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State Sharding
Only two acceptable final states
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Cross-Shard Consensus
How do shards communicate with each other?
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Mutex-Based Protocols
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Mutex-Based Protocols
T(x1, x2) → (y1, y2, y3)
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receipt(T)
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• Synchrony (for safety): Add an expiration to the receipt 

• Infinite memory: Keep receipts forever

Choose the assumptions

Mutex-Based Protocols
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Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-
auditability, non-repudiation and ‘blockchain’ techniques. Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentralized
system. Unlike application specific distributed ledgers, such as
Bitcoin [26] for a currency, or certificate transparency [19] for
certificate verification, Chainspace offers extensibility though
smart contracts, like Ethereum [32]. However, users expose to
Chainspace enough information about contracts and transaction
semantics, to provide higher scalability through sharding across
infrastructure nodes: our modest testbed of 60 cores achieves
350 transactions per second, as compared with a peak rate
of less than 7 transactions per second for Bitcoin over 6K
full nodes. Etherium currently processes 4 transactions per
second, out of theoretical maximum of 25. Furthermore, our
platform is agnostic as to the smart contract language, or identity
infrastructure, and supports privacy features through modern
zero-knowledge techniques [3, 9].

Unlike other scalable but ‘permissioned’ smart contract
platforms, such as Hyperledger Fabric [5] or BigchainDB [23],
Chainspace aims to be an ‘open’ system: it allows anyone
to author a smart contract, anyone to provide infrastructure
on which smart contract code and state runs, and any user to
access calls to smart contracts. Further, it provides ecosystem
features, by allowing composition of smart contracts from
different authors. We integrate a value system, named CSCoin,
as a system smart contract to allow for accounting between

those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

• It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

• It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

• It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

• It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

• It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

II. SYSTEM OVERVIEW

Chainspace allows applications developers to implement
distributed ledger applications by defining and calling proce-
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OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as Visa, is a challenging task. Most existing
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cross-
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning
via collectively-signed state blocks, and low-latency “trust-but-
verify” validation for low-value transactions. An evaluation of
our experimental prototype shows that OmniLedger’s throughput
scales linearly in the number of active validators, supporting
Visa-level workloads and beyond, while confirming typical trans-
actions in under two seconds.

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
transaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhibit different security and performance trade-offs [10],
[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]
with PBFT [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers to redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants, and, in fact, gradually
decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-out”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
into multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benefit
DLs [15] by reducing the transaction processing load on each
validator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new security assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that
provides “scale-out” transaction processing capacity compet-
itive with centralized payment-processing systems, such as
Visa, without compromising security or support for permis-
sionless decentralization. To achieve this goal, OmniLedger

Elas
tic

o [34
]

Scale-Out

ByzCoin [32]

Decentralization

RSCoin [16] Security

OmniLedger

Fig. 1: Trade-offs in current DL systems.

faces three key correctness and security challenges. First,
OmniLedger must choose statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36], [38], [32]
or proof-of-stake [31], [25]. Second, OmniLedger must en-
sure a negligible probability that any shard is compromised
across the (long-term) system lifetime via periodically (re-
)forming shards (subsets of validators to record state and
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must correctly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus [38],
using a sliding window of recent proof-of-work block miners
as its validator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, OmniLedger
builds on Ouroboros [31] and Algorand [25], running a public
randomness or cryptographic sortition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder distribution defined in the ledger.
To ensure that this sampling of representative validators is
both scalable and strongly bias-resistant, OmniLedger uses
RandHound [44], a protocol that serves this purpose under
standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key security challenge of
securely assigning validators to shards, and of periodically
rotating these assignments as the set of validators evolves.
OmniLedger chooses shards large enough, based on the anal-
ysis in Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
ple shards (e.g., several cryptocurrency accounts), OmniLedger
introduces Atomix, a two-phase client-driven “lock/unlock”
protocol that ensures that clients can either fully commit a
transaction across shards, or obtain “rejection proofs” to abort
and unlock state affected by partially completed transactions.

