Coconut: Threshold Issuance Selective Disclosure
Credentials with Applications to Distributed Ledgers

Authors

Alberto Sonnino*
Mustafa Al-Bassam*
Shehar Bano*
George Danezis*

* University College London

LNETM 2018

The authors

Bano Shehar George Danezis

People love blockchains

J Fancy JLook complicated

J Involve money JAbout crypto magic

Big challenges in blockchains

x Poor privacy

Big challenges in blockchains

x Poor privacy

F send it to the blockchain N

write the contract

Big challenges in blockchains

x Poor privacy

F send it to the blockchain N

write the contract anyone can verify

Big challenges in blockchains

x Poor privacy

r send it to the blockchain \

write the contract anyone can verify

What are we trying to do?

= Issuing credentials through smart contracts

... While preserving privacy

What are we trying to do?

= Why is it hard?

Transactions are
recorded on chain

In a decentralised setting

What are we trying to do?

= Why is it hard?

i

Attributes & signing
key should be secret

Transactions are
recorded on chain

In a decentralised setting
10

What are we trying to do?

= Why is it hard?

i

Attributes & signing
key should be secret

%

Transactions are
recorded on chain

Credentials showing
should be unlinkable

In a decentralised setting
11

So we built Coconut

12

Introduction

= What Is coconut?

/contribution | N\

Coconut credentials scheme —

13

Introduction

= What Is coconut?

" contribution | N
Coconut credentials scheme —al
“/l
N /
/" contribution I I

—
Coconut smart contract library E|J-D EI
<=

14

System Overview

s How Coconut works?

@ request

_)
authorities

15

System Overview

s How Coconut works?

@ request

< @ issue

_)
authorities

16

System Overview

s How Coconut works?

@ request s A
g
Issue ;
2
€ aggregate & :
randomize
_ _J

authorities
17

System Overview

s How Coconut works?

@ request s A
g
Issue ;
2
€ aggregate & :
randomize
O show - J

 / authorities
18

System Overview

m Threshold authorities

_)
authorities

19

System Overview

m Threshold authorities

Users need to collect
only t shares authorities

20

Coconut Credentials Scheme

= Cryptographic primitives

% Setup
Initialisation “+ KeyGen
+ AggregateKey

get signature < ShowBlindSign <= BlindSign

_ N “ Randomize
break linkability
< AggregateSign

verify % PrepareBlindSign <= BlindVerify

r—1rir—1

21

Coconut Credentials Scheme

s Where does Coconut come from?

€0 Coconut €
BLS 3\ Waters
Signature _"_/ Scheme

22

Coconut Credentials Scheme

s Where does Coconut come from?

€ Coconut €
BLS s\ Waters
Signature \\'"/ Scheme

s What does it look like?

take an attribute: m

compute: h + H(cm)

signature: @ < (h,h*™) & secretkey: (x,y)

23

Coconut Credentials Scheme

= Issuing & showing protocols

user authority; verifier

24

Coconut Credentials Scheme

= Issuing & showing protocols

user authority; verifier

0 (cm; c, ﬂs)

.

encryption of m proof

25

Coconut Credentials Scheme

= Issuing & showing protocols

user authority; verifier

0 (cm; c, ﬂs)

A (6)

26

Coconut Credentials Scheme

= Issuing & showing protocols

user authority; verifier

0 (cm; c, ﬂs)

1

repeat ,
n times ,
1

A (6)

27

Coconut Credentials Scheme

= Issuing & showing protocols

user authority; verifier
: 0 (cm; C, 75.9)
repeat ,
n times,
A (6)
9 ('lca ‘l’; o, 7|tv)

proof 28

Smart Contract Library

= Chainspace Coconut library

e e e———-————

@ contractinfo o le . @ contract info
: create .
: . Y
@ attributes . @ attributes L @)
—| request ; <
° - : ,
ﬂ — . ©)
« : 1
. : @ credentials '
. issue [:
@ credentials 5 L @)
: : —
@ credentials R " : authorities
; verity ;
DA 4 29

Applications

= Privacy-preserving petitions

@ proof of identity .
citizen authorities happens
- only once

petition . ! happens every
creator | vote 5 campaign

Applications

= Privacy-preserving petitions

@ proof of identity .
citizen @ credentials authorities happens
< only once

petition . happens every
creator | vote 5 campaign

Applications

= Privacy-preserving petitions

@ proof of identity .
citizen @ credentials authorities happens
< only once

etiton | @ create petition E happens every
P : o vote . PP
creator : 5 campaign

Applications

= Privacy-preserving petitions

N\
@ proof of identity .
citizen @ credentials authorities happens
< only once
/

O sign petition

etiton | @ create petition E happens every
P : o vote . PP
creator : 5 campaign

Performance

= What did we implement?

34

Performance

= What did we implement?

/ The Coconut \

cryptographic library

Python & Timing
benchmark

o /

35

Performance

= What did we implement?

