Replay Attacks and Defenses Against Cross-
shard Consensus in Sharded Distributed Ledgers

Authors

Alberto Sonnino*
Shehar Bano*
Mustafa Al-Bassam*
George Danezis’

* University College London

January 2019

The Team

Alberto Sonnino

Mustafa Al-Bassam George Danezis

(™ calibra

Blockchains' Scalability

V\ I/
V\ ~
v

Blockchains' Scalability

® Several ways to enable blockchain scalability

/ Sharding \ f State Channels\ / Bigger Blocks \

’0
*
x

_ AN ol /

V\g |

= F-\ﬁ

(@

Sharded Distributed Ledgers

® Linear scalability through sharding

Q-
—

—

w"‘
——
N—

Sharded Distributed Ledgers

® Linear scalability through state sharding

shard 1 shard 2
- = % =
—
SEE8E =
L —}

shard 3

Sharded Distributed Ledgers

® Linear scalability through state sharding

shard 1 shard 2

- =

*

y

=

€

shard 3

Sharded Distributed Ledgers

transaction
T(Xl,.X'z) — (y19y29y3)

shard 1 shard 2 shard 3

9

Sharded Distributed Ledgers

transaction
T(Xl,.X'z) — (y19y29y3)

X7 Y; X2 Yo Y3
T

W=

shard 1 shard 2 shard 3

10

Attacks Overview

11

Attacks Overview

® What can the attacks do?

Double-spend any resource (eg. coins);

sometimes they can lock user's resources

® Threat Model: the attacker

. . re-orders network
does not need to collude acts as client or passive

messages (only needed

with any node observer for some of the attacks)

12

Attacks Overview

® Easy to fix if

Synchrony assumption for safety

Shards store & check old data (break scalability)

13

Attacks Overview

® lllustration of the attacks

Chainspace

Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bassam*, Alberto Sonnino®, Shehar Bano*, Dave Hrycyszyn' and George Danezi

* University College London, United Kingdom
T constructiveproof.com

Abstract—Chainspace is a decentralized infrastructure, known
25 distrlbuied ldger, st supports user defined smart contracts
and excates usersupplied transactions an thelr objcts
Sortect exceution of st contract ransaciions 1s 6rihable ln
. The aystem is scalable, by sharding state and the exccution
of transacions, snd wsing 5-BAC, distrbuied comit proiocsl,
to gua ney. Chainspace is secure against subsets of
nodes rying 0 mmpmmm its integrity or a\ailahlllly properties
through Byzantine Fault Tolerance (BFT, and extremely high-
auditabilit repudiation and ‘blockchain’ techniques. Even
“hen BFT fail, audlting mechanisms are in place (o race ma
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

1. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentralized
system. Unlike application specific distributed ledgers, such as
Bitcoin [26] for a currency, or certificate transparency [19] for
certificate verification, Chainspace offers extensibility though
smart contracts, like Ethereum [32]. However, users expose to
Chainspace enough information about contracts and transaction
semantics, to provide higher scalability through sharding across
infrastructure nodes: our modest testbed of 60 cores achieves
350 transactions per second, as compared with a peak rate
of less than 7 transactions per second for Bitcoin over 6K
full nodes. Etherium currently processes 4 transactions per
second, out of theoretical maximu of 25, Furthermare, our
platform is 0 the smart contract language, or identity
infrastructure, and supports privacy features through modern
zero-knowledge techniques (3, 9]

Unlike other scalable but ‘permissioned smart contract
platforms, such as Hyperledger Fabric 5] or BigchainDB [23],
Chainspace aims to be an ‘open’ system: it allows anyone
to author a smart contract, anyone to provide infrastructure
on which smart contract code and state runs, and any user to
access calls to smart contracts. Further, it provides ecosystem
features, by allowing composition of smart contracts from
different authors. We integrate a value system, named CSCoin,
as a system smart contract to allow for accounting between

Networkand Disibuid Spuems Scuriy (NDSS) Symposam 2018

Rt ok rg0 722 2018 23241
www.ndss-symposium.org

those parties

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

‘This paper makes the following contributions

It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publ

y audited.

