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People love blockchains

Fancy Look complicated

Involve money About security stuff
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But what are blockchains?
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Systems to store records that can be verified by anyone,  
that no-one can modify, and without a central authority
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Systems to store records that can be verified by anyone,  
that no-one can modify, and without a central authority

Publicly verifiable Immutable Decentralised

But what are blockchains?

▪ In a few words (simplified):
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What are smart contracts?

▪ In a few words (simplified):

Smart contracts are computer programs that are ‘executed’ 
on the blockchain
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What are smart contracts?

▪ In a few words (simplified):

Smart contracts are computer programs that are ‘executed’ 
on the blockchain

send it to the blockchain
anyone can verifywrite the contract
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What can we do with that?

?
? ?
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or…
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When blockchains meet cats…
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When blockchains meet cats…

Crypto-kitties
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When blockchains meet kittens…
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Why did that happen?

▪ Blockchains do not scale!

No matter how many computer we add, we will not be able 
to process more transactions per seconds.
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▪ What is chainspace?

Scalable smart contract platform

Supporting privacy
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old object 
(dead)

new object 
(born)

▪ How Chainspace works? 
▪ A cruel vision of it:

Feed kitties
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The S-BAC Protocol
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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Fig. 4. S-BAC for a transaction T with two inputs (o1, o2) and one output object (o3). The user sends the transaction to all nodes in shards managing o1 and o2.
The BFT-Initiator takes the lead in sequencing T , and emits ’prepared(accept, T)’ or ’prepared(abort, T)’ to all nodes within the shard. Next the BFT-Initiator of
each shard assesses whether overall ‘All proposed(accept, T)’ or ‘Some proposed(abort, T)’ holds across shards, sequences the accept(T,*), and sends the decision
to the user. All cross-shard arrows represent a multicast of all nodes in one shard to all nodes in another.

It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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▪ Honest Shard: among 3f+1 nodes, at most f are malicious. 
▪ Malicious Shard: over f dishonest nodes. 
▪ Chainspace properties:

Transparency

Anyone can authenticate the history of 
transactions and objects that led to the 
creation of an object.

Integrity 
(Honest Shard)

Encapsulation

Non-Repudiation

A smart contract cannot interfere with 
objects created by another contract 
(except if defined by that contract).

Misbehaviour is detectable: there are 
evidences of misbehaviour pointing to 
the faulty parties or shards.

Only valid & non-conflicting transactions 
will be executed.
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on Amazon AWS
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Fig. 6. The effect of the number of shards on transaction throughput. (Shards:
2, nodes per shard: 4, input-to-shard mapping: random. Repeats: 20.)

nodes per shard from 2 to 48. With BFT-SMART configured
for 3f + 1 fault tolerance, we observe an expected gracious
decrease in transaction throughput: for each node added, the
throughput reduces on average by 1.6 transactions per second.
This is because in order for a BFT-SMART node to realise
consensus for a message, it must receive a result from at least
f + 1 nodes. Thus, the bottleneck is the latency of the f + 1th
node with the highest response time.

Another factor that can potentially affect transaction through-
put is the number of inputs per transaction: the more shards
touched by the transaction inputs, the longer it will take to run
S-BAC among all the concerned shards. In Figure 7, we study
how the number of inputs per transaction affects transaction
throughput. We measure this for 5 shards, varying the number
of inputs per transaction from 1 to 10, and the inputs are
randomly mapped to shards as previously stated. The transaction
throughput decreases asymptotically until it becomes stable at
around 40 transactions per second. This is because S-BAC’s
maximum time in processing transactions is capped at the time
it takes to process transactions that touch all the 5 shards.
Increasing the number of inputs does not further deteriorate
the transaction throughput.

Finally, we measure the client-perceived latency—the time
from when a client submits a transaction until it receives a
decision about whether the transaction has been committed—
under varying system loads expressed in terms of transactions
received per second. Figure 8 shows the effect of transactions
received by the system per second (all 1-input transactions) on
client-perceived latency for 2 shards, each having 4 nodes.
Recall from Figure 6 that the average throughput for a
Chainspace system with similar configuration is 75 1-input
transactions per second. Consequently, we observe in Figure 9
that the increase in latency with varying system loads is smaller
for 20 t/s–60 t/s (average 69 ms), but the values start to get
bigger after 60 t/s (average 210 ms). This is when the system
reaches its maximum transaction throughput, causing a backlog
of transactions to be processed.

Smart Contract Benchmarks. We evaluate the cost and

Fig. 7. The effect of the number of inputs per transaction on transaction
throughput. (Shards: 2, nodes per shard: 4, input-to-shard mapping: random.
Repeats: 20.)

