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Traditional Designs

• Monolithic protocol sharing transaction data as part of the consensus 

• Optimize overall message complexity of the consensus protocol

Observation



Current Designs
Typical leader-based protocols
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Reaching consensus on metadata is cheap

Data dissemination is the key



Narwhal
Dag-based mempool
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Narwhal
Data Dissemination & Proof of Availability

• The workers ship batch of transactions 

• Many workers to scale out and use resources concurrently 

• The primary constantly broadcasts the batch digests 

• Headers at round r contains references to 2f+1 certificates of round r-1 

• Build a structured DAG of certificates



Tusk
Zero-message asynchronous consensus
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Add common coin & Interpret the DAG
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Tusk
The random coin elects the leader of r-2

L1

r1 r2 r3

coin



Tusk
The leader needs f+1 links from round r-1

L1

r1 r2 r3

Not enough support !  
(Nothing is committed at this stage)



Tusk
Nothing is committed and we keep build the DAG

L1

r1 r2 r3 r4 r5



Tusk
Elect the leader of r3

L1

r1 r2 r3 r4 r5

coin

L2



Tusk
Leader L2 has enough support

L1

r1 r2 r3 r4 r5

L2



Tusk
Leader L2 has links to leader L1

L1

L2

r1 r2 r3 r4 r5

First commit L1 Then commit L2



Tusk
Commit all the sub-DAG of the leader

L1

r1 r2 r3 r4 r5

L2



Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback
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Evaluation
How to properly benchmark consensus protocols



😫 Forgo persistent storage 

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping 

😫 Many nodes on same machine

😫 Change parameters across runs 

😫 Set transaction size to zero

😫 Send a single burst of transactions 

😫 Benchmark for a few seconds

😫 Start timer in the batch maker 

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path
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Evaluation
Set the benchmark parameters

 Faults: 0 node(s) 

 Committee size: 10 node(s) 

 Transaction size: 512 B

 Header size: 1,000 B 

 Max header delay: 200 ms 

 GC depth: 50 round(s) 

 Sync retry delay: 5,000 ms 

 Sync retry nodes: 3 node(s) 

 batch size: 500,000 B 

 Max batch delay: 200 ms
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Typical mistake
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Evaluation
Compute throughput
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Compute latency
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Evaluation
Performance under faults
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Evaluation
Still many caveats

• Perfect load balance 

• Transaction deduplication 

• Synthetic load 

• No Byzantine adversary 

• No network adversary 

• Only AWS network



Conclusion

• Paper: https://arxiv.org/pdf/2105.11827.pdf 

• Code: https://github.com/asonnino/narwhal

• Separate consensus and data dissemination for high performance 

• Scalable design, egalitarian resource utilisations

Narwhal & Tusk
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Future Works
Come talk to us!

• Performance under DDoS attack? 

• How to implement scalable execution?



alberto@mystenlabs.com
Alberto Sonnino