It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties

It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

o It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls iilustrate and validate support
for high-integrity and high-privacy application:

Outline: Section II presents an overview of Chainspace;
Section 11T presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit rotocos, and smart contact definition and composi-
tion. Section V argues the correctness and securit ific
it contracts and their evaluatons re prscnted in Section VI:
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIIT presents limitation
and Section IX a comparison with related work; and Section X
concludes.

I SYSTEM OVERVIEW

Chainspace allows applications developers to implement
distributed ledger applications by defining and calling proce-

NDSS'18

14

Omniledger

OmniLedger: A Secure, Scale-Out,

Abstract —Designing a secure permissionless distributed ledger

v with the nummrofmhdnum o those that

2

e state blocks, and ow laicney “trustbut.

r low-value transactions. An evaluation of

our. upcnmcnlal vmml\pt Shows that OmniLedger's throughput

scales mber of active validators, supporting

atevel workloads and heyond, while confirming {ypical rans:
actions in under two seconds.

1. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
nsaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhibit_different security and performance trade-offs [10],
{11, [21], [32], [40). Replacing the Nakamoto consensus [36]
with PBET [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers 1o redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants, and. in fact, gradually
decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-our”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
nto multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benef
DLs [15] by reducing the transaction processing load on each
validator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new security assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections If and IX.

We introduce OmniLedger, the first DL architecture tha
provides “scale-out” transaction processing capacity compet-
itive with centralized payment-processing systems, such as
Visa. without compromising security or support for permis
sionless decentralization. To achieve this goal, OmniLedger

tra

Decentralized Ledger via Sharding

Scale-Out RSCoin [16] Security
Fig. 1: Trade-offs in current DL systems,

faces three key correctness and security challenges. First,
OmniLedger must choose statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36]. [38]. [32]
or proof-of-stake [31], [25]. Second, OmniLedger must
sure a negligible probability that any shard is compromised
across the (long-term) system lifetime via periodically (re-
Yforming shards (subses of validators to record state and
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must correctly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus [38],
using a sliding window of recent proof-of-work block miners
as its validator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, OmniLedger
builds on Ouroboros [31] and Algorand [25], running a public
randomness or cryptographic sortition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder distribution defined in the ledger.
To ensure that this sampling of representative validators is
both scalable and strongly bias-resistant, OmniLedger uses
RandHound [44]. a protocol that serves this purpose under
standard #-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key security challenge of
sceurely assigning validators to shards, and of periodically
rotating these assignments as the set of validators evolves.
OmniLedger chooses shards large enough, based on the anal-
ysis in Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
¢

ple shards (c.g., several cryptocurrency accounts). OmniLedge
introduces Atomix, a_ two-phase client-driven “lock/unlock
protocol that ensures that clients can either fully commit a
transaction across shards, or obtain “rejection proofs” to abort
and unlock state affected by partially completed transactions.

S&P'18

Shard-Led Cross-Shard Consensus

® Chainspace

T(x1,x2) = (V1,Y2,¥3)

client \

shard 1 BFT

~

shard 2 BFT

shard 3

15

Shard-Led Cross-Shard Consensus

® Chainspace

T(x1,x2) = (V1,Y2,¥3)

client
\ pre-accept(T)

shard 1 BFT ‘\><::
shard 2 BFT ==

pre-accept(T)

shard 3

4

lock X4, X2
16

Shard-Led Cross-Shard Consensus

® Chainspace

T(x1,x2) = (V1,Y2,¥3)

client
\ pre-accept(T)

shard 1 BFT [=_ —>| BFT
shard 2 BFT == BFT

pre-accept(T)

shard 3

4

delete X4, X2 ; create Y1, Y2
17

Shard-Led Cross-Shard Consensus

® Chainspace

T(x1,x2) = (V1,Y2,¥3)

client
\ pre-accept(T) %

shard 1 BFT [=_ —>| BFT
\ >< Accept
shard 2 BFT == BFT

shard 3

BF1

pre-accept(T) \

create Y3

18

Shard-Led Cross-Shard Consensus

® Chainspace

T(x1,x2) = (V1,Y2,¥3)

