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Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.
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‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).
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abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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• Threat Model: the attacker

does not need to collude 
with any node
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observer

Double-spend any resource (eg. coins); 
sometimes they can lock user's resources

• What can the attacks do?
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Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-
auditability, non-repudiation and ‘blockchain’ techniques. Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentralized
system. Unlike application specific distributed ledgers, such as
Bitcoin [26] for a currency, or certificate transparency [19] for
certificate verification, Chainspace offers extensibility though
smart contracts, like Ethereum [32]. However, users expose to
Chainspace enough information about contracts and transaction
semantics, to provide higher scalability through sharding across
infrastructure nodes: our modest testbed of 60 cores achieves
350 transactions per second, as compared with a peak rate
of less than 7 transactions per second for Bitcoin over 6K
full nodes. Etherium currently processes 4 transactions per
second, out of theoretical maximum of 25. Furthermore, our
platform is agnostic as to the smart contract language, or identity
infrastructure, and supports privacy features through modern
zero-knowledge techniques [3, 9].

Unlike other scalable but ‘permissioned’ smart contract
platforms, such as Hyperledger Fabric [5] or BigchainDB [23],
Chainspace aims to be an ‘open’ system: it allows anyone
to author a smart contract, anyone to provide infrastructure
on which smart contract code and state runs, and any user to
access calls to smart contracts. Further, it provides ecosystem
features, by allowing composition of smart contracts from
different authors. We integrate a value system, named CSCoin,
as a system smart contract to allow for accounting between

those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

• It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

• It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

• It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

• It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

• It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

II. SYSTEM OVERVIEW

Chainspace allows applications developers to implement
distributed ledger applications by defining and calling proce-

Network and Distributed Systems Security (NDSS) Symposium 2018 
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23241
www.ndss-symposium.org

OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as Visa, is a challenging task. Most existing
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cross-
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning
via collectively-signed state blocks, and low-latency “trust-but-
verify” validation for low-value transactions. An evaluation of
our experimental prototype shows that OmniLedger’s throughput
scales linearly in the number of active validators, supporting
Visa-level workloads and beyond, while confirming typical trans-
actions in under two seconds.

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
transaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhibit different security and performance trade-offs [10],
[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]
with PBFT [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers to redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants, and, in fact, gradually
decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-out”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
into multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benefit
DLs [15] by reducing the transaction processing load on each
validator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new security assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that
provides “scale-out” transaction processing capacity compet-
itive with centralized payment-processing systems, such as
Visa, without compromising security or support for permis-
sionless decentralization. To achieve this goal, OmniLedger

Elas
tic

o [34
]

Scale-Out

ByzCoin [32]

Decentralization

RSCoin [16] Security

OmniLedger

Fig. 1: Trade-offs in current DL systems.

faces three key correctness and security challenges. First,
OmniLedger must choose statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36], [38], [32]
or proof-of-stake [31], [25]. Second, OmniLedger must en-
sure a negligible probability that any shard is compromised
across the (long-term) system lifetime via periodically (re-
)forming shards (subsets of validators to record state and
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must correctly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus [38],
using a sliding window of recent proof-of-work block miners
as its validator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, OmniLedger
builds on Ouroboros [31] and Algorand [25], running a public
randomness or cryptographic sortition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder distribution defined in the ledger.
To ensure that this sampling of representative validators is
both scalable and strongly bias-resistant, OmniLedger uses
RandHound [44], a protocol that serves this purpose under
standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key security challenge of
securely assigning validators to shards, and of periodically
rotating these assignments as the set of validators evolves.
OmniLedger chooses shards large enough, based on the anal-
ysis in Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
ple shards (e.g., several cryptocurrency accounts), OmniLedger
introduces Atomix, a two-phase client-driven “lock/unlock”
protocol that ensures that clients can either fully commit a
transaction across shards, or obtain “rejection proofs” to abort
and unlock state affected by partially completed transactions.
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detailed description of these systems in the relevant sections.

3 Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-led
and client-led cross-shard consensus protocols, respectively.
We provide a high-level description of these attacks and the
threat model, and describe the notation we use.
Replay Attacks on Cross-Shard Consensus. The attacker
records a target shard’s responses to the atomic commit pro-
tocol, and replays them during another instance of the pro-
tocol. We present two families of replay attacks: (i) attacks
against the first phase (voting), and (ii) attacks against the
second phase (commit) of the atomic commit protocol.

To attack the first voting phase of the atomic commit pro-
tocol, the attacker replaces messages generated by the target
shard by replaying pre-recorded messages. In practice, the
attacker does not replace those messages—it achieves a sim-
ilar result by making its replayed messages arrive at the co-
ordinator faster (racing the target shard’s original message),
exploiting the fact that the coordinator makes progress based
on the first message it receives. Replaying messages in this
fashion enables the attacker to compromise the system safety
(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2

BFT

BFT

BFT

BFT

accept(T)

pre-accept(T)

pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-

3
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detailed description of these systems in the relevant sections.
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threat model, and describe the notation we use.
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attacker does not replace those messages—it achieves a sim-
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(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2
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Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-
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detailed description of these systems in the relevant sections.

3 Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-led
and client-led cross-shard consensus protocols, respectively.
We provide a high-level description of these attacks and the
threat model, and describe the notation we use.
Replay Attacks on Cross-Shard Consensus. The attacker
records a target shard’s responses to the atomic commit pro-
tocol, and replays them during another instance of the pro-
tocol. We present two families of replay attacks: (i) attacks
against the first phase (voting), and (ii) attacks against the
second phase (commit) of the atomic commit protocol.

To attack the first voting phase of the atomic commit pro-
tocol, the attacker replaces messages generated by the target
shard by replaying pre-recorded messages. In practice, the
attacker does not replace those messages—it achieves a sim-
ilar result by making its replayed messages arrive at the co-
ordinator faster (racing the target shard’s original message),
exploiting the fact that the coordinator makes progress based
on the first message it receives. Replaying messages in this
fashion enables the attacker to compromise the system safety
(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2
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Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-
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detailed description of these systems in the relevant sections.

3 Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-led
and client-led cross-shard consensus protocols, respectively.
We provide a high-level description of these attacks and the
threat model, and describe the notation we use.
Replay Attacks on Cross-Shard Consensus. The attacker
records a target shard’s responses to the atomic commit pro-
tocol, and replays them during another instance of the pro-
tocol. We present two families of replay attacks: (i) attacks
against the first phase (voting), and (ii) attacks against the
second phase (commit) of the atomic commit protocol.

To attack the first voting phase of the atomic commit pro-
tocol, the attacker replaces messages generated by the target
shard by replaying pre-recorded messages. In practice, the
attacker does not replace those messages—it achieves a sim-
ilar result by making its replayed messages arrive at the co-
ordinator faster (racing the target shard’s original message),
exploiting the fact that the coordinator makes progress based
on the first message it receives. Replaying messages in this
fashion enables the attacker to compromise the system safety
(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2
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Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-
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detailed description of these systems in the relevant sections.

3 Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-led
and client-led cross-shard consensus protocols, respectively.
We provide a high-level description of these attacks and the
threat model, and describe the notation we use.
Replay Attacks on Cross-Shard Consensus. The attacker
records a target shard’s responses to the atomic commit pro-
tocol, and replays them during another instance of the pro-
tocol. We present two families of replay attacks: (i) attacks
against the first phase (voting), and (ii) attacks against the
second phase (commit) of the atomic commit protocol.