Fig. 8. The cumulative distribution function of delay for the client to receive a
final commit or abort response, for varying system load. (Shards: 2, nodes per
shard: 4, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
5.)

performance of some smart contracts described in Section VI-A.
We compute the mean (µ) and standard deviation (�) of the
execution of each procedure (denoted as [g]) and checker
(denoted as [c]) in the contracts. Each figure is the result
of 10,000 measured on a dual-core Apple MacBook Pro
4.1, 2.7GHz Intel Core i7. The last column indicates the
transaction’s size resulting from executing the procedure.
All cryptographic operations as digital signatures and zero-
knowledge proofs have been implemented using the Python
library petlib [pet17], wrapping OpenSSL.

CSCoin—Contract size: ⇠200 lines
Operation µ [ms] � [ms] size [B]
createAccount [g] 4.845 ± 0.683 512

[c] 0.022 ± 0.005 -
authTransfer [g] 4.986 ± 0.684 1114

[c] 5.750 ± 0.474 -
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▪ How does the size of the shard influence the TPS?

Fig. 9. The effect of the number of nodes per shard on transaction throughput.
(Shards: 2, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
20.)

The user needs to generate a signing key pair to create an
account in the CSCoin contract, which takes about 5 ms.
However, verifying the account creation only requires to
check the transaction’s format, and it is therefore very fast.
Transferring money is a little more expensive due to the need to
sign the amount transferred and the beneficiary, and verifying
the signature in the checker.

SMet—Contract size: ⇠200 lines
Operation µ [ms] � [ms] size [B]
createMeter [g] 4.786 ± 0.480 ⇠600

[c] 0.060 ± 0.003 -
addReading [g] 5.286 ± 0.506 ⇠1100

[c] 5.965 ± 0.697 -
computeBill [g] 5.043 ± 0.513 ⇠1100

[c] 5.870 ± 0.603 -

Similarly to CSCoin, creating a meter requires generating a
cryptographic key pair which takes about 5 ms, while verifying
the meter’s creation is faster and only requires checking the
transaction’s format. Adding new readings takes about 5 ms,
as the user needs to create a signed commitment of the
readings which requires elliptic curve operations and an ECDSA
signature. Computing the bill takes slightly longer (5.8 ms), and
involves homomorphic additions, and verifying the bill involves
checking a zero-knowledge proof of the billing calculation.

SVote—Contract size: ⇠400 lines
Operation µ [ms] � [ms] size [B]
createElection [g] 11.733 ± 1.028 ⇠1227

[c] 11.327 ± 0.782 -
addVote [g] 14.086 ± 1.043 ⇠2758

[c] 28.178 ± 1.433 -
tally [g] 253.286 ± 7.793 ⇠1264

[c] 11.589 ± 0.937 -

The SVote contract is more expensive than the others since
it extensively uses zero-knowledge proofs and more advanced
cryptography. For simplicity, this smart contract has been tested
with three voters and two options. First of all, creating a
new election event requires building a signed homomorphic
encryption of the initial value for each option, and a zero-

knowledge proof asserting that the encrypted value is zero;
this takes roughly 11 ms to generate the transaction and to
run the checker. Next, each time a vote is added, the user
proves two zero-knowledge statements—one asserting that she
votes for exactly one option and one proving that her vote is a
binary value—and computes an ECDSA signature on her vote,
which takes about 11 ms and generates a transaction of about
2.7 kB. Verifying the signature and the two zero-knowledge
proofs are slower and takes about 30 ms. Finally, tallying is the
slowest operation since it requires to decrypt the homomorphic
encryption of the votes’ sum.

VIII. LIMITATIONS

Chainspace has a number of limitations, that are beyond
the scope of this work to tackle, and deferred to future work.

The integrity properties of Chainspace rely on all shards
managing objects being honest, namely containing at most f
fault nodes each. We have chosen to let any set of nodes can
create a shard. However, this means that the function �(o)
mapping objects to shards must avoid dishonest shards. Our
isolation properties ensure that a dishonest shard can at worse
affect state from contracts that have objects mapped to it. Thus,
in Chainspace, we opt to allow the contract creator to designate
which shards manage objects from their contract. This embodies
specific trust assumptions where users have to trust the contract
creator both for the code (which is auditable) and also for
the choice of shards to involve in transactions—which is also
public.

In case one or more shards are malicious, we provide an
auditing mechanism for honest nodes in honest shards to detect
the inconsistency and to trace the malicious shard. Through
the Hash-DAG structure it is also possible to fully audit the
histories of two objects, and to ensure that the validity rules
hold jointly—in particular the double-use rules. However, it
is not clear how to automatically recover from detecting such
an inconsistency. Options include: forcing a fork into one or
many consistent worlds; applying a rule to collectively agree
the canonical version; patching past transactions to recover
consistency; or agree on a minimal common consistent state.
Which of those options is viable or best is left as future work.