NDSS’18
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Spoiler alert: Insecure under parallel composition
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S-BAC
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S-BAC
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S-BAC
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S-BAC
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Cross-Shard Consensus 
How does it achieve linear scalability?
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Insecure under parallel composition



• Does not need to collude with any node 

• Acts as client or passive observer 

• Re-orders network messages (not always needed)

Double spend any object

Attacks
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Attack against S-BAC
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Attack against S-BAC
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Attack against S-BAC
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Attack against S-BAC
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lock X2
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pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

BFT

BFT
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from shard 1
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Attack against S-BAC
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Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

attacker

pre-accept(T)

pre-abort(T)

5

BFT

BFT



Attack against S-BAC
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Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3

attacker

BFT

pre-accept(T)

pre-abort(T)

pre-accept(T)

4

10

5



Attack against S-BAC
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If it is not implemented, it does not work
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Attacks against S-BAC

Phase 1 of S-BAC Phase 2 of S-BAC

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 3

1 lock x1

pre-accept(T )
lock x2

pre-accept(T )
create y1; inactivate x1

accept(T )
create y2; inactivate x2

accept(T )
create y3

-

2 Bpre-abort(T ) create y1; inactivate x1

accept(T )
unlock x2

abort(T )
create y3

-

3 Bpre-abort(T ) unlock x1

abort(T )
create y2; inactivate x2

accept(T )
create y3

-

4 Bpre-abort(T ) Bpre-abort(T ) unlock x1

abort(T )
unlock x2

abort(T ) -

5 -
pre-abort(T )

lock x2

pre-accept(T )
-

abort(T )
unlock x2

abort(T ) -

6 Bpre-accept(T ) -
abort(T )

create y2; inactivate x2

accept(T )
create y3

-

7 lock x1

pre-accept(T )
-

pre-abort(T )
unlock x1

abort(T )
-

abort(T ) -

8 B pre-accept(T ) create y1; inactivate x1

accept(T )
-

abort(T )
create y3

-

9 -
pre-abort(T )

-
pre-abort(T )

-
abort(T )

-
abort(T ) -

Table 1: List of replay attacks against the first phase of S-BAC for all possible executions of the transaction T (x1,x2)! (y1,y2,y3) as described in Section 3.
The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect executions due to the replay attacks.
In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions as a result of emitting those
messages. For example, (column 3, row 2) means that shard 1 emits accept(T ) (top sub-row), and creates a new object y1 and inactivates x1 (bottom sub-row).
The first two columns indicate the messages emitted by each shard at the end the first phase of S-BAC. The attacker races shards at the end of the first phase of
S-BAC by replaying prerecorded messages, marked with the symbol B in the first two columns of Table 1. For example Bpre-abort(T ) at (column 1, row 2)
means that the attacker sends to other relevant shards (in this case shard 2) a prerecorded pre-abort(T ) message impersonating shard 1 that races the original
pre-accept(T ) (column 1, row 1) emitted by shard 1. The last three columns indicate the messages emitted at the end of the second phase of S-BAC.

inactivates object x2 and creates object y2. This leads to in-
consistent state across the shards. In a correct execution: (i)
if T is accepted all its inputs (x1 and x2) should become inac-
tive, and all the outputs (y1, y2, y3) should be created; and (ii)
if T is aborted, all its inputs (x1 and x2) should become active
again, and none of the outputs (y1, y2, y3) should be created.
However, here we have an incorrect termination of S-BAC:
at the end of the protocol x1 is active and x2 is inactive; y1 is
not created, y2 and y3 are created.

Table 1 shows that through careful selection of the mes-
sages to replay from different S-BAC instances, the attacks
can be effective against any shard. All the attacks (except
row 4) compromise consistency; the attacker can trick the in-
put shards to inactivate arbitrary objects, and trick the output
shards into creating new objects in violation of the protocol.
The attack depicted in row 4 only affects availability.

4.4 Attacks on the Second Phase of S-BAC

We present replay attacks on the second phase of S-BAC.
The attacker prerecords accept(T ) messages as described in
Section 4.2 and Appendix B.1.

Table 2 shows replay attacks for all possible combinations

of messages emitted by shard 1 and shard 2 in the second
phase. Since the attacks we describe in this section assume
that the first phase of S-BAC concluded correctly (i.e., all
the relevant shards unanimously decide to accept or reject a
transaction), both the shards generate abort(T ) (row 1) or
accept(T ) (row 5). The caption includes details about how
to interpret this table. We describe row 6 of Table 2, to help
readers interpret rest of the table on their own. In the cor-
rect execution (row 5), both the shards emit abort(T ) and
no output objects are created. In the attack in row 6, the at-
tacker replays a prerecorded accept(T ) from shard 1 to all
the relevant shards (in this case shard 3). Upon receiving this
message, shard 3 (incorrectly) creates y3.

