
Title

Authors
Alberto Sonnino*
Author 2*
Author 3*
Author 4*

* University College London

Date / Event

Coconut: Threshold Issuance Selective Disclosure
Credentials with Applications to Distributed Ledgers

Authors
Alberto Sonnino*
Mustafa Al-Bassam*

Shehar Bano*

Sarah Meiklejohn*

George Danezis*

* University College London

2

Privacy-preserving
credentials

...without a single issuer

2

Blockchains

2

2

2

No failure

Hard to build Conventional

Expensive Cheap

Byzantine

2

2

2

2

2

The Authors

11

Mustafa Al-BassamAlberto Sonnino

Bano Shehar Sarah Meiklejohn George Danezis

2

Challenges in blockchains

12

send it to the blockchain
anyone can verifywrite the contract

2

Challenges in blockchains

13

send it to the blockchain
anyone can verifywrite the contract

Can we issue credentials in this setting?

2

• Issuing credentials through smart contracts

What are we trying to do?

14

… while preserving privacy

write the contract

2

• Issuing credentials through smart contracts

What are we trying to do?

15

… while preserving privacy

write the contract

some attributes

2

• Issuing credentials through smart contracts

What are we trying to do?

16

… while preserving privacy

credentials

write the contract

some attributes

2

• Issuing credentials through smart contracts

What are we trying to do?

17

… while preserving privacy

another contract

credentials

2

What are we trying to do?

18

store it to a server selective access
write a program

• The more traditional setting

… but without any central authority

2

Distributed
settings

2

• Why is it hard?

What are we trying to do?

20

transactions are
recorded on chain

Attributes & signing key
should be secret

Credentials showing
should be unlinkable

In a decentralised setting

2

• Why is it hard?

What are we trying to do?

21

transactions are
recorded on chain

attributes & signing key
should be secret

Credentials showing
should be unlinkable

In a decentralised setting

2

• Why is it hard?

What are we trying to do?

22

transactions are
recorded on chain

attributes & signing key
should be secret

credentials showing
should be unlinkable

In a decentralized setting

2

• Which properties do we need?

Introduction

23

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

• Which properties do we need?

Introduction

24

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

• Which properties do we need?

Introduction

25

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

• Which properties do we need?

Introduction

26

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

• Which properties do we need?

Introduction

27

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

• Which properties do we need?

Introduction

28

Blindness Unlinkability Threshold Authority

Authorities Non-
Interactivity

Efficiency

2

So we built Coconut

29

2

• Related works

Introduction

30

Scheme Blindness Unlinkable Aggregable Threshold Signature Size

[39] Waters Signature 7 7 7 2 Elements
[26] LOSSW Signature 7 7 7 2 Elements
[8] BGLS Signature 7 7 3 1 Element
[15] CL Signature 3 3 7 O(q) Elements
[31] Pointcheval et al. 3 3 7 2 Elements
[Section 3] Coconut 3 3 3 2 Elements

Table 7: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; :
not aggregable, : sequentially aggregable, : aggregable. The signature size is measured in terms of the number of group elements it is made of,
and q indicates the number of signed messages.

7 Comparison with Related Works

We compare the Coconut cryptographic constructions
and system with related work in Table 7, along the
dimensions of key properties offered by Coconut—
blindness, unlinkability, aggregability (i.e., whether mul-
tiple authorities are involved in issuing the credential),
threshold aggregation (i.e., whether a credential can be
aggregated using signatures issued by a subset of author-
ities), and signature size (see Sections 2 and 3).

The Waters signature scheme [39] provides the bone
structure of our primitive, and introduces a clever solu-
tion to aggregate multiple attributes into short signatures.
However, the original Water’s signature does not allow
blind issuance or unlinkability, and is not aggregable
since it has not been built for use in a multi-authority
setting. Lu et al. scheme, commonly known as LOSSW
signature scheme [26], is also based on Water’s scheme
and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme,
the aggregate signature is built in turns by each signing
authority; this requires the authorities to communicate
with each other resulting in increased latency and cost.

The BGLS signature [8] scheme is built upon the BLS
signature and is remarkable because of its short signa-
ture size—signatures are composed of only one group
element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing co-
ordination between the signing authorities, and can be
extended to work in a threshold setting [7]. Moreover,
Boneh et al. show how to build verifiably encrypted
signatures [8] which is close to our requirements, but
not suitable for anonymous credentials. The CL Signa-
ture scheme [15] provides the most well-known build-
ing blocks for anonymous credentials protocols. It pro-
vides blind issuance and unlikability through randomiza-
tion; but signatures are not short since their size grows
linearly with the number of signed attributes, and are
not aggregable. Pointcheval et al. [31] present a con-
struction which is the missing piece of the BGLS signa-
ture scheme; it achieves blindness by allowing signatures

on committed values and unlinkability through signature
randomization. However, it only supports sequential ag-
gregation and does not provide threshold aggregation.