To attack the first voting phase of the atomic commit pro-
tocol, the attacker replaces messages generated by the target
shard by replaying pre-recorded messages. In practice, the
attacker does not replace those messages—it achieves a sim-
ilar result by making its replayed messages arrive at the co-
ordinator faster (racing the target shard’s original message),
exploiting the fact that the coordinator makes progress based
on the first message it receives. Replaying messages in this
fashion enables the attacker to compromise the system safety
(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2
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Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-
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Phase 1 of S-BAC Phase 2 of S-BAC

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 3

1 lock x1

pre-accept(T )
lock x2

pre-accept(T )
create y1; inactivate x1

accept(T )
create y2; inactivate x2

accept(T )
create y3

-

2 Bpre-abort(T ) create y1; inactivate x1

accept(T )
unlock x2

abort(T )
create y3

-

3 Bpre-abort(T ) unlock x1

abort(T )
create y2; inactivate x2

accept(T )
create y3

-

4 Bpre-abort(T ) Bpre-abort(T ) unlock x1

abort(T )
unlock x2

abort(T ) -

5 -
pre-abort(T )

lock x2

pre-accept(T )
-

abort(T )
unlock x2

abort(T ) -

6 Bpre-accept(T ) -
abort(T )

create y2; inactivate x2

accept(T )
create y3

-

7 lock x1

pre-accept(T )
-

pre-abort(T )
unlock x1

abort(T )
-

abort(T ) -

8 B pre-accept(T ) create y1; inactivate x1

accept(T )
-

abort(T )
create y3

-

9 -
pre-abort(T )

-
pre-abort(T )

-
abort(T )

-
abort(T ) -

Table 1: List of replay attacks against the first phase of S-BAC for all possible executions of the transaction T (x1,x2)! (y1,y2,y3) as described in Section 3.
The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect executions due to the replay attacks.
In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions as a result of emitting those
messages. For example, (column 3, row 2) means that shard 1 emits accept(T ) (top sub-row), and creates a new object y1 and inactivates x1 (bottom sub-row).
The first two columns indicate the messages emitted by each shard at the end the first phase of S-BAC. The attacker races shards at the end of the first phase of
S-BAC by replaying prerecorded messages, marked with the symbol B in the first two columns of Table 1. For example Bpre-abort(T ) at (column 1, row 2)
means that the attacker sends to other relevant shards (in this case shard 2) a prerecorded pre-abort(T ) message impersonating shard 1 that races the original
pre-accept(T ) (column 1, row 1) emitted by shard 1. The last three columns indicate the messages emitted at the end of the second phase of S-BAC.

inactivates object x2 and creates object y2. This leads to in-
consistent state across the shards. In a correct execution: (i)
if T is accepted all its inputs (x1 and x2) should become inac-
tive, and all the outputs (y1, y2, y3) should be created; and (ii)
if T is aborted, all its inputs (x1 and x2) should become active
again, and none of the outputs (y1, y2, y3) should be created.
However, here we have an incorrect termination of S-BAC:
at the end of the protocol x1 is active and x2 is inactive; y1 is
not created, y2 and y3 are created.

Table 1 shows that through careful selection of the mes-
sages to replay from different S-BAC instances, the attacks
can be effective against any shard. All the attacks (except
row 4) compromise consistency; the attacker can trick the in-
put shards to inactivate arbitrary objects, and trick the output
shards into creating new objects in violation of the protocol.
The attack depicted in row 4 only affects availability.

4.4 Attacks on the Second Phase of S-BAC

We present replay attacks on the second phase of S-BAC.
The attacker prerecords accept(T ) messages as described in
Section 4.2 and Appendix B.1.

Table 2 shows replay attacks for all possible combinations

of messages emitted by shard 1 and shard 2 in the second
phase. Since the attacks we describe in this section assume
that the first phase of S-BAC concluded correctly (i.e., all
the relevant shards unanimously decide to accept or reject a
transaction), both the shards generate abort(T ) (row 1) or
accept(T ) (row 5). The caption includes details about how
to interpret this table. We describe row 6 of Table 2, to help
readers interpret rest of the table on their own. In the cor-
rect execution (row 5), both the shards emit abort(T ) and
no output objects are created. In the attack in row 6, the at-
tacker replays a prerecorded accept(T ) from shard 1 to all
the relevant shards (in this case shard 3). Upon receiving this
message, shard 3 (incorrectly) creates y3.

The potential victims of replay attacks corresponding to
the second phase of S-BAC are the shards that only act as out-
put shards (i.e., do not simultaneously act as input shards).
The attacker can replay accept(T ) multiple times tricking
shard 3 into creating y3 multiple times. These attacks are
possible because shards do not keep records of inactive ob-
jects (following the UTXO model) for scalability reasons5,

5Requiring shards to remember the full history of inactive objects would
increase their memory requirements monotonically over time, reaching at
some point memory limits preventing further operations. Thus this is a poor

5
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• First phase attacks: let's double-spend X1
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Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the
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Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.
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• Second phase

Phase 2 of S-BAC

Shard 1 Shard 2
Shard 3

(potential victim)

1 create y1; inactivate x1

accept(T )
create y2; inactivate x2

accept(T )
create y3

-

2 Baccept(T ) create y3
3 Baccept(T ) create y3
4 Baccept(T ) Baccept(T ) create y3

5 (unlock x1)
abort(T )

(unlock x2)
abort(T )

-
-

6 Baccept(T ) create y3
7 Baccept(T ) create y3
8 Baccept(T ) Baccept(T ) create y3

Table 2: List of replay attacks against the second phase of S-BAC for all possible executions of the transaction T (x1,x2) ! (y1,y2,y3) as described in
Section 3. The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect executions due to the
replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions as a result
of emitting those messages. For example, (column 1, row 1) means that shard 1 emits accept(T ) (top sub-row), and creates a new object y1 and inactivates
x1 (bottom sub-row). The first two columns indicate the messages emitted by each shard at the end the second phase of S-BAC, and the last column shows the
effect of these messages on the output shard 3. Replayed messages are marked with the symbol B. For example Baccept(T ) at (column 1, row 2) means that
the attacker sends to other relevant shards (in this case shard 3) a prerecorded accept(T ) message impersonating shard 1.

and because shard 3 takes part in only the second phase of
S-BAC. The attacker can double-spend y3 repeatedly by re-
playing a single prerecorded message multiple times, and
spending the object (and effectively purging it from shard
3’s UTXO) before each replay.

Contrarily to the attacks against the first phase of S-BAC
(Section 4.3), these attacks do not rely on any racing condi-
tions; there is no need to race any honest messages.

4.5 Real-world Impact
The real-world impact and attacker incentives to conduct
these attacks depends on the nature and implementation of
the smart contract handling the target objects. We discuss
the impact of these attacks in the context of two common
smart contract applications, which are also described in the
Chainspace paper [1]. To take a concrete example, we il-
lustrate the attack depicted in row 3 of Table 1, but similar
results can be obtained with the other attacks described in
Table 1 and Table 2.

One of the most common blockchain application is to
manage cryptocurrency (or coins) and enable payments for
processing transactions, implemented by the CSCoin smart
contract in Chainspace. Lets suppose object x1 (handled by
shard 1) represents Alice’s account, and object x2 (handled
by shard 2) represents Bob’s account. To transfer v coins to
Bob, Alice submits a transaction T (x1,x2)! (y1,y2), where
y1 and y2 respectively represent the new account objects of
Alice and Bob, with updated account balances. By executing
the attack described in row 3 of Table 1, an attacker can trick
shard 1 to abort the transaction and unlock x1 (thus reestab-
lishing Alice’s account balance as it was prior to the coin
transfer), and shard 2 to accept the transaction and create

mitigation for the attacks presented.

y2 (thus adding v coins to Bob’s account). This attack ef-
fectively allows any attacker to double-spend coins on the
ledger; and shows how to create v coins out of thin air.

Another common blockchain use case is a platform for de-
cision making (or electronic petitions), implemented by the
SVote smart contract in Chainspace. Upon initialization, the
SVote contract creates two objects: (i) x1 representing the
tally’s public key, a list of all voters’ public keys, and the
tally’s signature on these; and (ii) x2 representing a vote ob-
ject at the initial stage of the election (all candidates having
a score of zero) along with a zero-knowledge proof asserting
the correctness of the initial stage. To vote, clients submit a
transaction T (x1,x2)! (y1,y2), where y1 and y2 are respec-
tively the updated voting list (i.e., the voting list without the
client’s public key), and the election stage updated with the
client’s vote. By executing the attack described by row 3 of
Table 1, an attacker can trick shard 1 to abort the transac-
tion and thus not update the voting list, and shard 2 to ac-
cept the transaction and thus update the election stage. This
effectively allows any client to vote multiple times during
an election while remaining undetected (due to the privacy-
preserving properties of the smart contract).

