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Hight throughput
BFT resilience
Fast finality

Linear scalability



The more machines you have, the bigger
your throughput

Scalability
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raditional Sharding
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State Sharding

An example transaction
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State Sharding

An example transaction
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State Sharding

Only two acceptable final states

Shard 1

Shard 2




Cross-Shard Consensus

How do shards communicate with each other?
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Mutex-Based Protocols
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Mutex-Based Protocols

hoose the assumptions

« Synchrony (for safety): Add an expiration to the receipt

 Infinite memory: Keep receipts forever



2PC Protocols

S-BAC

Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bassam*, Alberto Sonnino*, Shehar Bano*, Dave Hrycyszyn! and George Danezi
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t constructiveproof.com

Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by

harding state and the execution

of transactions, and using S-BAC, a distributed commit protocol,

to guarantee consistency. Chainspace is secure against subsets of

nodes trying to compromise its integrity or availability properties
yzantine Fault Tolerance (BFT)

when BFT fail. iting ns are in place to trace mal
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity

and transparent processing of transactions within a decentralized

stem. Unlike application specific distributed ledgers, such as
Bitcoin [26] for a currency, or certificate transparency [19] for
certificate verification, Chainspace offers extensibility though
smart contracts, like Ethereum [32]. However, users expose to
Chainspace enough information about contracts and transaction
semantics, to provide higher scalability through sharding across
infrastructure nodes: our modest testbed of 60 cores
350 transactions per second, as compared with a
of less than 7 transactions per second for Bitcoin over 6K
full nodes. Etherium currently proce: 4 transactions per
second, out of theoretical maximum of 25. Furthermore, our
platform is agnostic as to the smart contract language, or identity
infrastructure, and supports privacy features through modern
zero-knowledge techniques [3, 9].

Unlike other scalable but ‘permissioned’ smart contract
platforms, such as Hyperledger Fabric [5] or BigchainDB [23],
Chainspace aims to be an ‘open’ system: it allows anyone
to author a smart contract, anyone to provide infrastructure
on which smart contract code and state runs, and user to
acce alls to smart contracts. Further, it provides ecosystem
features, by allowing composition of smart contracts from
different authors. We integrate a value em, named CSCoin,

em smart contract to allow for accounting between
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those parties.

However, the security model of Chainspace, is different

m traditional unpermissioned blockchains, that rely on proo
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
i tructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of h part of the infras ure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

s paper makes the following contributions:

It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

It presents a el distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure

and security properties.

It intr ces a distinction between

contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting pri y-friendly smart-
contracts

It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol.
S-BAC, on a real distributed set of nodes and under
ying transaction loads.

It presents a number of key system and applica-

tion smart contracts and evaluates their performance.

The contracts for privacy-friendly art-metering and
iendly polls illustrate and validate support
i ty and high-privacy applicatior

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a com on with related work; and Section X

SYSTEM ERVIEW

ace allows applications developers to implement
buted ledger applications by defining and calling proce-
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OmnilLedger: A Secure, Scale-Out,

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as a, is a challenging task. Most ting
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cros:
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning

ly-signed state blocks, and lo tency “trust-but-

'y” validation for low-value transactions. An evaluation of

our experimental prototype shows that OmniLedger’s throughput

scales linearly in the number of active validators, supporting

isa-level workloads and beyond, while confirming typical trans-
ns in under two seconds.

99

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
transaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhi ferent security and performance trade-offs [10],
[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]
with PBFT [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers to redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants ct, gradually
decreases due to increased coordination overheads

The proven and obvious approach to building “scale-out”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
into multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benefit
DLs [15] by reducing the transaction processing load on e:

alidator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new secur assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that
provides “scale-out” trans
itive with centralized pa )
Visa, without compromising securs upport for permi:
sionless decentralization. To achieve this goal, niLedger

Decentralized Ledger via Sharding

Decentralization

Scale-Out ~ RSCoin [16] Security

Fig. 1: Trade-offs in current DL systems.

faces three key correctness and security challenges. First,
OmniLedger must cho statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36], [38], [32]
or proof-of-stake [31], [25]. Second, OmniLedger must en-
ure a negligible pro hard is compromised
across the (long-term) system lifetime via periodically
)forming shards (subsets of validators to record state an
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must rectly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.
To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus
i iding window of recent proof-of-work block mine:
lidator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, Omniledger
builds on Ouroboros [31] and Algorand [25], running a public
g rtition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder d ution defined in the ledger.
To ensure that this sampling of representative validators
both scalable and strongly bia: istant, OmniLedger uses
RandHound [44], a protocol that serves this purpose under
standard t-of-n threshold assumptions.
Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key urity challenge of
curely assigning validators to shards, and of periodically
rotating these assignments as the set of
OmniLedger chooses shards large enough, based on the anal-
n Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.
Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
ple shards (e.g., several cryptocurrency accounts), OmniLedger
introduces Atomix, a two-phase client-driven “lock/unlock”
protocol that ensures that clients can either fully commit a
hards, or obtain “rejection proo
and unlock state affected by partially completed transactions.
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Cross-Shard Consensus

Byzantine
Agreement
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Spoiler alert: Insecure under parallel composition
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Atomix
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Cross-Shard Consensus

How does it achieve linear scalability?
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Insecure under parallel composition



Attacks

yuble spend any object

» Does not need to collude with any node
« Acts as client or passive observer

» Re-orders network messages (not always needed)
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Attack against S-BAC
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If it is not implemented, it does not work
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Attacks against S-BAC
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Phase 2 of S-BAC
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Attacks against S-BAC
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Attacks against S-BAC

Second phase

Phase 2 of S-BAC

Shard 3
Shard 1 Shard 2 (potential victim)

accept(T) accept(T) -
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What causes these issues?

Issue 1. Input shards cannot associate protocol messages to a
specific protocol execution.

Issue 2. Output shards (that are not also input shards) do not
experience the first phase of the protocol



Easy Fix?

Global sequence numbers? Wait for messages to arrive?

Linea lability Hight ughput
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Byzcuit

Fix iIssue 1

Add sequence numbers per object
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Byzcuit

Fix issue 2

Dummy objects for output shards
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Why is Byzcuit secure?

Issue 1. Input shards cannot associate protocol messages to a
specific protocol execution.

Issue 2. Output shards (that are not also input shards) do not
experience the first phase of the protocol
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Byzcuit

Implementation

« Fork of Java Chainspace
- Based on BFT-SMART

« Only a prototype to demonstrate its properties

‘ps://github.com/sheharbano/byzcuit



Byzcuit

Linear scalability
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Byzcuit

Finality

(2 input ; 5 outputs ; 6 shards)
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Open Questions

« Easy DoS by exhausting the sequence numbers
- Load balancing of objects

- The Mega transaction



Conclusion
Part | - Increasing Throughput

S5YZCUIL
« S-BAC + Atomix
- High throughput, linear scalability, BFT resilience, Fast finality

- Paper: https://arxiv.org/abs/1901.11218
» Code: https://github.com/sheharbano/byzcuit