We extend these previous works by presenting a short,
aggregable, and randomizable signature scheme; allow-
ing threshold and blind issuance, and a multi-authority
anonymous credentials scheme. Our primitive does not
require sequential aggregation, that is the aggregate op-
eration does not have to be performed by each signer in
turn. Any independent party can aggregate any thresh-
old number of partial signatures into a single aggregate
credential, and verify its validity.

As a final remark, for anonymous credentials in a set-
ting where the signing authorities are also verifiers (i.e.,
without public verifiability), Chasse et al. [17] develop
an efficient protocol. Its ‘GGM’ varient has a similar
structure to Coconut, but forgoes the pairing operation
by using a message authentication code (MACs).

8 Conclusion

Existing selective credential disclosure schemes may be
useful, but do not provide the full set of desired prop-
erties, particularly when it comes to issuing fully func-
tional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. In this pa-
per, we presented Coconut—a novel scheme that sup-
ports distributed threshold issuance, public and private
attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. We provided an overview
of the Coconut system, and the cryptographic primitives
underlying Coconut; an implementation and evaluation
of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain re-
spectively; and three diverse and important application
to anonymous payments, petitions and censorship resis-
tance. The Coconut fills an important gap in the litera-
ture and enables selective disclosure credentials—an im-
portant privacy enhancing technology—to be embedded
into modern transparent computation platforms.

13

Scheme Blindness Unlinkable Aggregable Threshold Signature Size

[39] Waters Signature 7 7 7 2 Elements
[26] LOSSW Signature 7 7 7 2 Elements
[8] BGLS Signature 7 7 3 1 Element
[15] CL Signature 3 3 7 O(q) Elements
[31] Pointcheval et al. 3 3 7 2 Elements
[Section 3] Coconut 3 3 3 2 Elements

Table 7: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; :
not aggregable, : sequentially aggregable, : aggregable. The signature size is measured in terms of the number of group elements it is made of,
and q indicates the number of signed messages.

7 Comparison with Related Works

We compare the Coconut cryptographic constructions
and system with related work in Table 7, along the
dimensions of key properties offered by Coconut—
blindness, unlinkability, aggregability (i.e., whether mul-
tiple authorities are involved in issuing the credential),
threshold aggregation (i.e., whether a credential can be
aggregated using signatures issued by a subset of author-
ities), and signature size (see Sections 2 and 3).

The Waters signature scheme [39] provides the bone
structure of our primitive, and introduces a clever solu-
tion to aggregate multiple attributes into short signatures.
However, the original Water’s signature does not allow
blind issuance or unlinkability, and is not aggregable
since it has not been built for use in a multi-authority
setting. Lu et al. scheme, commonly known as LOSSW
signature scheme [26], is also based on Water’s scheme
and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme,
the aggregate signature is built in turns by each signing
authority; this requires the authorities to communicate
with each other resulting in increased latency and cost.

The BGLS signature [8] scheme is built upon the BLS
signature and is remarkable because of its short signa-
ture size—signatures are composed of only one group
element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing co-
ordination between the signing authorities, and can be
extended to work in a threshold setting [7]. Moreover,
Boneh et al. show how to build verifiably encrypted
signatures [8] which is close to our requirements, but
not suitable for anonymous credentials. The CL Signa-
ture scheme [15] provides the most well-known build-
ing blocks for anonymous credentials protocols. It pro-
vides blind issuance and unlikability through randomiza-
tion; but signatures are not short since their size grows
linearly with the number of signed attributes, and are
not aggregable. Pointcheval et al. [31] present a con-
struction which is the missing piece of the BGLS signa-
ture scheme; it achieves blindness by allowing signatures

on committed values and unlinkability through signature
randomization. However, it only supports sequential ag-
gregation and does not provide threshold aggregation.

We extend these previous works by presenting a short,
aggregable, and randomizable signature scheme; allow-
ing threshold and blind issuance, and a multi-authority
anonymous credentials scheme. Our primitive does not
require sequential aggregation, that is the aggregate op-
eration does not have to be performed by each signer in
turn. Any independent party can aggregate any thresh-
old number of partial signatures into a single aggregate
credential, and verify its validity.

As a final remark, for anonymous credentials in a set-
ting where the signing authorities are also verifiers (i.e.,
without public verifiability), Chasse et al. [17] develop
an efficient protocol. Its ‘GGM’ varient has a similar
structure to Coconut, but forgoes the pairing operation
by using a message authentication code (MACs).