5 Client-led Cross-shard Consensus Protocol

We describe replay attacks on client-led cross-shard consen-
sus protocols. We illustrate these attacks in the context of
Omniledger [9] (Section 5.1) to make the discussion con-
crete. However, we note that these attacks can be general-
ized to other similar systems. We discuss how the attacker
can record shard messages to replay in future attacks (Sec-
tion 5.2). In Sections 5.3 and 5.4, we describe replay attacks
on the first and second phase of the cross-shard consensus
protocol. Finally, we discuss the real-world impact of these
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detailed description of these systems in the relevant sections.

3 Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-led
and client-led cross-shard consensus protocols, respectively.
We provide a high-level description of these attacks and the
threat model, and describe the notation we use.
Replay Attacks on Cross-Shard Consensus. The attacker
records a target shard’s responses to the atomic commit pro-
tocol, and replays them during another instance of the pro-
tocol. We present two families of replay attacks: (i) attacks
against the first phase (voting), and (ii) attacks against the
second phase (commit) of the atomic commit protocol.

To attack the first voting phase of the atomic commit pro-
tocol, the attacker replaces messages generated by the target
shard by replaying pre-recorded messages. In practice, the
attacker does not replace those messages—it achieves a sim-
ilar result by making its replayed messages arrive at the co-
ordinator faster (racing the target shard’s original message),
exploiting the fact that the coordinator makes progress based
on the first message it receives. Replaying messages in this
fashion enables the attacker to compromise the system safety
(by creating inconsistent state on the shards) and/or liveness
(by causing valid transactions to be rejected).

To attack the second commit phase of the atomic commit
protocol, the attacker simply replays prerecorded messages
to target shards, and compromises consistency. The attacker
can replay those messages at any time of its choice, and does
not rely on any racing condition as in the previous case.
Threat Model. The attacker can successfully launch the de-
scribed attacks without colluding with any shard nodes, and
under the BFT honest majority safety assumption for nodes
within shards (i.e., the attacks are effective even if all nodes
are honest). We assume an attacker that can observe and
record messages generated by shards. The attacker can be an
external observer that passively collects the target messages
at the level of the network, or it can act as a client and ac-
tively interact with the system to elicit the target messages.
The attacks against the first phase of the atomic commit pro-
tocol (Sections 4.3 and 5.3) assume a weakly synchronous
network in which an attacker may delay messages and race
target shards by replaying pre-recorded messages. The at-
tacks against the second phase of the atomic commit proto-
col (Section 4.4 and 5.4) do not make any such assumptions
on the underlying network.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation on
the blockchain state, and has input and output objects (such
as UTXO entries). An object is some data managed by the
blockchain, such as a bank account, a specific coin, or a ho-
tel room. For example, T (x1,x2) ! (y1,y2,y3) represents a
transaction with two inputs, x1 managed by shard 1 and x2

BFT

BFT

BFT

BFT

accept(T)

pre-accept(T)

pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

Figure 1: An example execution of S-BAC for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

managed by shard 2; and three outputs, y1 managed by shard
1, y2 managed by shard 2, and y3 managed by shard 3. We
call the shards that manages the input objects input shards,
and the shards that manage the output objects output shards.
It is possible for a shard to be both the input and output shard.
Objects can be in two states: active (on unspent) objects are
available for being processed by a transaction; and inactive
(or spent) objects cannot be processed by any transaction.
Additionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent transac-
tions involving those objects. The attacks we describe in this
paper generalise to transactions with k inputs and k0 outputs
managed by an arbitrary number of shards.

4 Shard-led Cross-Shard Consensus Protocol

In shard-led cross-shard consensus protocols, the shards col-
lectively take on the role of the coordinator in the atomic
commit protocol. We describe replay attacks on shard-
led cross-shard consensus protocols. To make the discus-
sion concrete, we illustrate these attacks in the context of
Chainspace [1] (Section 4.1), though we note that these at-
tacks can be generalized to other similar systems. We dis-
cuss how the attacker can record shard messages to replay
in future attacks (Section 4.2). In Sections 4.3 and 4.4, we
describe replay attacks on the first and second phase of the
cross-shard consensus protocol, followed by a discussion on
the real-world impact of these attacks (Section 4.5).

4.1 Chainspace Overview
Chainspace uses a shard-led cross-shard consensus protocol
called S-BAC. The client submits a transaction to the in-
put shards. Each shard internally runs a BFT protocol to
tentatively decide whether to accept or abort the transac-
tion locally, and broadcasts its local decision (pre-accept(T )
or pre-abort(T )) to other relevant shards. Figure 2 shows
the state machine representing the life cycle of objects in
Chainspace. A shard generates pre-abort(T ) if the trans-
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Figure 4: An example execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

attacks (Section 5.5).

5.1 Omniledger Overview

Omniledger uses a client-led cross-shard consensus protocol
called Atomix. The client submits the transaction T to the
input shards. Each shard runs a BFT protocol locally to de-
cide whether to accept or reject the transaction, and commu-
nicates its response (pre-accept(T ) or pre-abort(T )) to the
client.6 A shard emits pre-abort(T ) if the transaction fails
local checks. Alternatively, if a shard emits pre-accept(T ),
it inactivates the input objects it manages. This is the first
phase of Atomix, and is similar to the voting phase in the
two-phase atomic commit protocol (Section 2), but differs in
that the protocol proceeds optimistically. The write changes
made by the input shards in the first phase of Atomix are con-
sidered permanent (i.e., there is no ‘locked’ object state), un-
less the client requests the input shards to revert their changes
in the second phase.

After the client has collected pre-accept(T ) from all in-
put shards, it submits accept(T ) message (containing proof
of the pre-accept(T ) messages) to the output shards which
create the output objects. Alternatively, if any of the input
shards emits pre-abort(T ), the client sends abort(T ) (con-
taining proof of pre-abort(T )) to the relevant input shards
which make the input objects active again. This is the sec-
ond phase of Atomix, and is similar to the commit phase in
the two-phase atomic commit protocol (Section 2).

Figure 4 shows execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3), with two active inputs (x1 managed
by shard 1, and x2 managed by shard 2) and producing three
outputs (y1,y2,y3) managed by shard 1, shard 2 and shard 3,
respectively. The client sends T to the input shards, both of
which reply with pre-accept(T ) and make the input objects
x1 and x2 inactive. The client sends accept(T ) to the output
shards which respectively create objects y1, y2, and y3.

6For consistency and clarity, we use the terminology used in Sec-
tion 4. In Omniledger, pre-accept(T ) is actually a proof-of-accept and
pre-abort(T ) is a proof-of-abort [9].

5.2 Message Recording

Before launching the replay attacks, the attacker first records
the target shard responses. The attacker can record shard re-
sponses in the first phase of Atomix (i.e., pre-accept(T ) or
pre-abort(T )), enabling the attacks described in Section 5.3.
The attacker can also record shard responses in the second
phase of Atomix (i.e., accept(T ) or abort(T )), enabling the
attacks described in Section 5.4. In the general case, the at-
tacker passively collects the messages to replay, for example
by protocol executions on the network, or by downloading
the blockchain and selecting the appropriate messages. Ap-
pendix B.2 shows how the attacker can act as (or collude
with) a client to actively elicit and record the target messages
to later use in the replay attacks.

5.3 Attacks on the First Phase of Atomix

We present replay attacks on the first phase of Atomix by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize
to transactions with k inputs and k0 outputs managed by an
arbitrary number of shards. The replay attacks work in two
steps: (i) the attacker observes the traffic and records pre-
accept(T ) or pre-abort(T ) messages as described in Sec-
tion 5.2; and (ii) then replay those messages.