/ The Coconut \

cryptographic library

/Smart contract Iibrary\

¢

Python & Timing
benchmark

o /

&

36

Performance

= What did we implement?

/ The Coconut \

cryptographic library

/Smart contract Iibrary\
Python & Timing ‘

benchmark &

NS /
/ Applications \

Coin tumbler
E-Petition
(CRD proxy distribution)

- /

37

Performance

= What did we implement?

/ The Coconut \

cryptographic library

/Smart contract Iibrary\

Python & Timing
benchmark

NS /
/ Applications \

Everything is released as open source software

_ https://github. conf asonni no/ coconut
Coin tumbler

E-Petition
(CRD proxy distribution)

- /

38

Performance

s What is the credentials size?

2 Group Elements

39

Performance

s What is the credentials size?

2 Group Elements

No matter how many attributes...

40

Performance

s What is the credentials size?

2 Group Elements

No matter how many attributes...

No matter how many authorities...

41

What else is in the paper?

Full cryptographic
scheme

Smart contract library
evaluation

Coin tumbler, CRD proxy
applications

Applications evaluation
and benchmarking

Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers

Alberto Sonnino Mustafa Al-Ba

m Shehar Bano

University College London University College London University College London

George Danezis
University College London
The Alan Turing Institute

Abstract

We present Coconut, a novel selective disclosure cre-
dential scheme supporting distributed threshold issuance,
public and private attributes, re-randomization, and mu
tiple unlinkable selective atiribute revelations. Coconut
can be used by modern blockchains to ensure confiden-
tiality, authenticity and availability even when a subset of
credential issuing authorities are malicious or offline. We
implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three
applications related to anonymous payments, electronic
petitions, and distribution of proxies for censorship resis-
tance. Coconut uses short and computationally efficient
credentials, and our evaluation shows that most Coconut
cryptographic primitives take just a few milliseconds on
average, with verification taking the longest time (10 mil-
liseconds).

1 Introduction

Selective disclosure credentials [15, 17] allow the is-
suance of a credential 1o a user, and the subsequent
unlinkable revelation (or ‘showing’) of some of the at-
tributes it encodes to a verifier for the purposes of au-
thentication, authorization or to implement electronic
ash. However, established schemes have shortcomings.
Some entrust a single issuer with the credential s
tre key. allowing a malicious issuer to forge any cre-
dential or electronic coin. Other schemes do not provide
the necessary re-randomization or blind issuing proper-
ties necessary to implement modern selective disclosure
credentials. No existing scheme provides all of threshold
distributed issuance, private attributes, re-randomization,
and unlinkable multi-show selective disclosure

The lack of full-featured selective disclosure cre-
dentials impacts platforms that support ‘smart_con-
", such as Ethereum [40], Hyperledger [14] and
Chainspace [3]. They all share the limitation that ver-

ifiable smart contracts may only perform operations
recorded on a public blockchain. Moreover, the secu-
ity models of these systems generally assume that in-
tegrity should hold in the presence of a threshold number
of dishonest or faulty nodes (Byzantine fault tolerance);
itis desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability).

Issuing credentials through smart contracts would be
very desirable: a smart contract could conditionally issue
user credentials depending on the state of the blockchain,
or attest some claim about a user operating through the
contract—such as their identity, atributes, or even the
balance of their wallet. This is not possible, with cur-
rent selective credential schemes that would either en-
trust a single party as an issuer, or would not provide
blind issuance and selec-
ipabilities (as in the case of threshold
signatures [5]). For example, the Hyperledger system
supports CL credentials [15] through a trusted third party
issuer, illustrating their usefulness. but also their fragility
against the issuer becoming malicious

Coconut addresses this challenge, and allows a subset
of decentralized mutually distrustful authorities to jointly
issue credentials, on public or private attributes. Those
credentials cannot be forged by users, or any small subset
of potentially corrupt authorities. Credentials can be re-
randomized before selected attributes being shown to a
verifier, protecting privacy even in the case all authorities
and verifiers collude. The Coconut scheme is based on a
threshold issuance signature scheme, that allows partial
claims to be aggregated into a single credential. Mapped
to the context of permissioned and semi-permissioned
blockchains, Coconut allows collections of authorities in
charge of maintaining a blockchain, or a side chain [5
based on a federated peg, 1o jointly issue selective dis-
closure credentials.

Coconut uses short and computationally efficient cre-
dentials, and efficient revelation of selected attributes and
tion protocols. Each partial credentials and the

42

Conclusion

s What did we talked about ?

" contribution | N
Coconut signature scheme —al
“/l
N /
/" contribution I I

—
Coconut smart contract library E|J-D EI
<=

43

Thank you for your attention
Questions?

Alberto Sonnino
alberto.sonnino@ucl.ac.uk
https://sonnino.com

<: https://github.coniasonnino/coconu{:>

THE ALAN
PSRC decode TURING
:\(;l'\.ul)zn:ff J,Z‘j i’)r',‘"v'r,.ll Sciences

— INSTITUTE

Research Cou

This work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and The Alan Turing Institute.