client
\ pre-accept(T) %

shard 1 BFT [=_ —>| BFT
o
shard 2 BFT =" BFT
pre-accept(T) \
shard 3 BFT |—

\ first phase / \ second phase /

19

® First phase attacks

Shard-Led Cross-Shard Consensus

Phase 1 of S-BAC

Phase 2 of S-BAC

Shard 1 Shard 2 Shard 1 Shard 2 Shard 3
(potential victim) (potential victim) (potential victim) (potential victim) (potential victim)
pre-accept(T) pre-accept(T) accept(T) accept(T) -
lock x; lock x» create yp; inactivate x create y,; inactivate xp create y3
i accept(T) abort(T) -
>pre-abort(T) create yp; inactivate x; unlock x; create y3
] abort(T) accept(T) :
>pre-abort(T) unlock x create y;; inactivate x; create y3
i] abort(7T) abort(T)
>pre-abort(T) >pre-abort(T) unlock x; unlock x» -
pre-abort(T) pre-accept(T) abort(T) abort(T))
- lock x» - unlock x;
] abort(T) accept(T) -
>pre-accept(T) - create y;; inactivate x; create y3
pre-accept(T) pre-abort(T) abort(7T) abort(T) _
lock x; - unlock x -
] accept(T) abort(T) -
> pre-accept(T) create yp; inactivate x - create y3
pre-abort(T) pre-abort(T) abort(T) abort(T)

20

Shard-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

transaction

TI'(x1,x0) = (V1,Y2,)3)
/ A A T A

21

Shard-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

pre-accept(T)

from shard 1

22

Shard-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

(bad) transaction
T'(x1,x2) = (V1,¥2, ¥3)

0/ |

23

Shard-Led Cross-Shard Consensus

® First phase attacks: recording messages

T,(fx\f, x2) — ()71, V2, J’3)

client
re-abort(T)
shard 1 BFT -
shard 2 BFT E=—= :

pre-accept(T)

24

Shard-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = V1, y2,) |

client
re-abort(T)
shard 1 BFT \
\A aD -
shard 2 BFT E=—=

pre-accept(T)

lock X2

25

Shard-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = V1, y2,»3) }

client
re-abort(T)
shard 1 BFT [~ |
shard 2 BFT E=

pre-accept(T)

T(x1,x2) = (Y1, Y2, ¥3)

¢ client
| pre-accept(T) abort(TW

ﬂ. shard 1 BFT oo —>1 BFT
lock X | N, ><

' shard 2 E%’] — X BFT

| pre-abort(T) abort(T)

(because X: is locked)

20

Shard-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = V1, y2,»3) }

client
re-abort(T)
shard 1 BFT ST = | pre_accept(T)
\ e from shard 1
shard 2 BFT E=—=

pre-accept(T)

T(x1,x2) = (Y1, Y2, ¥3)

¢ client
, pre-accept(T) abort(TW

’ﬁ_ shard 1 BFT Fo— —>| BFT
lock X | \ ><

' shard 2 E%’] —— X BFT

| pre-abort(T) abort(T)

(because X: is locked)

27

Shard-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = V1, y2,»3) }

client
re-abort(T) abort(TW
shard 1 BFT | == — | pre-accept(T) I BFT =~
\ e from shard 1 /
shard 2 BFT = I BFT
pre-accept(T) '

| abort(T)

T(x1,x2) = (Y1, Y2, ¥3)

- client
| pre-accept(T) abort(TW r
' d DJN L}

’ﬁ_ shard 1 BFT o —>1 BFT
lock X | N, ><

' shard 2 E%’] — X BFT

| pre-abort(T) abort(T)

(because X: is locked)

28

Shard-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: spend Xi

I (x1) = (¥«)

shard 1 BFT

29

Shard-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: double-spend X;

T(x1,x%) = (V1,y2,3)

client
\Qrﬂe-abort(T)

shard 1 BFT

~

shard 2 BFT E=

pre-accept(T)

30

Shard-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: double-spend X;

T(x1,x%) = (V1,y2,3)

client
\Qrﬂe-abort(T) abort(T)

shard 1 BFT [—=_ —»| BFT

pre-accept(T)

shard 2 BFT

accept(T)

shard 3

pre-accept(T)

attacker

31

Shard-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: double-spend X;