Table 3 shows the replay attacks that the attacker can
launch, for all possible combinations of responses generated
by shard 1 and shard 2 in the first phase of Atomix. The
caption includes details about how to interpret this table. We
describe row 2 of Table 3, to help readers interpret rest of
the table on their own. In the correct execution (row 1),
both shard 1 and shard 2 emit pre-accept(T ) in the first
phase, and inactivate the input objects x1 and x2. Upon re-
ceiving these messages, the client sends accept(T ) to the
output shards shard 1, shard 2 and shard 3, which create
the output objects y1, y2 and y3, respectively; and the proto-
col terminates. In the attack illustrated in row 2 of Table 3,
the attacker races shard 1 by sending to the client the pre-
recorded pre-abort(T ) message from shard 1. As a result,
the client sends abort(T ) message to the input shards shard
1 and shard 2, which re-activate the input objects x1 and x2.
This results in inconsistent state because the output objects
(y1, y2, y3) have been created, while the input objects (x1, x2)
are still active—in a correct execution all transaction inputs
should be inactivated, and all outputs should be created.

Table 3 shows that through careful selection of the mes-
sages to replay, the attacks can be effective against any shard.
The attacks illustrated in row 2, row 3, and row 4 only affect
availability, while the other attacks compromise consistency
(i.e., the attacker can trick the input shards to reactivate ar-
bitrary objects, and trick the output shards into creating new
objects in violation of the protocol). The potential victims
of these attacks include the client (e.g., when the attacker re-
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Figure 4: An example execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

attacks (Section 5.5).

5.1 Omniledger Overview

Omniledger uses a client-led cross-shard consensus protocol
called Atomix. The client submits the transaction T to the
input shards. Each shard runs a BFT protocol locally to de-
cide whether to accept or reject the transaction, and commu-
nicates its response (pre-accept(T ) or pre-abort(T )) to the
client.6 A shard emits pre-abort(T ) if the transaction fails
local checks. Alternatively, if a shard emits pre-accept(T ),
it inactivates the input objects it manages. This is the first
phase of Atomix, and is similar to the voting phase in the
two-phase atomic commit protocol (Section 2), but differs in
that the protocol proceeds optimistically. The write changes
made by the input shards in the first phase of Atomix are con-
sidered permanent (i.e., there is no ‘locked’ object state), un-
less the client requests the input shards to revert their changes
in the second phase.

After the client has collected pre-accept(T ) from all in-
put shards, it submits accept(T ) message (containing proof
of the pre-accept(T ) messages) to the output shards which
create the output objects. Alternatively, if any of the input
shards emits pre-abort(T ), the client sends abort(T ) (con-
taining proof of pre-abort(T )) to the relevant input shards
which make the input objects active again. This is the sec-
ond phase of Atomix, and is similar to the commit phase in
the two-phase atomic commit protocol (Section 2).

Figure 4 shows execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3), with two active inputs (x1 managed
by shard 1, and x2 managed by shard 2) and producing three
outputs (y1,y2,y3) managed by shard 1, shard 2 and shard 3,
respectively. The client sends T to the input shards, both of
which reply with pre-accept(T ) and make the input objects
x1 and x2 inactive. The client sends accept(T ) to the output
shards which respectively create objects y1, y2, and y3.

6For consistency and clarity, we use the terminology used in Sec-
tion 4. In Omniledger, pre-accept(T ) is actually a proof-of-accept and
pre-abort(T ) is a proof-of-abort [9].

5.2 Message Recording

Before launching the replay attacks, the attacker first records
the target shard responses. The attacker can record shard re-
sponses in the first phase of Atomix (i.e., pre-accept(T ) or
pre-abort(T )), enabling the attacks described in Section 5.3.
The attacker can also record shard responses in the second
phase of Atomix (i.e., accept(T ) or abort(T )), enabling the
attacks described in Section 5.4. In the general case, the at-
tacker passively collects the messages to replay, for example
by protocol executions on the network, or by downloading
the blockchain and selecting the appropriate messages. Ap-
pendix B.2 shows how the attacker can act as (or collude
with) a client to actively elicit and record the target messages
to later use in the replay attacks.

5.3 Attacks on the First Phase of Atomix

We present replay attacks on the first phase of Atomix by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize
to transactions with k inputs and k0 outputs managed by an
arbitrary number of shards. The replay attacks work in two
steps: (i) the attacker observes the traffic and records pre-
accept(T ) or pre-abort(T ) messages as described in Sec-
tion 5.2; and (ii) then replay those messages.

Table 3 shows the replay attacks that the attacker can
launch, for all possible combinations of responses generated
by shard 1 and shard 2 in the first phase of Atomix. The
caption includes details about how to interpret this table. We
describe row 2 of Table 3, to help readers interpret rest of
the table on their own. In the correct execution (row 1),
both shard 1 and shard 2 emit pre-accept(T ) in the first
phase, and inactivate the input objects x1 and x2. Upon re-
ceiving these messages, the client sends accept(T ) to the
output shards shard 1, shard 2 and shard 3, which create
the output objects y1, y2 and y3, respectively; and the proto-
col terminates. In the attack illustrated in row 2 of Table 3,
the attacker races shard 1 by sending to the client the pre-
recorded pre-abort(T ) message from shard 1. As a result,
the client sends abort(T ) message to the input shards shard
1 and shard 2, which re-activate the input objects x1 and x2.
This results in inconsistent state because the output objects
(y1, y2, y3) have been created, while the input objects (x1, x2)
are still active—in a correct execution all transaction inputs
should be inactivated, and all outputs should be created.

Table 3 shows that through careful selection of the mes-
sages to replay, the attacks can be effective against any shard.
The attacks illustrated in row 2, row 3, and row 4 only affect
availability, while the other attacks compromise consistency
(i.e., the attacker can trick the input shards to reactivate ar-
bitrary objects, and trick the output shards into creating new
objects in violation of the protocol). The potential victims
of these attacks include the client (e.g., when the attacker re-
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Figure 4: An example execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

attacks (Section 5.5).

5.1 Omniledger Overview

Omniledger uses a client-led cross-shard consensus protocol
called Atomix. The client submits the transaction T to the
input shards. Each shard runs a BFT protocol locally to de-
cide whether to accept or reject the transaction, and commu-
nicates its response (pre-accept(T ) or pre-abort(T )) to the
client.6 A shard emits pre-abort(T ) if the transaction fails
local checks. Alternatively, if a shard emits pre-accept(T ),
it inactivates the input objects it manages. This is the first
phase of Atomix, and is similar to the voting phase in the
two-phase atomic commit protocol (Section 2), but differs in
that the protocol proceeds optimistically. The write changes
made by the input shards in the first phase of Atomix are con-
sidered permanent (i.e., there is no ‘locked’ object state), un-
less the client requests the input shards to revert their changes
in the second phase.

After the client has collected pre-accept(T ) from all in-
put shards, it submits accept(T ) message (containing proof
of the pre-accept(T ) messages) to the output shards which
create the output objects. Alternatively, if any of the input
shards emits pre-abort(T ), the client sends abort(T ) (con-
taining proof of pre-abort(T )) to the relevant input shards
which make the input objects active again. This is the sec-
ond phase of Atomix, and is similar to the commit phase in
the two-phase atomic commit protocol (Section 2).

Figure 4 shows execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3), with two active inputs (x1 managed
by shard 1, and x2 managed by shard 2) and producing three
outputs (y1,y2,y3) managed by shard 1, shard 2 and shard 3,
respectively. The client sends T to the input shards, both of
which reply with pre-accept(T ) and make the input objects
x1 and x2 inactive. The client sends accept(T ) to the output
shards which respectively create objects y1, y2, and y3.

6For consistency and clarity, we use the terminology used in Sec-
tion 4. In Omniledger, pre-accept(T ) is actually a proof-of-accept and
pre-abort(T ) is a proof-of-abort [9].

5.2 Message Recording

Before launching the replay attacks, the attacker first records
the target shard responses. The attacker can record shard re-
sponses in the first phase of Atomix (i.e., pre-accept(T ) or
pre-abort(T )), enabling the attacks described in Section 5.3.
The attacker can also record shard responses in the second
phase of Atomix (i.e., accept(T ) or abort(T )), enabling the
attacks described in Section 5.4. In the general case, the at-
tacker passively collects the messages to replay, for example
by protocol executions on the network, or by downloading
the blockchain and selecting the appropriate messages. Ap-
pendix B.2 shows how the attacker can act as (or collude
with) a client to actively elicit and record the target messages
to later use in the replay attacks.