Checkers involved in validating transactions can be costly.
For this reason we allow peers in a shard to accept transactions
subject to a SCCoin payment to the peers. However, this
‘flat’ fee is not dependent on the cost or complexity of
running the checker which might be more or less expensive.
Etherium [Woo14] instead charges ‘gas’ according to the cost of
executing the contract procedure—at the cost of implementing
their own virtual machine and language.

Finally, the S-BAC protocol ensures correctness in all cases.
However, under high contention for the same object the rate
of aborted transactions rises. This is expected, since the S-
BAC protocol in effect implements a variant of optimistic
concurrency control, that is known to result in aborts under
high contention. There are strategies for dealing with this in the
distributed systems literature, such as locking objects in some
conventional order—however none is immediately applicable
to the byzantine setting.
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Fig. 6. The effect of the number of shards on transaction throughput. (Shards:
2, nodes per shard: 4, input-to-shard mapping: random. Repeats: 20.)

nodes per shard from 2 to 48. With BFT-SMART configured
for 3f + 1 fault tolerance, we observe an expected gracious
decrease in transaction throughput: for each node added, the
throughput reduces on average by 1.6 transactions per second.
This is because in order for a BFT-SMART node to realise
consensus for a message, it must receive a result from at least
f + 1 nodes. Thus, the bottleneck is the latency of the f + 1th
node with the highest response time.

Another factor that can potentially affect transaction through-
put is the number of inputs per transaction: the more shards
touched by the transaction inputs, the longer it will take to run
S-BAC among all the concerned shards. In Figure 7, we study
how the number of inputs per transaction affects transaction
throughput. We measure this for 5 shards, varying the number
of inputs per transaction from 1 to 10, and the inputs are
randomly mapped to shards as previously stated. The transaction
throughput decreases asymptotically until it becomes stable at
around 40 transactions per second. This is because S-BAC’s
maximum time in processing transactions is capped at the time
it takes to process transactions that touch all the 5 shards.
Increasing the number of inputs does not further deteriorate
the transaction throughput.

Finally, we measure the client-perceived latency—the time
from when a client submits a transaction until it receives a
decision about whether the transaction has been committed—
under varying system loads expressed in terms of transactions
received per second. Figure 8 shows the effect of transactions
received by the system per second (all 1-input transactions) on
client-perceived latency for 2 shards, each having 4 nodes.
Recall from Figure 6 that the average throughput for a
Chainspace system with similar configuration is 75 1-input
transactions per second. Consequently, we observe in Figure 9
that the increase in latency with varying system loads is smaller
for 20 t/s–60 t/s (average 69 ms), but the values start to get
bigger after 60 t/s (average 210 ms). This is when the system
reaches its maximum transaction throughput, causing a backlog
of transactions to be processed.

Smart Contract Benchmarks. We evaluate the cost and

Fig. 7. The effect of the number of inputs per transaction on transaction
throughput. (Shards: 2, nodes per shard: 4, input-to-shard mapping: random.
Repeats: 20.)

Fig. 8. The cumulative distribution function of delay for the client to receive a
final commit or abort response, for varying system load. (Shards: 2, nodes per
shard: 4, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
5.)

performance of some smart contracts described in Section VI-A.
We compute the mean (µ) and standard deviation (�) of the
execution of each procedure (denoted as [g]) and checker
(denoted as [c]) in the contracts. Each figure is the result
of 10,000 measured on a dual-core Apple MacBook Pro
4.1, 2.7GHz Intel Core i7. The last column indicates the
transaction’s size resulting from executing the procedure.
All cryptographic operations as digital signatures and zero-
knowledge proofs have been implemented using the Python
library petlib [pet17], wrapping OpenSSL.

CSCoin—Contract size: ⇠200 lines
Operation µ [ms] � [ms] size [B]
createAccount [g] 4.845 ± 0.683 512

[c] 0.022 ± 0.005 -
authTransfer [g] 4.986 ± 0.684 1114

[c] 5.750 ± 0.474 -
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▪ How is the trade off between TPS and latency?

Fig. 6. The effect of the number of shards on transaction throughput. (Shards:
2, nodes per shard: 4, input-to-shard mapping: random. Repeats: 20.)

nodes per shard from 2 to 48. With BFT-SMART configured
for 3f + 1 fault tolerance, we observe an expected gracious
decrease in transaction throughput: for each node added, the
throughput reduces on average by 1.6 transactions per second.
This is because in order for a BFT-SMART node to realise
consensus for a message, it must receive a result from at least
f + 1 nodes. Thus, the bottleneck is the latency of the f + 1th
node with the highest response time.