T(x1,x%) = (V1,y2,3)

client
\Qrﬂe-abort(T) abort(TW

shard 1 BFT [—=_ —y BFT N—/
shard 2 BFT == 2 BFT S\

pre-accept(T)

shard 3

Uy,
Tl
—

pre-accept(T)

attacker

32

Shard-Led Cross-Shard Consensus

® Second phase

Phase 2 of S-BAC

Shard 3
Shard 1 Shard 2 (potential victim)
i accept(T) accept(T) -
create yp; Inactivate x create y,; inactivate x» create y3
2 >accept(T) create yj3
3 >accept(T) create y3
4 >accept(T) >accept(7) create y3
5 abort(7) abort(7) -
(unlock x;) (unlock x») -
6 >accepi(7) create yj3
7 >accept(7) create y3
3 >accept(T) >accept(T) create y3

33

Shard-Led Cross-Shard Consensus

® Second phase

T(x1,x2) = (V1,Y2,¥3)

client
\ pre-accept(T)

shard 1 BFT ~_ —y| BFT i
\ >< accept(T)
shard 2 BFT =" BFT

pre-accept(T)

shard 3 BFT

34

Client-Led Cross-Shard Consensus

® Omniledger

T(x1,x3) = (V1,Y2,¥3)

shard 1 BFT "//
shard 2 BFT I

pre-accept(T)

shard 3 *

inactivate X1, X2

35

Client-Led Cross-Shard Consensus

® Omniledger

T(x1,x3) = (V1,Y2,¥3)

shard 1 BFT /’/ ~ N i X BFT
shard 2 BFT [\\ BF

pre-accept(T) accept(‘N
shard 3 BFT

create Y1, Y2, Y3 ’

36

Client-Led Cross-Shard Consensus

® Omniledger

T(XI,XQ) — (y19y29y3)

- \ W

shard 1 BFT

y 4 \ N\
| / \\
d N\
\

shard 2 BFT BFT

pre-accept(T) accept(‘N
shard 3 BF1

\ first phase / \ second phase /

37

BFT

Client-Led Cross-Shard Consensus

® First phase attacks

Phase 1 of Atomix

Phase 2 of Atomix

Shard 1 Shard 2 Client Shard 1 Shard 2 Shard 3
(potential victim) (potential victim) (victim) (potential victim) (potential victim) (potential victim)
{ pre-accept(T) pre-accept(T) accept(T) - -
inactivate x inactivate x» create y; create y» create y3
2 > pre-abort(T) abort(T) re-activate x; re-activate xp i
3 > pre-abort(T) abort(T) re-activate x re-activate xp i
4 >pre-abort(7T) >pre-abort(7T) abort(7T) re-activate x; re-activate x, -
5 pre-abort(T) pre-acpept(T) abort(T) - - i
- inactivate x» - re-activate x»
6 >pre-accept(r) accept(r) create y; create y» create y3
7 pre-acpept(T) pre-abort(T) abort(T) - - i
inactivate x| - re-activate x| -
8 > pre-accept(T) - accep(T) create y; create y» create y3
9 pre-atiort(T) pre-atfort(T) abort(T))
10 > pre-accept(T) > pre-accept(T) accept(T) create y; create create s

38

Client-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

transaction

TI'(x1,x0) = (V1,Y2,)3)
/ A A T A

39

Client-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

pre-accept(T)

from shard 1

40

Client-Led Cross-Shard Consensus

® First phase attacks: let's double-spend X

(bad) transaction
T'(x1,x2) = (V1,¥2, ¥3)

0/ |

41

Client-Led Cross-Shard Consensus

® First phase attacks: recording messages

T'(x1,x2) = (y1,¥2,¥3)
client ¥
pre-abort(T) ey

shard 1 BFT F—

.

shard 2 BFT

pre-accept(T)

42

Client-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = (y1,¥2,33) }

client " |
pre-abort(T) _.--"~

shard 1 BFT b i

shard 2 BFT I~ {

pre-accept(T)

invalidate Xo

43

Client-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = (y1,¥2,33) }

client s |
pre-abort(T) _.--"~

shard 1 BFT = {

shard 2 BET =

pre-accept(T)

