
Bullshark

Alberto Sonnino

DAG BFT Protocols Made Practical

 > 2/3

Byzantine Fault Tolerance

Consensus on top of Narwhal

Simple Performant

• Zero-message overhead

• No view-change

• No common-coin

• Take advantage of Narwhal

• Exploit periods of synchrony

Goal of this project

Current Designs

• Monolithic protocol sharing transaction data as part of the consensus

• Optimize overall message complexity of the consensus protocol

• Complex & Error-prone view-change protocol

Current Designs
Typical leader-based protocols

Current Designs

re
so

ur
ce

 u
til

iz
at

io
n lead

er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Typical leader-based protocols

Current Designs
Typical leader-based protocols

Current Designs
Typical leader-based protocols

Narwhal
Dag-based mempool

Reaching consensus on metadata is cheap

The mempool is the key

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'

Narwhal
The primary machine

G1

G2

G3

block header

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal
The primary machine

r1 r2 r3 r4 r5

HotStuff on Steroids
Just by replacing the mempool

HotStuff on Narwhal
Overview

Narwhal
mempool

Client
transactions

State machine
replication
execution

Partially
Synchronous

Consensus
(HotStuff)

Ordered
transactionsCertificates

Garbage
collection

HotStuff on Narwhal
Enhanced commit rule

C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2

C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2

C1

Faulty HotStuff Leader!

Blocks may still be ‘saved'

HotStuff on Narwhal
Enhanced commit rule

C2

C2 C3

C1

Modified Narwhal
Adapt Narwhal for partial-synchronous networks

Modified Narwhal
Even rounds: wait for the leader (or to timeout)

L1

r1 r2 r3 r4 r5

L2

Modified Narwhal
Odd rounds: wait for enough votes (or to timeout)

L1

r1 r2 r3 r4 r5

L2

Bullshark
Zero-message partially-synchronous consensus

Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark
Just interpret the DAG

r1 r2

Bullshark
Deterministic leader every 2 rounds

r1 r2

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

One node supports L1!

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

L1

Bullshark
Elect the leader of r4

r1 r2 r3

L1

L2

r4

Bullshark
Leader L2 has enough support

r1 r2 r3

L1

r4 r5

L2

Bullshark
Leader L2 has links to leader L1

r1 r2 r3

L1

r4 r5

L2

First commit L1 Then commit L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Implementation

• Written in Rust

• Networking: Tokio (TCP)

• Storage: RocksDB

• Cryptography: ed25519-dalek

https://github.com/asonnino/narwhal

Evaluation
Experimental setup on AWS

m5d.8xlarge

Evaluation
Throughput latency graphConference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

tx size: 512 B

Evaluation
Performance under faults

Conference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

Summary

• Paper: https://sonnino.com/papers/bullshark.pdf

• Code: https://github.com/asonnino/narwhal

• Zero-message overhead, no view-change, no common-coin

• Disseminate data with Narwhal, exploits periods of synchrony

Bullshark

https://sonnino.com/papers/bullshark.pdf

Engineering
Lessons Learned

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

😫 Start with fancy crypto

😫 Hide away serialisation

😫 Isolate modules as in papers

😫 (Use grpc and magic network stack)

😫 Complex networked systems

😫 Do not benchmark from day 1

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

• What is the minimum state you need to persist across crash-recovery?

• The synchroniser will eventually be your bottleneck / source of instability

• Epoch changes are more complex than they look (sync new validators/
update configs from chain) — Advise: kill the node and reboot it.