5.3 Attacks on the First Phase of Atomix

We present replay attacks on the first phase of Atomix by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize
to transactions with k inputs and k0 outputs managed by an
arbitrary number of shards. The replay attacks work in two
steps: (i) the attacker observes the traffic and records pre-
accept(T ) or pre-abort(T ) messages as described in Sec-
tion 5.2; and (ii) then replay those messages.

Table 3 shows the replay attacks that the attacker can
launch, for all possible combinations of responses generated
by shard 1 and shard 2 in the first phase of Atomix. The
caption includes details about how to interpret this table. We
describe row 2 of Table 3, to help readers interpret rest of
the table on their own. In the correct execution (row 1),
both shard 1 and shard 2 emit pre-accept(T ) in the first
phase, and inactivate the input objects x1 and x2. Upon re-
ceiving these messages, the client sends accept(T ) to the
output shards shard 1, shard 2 and shard 3, which create
the output objects y1, y2 and y3, respectively; and the proto-
col terminates. In the attack illustrated in row 2 of Table 3,
the attacker races shard 1 by sending to the client the pre-
recorded pre-abort(T ) message from shard 1. As a result,
the client sends abort(T ) message to the input shards shard
1 and shard 2, which re-activate the input objects x1 and x2.
This results in inconsistent state because the output objects
(y1, y2, y3) have been created, while the input objects (x1, x2)
are still active—in a correct execution all transaction inputs
should be inactivated, and all outputs should be created.

Table 3 shows that through careful selection of the mes-
sages to replay, the attacks can be effective against any shard.
The attacks illustrated in row 2, row 3, and row 4 only affect
availability, while the other attacks compromise consistency
(i.e., the attacker can trick the input shards to reactivate ar-
bitrary objects, and trick the output shards into creating new
objects in violation of the protocol). The potential victims
of these attacks include the client (e.g., when the attacker re-
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Phase 1 of Atomix Phase 2 of Atomix

(potential victim)
Shard 1

(potential victim)
Shard 2

(victim)
Client

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 3

1 inactivate x1

pre-accept(T )
inactivate x2

pre-accept(T ) accept(T ) create y1

-
create y2

-
create y3

-

2 B pre-abort(T ) abort(T ) re-activate x1

-
re-activate x2

- -

3 B pre-abort(T ) abort(T ) re-activate x1

-
re-activate x2

- -

4 Bpre-abort(T ) Bpre-abort(T ) abort(T ) re-activate x1

-
re-activate x2

- -

5 -
pre-abort(T )

inactivate x2

pre-accept(T ) abort(T ) -
-

re-activate x2

- -

6 Bpre-accept(T ) accept(T ) create y1

-
create y2

-
create y3

-

7 inactivate x1

pre-accept(T )
-

pre-abort(T ) abort(T ) re-activate x1

-
-
- -

8 B pre-accept(T ) accept(T ) create y1

-
create y2

-
create y3

-

9 -
pre-abort(T )

-
pre-abort(T ) abort(T ) -

-
-
- -

10 B pre-accept(T ) B pre-accept(T ) accept(T ) create y1

-
create y2

-
create y3

-

Table 3: List of replay attacks against the first phase of Atomix for all possible executions of the transaction T (x1,x2)! (y1,y2,y3) as described in Section 3.
The highlighted rows indicate correct executions of Atomix (i.e., without the attacker), and the other rows indicate incorrect executions due to the replay
attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions as a result of
emitting those messages. For example, (column 1, row 1) means that shard 1 emits pre-accept(T ) (top sub-row), and inactivates x1 (bottom sub-row). The
first two columns indicate the messages emitted by each shard at the end the first phase of Atomix. Replayed messages are marked with the symbol B, for
example Bpre-abort(T ) at (column 1, row 2) means that the attacker sends to the client a prerecorded pre-abort(T ) message impersonating shard 1 that races
the original pre-accept(T ) (column 1, row 1) emitted by shard 1. The third column indicates the messages sent by the client to the relevant shards, and the
last three columns indicate the local actions performed by shards at the end of the second phase of Atomix.

plays the shard messages to it in the first phase of Atomix)
and any input or output shards.

5.4 Attacks on the Second Phase of Atomix

We present replay attacks on the second phase of Atomix.
The attacker prerecords accept(T ) and abort(T ) messages
as described in Section 5.2.

Table 4 shows replay attacks corresponding to the mes-
sages emitted by the client in the second phase—i.e., ac-
cept(T ) in row 1, or abort(T ) in row 3. The caption includes
details about how to interpret this table. The abort(T ) mes-
sage at (column 1, row 2) means that the attacker sends a
prerecorded abort(T ) message to the input shards (shard 1
and shard 2) impersonating the client. Upon receiving this
message, shard 1 and shard 2 (incorrectly) re-activate x1 and
x2, respectively. Furthermore, all output shards create the
output objects when the correct accept(T ) message emitted
by the client (row 1, column 1) reaches them. This results in
inconsistent state, because the output objects have been cre-
ated, but the input objects have not been consumed and have

been reactivated by the abort(T ) message replayed by the
adversary. The potential victims of abort(T ) replay attack
are the input shards.

Similarly, accept(T ) at (row 4, column 1) means that the
attacker sends a prerecorded accept(T ) message to the out-
put shards (shard 1, shard 2 and shard 3) impersonating the
client. Upon receiving this message, the output shards (in-
correctly) create y1, y2 and y3. Furthermore, the input shards
(shard 1 and shard 2) reactivate x1 and x2 upon receiving
the the correct abort(T ) message emitted by the client (row
3, column 1). This creates inconsistent state: the input ob-
jects have not been consumed and have been reactivated by
the abort(T ) message emitted by the client, but the output
objects have been created due to the accept(T ) message re-
played by the attacker. The potential victims of accept(T )
replay attack are the output shards.

These attacks are possible because output shards cre-
ate objects directly upon receiving accept(T ); they do not
check if the objects have been previously invalidated be-
cause shards do not keep records of inactive objects (per

8
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active

locked 
T 

inactive
pre-abort(T)

pre-accept(T)

abort(T)

accept(T') accept(T)

pre-accept(T'')
or

pre-abort(T'')

Figure 2: State machine representing the life cycle of Chainspace objects.
An object becomes ‘active’ as a result of a previous successful transaction.
The object state changes to ‘locked’ if a shard locally emits pre-accept(T )
in the first phase of the cross-shard consensus protocol for a transaction T .
A locked object cannot be processed by other transactions T 00. If the second
phase of the protocol results in accept(T ), the object becomes ‘inactive’;
alternatively, if the result is abort(T ) the object becomes ‘active’ again and
is available for being processed by other transactions.

action fails local checks (e.g., if any of the input objects are
‘inactive’ or ‘locked’). If a shard generates pre-accept(T ),
it changes the state of the input objects to ‘locked’. This is
the first step of S-BAC, and is equivalent to the voting phase
in the two-phase atomic commit protocol (Section 2).

Each shard collects responses from other relevant shards,
and commits the transaction if all shards respond with pre-
accept(T ), or aborts the transaction otherwise. This is the
second step of S-BAC, and is equivalent to the commit phase
in the two-phase atomic commit protocol (Section 2). The
shards communicate this decision to the client as well as the
output shards by sending them the accept(T ) or abort(T )
messages. If the shard’s decision is accept(T ), it changes
the input object state to ‘inactive’. If the shard’s decision is
abort(T ), it changes the input object state to ‘active’ (effec-
tively unlocking it). Upon reception of the accept(T ), the
client concludes that the transaction was committed, and the
output shard creates the output objects (with the state ‘ac-
tive’) of the transaction.

Figure 1 shows an example execution of S-BAC for a valid
transaction T (x1,x2) ! (y1,y2,y3) with two inputs (x1 and
x2, both are active) and three outputs (y1,y2,y3), where the
final decision is accept(T ). The client submits T to shard 1
and shard 2. Upon reception of T , both shard 1 and shard 2
confirm that the transaction is well-formed and the inputs ob-
jects are active, and emit pre-accept(T ) at the end of the first
phase of S-BAC. Each shard receives pre-accept(T ) from
the other shard, and emits accept(T ) at the end of the sec-
ond phase of S-BAC. As a result, the input objects x1 and
x2 become inactive, and the output shards respectively create
objects y1, y2, and y3.