T(x1,x2) = (¥1,¥2,¥3)
client

pre-accept(T) abort(T)

¥ shard 1 BFT 7 < X BFT

§ shard2 ——|BFT [\\‘l;

pre-abort(T)
(because Xz is invalidated)

invalidate Xo

/

44

Client-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = (y1,¥2,33) }
client Wi
pre-abort(T) _.--"~
shard 1 BFT F————— pre-accept(T)
\ ; from shard 1
shard 2 BFT I~ {

pre-accept(T)

T(x1,x2) = (¥1,¥2,¥3)
client

pre-accept(T) abort(T)
) i ! shard 1 BFT = N = BFT |
invalidate X2 ‘ \ / \7_
§ shard2 ——|BFT [BFT |

pre-abort(T)
(because Xz is invalidated)

45

Client-Led Cross-Shard Consensus

® First phase attacks: recording messages

T (x1,x2) = V1,2, ¥3)

client — -~ abort(T)
pre-abort(T) _.--"~
— :
shard 1 BFT E pre-accept(T) BFT |
\ from shard 1
shard 2 BFT [= A BFT |

pre-accept(T)

T(x1,x2) = (¥1,¥2,¥3)

client
pre-accept(T) abort(T)
) i ! shard 1 BFT = N = BFT |
invalidate X2 ‘ \ / \7_
§ shard2 ——|BFT [BFT |

pre-abort(T)
(because Xz is invalidated)

46

Client-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: spend X;

I (x1) = (¥«)

shard 1 BFT

47

Client-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: double-spend X;

T(x1,x2) = (V1,Y2,¥3)

client —
\)‘re-abort(T) /

4

shard 1 BFT ~

e

shard 2 BFT [

pre-accept(T)

shard 3

attacker

48

Client-Led Cross-Shard Consensus

pre-accept(T)
from shard 1

® First phase attacks: double-spend X;

T(x19 x2) — (yla Y2, y3)

client >
N\ pre-abort(T) .-~~~ accept(T)

shard 1 BFT E / \

shard 2 BFT £

pre-accept(T)

shard 3

pre-accept(T)
attacker

49

Client-Led Cross-Shard Consensus

® Second phase attacks

Phase 2 of Atomix

Client Shard 1 Shard > e
potential victim potential victim potential victim
1 accepi(T) create yi create ys create y3
2 >abort(7) re-activate x| re-activate xp
3 abor(T) re-activate x| re-activate xp
4 accept(T) create y, create y, create ys

50

Client-Led Cross-Shard Consensus

® Second phase attacks

T(x1,x3) = (V1,Y2,¥3)

client \

shard 1 BF1 BFT
shard 2 BFT [BFT
pre-accept(T) accept(T)

shard 3 BFT

51

Fixing replay attacks without breaking scalability

® What issues lead to those replay attacks?

Issue 1. Input shards cannot associate protocol messages

to a specific instance of a transaction.

52

Fixing replay attacks without breaking scalability

® What issues lead to those replay attacks?

Issue 1. Input shards cannot associate protocol messages
to a specific instance of a transaction.

Issue 2. Output shards (that are not also input shards) do
not experience the first phase of the protocol

53

Fixing replay attacks without breaking scalability

Chainspace . Omniledger

N /

54

Byzcuit

® Fixing issue 1: adding sequence numbers per object

)(1,£;x1)(2,€;x2

shard 1 shard 2 shard 3

55

Byzcuit

® Fixing issue 2: dummy objects for output shards

)(1,£;x1)(2,€;x2

' Sp3
\>_<\

<
N
= /

shard 1 shard 2 shard 3

-~

D3
e
\ S

56

Byzcuit

{s7,T(x1,%2) > (1,32, ¥3) |

o7

Byzcuit

{s7,T(x1,%2) > (1,32, ¥3) |

client <

shard 1 BFT

~

shard 2 BF1

shard 3 & BET

58

Byzcuit

{st, T(x1,%2) = (1,32, ¥3) |

client <

shard 1 BFT Check 1. Are all inputs
active / transaction well

\ formed ?

shard 2 BFT

Check 2. Is the sequence
number St

shard 3 & BET ST > max{SXl, SXZ} ?