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

😫 Do not benchmark from day 1

• Many concurrency bugs found on WAN benchmarks under high load

• Spent months optimising blinding

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

😫 Start with fancy crypto

😫 Hide away serialisation

😫 Do not benchmark from day 1

• Huge complexity; resulted redundant crypto operations

• Crypto serialisation was a bottleneck

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

😫 Start with fancy crypto

😫 Hide away serialisation

😫 Complex networked systems

😫 Do not benchmark from day 1

• Harder crash-recovery / should start with collocated workers

😫 Add crash-recovery after-the-fact

😫 Add the synchroniser after-the-fact

😫 Add epoch changes after-the-fact

Evaluation
Our biggest mistakes

😫 Start with fancy crypto

😫 Hide away serialisation

😫 Isolate modules as in papers

😫 (Use grpc and magic network stack)

😫 Complex networked systems

😫 Do not benchmark from day 1

• Debugging / perf improvement nightmare

alberto@mystenlabs.com
Alberto Sonnino

EXTRA
Benchmark of BFT Systems

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Set the benchmark parameters

 Faults: 0 node(s)

 Committee size: 10 node(s)

 Transaction size: 512 B

Evaluation
Set the benchmark parameters

 Faults: 0 node(s)

 Committee size: 10 node(s)

 Transaction size: 512 B

 Header size: 1,000 B

 Max header delay: 200 ms

 GC depth: 50 round(s)

 Sync retry delay: 5,000 ms

 Sync retry nodes: 3 node(s)

 batch size: 500,000 B

 Max batch delay: 200 ms

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Benchmark clients

Benchmark
client

Fixed input rate

Narwhal
mempool

Tusk
Ordered transactions

Benchmark
client

Narwhal
mempool

Tusk
Ordered transactions

For a long time
(minutes)

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Typical mistake

Narwhal
mempool

Tusk

Load txs from pre-
populated store &

commit

Narwhal
mempool

Tusk

Load txs from pre-
populated store &

commit

Narwhal
mempool

Tusk

Narwhal
mempool

Tusk

Propose batch 5 (pointer)

Load txs from pre-
populated store &

commit

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Typical mistake

Benchmark
client

send 50k txs
(once)

Narwhal
mempool

Tusk
Ordered transactions output after

400 ms

😫 TPS = 50k / 400ms = 125k tx/s 😫

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes block_digest -> batch_digest

bench_start_time

sample_tx_id -> send_time

Evaluation
Instrument the codebase

Narwhal mempool

Benchmark
client

Tusk
Ordered transactions

Batch
Maker

Proposer

batch_digest -> sample_tx_id

batch_digest -> batch_bytes block_digest -> batch_digest

block_digest -> commit_time

bench_start_time

sample_tx_id -> send_time

Evaluation
Compute throughput

Narwhal mempool

Benchmark
client

TuskBatch Maker Proposer

total_time = last_commit_time - bench_start_time

BPS = total_bytes / total_time

TPS = BPS / transaction_size

bench_start_time

sample_tx_id -> send_time

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

block_digest -> batch_digest

block_digest -> commit_time

Evaluation
Compute latency

Narwhal mempool

Benchmark
client

TuskBatch Maker Proposer

samples = commit_time - send_time

latency = average(samples)

bench_start_time

sample_tx_id -> send_time

batch_digest -> sample_tx_id

batch_digest -> batch_bytes

block_digest -> batch_digest

block_digest -> commit_time

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Change only
input rate

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Evaluation
Throughput latency graph

Longer
benchmarks

Evaluation
Throughput latency graph

Breaking point!

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Throughput latency graph

Evaluation
Scalability

Evaluation
Scalability

Evaluation
Scalability

Evaluation
Performance under faults

😫 Forgo persistent storage

😫 Do not sanitise messages

Evaluation
Typical mistakes

😫 Local/LAN benchmark + ping

😫 Many nodes on same machine

😫 Change parameters across runs

😫 Set transaction size to zero

😫 Send a single burst of transactions

😫 Benchmark for a few seconds

😫 Start timer in the batch maker

😫 Evaluate latency w/ only the first tx

😫 Preconfigure nodes with txs

😫 Separate latency and throughput

😫 Only benchmark happy path

Evaluation
Still many caveats

• Perfect load balance

• Transaction deduplication

• Synthetic load

• No Byzantine adversary

• No network adversary

• Only AWS network

