
Replay Attacks and Defenses Against Cross-
shard Consensus in Sharded Distributed

Ledgers

Alberto Sonnino

Acknowledgments
Authors

George Danezis

University College London

Bano SheharAlberto Sonnino Mustafa Al-Bassam

A set of nodes

Byzantine Fault Tolerance

 > 2 / 3

Consensus

State Sharding

shard 1 shard 2

shard 3

State Sharding

State Sharding
An example transaction

X1 X2

T(x1, x2) → (y1, y2, y3)

Shard 1 Shard 2 Shard 3

State Sharding
An example transaction

X1 X2Y1 Y2 Y3

T(x1, x2) → (y1, y2, y3)

Shard 1 Shard 2 Shard 3

State Sharding
Only two acceptable final states

Y1 Y2

Y3
Shard 1 Shard 2

Shard 3

X1 X2

Shard 1 Shard 2

Shard 3

Cross-Shard Consensus
How do shards communicate with each other?

S-BAC
Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bassam⇤, Alberto Sonnino⇤, Shehar Bano⇤, Dave Hrycyszyn† and George Danezis⇤
⇤ University College London, United Kingdom

† constructiveproof.com

Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-
auditability, non-repudiation and ‘blockchain’ techniques. Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentralized
system. Unlike application specific distributed ledgers, such as
Bitcoin [26] for a currency, or certificate transparency [19] for
certificate verification, Chainspace offers extensibility though
smart contracts, like Ethereum [32]. However, users expose to
Chainspace enough information about contracts and transaction
semantics, to provide higher scalability through sharding across
infrastructure nodes: our modest testbed of 60 cores achieves
350 transactions per second, as compared with a peak rate
of less than 7 transactions per second for Bitcoin over 6K
full nodes. Etherium currently processes 4 transactions per
second, out of theoretical maximum of 25. Furthermore, our
platform is agnostic as to the smart contract language, or identity
infrastructure, and supports privacy features through modern
zero-knowledge techniques [3, 9].

Unlike other scalable but ‘permissioned’ smart contract
platforms, such as Hyperledger Fabric [5] or BigchainDB [23],
Chainspace aims to be an ‘open’ system: it allows anyone
to author a smart contract, anyone to provide infrastructure
on which smart contract code and state runs, and any user to
access calls to smart contracts. Further, it provides ecosystem
features, by allowing composition of smart contracts from
different authors. We integrate a value system, named CSCoin,
as a system smart contract to allow for accounting between

those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

• It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

• It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

• It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

• It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

• It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

II. SYSTEM OVERVIEW

Chainspace allows applications developers to implement
distributed ledger applications by defining and calling proce-

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23241
www.ndss-symposium.org

Atomix

S&P'18

OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as Visa, is a challenging task. Most existing
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cross-
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning
via collectively-signed state blocks, and low-latency “trust-but-
verify” validation for low-value transactions. An evaluation of
our experimental prototype shows that OmniLedger’s throughput
scales linearly in the number of active validators, supporting
Visa-level workloads and beyond, while confirming typical trans-
actions in under two seconds.

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
transaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhibit different security and performance trade-offs [10],
[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]
with PBFT [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers to redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants, and, in fact, gradually
decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-out”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
into multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benefit
DLs [15] by reducing the transaction processing load on each
validator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new security assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that
provides “scale-out” transaction processing capacity compet-
itive with centralized payment-processing systems, such as
Visa, without compromising security or support for permis-
sionless decentralization. To achieve this goal, OmniLedger

Elas
tic

o [34
]

Scale-Out

ByzCoin [32]

Decentralization

RSCoin [16] Security

OmniLedger

Fig. 1: Trade-offs in current DL systems.

faces three key correctness and security challenges. First,
OmniLedger must choose statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36], [38], [32]
or proof-of-stake [31], [25]. Second, OmniLedger must en-
sure a negligible probability that any shard is compromised
across the (long-term) system lifetime via periodically (re-
)forming shards (subsets of validators to record state and
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must correctly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus [38],
using a sliding window of recent proof-of-work block miners
as its validator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, OmniLedger
builds on Ouroboros [31] and Algorand [25], running a public
randomness or cryptographic sortition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder distribution defined in the ledger.
To ensure that this sampling of representative validators is
both scalable and strongly bias-resistant, OmniLedger uses
RandHound [44], a protocol that serves this purpose under
standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key security challenge of
securely assigning validators to shards, and of periodically
rotating these assignments as the set of validators evolves.
OmniLedger chooses shards large enough, based on the anal-
ysis in Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
ple shards (e.g., several cryptocurrency accounts), OmniLedger
introduces Atomix, a two-phase client-driven “lock/unlock”
protocol that ensures that clients can either fully commit a
transaction across shards, or obtain “rejection proofs” to abort
and unlock state affected by partially completed transactions.

NDSS’18

S-BAC
T(x1, x2) → (y1, y2, y3)

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3
lock X1, X2

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3
pre-accept(T)

pre-accept(T)

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3
delete X1, X2 ; create Y1, Y2

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3

create Y3

accept(T)

Atomix
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3

Insecure under parallel composition

• Does not need to collude with any node

• Acts as client or passive observer

• Re-orders network messages (not always needed)

Double spend any object

Attacks

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)
10

5

4

101

Double-spend X1

Attack against S-BAC

T′ (x̃1 , x2) → (y1, y2, y3)
10

5

4

101

Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)
Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)

lock X2

Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

from shard 1
pre-accept(T)

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′ (x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

BFT

BFT

abort(T')

unlock X2

from shard 1
pre-accept(T)

Attack against S-BAC

T*(x1) → (y*)

Double-spend X1

BFT

client

shard 1

10

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

attacker

pre-accept(T)

pre-abort(T)

5

BFT

BFT

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3

attacker

pre-accept(T)

pre-abort(T)

pre-accept(T)

5

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3

attacker

BFT

pre-accept(T)

pre-abort(T)

pre-accept(T)

4

10

5

Attack against S-BAC
Double-spend X1

After attackBefore attack

4

10

Y2

Y3

10
Y*

5
X2

10
X1

Byzcuit
S-BAC + Atomix

