical leader-based protocols

Current Designs
Typical leader-based protocols

re
so

ur
ce

 u
til

iz
at

io
n lead

er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Reaching consensus on metadata is cheap

Data dissemination is the key

Narwhal
Dag-based mempool

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'

Narwhal
The primary machine

G1

G2

G3

block header

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal
The primary machine

r1 r2 r3 r4 r5

Narwhal
Data Dissemination & Proof of Availability

• The workers ship batch of transactions

• Many workers to scale out and use resources concurrently

• The primary constantly broadcasts the batch digests

• Headers at round r contains references to 2f+1 certificates of round r-1

• Build a structured DAG of certificates

Tusk
Zero-message asynchronous consensus

Tusk
Add common coin & Interpret the DAG

r1 r2 r3

Tusk
The random coin elects the leader of r-2

L1

r1 r2 r3

coin

Tusk
The leader needs f+1 links from round r-1

L1

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

Tusk
Nothing is committed and we keep build the DAG

L1

r1 r2 r3 r4 r5

Tusk
Elect the leader of r3

L1

r1 r2 r3 r4 r5

coin

L2

Tusk
Leader L2 has enough support

L1

r1 r2 r3 r4 r5

L2

Tusk
Leader L2 has links to leader L1

L1

L2

r1 r2 r3 r4 r5

First commit L1 Then commit L2

Tusk
Commit all the sub-DAG of the leader

L1

r1 r2 r3 r4 r5

L2

Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark
Just interpret the DAG

r1 r2

Bullshark
Deterministic leader every 2 rounds

r1 r2

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

One node supports L1!

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

L1

Bullshark
Elect the leader of r4

r1 r2 r3

L1

L2

r4

Bullshark
Leader L2 has enough support

r1 r2 r3

L1

r4 r5

L2

Bullshark
Leader L2 has links to leader L1

r1 r2 r3

L1

r4 r5

L2

First commit L1 Then commit L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Evaluation
How to properly benchmark consensus protocols

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Set the benchmark parameters

 Faults: 0 node(s)

 Committee size: 10 node(s)

 Transaction size: 512 B

Evaluation
Set the benchmark parameters

 Faults: 0 node(s)

 Committee size: 10 node(s)

 Transaction size: 512 B

 Header size: 1,000 B

 Max header delay: 200 ms

 GC depth: 50 round(s)

 Sync retry delay: 5,000 ms

 Sync retry nodes: 3 node(s)

 batch size: 500,000 B

 Max batch delay: 200 ms

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Benchmark clients

Benchmark
client

Fixed input rate

Narwhal
mempool

Tusk
Ordered transactions

Benchmark
client

Narwhal
mempool

Tusk
Ordered transactions

For a long time
(minutes)

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Typical mistake

Narwhal
mempool

Tusk

Load txs from pre-
populated store &

commit

Narwhal
mempool

Tusk

Load txs from pre-
populated store &

commit

Narwhal
mempool

Tusk

Narwhal
mempool

Tusk

Propose batch 5 (pointer)

Load txs from pre-
populated store &

commit

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Typical mistake

Benchmark
client

send 50k txs
(once)

Narwhal
mempool

Tusk
Ordered transactions output after

400 ms

😫 TPS = 50k / 400ms = 125k tx/s 😫

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes block_digest -> batch_digest

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes block_digest -> batch_digest

block_digest -> commit_time

bench_start_time

sample_tx_id -> send_time

Evaluation
Compute throughput

Narwhal mempool

Benchmark
client

TuskBatch Maker Proposer

total_time = last_commit_time - bench_start_time

BPS = total_bytes / total_time

TPS = BPS / transaction_size

bench_start_time

sample_tx_id -> send_time

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

block_digest -> batch_digest

block_digest -> commit_time

Evaluation
Compute latency

Narwhal mempool

Benchmark
client

TuskBatch Maker Proposer

samples = commit_time - send_time

latency = average(samples)

bench_start_time

sample_tx_id -> send_time

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

block_digest -> batch_digest

block_digest -> commit_time

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Change only
input rate

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Longer
benchmarks

Evaluation
Throughput latency graph

Breaking point!

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

☹

😀

Evaluation
Scalability

Evaluation
Scalability

Evaluation
Scalability

Evaluation
Performance under faults

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Still many caveats

• Perfect load balance

• Transaction deduplication

• Synthetic load

• No Byzantine adversary

• No network adversary

• Only AWS network

Conclusion

• Paper: https://arxiv.org/pdf/2105.11827.pdf

• Code: https://github.com/asonnino/narwhal

• Separate consensus and data dissemination for high performance

• Scalable design, egalitarian resource utilisations

Narwhal & Tusk

Acknowledgements

Alberto
Sonnino

Work done at Facebook Novi

Alexander
Spiegelman

Lefteris
Kokoris-Kogias

George
Danezis

Future Works
Come talk to us!

• Performance under DDoS attack?

• How to implement scalable execution?

alberto@mystenlabs.com
Alberto Sonnino