4.2 Message Recording

Prior to the replay attacks, the attacker records responses
generated by shards. The attacker can record shard responses
in the first phase of S-BAC (i.e., pre-accept(T ) or pre-
abort(T )), enabling the family of attacks described in Sec-
tion 4.3. The attacker can also record shard responses in the

BFT

BFT

BFT

BFT

accept(T)

pre-abort(T)

pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

attacker
pre-accept(T)

abort(T)

Figure 3: Illustration of the replay attack depicted in row 6 of Table 1. The
attacker replays to shard 2 a prerecorded pre-accept(T ) message (shown as
a bold line) from shard 1, which precludes shard 1’s pre-abort(T ) message
(shown as a dotted line).

second phase of S-BAC (i.e., accept(T ) or abort(T )), en-
abling the family of attacks described in Section 4.4.

In the general case, the attacker passively collects the mes-
sages either by sniffing the network on protocol executions,
or by downloading the blockchain and selecting the mes-
sages to replay4. Appendix B.1 shows how the attacker can
act as (or collude with) a client to actively elicit the messages
necessary for the attacks, to record and later replay—this em-
powers the attacker to actively orchestrate the attacks.

4.3 Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-BAC by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize to
transactions with k inputs and k0 outputs managed by an arbi-
trary number of shards. The replay attacks work in two steps;
(i) the attacker records pre-accept(T ) or pre-abort(T ) mes-
sages (as described in Section 4.2 and Appendix B.1); and
(ii) then replays those messages.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The cap-
tion includes details about how to interpret this table. All
attacks exploit the parallel composition of multiple S-BAC
instances, and insufficient binding of messages to its S-BAC
instance. We describe row 6 of Table 1, to help readers in-
terpret rest of the table on their own. In the correct execution
(row 5), shard 1 and shard 2 emit pre-abort(T ) (because x1
is not active) and pre-accept(T ) in the first phase, respec-
tively. In the second phase, both shards emit abort(T ) and
the protocol terminates. Figure 3 illustrates the replay attack
corresponding to row 6 of Table 1. The attacker races shard 1
by sending to shard 2 the prerecorded pre-accept(T ) mes-
sage from shard 1. As a result, shard 2 emits accept(T ),

4Since those messages need to be recorded on chain for verification, just
using transport layer encryption between nodes is not effective.

4
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Phase 2 of Atomix
Client (potential victim)

Shard 1
(potential victim)

Shard 2
(potential victim)

Shard 3

1 accept(T ) create y1

-
create y2

-
create y3

-

2 Babort(T ) re-activate x1

-
re-activate x2

- -

3 abort(T ) re-activate x1

-
re-activate x2

- -

4 Baccept(T ) create y1

-
create y2

-
create y3

-

Table 4: List of replay attacks against the second phase of Atomix for all possible executions of the transaction T (x1,x2) ! (y1,y2,y3) as described in
Section 3. The highlighted rows indicate correct executions of Atomix (i.e., without the attacker), and the other rows indicate incorrect executions due to the
replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions. Note that
we use the multirow format for consistency reasons; in this table the first column indicates the messages emitted by the client at the beginning of the second
phase of Atomix, and the last two column shows the effect of these messages on the relevant shards. Replayed messages are marked with the symbol B. For
example, Babort(T ) at (column 1, row 2) means that the attacker sends a prerecorded abort(T ) message to the input shards impersonating the client.

the UTXO model) for scalability reasons.7 The attacker
can double-spend the output objects repeatedly from a sin-
gle prerecorded message by replaying it multiple times, and
spending the object (and effectively purging it from the out-
put shards’ UTXO) before each replay.

Similar to the attacks against the second phase of S-BAC
(Section 4.4), these attacks do not exploit any racing condi-
tion and can be mounted by an adversary at a leisurely pace.

5.5 Real-world Impact

Contrarily to Chainspace, Omniledger does not support
smart contracts and only handles a cryptocurrency. The at-
tacks described in Sections 5.3 and 5.4 allow an attacker to:
(i) double-spend the coins of any user, by reactivating spent
coins (e.g., the attacker may execute the attack depicted by
row 2 of Table 4 to re-activate the objects x1 and x2 after
the transfer is complete); and (ii) create coins out of thin air
by replaying the message to create coins (e.g., an attacker
may execute the attack depicted by row 4 of Table 4 to cre-
ate multiple times object y3, by purging it from the UTXO
list of shard 3 prior to each instance of the attack). If the at-
tacker colludes with the client, it can trigger the prerecorded
messages needed for the attacks as described in Section 5.2.
Alternatively, the attacker can passively observe the network
and collect the target messages to replay. Similar results can
be obtained using the attacks described in Table 3.

Note that since transaction are recorded on the blockchain,
these attacks can be detected retrospectively. This can lead
to the attacker being exposed, or the attacker can inculpate
innocent users (the attacker can replay messages of any user).

7Verifying that objects have not been previously invalided implies either
keep a forever-growing list of invalidated objects, or download and check
the shard’s entire blockchain.

6 The Byzcuit Atomic Commit Protocol

We previously discussed the two main approaches to achieve
cross-shard consensus in sharded blockchains: shard-led
protocols in the context of S-BAC (Section 4.1), and client-
led protocols in the context of Atomix (Section 5.1). S-BAC
runs the protocol among the shards, without relying on client
coordination. But this comes at the cost of increased cross-
shard communication: all input shards communicate with all
other input shards, which leads to communication complex-
ity of O(n2) where n is the number of input shards.

On the other hand, Atomix is a simpler protocol, and us-
ing the client to coordinate cross-shard communication can
reduce the cost to O(n) in the number of shards (by aggregat-
ing shard messages). However, an unresponsive or malicious
client can permanently lock input objects by never initiating
the second phase of the protocol, requiring additional design
considerations (e.g., a new entity that periodically unlocks
input objects for transactions on which no progress has been
made). Moreover, we have highlighted that both shard-led
(Sections 4.3 and 4.4) and client-led (Sections 5.3 and 5.4)
protocols are vulnerable to replay attacks that can compro-
mise system liveness and safety.

Motivated by these insights, we present Byzcuit—a cross-
shard atomic commit protocol that is based on S-BAC, and
integrates design features from Atomix. Byzcuit allocates a
Transaction Manager (TM) to coordinate cross-shard com-
munication, reducing its cost to O(n) in the happy case8;
alternatively Byzcuit also has a fall-back mode in case the
TM fails, similar to Atomix and traditional two phase com-
mit protocols. Byzcuit achieves resilience against the replays
attacks described in Section 4 and Section 5, by leveraging
the notion of dummy objects and object sequence numbers,
which have been explained in the following subsections.

8The communication complexity can be reduced to O(n) in the number
of shards by aggregating shard messages as described by Omniledger.
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Figure 4: An example execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3) with two inputs (x1 and x2, both are active) and three
outputs (y1,y2,y3), where the final decision is accept(T ).

attacks (Section 5.5).

5.1 Omniledger Overview

Omniledger uses a client-led cross-shard consensus protocol
called Atomix. The client submits the transaction T to the
input shards. Each shard runs a BFT protocol locally to de-
cide whether to accept or reject the transaction, and commu-
nicates its response (pre-accept(T ) or pre-abort(T )) to the
client.6 A shard emits pre-abort(T ) if the transaction fails
local checks. Alternatively, if a shard emits pre-accept(T ),
it inactivates the input objects it manages. This is the first
phase of Atomix, and is similar to the voting phase in the
two-phase atomic commit protocol (Section 2), but differs in
that the protocol proceeds optimistically. The write changes
made by the input shards in the first phase of Atomix are con-
sidered permanent (i.e., there is no ‘locked’ object state), un-
less the client requests the input shards to revert their changes
in the second phase.

