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Traditional Designs

Observation

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol



Current Designs

Typical leader-based protocols
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Data dissemination is the key

Reaching consensus on metadata is cheap
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Narwhal

The workers and the primary
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Narwhal

The primary machine
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Narwhal

Data Dissemination & Proof of Availability

The workers ship batch of transactions
Many workers to scale out and use resources concurrently

The primary constantly broadcasts the batch digests

Headers at round r contains references to 2f+1 certificates of round r-1

Build a structured DAG of certificates






Tusk

Add common coin & Interpret the DAG
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Tusk

The random coin elects the leader of r-2
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Tusk

The leader needs f+1 links from round r-1
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Tusk

Nothing is committed and we keep build the DAG
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Tusk

Leader L2 has links to leader L1
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Tusk

Commit all the sub-DAG of the leader
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Bullshark

Zero-message partially-synchronous consensus

* without asynchronous fallback



Bullshark

Just interpret the DAG
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Bullshark

Deterministic leader every 2 rounds
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Bullshark

The leader needs f+1 links from round r
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Bullshark

The leader needs f+1 links from round r
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Bullshark

The leader needs f+1 links from round r
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Bullshark

Elect the leader of r4
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Bullshark

Leader L2 has links to leader L1
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Bullshark

Commit all the sub-DAG of the leader
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Bullshark

Commit all the sub-DAG of the leader

NN XX

w« /




Evaluation

How to properly benchmark consensus protocols



Evaluation

Typical mistakes

® Forgo persistent storage

B Do not sanitise messages

& Local/LAN benchmark + ping
& Many nodes on same machine

@ Change parameters across runs

M Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
@ Start timer in the batch maker
™ Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path



Evaluation

Set the benchmark parameters

FFaults: 0 node (s)

Committee size: 10 node(s)

Transaction size: 512 B



Evaluation

Set the benchmark parameters

Faults: 0 node (s) Header size: 1,000 B
Committee size: 10 node (s) Max header delay: 200 ms
Transaction size: 512 B GC depth: 50 round(s)

Sync retry delay: 5,000 ms

Sync retry nodes: 3 node (s)

batch size: 500,000 B
Max batch delay: 200 ms



Evaluation

Typical mistakes

™ Forgo persistent storage ™ Send a single burst of transactions
B Do not sanitise messages B Benchmark for a few seconds

B Local/LAN benchmark + ping @ Start timer in the batch maker

B Many nodes on same machine @ Evaluate latency w/ only the first tx
@ Change parameters across runs @ Separate latency and throughput
@ Set transaction size to zero @ Only benchmark happy path

A Preconfigure nodes with txs
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Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
# Change parameters across runs
M Set transaction size to zero

& Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
A Only benchmark happy path
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Typical mistake

Propose batch 5 (pointer)
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Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

® Send a single burst of transactions
& Benchmark for a few seconds
B Start timer in the batch maker
™ Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path
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Typical mistake

~

\_

Narwhal
mempool

~

Ordered transac tions

o

_/

S=50k/400ms =125k tx/s &

output after

400 ms




;nch_s tart_time

ple tx id -> send time

~

Benchmark
client

~

Evaluation

Narwhal mempool

------------------------
. .
------------------------------------------------------------

. o
-----------------------

e .
-----------------------

Instrument the codebase

Ordered transactions




Evaluation

ch digest -> sample tx id

ch digest -> batch bytes
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Instrument the codebase
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Instrument the codebase
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Compute throughput

bench;start;pime

Evaluation

sample tx i1d -> send time
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bench;start;ﬁime

Evaluation

Compute latency
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Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
& Start timer in the batch maker
& Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path
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Evaluation
Throughput latency graph
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Throughput latency graph
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Evaluation
Throughput latency graph
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Evaluation
Throughput latency graph
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Throughput latency graph
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Throughput latency graph
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Evaluation

Typical mistakes

® Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

& Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path
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Throughput latency graph
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Evaluation
Throughput latency graph
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Evaluation
Scalability
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Scalability
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Scalability
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Evaluation

Performance under faults
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Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
# Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
& Only benchmark happy path



Evaluation

Still many caveats

Perfect load balance
Transaction deduplication
Synthetic load

No Byzantine adversary

No network adversary

Only AWS network



Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

- Scalable design, egalitarian resource utilisations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal
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Future Works

Come talk to us!

« Performance under DDoS attack?

- How to implement scalable execution?



alberto@mystenlabs.com

Alberto Sonnino