Another factor that can potentially affect transaction through-
put is the number of inputs per transaction: the more shards
touched by the transaction inputs, the longer it will take to run
S-BAC among all the concerned shards. In Figure 7, we study
how the number of inputs per transaction affects transaction
throughput. We measure this for 5 shards, varying the number
of inputs per transaction from 1 to 10, and the inputs are
randomly mapped to shards as previously stated. The transaction
throughput decreases asymptotically until it becomes stable at
around 40 transactions per second. This is because S-BAC’s
maximum time in processing transactions is capped at the time
it takes to process transactions that touch all the 5 shards.
Increasing the number of inputs does not further deteriorate
the transaction throughput.

Finally, we measure the client-perceived latency—the time
from when a client submits a transaction until it receives a
decision about whether the transaction has been committed—
under varying system loads expressed in terms of transactions
received per second. Figure 8 shows the effect of transactions
received by the system per second (all 1-input transactions) on
client-perceived latency for 2 shards, each having 4 nodes.
Recall from Figure 6 that the average throughput for a
Chainspace system with similar configuration is 75 1-input
transactions per second. Consequently, we observe in Figure 9
that the increase in latency with varying system loads is smaller
for 20 t/s–60 t/s (average 69 ms), but the values start to get
bigger after 60 t/s (average 210 ms). This is when the system
reaches its maximum transaction throughput, causing a backlog
of transactions to be processed.
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Fig. 8. The cumulative distribution function of delay for the client to receive a
final commit or abort response, for varying system load. (Shards: 2, nodes per
shard: 4, inputs per transaction: 1, input-to-shard mapping: random. Repeats:
5.)

performance of some smart contracts described in Section VI-A.
We compute the mean (µ) and standard deviation (�) of the
execution of each procedure (denoted as [g]) and checker
(denoted as [c]) in the contracts. Each figure is the result
of 10,000 measured on a dual-core Apple MacBook Pro
4.1, 2.7GHz Intel Core i7. The last column indicates the
transaction’s size resulting from executing the procedure.
All cryptographic operations as digital signatures and zero-
knowledge proofs have been implemented using the Python
library petlib [pet17], wrapping OpenSSL.

CSCoin—Contract size: ⇠200 lines
Operation µ [ms] � [ms] size [B]
createAccount [g] 4.845 ± 0.683 512

[c] 0.022 ± 0.005 -
authTransfer [g] 4.986 ± 0.684 1114

[c] 5.750 ± 0.474 -
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Abstract—Chainspace is a decentralized infrastructure, known
as a distributed ledger, that supports user defined smart contracts
and executes user-supplied transactions on their objects. The
correct execution of smart contract transactions is verifiable by
all. The system is scalable, by sharding state and the execution
of transactions, and using S-BAC, a distributed commit protocol,
to guarantee consistency. Chainspace is secure against subsets of
nodes trying to compromise its integrity or availability properties
through Byzantine Fault Tolerance (BFT), and extremely high-
auditability, non-repudiation and ‘blockchain’ techniques. Even
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of privacy-friendly smart contracts for smart metering,
polling and banking and measure their performance.

I. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentral-
ized system. Unlike application specific distributed ledgers,
such as Bitcoin [Nak08] for a currency, or certificate trans-
parency [LLK13] for certificate verification, Chainspace offers
extensibility though smart contracts, like Ethereum [Woo14].
However, users expose to Chainspace enough information
about contracts and transaction semantics, to provide higher
scalability through sharding across infrastructure nodes: our
modest testbed of 60 cores achieves 350 transactions per
second, as compared with a peak rate of less than 7 trans-
actions per second for Bitcoin over 6K full nodes. Etherium
currently processes 4 transactions per second, out of theoretical
maximum of 25. Furthermore, our platform is agnostic as to
the smart contract language, or identity infrastructure, and
supports privacy features through modern zero-knowledge
techniques [BCCG16, DGFK14].

Unlike other scalable but ‘permissioned’ smart con-
tract platforms, such as Hyperledger Fabric [Cac16] or
BigchainDB [MMM+16], Chainspace aims to be an ‘open’
system: it allows anyone to author a smart contract, anyone to
provide infrastructure on which smart contract code and state
runs, and any user to access calls to smart contracts. Further,
it provides ecosystem features, by allowing composition of
smart contracts from different authors. We integrate a value

system, named CSCoin, as a system smart contract to allow
for accounting between those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
a per-contract basis, and also allows for horizontal scalability.

This paper makes the following contributions:

• It presents Chainspace, a system that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited.

• It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

• It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that dis-
tinction is key to supporting privacy-friendly smart-
contracts.

• It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

• It presents a number of key system and applica-
tion smart contracts and evaluates their performance.
The contracts for privacy-friendly smart-metering and
privacy-friendly polls illustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section II presents an overview of Chainspace;
Section III presents the client-facing application interface;
Section IV presents the design of internal data structures
guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
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