After the client has collected pre-accept(T ) from all in-
put shards, it submits accept(T ) message (containing proof
of the pre-accept(T ) messages) to the output shards which
create the output objects. Alternatively, if any of the input
shards emits pre-abort(T ), the client sends abort(T ) (con-
taining proof of pre-abort(T )) to the relevant input shards
which make the input objects active again. This is the sec-
ond phase of Atomix, and is similar to the commit phase in
the two-phase atomic commit protocol (Section 2).

Figure 4 shows execution of Atomix for a valid transaction
T (x1,x2)! (y1,y2,y3), with two active inputs (x1 managed
by shard 1, and x2 managed by shard 2) and producing three
outputs (y1,y2,y3) managed by shard 1, shard 2 and shard 3,
respectively. The client sends T to the input shards, both of
which reply with pre-accept(T ) and make the input objects
x1 and x2 inactive. The client sends accept(T ) to the output
shards which respectively create objects y1, y2, and y3.

6For consistency and clarity, we use the terminology used in Sec-
tion 4. In Omniledger, pre-accept(T ) is actually a proof-of-accept and
pre-abort(T ) is a proof-of-abort [9].

5.2 Message Recording

Before launching the replay attacks, the attacker first records
the target shard responses. The attacker can record shard re-
sponses in the first phase of Atomix (i.e., pre-accept(T ) or
pre-abort(T )), enabling the attacks described in Section 5.3.
The attacker can also record shard responses in the second
phase of Atomix (i.e., accept(T ) or abort(T )), enabling the
attacks described in Section 5.4. In the general case, the at-
tacker passively collects the messages to replay, for example
by protocol executions on the network, or by downloading
the blockchain and selecting the appropriate messages. Ap-
pendix B.2 shows how the attacker can act as (or collude
with) a client to actively elicit and record the target messages
to later use in the replay attacks.

5.3 Attacks on the First Phase of Atomix

We present replay attacks on the first phase of Atomix by
taking the example of a transaction T (x1,x2) ! (y1,y2,y3)
as described in Section 3. These attacks easily generalize
to transactions with k inputs and k0 outputs managed by an
arbitrary number of shards. The replay attacks work in two
steps: (i) the attacker observes the traffic and records pre-
accept(T ) or pre-abort(T ) messages as described in Sec-
tion 5.2; and (ii) then replay those messages.

Table 3 shows the replay attacks that the attacker can
launch, for all possible combinations of responses generated
by shard 1 and shard 2 in the first phase of Atomix. The
caption includes details about how to interpret this table. We
describe row 2 of Table 3, to help readers interpret rest of
the table on their own. In the correct execution (row 1),
both shard 1 and shard 2 emit pre-accept(T ) in the first
phase, and inactivate the input objects x1 and x2. Upon re-
ceiving these messages, the client sends accept(T ) to the
output shards shard 1, shard 2 and shard 3, which create
the output objects y1, y2 and y3, respectively; and the proto-
col terminates. In the attack illustrated in row 2 of Table 3,
the attacker races shard 1 by sending to the client the pre-
recorded pre-abort(T ) message from shard 1. As a result,
the client sends abort(T ) message to the input shards shard
1 and shard 2, which re-activate the input objects x1 and x2.
This results in inconsistent state because the output objects
(y1, y2, y3) have been created, while the input objects (x1, x2)
are still active—in a correct execution all transaction inputs
should be inactivated, and all outputs should be created.

Table 3 shows that through careful selection of the mes-
sages to replay, the attacks can be effective against any shard.
The attacks illustrated in row 2, row 3, and row 4 only affect
availability, while the other attacks compromise consistency
(i.e., the attacker can trick the input shards to reactivate ar-
bitrary objects, and trick the output shards into creating new
objects in violation of the protocol). The potential victims
of these attacks include the client (e.g., when the attacker re-
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• What issues lead to those replay attacks?

Issue 1. Input shards cannot associate protocol messages 
to a specific instance of a transaction.  
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• What issues lead to those replay attacks?

Issue 1. Input shards cannot associate protocol messages 
to a specific instance of a transaction.  

Issue 2. Output shards (that are not also input shards) do 
not experience the first phase of the protocol 



2

Fixing replay attacks without breaking scalability

54

Chainspace Omniledger

Byzcuit



2

Byzcuit

55

shard 1 shard 2 shard 3

X1, Sx1 X2, Sx2

• Fixing issue 1: adding sequence numbers per object



2

Byzcuit

56

shard 1 shard 2 shard 3

X1, Sx1 X2, Sx2

• Fixing issue 2: dummy objects for output shards

D3, SD3



2

Byzcuit

57

BFT

BFT

BFT

BFT

 

accept( )pre-accept( )

BFT

client

shard 1

shard 2

shard 3 BFT

TM

1 2 3 4
first phase of

atomic commit
second phase of
atomic commit

Figure 5: An example execution of Byzcuit for a valid transaction
T (x1,x2)! (y1,y2,y3) with two input objects (x1 and x2, both are active),
and three outputs (y1,y2,y3), where the final decision is accept(T,sT ).

one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.

11



2

Byzcuit

58

BFT

BFT

BFT

BFT

 

accept( )pre-accept( )

BFT

client

shard 1

shard 2

shard 3 BFT

TM

1 2 3 4
first phase of

atomic commit
second phase of
atomic commit

Figure 5: An example execution of Byzcuit for a valid transaction
T (x1,x2)! (y1,y2,y3) with two input objects (x1 and x2, both are active),
and three outputs (y1,y2,y3), where the final decision is accept(T,sT ).

one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
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jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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Figure 5: An example execution of Byzcuit for a valid transaction
T (x1,x2)! (y1,y2,y3) with two input objects (x1 and x2, both are active),
and three outputs (y1,y2,y3), where the final decision is accept(T,sT ).

one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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and three outputs (y1,y2,y3), where the final decision is accept(T,sT ).

one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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T (x1,x2)! (y1,y2,y3) with two input objects (x1 and x2, both are active),
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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Figure 5: An example execution of Byzcuit for a valid transaction
T (x1,x2)! (y1,y2,y3) with two input objects (x1 and x2, both are active),
and three outputs (y1,y2,y3), where the final decision is accept(T,sT ).

one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].

accept( )
and

 is fresh

active

locked 
( ) 

inactivepre-accept( )

abort( )

accept( )

pre-accept( ) 
or

pre-abort( ) 

update 
 

pre-abort( )

start

Figure 6: State machine representing the life cycle of objects in Byzcuit.
Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
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jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
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cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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one honest node9. Thus, as soon as the first honest node
receives the message, the protocol progresses.

If the TM is the client or any centralized party, it may act
arbitrarily—but this does not stall the protocol because any-
one can make the protocol progress by taking over at any
time the role of the TM. This is possible because the TM
does not act on the basis of any secrets, therefore anyone
else can take over and complete the protocols. This “any-
one” may be an honest node in a shard that wants to finally
unlock an object (e.g., upon a timeout); or other clients that
wish to use a locked object; or it may be an external service
that has a job to periodically close open Byzcuit instances.
Byzcuit ensures such parties may attempt to make progress
asynchronously and concurrently safely. Therefore, Byzcuit
guarantees liveness as long as there is at least one honest en-
tity in the system.

Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make them
overflow. The attacker submits a pair (T,sT ) such that the
sequence number sT is just below the system overflow value;
the sequence numbers associate with the inputs overflow
upon the next updates, and the system would be again prone
to the attacks described in Section 4.310. To mitigate this is-
sue, shards define a clone procedure allowing to update any
of their objects to an unchanged version of themselves (i.e.
it creates a fresh copy of the object). This clone procedure
effectively creates a new object with serial number s0x = 0.
When shards detect that the serial number of one of their ob-

9Clients may take a statistical view of availability. Given that fewer than
2/3 of nodes in a shard are dishonest, sending the transaction to r nodes
will fail to reach an honest node with probability only (1/3)r . Clients may
also send messages sequentially to nodes, and only continue if they do not
observe progress within some timeout to further reduce costs.

