Efficient DAG-Based Consensus
Sui Eng Offsite 22

Alberto Sonnino

Traditional Designs

Observation

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol

Current Designs

Typical leader-based protocols

VYV YV

Current Designs

Typical leader-based protocols

VYV VY YV

tion

e utiliza

Data dissemination is the key

Reaching consensus on metadata is cheap

Narwhal

The workers and the primary

h (Narwhal mempool \
Worker 1
Worker 2
Client |
transactions Primary
|
|
|
Worker n
Yy _ Y.

Narwhal

The workers and the primary

A (Narwhal mempool \

Transactions

> Worker 1

Transactions

> Worker 2

Client

: Primary
transactions

Transactions

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
Transactions Batch
> Worker 2
Client :
: Primary
transactions
|
|
|
Transactions ‘ Batch

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
........................ Digest .
Transactions Batch
> Worker 2
\ 4
Cllent > Prlmary
transactions Digest
| 3
!
|
Digest
Transactions ‘ Batch
> Worker n
y _ Y

Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n

Narwhal

The primary machine

block header

H

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

| Round 1

Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast

Narwhal

The primary machine

' r2 r3 r4 rs

Narwhal

Data Dissemination & Proof of Availability

The workers ship batch of transactions
Many workers to scale out and use resources concurrently

The primary constantly broadcasts the batch digests

Headers at round r contains references to 2f+1 certificates of round r-1

Build a structured DAG of certificates

Tusk

Add common coin & Interpret the DAG

J

&‘
Rk
- \

Tusk

The random coin elects the leader of r-2

N4
w
/’\ﬁ
VX

Tusk

The leader needs f+1 links from round r-1

N4
w
/’\ﬁ
X

Tusk

Nothing is committed and we keep build the DAG

NN NN
et

AN\ /“
m N\

-l
=

Tusk

WX
Tt a

K
»\ﬁ»)
=l

Y

Tusk

t(z:;‘- -~
;

Tusk

Leader L2 has links to leader L1

vn,;wnv
»\ﬁ /

Tusk

Commit all the sub-DAG of the leader
e

r3

Y

RN
N\ X

Bullshark

Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark

Just interpret the DAG

2

Vi

W

\
AN\

Bullshark

Deterministic leader every 2 rounds

2

&‘

\
AN\

m

Bullshark

The leader needs f+1 links from round r

r2 r3

)‘
R

m

Bullshark

The leader needs f+1 links from round r

r2 r3

J

4
X

\

L1

Bullshark

The leader needs f+1 links from round r

AN YA
R

Bullshark

Elect the leader of r4

WX
oy

S

k
1
ullsha

B

upport rs
ough e;
r L2 has in (Lz /
Leader2
%
\th n
-

X \ﬁ@

Bullshark

Leader L2 has links to leader L1

Y
ae

Bullshark

Commit all the sub-DAG of the leader

o
A -
i

Bullshark

Commit all the sub-DAG of the leader

NN XX

w« /

Evaluation

How to properly benchmark consensus protocols

Evaluation

Typical mistakes

® Forgo persistent storage

B Do not sanitise messages

& Local/LAN benchmark + ping
& Many nodes on same machine

@ Change parameters across runs

M Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
@ Start timer in the batch maker
™ Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path

Evaluation

Set the benchmark parameters

FFaults: 0 node (s)

Committee size: 10 node(s)

Transaction size: 512 B

Evaluation

Set the benchmark parameters

Faults: 0 node (s) Header size: 1,000 B
Committee size: 10 node (s) Max header delay: 200 ms
Transaction size: 512 B GC depth: 50 round(s)

Sync retry delay: 5,000 ms

Sync retry nodes: 3 node (s)

batch size: 500,000 B
Max batch delay: 200 ms

Evaluation

Typical mistakes

™ Forgo persistent storage ™ Send a single burst of transactions
B Do not sanitise messages B Benchmark for a few seconds

B Local/LAN benchmark + ping @ Start timer in the batch maker

B Many nodes on same machine @ Evaluate latency w/ only the first tx
@ Change parameters across runs @ Separate latency and throughput
@ Set transaction size to zero @ Only benchmark happy path

A Preconfigure nodes with txs

Fixed input rate

For along time
(minutes)

Evaluation

Benchmark clients

Narwhal
mempool

Ordered transac tions

(=)

Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
Change parameters across runs
M Set transaction size to zero

& Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
A Only benchmark happy path

Narwhal
mempool

Narwhal
mempool

Evaluation

Typical mistake

Propose batch 5 (pointer)

[Tusk j
_ Y,

Load txs from pre-
populated store &
commit

Narwhal
mempool

[Tusk]
_ J

Narwhal
mempool

[Tusk j
_ J

Load txs from pre-
populated store &
commit

Load txs from pre-
populated store &
commit

Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

® Send a single burst of transactions
& Benchmark for a few seconds
B Start timer in the batch maker
™ Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path

send 50k txs

(once)

S

Evaluation

Typical mistake

~

_

Narwhal
mempool

~

Ordered transac tions

o

_/

S=50k/400ms =125k tx/s &

output after

400 ms

;nch_s tart_time

ple tx id -> send time

~

Benchmark
client

~

Evaluation

Narwhal mempool

. .
--

. o

e .

Instrument the codebase

Ordered transactions

Evaluation

ch digest -> sample tx id

ch digest -> batch bytes

~

Benchmark
client

~

Narv nal mempool

. .
--

. o

e .