The potential victims of replay attacks corresponding to
the second phase of S-BAC are the shards that only act as out-
put shards (i.e., do not simultaneously act as input shards).
The attacker can replay accept(T ) multiple times tricking
shard 3 into creating y3 multiple times. These attacks are
possible because shards do not keep records of inactive ob-
jects (following the UTXO model) for scalability reasons5,

5Requiring shards to remember the full history of inactive objects would
increase their memory requirements monotonically over time, reaching at
some point memory limits preventing further operations. Thus this is a poor

5

First phase
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Attacks against S-BAC
Second phase

Phase 2 of S-BAC

Shard 1 Shard 2
Shard 3

(potential victim)

1 create y1; inactivate x1

accept(T )
create y2; inactivate x2

accept(T )
create y3

-

2 Baccept(T ) create y3
3 Baccept(T ) create y3
4 Baccept(T ) Baccept(T ) create y3

5 (unlock x1)
abort(T )

(unlock x2)
abort(T )

-
-

6 Baccept(T ) create y3
7 Baccept(T ) create y3
8 Baccept(T ) Baccept(T ) create y3

Table 2: List of replay attacks against the second phase of S-BAC for all possible executions of the transaction T (x1,x2) ! (y1,y2,y3) as described in
Section 3. The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect executions due to the
replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local shard actions as a result
of emitting those messages. For example, (column 1, row 1) means that shard 1 emits accept(T ) (top sub-row), and creates a new object y1 and inactivates
x1 (bottom sub-row). The first two columns indicate the messages emitted by each shard at the end the second phase of S-BAC, and the last column shows the
effect of these messages on the output shard 3. Replayed messages are marked with the symbol B. For example Baccept(T ) at (column 1, row 2) means that
the attacker sends to other relevant shards (in this case shard 3) a prerecorded accept(T ) message impersonating shard 1.

and because shard 3 takes part in only the second phase of
S-BAC. The attacker can double-spend y3 repeatedly by re-
playing a single prerecorded message multiple times, and
spending the object (and effectively purging it from shard
3’s UTXO) before each replay.

Contrarily to the attacks against the first phase of S-BAC
(Section 4.3), these attacks do not rely on any racing condi-
tions; there is no need to race any honest messages.

4.5 Real-world Impact
The real-world impact and attacker incentives to conduct
these attacks depends on the nature and implementation of
the smart contract handling the target objects. We discuss
the impact of these attacks in the context of two common
smart contract applications, which are also described in the
Chainspace paper [1]. To take a concrete example, we il-
lustrate the attack depicted in row 3 of Table 1, but similar
results can be obtained with the other attacks described in
Table 1 and Table 2.

One of the most common blockchain application is to
manage cryptocurrency (or coins) and enable payments for
processing transactions, implemented by the CSCoin smart
contract in Chainspace. Lets suppose object x1 (handled by
shard 1) represents Alice’s account, and object x2 (handled
by shard 2) represents Bob’s account. To transfer v coins to
Bob, Alice submits a transaction T (x1,x2)! (y1,y2), where
y1 and y2 respectively represent the new account objects of
Alice and Bob, with updated account balances. By executing
the attack described in row 3 of Table 1, an attacker can trick
shard 1 to abort the transaction and unlock x1 (thus reestab-
lishing Alice’s account balance as it was prior to the coin
transfer), and shard 2 to accept the transaction and create

mitigation for the attacks presented.

y2 (thus adding v coins to Bob’s account). This attack ef-
fectively allows any attacker to double-spend coins on the
ledger; and shows how to create v coins out of thin air.

Another common blockchain use case is a platform for de-
cision making (or electronic petitions), implemented by the
SVote smart contract in Chainspace. Upon initialization, the
SVote contract creates two objects: (i) x1 representing the
tally’s public key, a list of all voters’ public keys, and the
tally’s signature on these; and (ii) x2 representing a vote ob-
ject at the initial stage of the election (all candidates having
a score of zero) along with a zero-knowledge proof asserting
the correctness of the initial stage. To vote, clients submit a
transaction T (x1,x2)! (y1,y2), where y1 and y2 are respec-
tively the updated voting list (i.e., the voting list without the
client’s public key), and the election stage updated with the
client’s vote. By executing the attack described by row 3 of
Table 1, an attacker can trick shard 1 to abort the transac-
tion and thus not update the voting list, and shard 2 to ac-
cept the transaction and thus update the election stage. This
effectively allows any client to vote multiple times during
an election while remaining undetected (due to the privacy-
preserving properties of the smart contract).

5 Client-led Cross-shard Consensus Protocol

We describe replay attacks on client-led cross-shard consen-
sus protocols. We illustrate these attacks in the context of
Omniledger [9] (Section 5.1) to make the discussion con-
crete. However, we note that these attacks can be general-
ized to other similar systems. We discuss how the attacker
can record shard messages to replay in future attacks (Sec-
tion 5.2). In Sections 5.3 and 5.4, we describe replay attacks
on the first and second phase of the cross-shard consensus
protocol. Finally, we discuss the real-world impact of these
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What causes these issues?