10Note that this overflow vulnerability is common to every system relying
on nonces chosen by the users, like Byzantine Quorum Systems [11].
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Objects are initially ‘active’. Upon receiving a transaction that passes lo-
cal checks, a shard changes its input objects’ state to ‘locked’ (objects are
locked for a given transaction T and transaction sequence number sT ) and
emits pre-accept(T,sT ); otherwise it updates the sequence number of ev-
ery object it manages and emits abort(T,sT ). Once a shard locks input ob-
jects for a given (T,sT ), any accept(T,sT ) and abort(T,sT ) with malformed
transaction sequence numbers are ignored, and do not cause any transition
(not included in the figure). Any incoming transaction T 0 that requires pro-
cessing ‘locked’ input object(s) is aborted. Upon receiving accept(T,sT )
with a well formed sT , a shard makes its input objects ‘inactive’ and creates
the output objects. Alternatively, upon receiving abort(T,sT ) shards unlock
their inputs and updates the corresponding sequence numbers.

jects approaches the overflow value, they execute internally
this clone procedure. The attacker may exploit this mecha-
nism to DoS the system, forcing shards to constantly update
their objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are typ-
ically addressed by introducing transaction fees.

6.2 Security against Replay Attacks
We argue that Byzcuit is resilient to replay attacks. We re-
call the Honest Shard assumption from Chainspace and Om-
niledger under which Byzcuit operates, and assume that mes-
sages are authenticated as in traditional BFT protocols.

Security Assumption 1. (Honest Shard [1]) The adversary
may create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result, and to
ensure the correctness and liveness properties of Byzantine
consensus, each shard must have a size of at least 3 f + 1
nodes. (From Chainspace [1].)

Any message emitted by shards comes with at least f +1
signatures from nodes. Assuming honest shards, the attacker
can forge at most f signatures, which is not enough to im-
personate a shard.

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T,sT ) and pre-abort(T,sT ) during
the first phase of the protocol, similarly to the attacks de-
scribed in Sections 4.3 and 5.3; the TM then aggregates these
messages into either accept(T,sT ) or abort(T,sT ), and for-
wards them to the shards during the second phase of the pro-
tocol. Theorem 1 shows that Byzcuit detects that they origi-
nate from replayed messages and ignores them.
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Anyone can be a TM: it does not operate on the basis of 
any secret, and has no discretion in the protocol. 

The TM can be a shard  
Input shards contact in turn each 

node of the TM shard until they find 
a honest node 

The TM can be a single entity  
If the TM dies, anyone can take 

over: liveness is guaranteed as long 
as there is one honest party in the 

system 
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https://github.com/sheharbano/byzcuit

Open Source
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Figure 7: The effect of the number of shards on transaction throughput.
Each transaction has 2 input objects and 5 output objects, both chosen ran-
domly from shards.

transaction has 1 input object, and we vary the number of
dummy objects from 1–5 selected from unique shards, re-
sulting in a corresponding decrease in concurrency because
as many shards end up processing the transaction. For exam-
ple, 2 dummy objects means that 3 shards process the trans-
action (1 input shard, and 2 more shards corresponding to
the dummy objects). As expected, the throughput decreases
by 20–250 tps with the addition of each dummy object, and
reaches 750 tps when all 6 shards handle all transactions.

Client-perceived Latency. Figure 9 shows the client-
perceived latency—the time from when a client submits a
transaction, until it receives a decision from Byzcuit about
whether the transaction has been committed—under varying
system loads (expressed as transactions submitted to Byzcuit
per second). We submit a total of 1200 transactions at 200–
1000 transactions per second to Byzcuit with 6 shards. Each
transaction has 2 inputs objects and 5 output objects, both
chosen randomly from shards. When the system is experi-
encing a load of up to 1000 tps, clients hear back about their
transactions in less than a second on average, even with our
replay attack defenses.

8 Conclusion

We presented the first replay attacks against cross-shard con-
sensus protocols in sharded distributed ledgers. These at-
tacks affect both shard-driven and client-driven consensus
protocols, and allow attackers to double-spend or lock ob-
jects with minimal efforts. The attacker can act indepen-
dently without colluding with any nodes, and succeed even
if all nodes are honest; most of the attacks work also un-
der asynchrony. While addressing these attacks seems like
an implementation detail, their many variants illustrate that
a fundamental re-think of cross-shard commit protocols is

Figure 8: Decrease of Byzcuit throughput with the number of dummy
objects. Each transaction has 1 input object, and up to 5 dummy objects
randomly selected from unique non-input shards. 6 shards are used.

Figure 9: Client-perceived latency vs. system load (number of trans-
actions received per second by Byzcuit), for 6 shards with 2 inputs and 5
outputs per transaction (both chosen randomly from shards).

required to protect against them.

We developed Byzcuit, a new cross-shard consensus pro-
tocol merging features from shard-led and client-led consen-
sus protocols, and withstanding replay attacks. Byzcuit can
be seen as unifying Atomix (from Omniledger) and S-BAC
(from Chainspace), into an O(n) protocol, that is efficient
and secure. We implemented a prototype of Byzcuit and
evaluated it on a real cloud-based testbed, showing that it
is more performant than Chainspace, and on par with Om-
niledger performance. The resulting protocol is a drop-in
replacement for either, and can be adopted to immunize sys-
tems based on those designs.
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(1 input ; 6 shards)Figure 7: The effect of the number of shards on transaction throughput.
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as many shards end up processing the transaction. For exam-
ple, 2 dummy objects means that 3 shards process the trans-
action (1 input shard, and 2 more shards corresponding to
the dummy objects). As expected, the throughput decreases
by 20–250 tps with the addition of each dummy object, and
reaches 750 tps when all 6 shards handle all transactions.
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system loads (expressed as transactions submitted to Byzcuit
per second). We submit a total of 1200 transactions at 200–
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transaction has 2 inputs objects and 5 output objects, both
chosen randomly from shards. When the system is experi-
encing a load of up to 1000 tps, clients hear back about their
transactions in less than a second on average, even with our
replay attack defenses.

8 Conclusion

We presented the first replay attacks against cross-shard con-
sensus protocols in sharded distributed ledgers. These at-
tacks affect both shard-driven and client-driven consensus
protocols, and allow attackers to double-spend or lock ob-
jects with minimal efforts. The attacker can act indepen-
dently without colluding with any nodes, and succeed even
if all nodes are honest; most of the attacks work also un-
der asynchrony. While addressing these attacks seems like
an implementation detail, their many variants illustrate that
a fundamental re-think of cross-shard commit protocols is

Figure 8: Decrease of Byzcuit throughput with the number of dummy
objects. Each transaction has 1 input object, and up to 5 dummy objects
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Figure 9: Client-perceived latency vs. system load (number of trans-
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outputs per transaction (both chosen randomly from shards).

required to protect against them.

We developed Byzcuit, a new cross-shard consensus pro-
tocol merging features from shard-led and client-led consen-
sus protocols, and withstanding replay attacks. Byzcuit can
be seen as unifying Atomix (from Omniledger) and S-BAC
(from Chainspace), into an O(n) protocol, that is efficient
and secure. We implemented a prototype of Byzcuit and
evaluated it on a real cloud-based testbed, showing that it
is more performant than Chainspace, and on par with Om-
niledger performance. The resulting protocol is a drop-in
replacement for either, and can be adopted to immunize sys-
tems based on those designs.
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domly from shards.

transaction has 1 input object, and we vary the number of
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as many shards end up processing the transaction. For exam-
ple, 2 dummy objects means that 3 shards process the trans-
action (1 input shard, and 2 more shards corresponding to
the dummy objects). As expected, the throughput decreases
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reaches 750 tps when all 6 shards handle all transactions.
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tacks affect both shard-driven and client-driven consensus
protocols, and allow attackers to double-spend or lock ob-
jects with minimal efforts. The attacker can act indepen-
dently without colluding with any nodes, and succeed even
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der asynchrony. While addressing these attacks seems like
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required to protect against them.

We developed Byzcuit, a new cross-shard consensus pro-
tocol merging features from shard-led and client-led consen-
sus protocols, and withstanding replay attacks. Byzcuit can
be seen as unifying Atomix (from Omniledger) and S-BAC
(from Chainspace), into an O(n) protocol, that is efficient
and secure. We implemented a prototype of Byzcuit and
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• Fix without additional synchrony assumption / breaking scalability
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