Instrument the codebase

Ordered transactions

Evaluation

Instrument the codebase

-k digest -> batch digest

4 Narwhal mempool A
r \
Benchmark ioBatch G
_ I
........... \ A
T ——— c Proposer
£
\ Ordered transactions
Tusk J >

Evaluation

Instrument the codebase

4 Narwhal mempool A
r \
Benchmark ioBatch G
_ I
........... \ A
T ——— c Proposer
£
\ Ordered transactions
Tusk J >

- J ~k digest -> commit time

Compute throughput

bench;start;pime

Evaluation

sample tx i1d -> send time

o 3

Narwhal mempool

[Benchmark J——’ Batch Maker """ " Proposer """

client

_

. *

0. *

batch digest -> sample tx id
batch digest -> batch bytes

» block digest -> commit time

block digest -> batch digest

,J._time = las t_commi t_time - bench_s tart_time

n

»
|

= total bytes / total time

BPS / transaction size

bench;start;ﬁime

Evaluation

Compute latency

-
sample tx id -> send time Narwhal mempool
Seel h
[ene mark J——> Batch Maker i------ »: Proposer i------ *[Tusk
client : : ; 5 J
N

batch digest -> sample tx id
batch digest -> batch bytes

ples

tency

average (samples)

» block digest -> commit time

block digest -> batch digest

commit time - send time

Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
& Start timer in the batch maker
& Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

Evaluation
Throughput latency graph

0

—$— Tusk, 10 nodes

N
o
|

o
©
|

. Change only
Input rate

o
©
|

30
3
Q4.0
)
i)
©
e

W
o
|

N
©
|

75k 100k L
Throughput (tx /s) :

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

Longer |
benchmarks

75k 100k

Throughput (tx /s) ‘

Evaluation
Throughput latency graph

0

—$— Tusk, 10 nodes

N
o
|

o
©
|

o
©
|

30
2
Q4.0
)
i)
©
e

W
o
|

N
©
|

Braking point!

75k 100k 125k 150k 175k |
Throughput (tx /s) ‘

Evaluation

Typical mistakes

® Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

& Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path

Evaluation
Throughput latency graph

¥ 1 | i |

—$— Tusk, 10 nodes == Narwhal-HS, 10 nodes Batched-HS, 10 nodes == Baseline-HS, 10 nodes
—$- Tusk, 20 nodes == Narwhal-HS, 20 nodes Batched-HS, 20 nodes == Baseline-HS, 20 nodes
-9- Tusk, 50 nodes -9+ Narwhal-HS, 50 nodes Batched-HS, 50 nodes \

o
©
|

a0
2
,=40'
@

i)

©
-

SH Ul
o o
| |

N
©
|

75k 100k
Throughput (tx /s)

Evaluation
Throughput latency graph

¥ Lr \ ¥ || 7 I |

-, | -
_— —$— Tusk, 10 nodes —®— Narwhal-HS, 10 nodes —{— Batched-HS, 10 nodes == Baseline-HS, 10 nodes
A~ -~ Tusk, 20 nodes == Narwhal-HS, 20 nodes =@~ Batched-HS, 20 nodes == Baseline-HS, 20 nodes *
-®- Tusk, 50 nodes -9- Narwhal-HS, 50 nodes -4- Batched-HS, 50 nodes :

K | \

.

S
o
|

e
©
|

;0
-
2 4.0 -
- @
)
©
el

.
o
|

A
©
|

75k 100k
Throughput (tx /s)

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers

o

B

 Latency (s)

w
©

N
o

=
©

100k 200k 300k 400k 500k 600k |
Throughput (tx /s) i

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers

i & rmi

100k 200k 300k 400k 500k 600k |
Throughput (tx /s) i

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers lt

600k 1 —§— Tusk, Max latency: 5.0s
—$- Tusk, Max latency: 3.0s

500k 1 —$— Narwhal-HS, Max latency: 5.0s
—$- Narwhal-HS, Max latency: 3.0s

i & rmi

N N

o U

o o
Throughput (MB/s)

=
9
o

=
o
o

30
NN
P
|
—r’
o
-
. Q.
,‘:
(@)
]
(o]
el
I o
.

100k 200k 300k 400k
Throughput (tx /s)

6
Workers per validator

Evaluation

Performance under faults

—@— Tusk, 10 nodes (1 faulty)
Tusk, 10 nodes (3 faulty)
Narwhal-HS, 10 nodes (1 faulty)
Narwhal-HS, 10 nodes (3 faulty)
Batched-HS, 10 nodes (1 faulty)
Batched-HS, 10 nodes (3 faulty)
Baseline-HS, 10 nodes (1 faulty)
Baseline-HS, 10 nodes (3 faulty)

N
ok
o

;E
>
- 2 20.0
)
==
©
-

it
U
o

60k 80k
Throughput (tx /s)

Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
& Only benchmark happy path

Evaluation

Still many caveats

Perfect load balance
Transaction deduplication
Synthetic load

No Byzantine adversary

No network adversary

Only AWS network

Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

- Scalable design, egalitarian resource utilisations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal

Acknowledgements

T)
George Lefteris Alexander Alberto
Danezis Kokoris-Kogias Spiegelman Sonnino

Work done at Facebook Novi

Future Works

Come talk to us!

« Performance under DDoS attack?

- How to implement scalable execution?

alberto@mystenlabs.com

Alberto Sonnino