59

Byzcuit

{st, T(x1,%2) = (1,32, ¥3) |

client
3| If Check fail:

shard 1 BFT Update all sequence numbers

\ Sy1 < S+ 1

shard 2 BFT Sy, <« Sp+ 1

Spy < S+ 1

shard 3 & QET

60

Byzcuit

{st, T(x1,%2) = (1,32, ¥3) |

client
LD If Check pass:
shard 1 BF1
\ 1. Lock objects as Chainspace
ap 2. Store the session ID (5, T)
shard 2 BF1
shard 3 & BET

lock X1, X2, D3
61

Byzcuit

{s7,T(x1,%2) > (1,32, ¥3) |

client <
shard 1 BFT \
shard 2 BFT \\\\
shard 3 &l pET KO NN

pre-accept(1’, s7)

™

62

Byzcuit

{st, T(x1,%2) = (1,32, ¥3) |

client — /
shard 1 BFT K 1 BFT
shard 2 BFT \\\\ ///t BFT
shard 3 A BFET k< A — i > BFT
pre-accept(1’, s7) accept(1, sT)
™

If (S, T)

delete X1, X2, D3
create Y1, Y2, Y3 D3

63

Byzcuit

{st, T(x1,%2) = (1,32, ¥3) |

client — /
shard 1 BF \ /1 BFT
shard 2 BFT \\\\ ///t BFT
shard 3 A BFET k< A — i > BFT
pre-accept(1’, s7) accept(1, sT)
™

\ first phase / \ second phase /

64

Byzcuit

® The transaction manager (TM)

Anyone can be a TM: it does not operate on the basis of

any secret, and has no discretion in the protocol.

-) -)
The TM can be a shard The TM can be a single entity
Input shards contact in turn each If the TM dies, anyone can take
node of the TM shard until they find over: liveness is guaranteed as long
a honest node as there is one honest party in the
system

_ J _ J

65

Byzcuit

® How does it prevents replay attacks

Issue 1. Input shards cannot associate protocol messages

to a specific instance of a transaction.

66

Byzcuit

® How does it prevents replay attacks

Issue 1. Input shards cannot associate protocol messages

to a specific instance of a transaction.

ﬁ
Sequence numbers:

they act as session ID

_J

6/

Byzcuit

® How does it prevents replay attacks

Issue 1. Input shards cannot associate protocol messages

to a specific instance of a transaction.

\
Sequence numbers:

they act as session ID

J

Issue 2. Output shards (that are not also input shards) do

not experience the first phase of the protocol

68

Byzcuit

® How does it prevents replay attacks

Issue 1. Input shards cannot associate protocol messages

to a specific instance of a transaction.

\
Sequence numbers:

they act as session ID

J

Issue 2. Output shards (that are not also input shards) do
not experience the first phase of the protocol

~
Dummy objects:
all shards experience
the first phase of the
protocol

69

Byzcuit

® Performance

- Open Source ~

https://github.com/sheharbano/byzcuit

70

https://github.com/sheharbano/byzcuit

Byzcuit

® Performance

Transactions / second

2000

1750 -

1500 A

= =

o N

o Ul

o o
1 1

750 A

500 A

250 A

—— Without defenses
With defenses

3 4 5 6 7 8 9 10

Number of shards

(2 inputs ; 5 outputs)

Ia

Byzcuit

® Performance

1500 A

=
N
Ul
o

1000 A

750 - \

500 -

Transactions / second

1 2 3 4 5
Number of dummy inputs per transaction

(1 input ; 6 shards)

/2

Byzcuit

® Performance

1600 A

1400 A

1200 -

1000 A

800 A

600 -

Client-perceived latency (ms)

400 -

200 A

—— Without defenses
With defenses

200 400 600 800 1000
Transactions / second

(2 input ; 5 outputs ; 6 shards)

73

Conclusion

® Replay attacks against sharded distributed ledgers
® Fix without additional synchrony assumption / breaking scalability

® Importance of implementation and evaluation

4

Thank you for your attention
Questions?

Alberto Sonnino

This work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and chainspace.io

http://chainspace.io