Issue 1. Input shards cannot associate protocol messages to a 
specific protocol execution. 

Issue 2. Output shards (that are not also input shards) do not 
experience the first phase of the protocol



Easy Fix?

Hight ThroughputLinear scalability

Global sequence numbers? Wait for messages to arrive?
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Why is Byzcuit secure?

Issue 1. Input shards cannot associate protocol messages to a 
specific protocol execution. 

Issue 2. Output shards (that are not also input shards) do not 
experience the first phase of the protocol

Sequence numbers: 

 act as session ID 

Dummy objects:  

all shards experience the 
first phase of the protocol 



Anyone can be a TM



Byzcuit

• Fork of Java Chainspace 

• Based on BFT-SMART 

• Only a prototype to demonstrate its properties

https://github.com/sheharbano/byzcuit

Implementation



Figure 7: The effect of the number of shards on transaction throughput.
Each transaction has 2 input objects and 5 output objects, both chosen ran-
domly from shards.

transaction has 1 input object, and we vary the number of
dummy objects from 1–5 selected from unique shards, re-
sulting in a corresponding decrease in concurrency because
as many shards end up processing the transaction. For exam-
ple, 2 dummy objects means that 3 shards process the trans-
action (1 input shard, and 2 more shards corresponding to
the dummy objects). As expected, the throughput decreases
by 20–250 tps with the addition of each dummy object, and
reaches 750 tps when all 6 shards handle all transactions.

Client-perceived Latency. Figure 9 shows the client-
perceived latency—the time from when a client submits a
transaction, until it receives a decision from Byzcuit about
whether the transaction has been committed—under varying
system loads (expressed as transactions submitted to Byzcuit
per second). We submit a total of 1200 transactions at 200–
1000 transactions per second to Byzcuit with 6 shards. Each
transaction has 2 inputs objects and 5 output objects, both
chosen randomly from shards. When the system is experi-
encing a load of up to 1000 tps, clients hear back about their
transactions in less than a second on average, even with our
replay attack defenses.

8 Conclusion

We presented the first replay attacks against cross-shard con-
sensus protocols in sharded distributed ledgers. These at-
tacks affect both shard-driven and client-driven consensus
protocols, and allow attackers to double-spend or lock ob-
jects with minimal efforts. The attacker can act indepen-
dently without colluding with any nodes, and succeed even
if all nodes are honest; most of the attacks work also un-
der asynchrony. While addressing these attacks seems like
an implementation detail, their many variants illustrate that
a fundamental re-think of cross-shard commit protocols is

Figure 8: Decrease of Byzcuit throughput with the number of dummy
objects. Each transaction has 1 input object, and up to 5 dummy objects
randomly selected from unique non-input shards. 6 shards are used.

Figure 9: Client-perceived latency vs. system load (number of trans-
actions received per second by Byzcuit), for 6 shards with 2 inputs and 5
outputs per transaction (both chosen randomly from shards).

required to protect against them.

We developed Byzcuit, a new cross-shard consensus pro-
tocol merging features from shard-led and client-led consen-
sus protocols, and withstanding replay attacks. Byzcuit can
be seen as unifying Atomix (from Omniledger) and S-BAC
(from Chainspace), into an O(n) protocol, that is efficient
and secure. We implemented a prototype of Byzcuit and
evaluated it on a real cloud-based testbed, showing that it
is more performant than Chainspace, and on par with Om-
niledger performance. The resulting protocol is a drop-in
replacement for either, and can be adopted to immunize sys-
tems based on those designs.
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required to protect against them.

We developed Byzcuit, a new cross-shard consensus pro-
tocol merging features from shard-led and client-led consen-
sus protocols, and withstanding replay attacks. Byzcuit can
be seen as unifying Atomix (from Omniledger) and S-BAC
(from Chainspace), into an O(n) protocol, that is efficient
and secure. We implemented a prototype of Byzcuit and
evaluated it on a real cloud-based testbed, showing that it
is more performant than Chainspace, and on par with Om-
niledger performance. The resulting protocol is a drop-in
replacement for either, and can be adopted to immunize sys-
tems based on those designs.
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Open Questions

• Easy DoS by exhausting the sequence numbers 

• Load balancing of objects  

• The Mega transaction



Conclusion
Part I - Increasing Throughput

• Paper: https://arxiv.org/abs/1901.11218 

• Code: https://github.com/sheharbano/byzcuit

• S-BAC + Atomix 

• High throughput, linear scalability, BFT resilience, Fast finality

Byzcuit