8 Conclusion

Existing selective credential disclosure schemes may be
useful, but do not provide the full set of desired prop-
erties, particularly when it comes to issuing fully func-
tional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. In this pa-
per, we presented Coconut—a novel scheme that sup-
ports distributed threshold issuance, public and private
attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. We provided an overview
of the Coconut system, and the cryptographic primitives
underlying Coconut; an implementation and evaluation
of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain re-
spectively; and three diverse and important application
to anonymous payments, petitions and censorship resis-
tance. The Coconut fills an important gap in the litera-
ture and enables selective disclosure credentials—an im-
portant privacy enhancing technology—to be embedded
into modern transparent computation platforms.

13

Scheme Blindness Unlinkable Aggregable Threshold Signature Size

[39] Waters Signature 7 7 7 2 Elements
[26] LOSSW Signature 7 7 7 2 Elements
[8] BGLS Signature 7 7 3 1 Element
[15] CL Signature 3 3 7 O(q) Elements
[31] Pointcheval et al. 3 3 7 2 Elements
[Section 3] Coconut 3 3 3 2 Elements

Table 7: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; :
not aggregable, : sequentially aggregable, : aggregable. The signature size is measured in terms of the number of group elements it is made of,
and q indicates the number of signed messages.

7 Comparison with Related Works

We compare the Coconut cryptographic constructions
and system with related work in Table 7, along the
dimensions of key properties offered by Coconut—
blindness, unlinkability, aggregability (i.e., whether mul-
tiple authorities are involved in issuing the credential),
threshold aggregation (i.e., whether a credential can be
aggregated using signatures issued by a subset of author-
ities), and signature size (see Sections 2 and 3).

The Waters signature scheme [39] provides the bone
structure of our primitive, and introduces a clever solu-
tion to aggregate multiple attributes into short signatures.
However, the original Water’s signature does not allow
blind issuance or unlinkability, and is not aggregable
since it has not been built for use in a multi-authority
setting. Lu et al. scheme, commonly known as LOSSW
signature scheme [26], is also based on Water’s scheme
and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme,
the aggregate signature is built in turns by each signing
authority; this requires the authorities to communicate
with each other resulting in increased latency and cost.

The BGLS signature [8] scheme is built upon the BLS
signature and is remarkable because of its short signa-
ture size—signatures are composed of only one group
element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing co-
ordination between the signing authorities, and can be
extended to work in a threshold setting [7]. Moreover,
Boneh et al. show how to build verifiably encrypted
signatures [8] which is close to our requirements, but
not suitable for anonymous credentials. The CL Signa-
ture scheme [15] provides the most well-known build-
ing blocks for anonymous credentials protocols. It pro-
vides blind issuance and unlikability through randomiza-
tion; but signatures are not short since their size grows
linearly with the number of signed attributes, and are
not aggregable. Pointcheval et al. [31] present a con-
struction which is the missing piece of the BGLS signa-
ture scheme; it achieves blindness by allowing signatures

on committed values and unlinkability through signature
randomization. However, it only supports sequential ag-
gregation and does not provide threshold aggregation.

We extend these previous works by presenting a short,
aggregable, and randomizable signature scheme; allow-
ing threshold and blind issuance, and a multi-authority
anonymous credentials scheme. Our primitive does not
require sequential aggregation, that is the aggregate op-
eration does not have to be performed by each signer in
turn. Any independent party can aggregate any thresh-
old number of partial signatures into a single aggregate
credential, and verify its validity.

As a final remark, for anonymous credentials in a set-
ting where the signing authorities are also verifiers (i.e.,
without public verifiability), Chasse et al. [17] develop
an efficient protocol. Its ‘GGM’ varient has a similar
structure to Coconut, but forgoes the pairing operation
by using a message authentication code (MACs).

8 Conclusion

Existing selective credential disclosure schemes may be
useful, but do not provide the full set of desired prop-
erties, particularly when it comes to issuing fully func-
tional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. In this pa-
per, we presented Coconut—a novel scheme that sup-
ports distributed threshold issuance, public and private
attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. We provided an overview
of the Coconut system, and the cryptographic primitives
underlying Coconut; an implementation and evaluation
of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain re-
spectively; and three diverse and important application
to anonymous payments, petitions and censorship resis-
tance. The Coconut fills an important gap in the litera-
ture and enables selective disclosure credentials—an im-
portant privacy enhancing technology—to be embedded
into modern transparent computation platforms.

13

Scheme Blindness Unlinkable Aggregable Threshold Signature Size

[39] Waters Signature 7 7 7 2 Elements
[26] LOSSW Signature 7 7 7 2 Elements
[8] BGLS Signature 7 7 3 1 Element
[15] CL Signature 3 3 7 O(q) Elements
[31] Pointcheval et al. 3 3 7 2 Elements
[Section 3] Coconut 3 3 3 2 Elements

Table 7: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; :
not aggregable, : sequentially aggregable, : aggregable. The signature size is measured in terms of the number of group elements it is made of,
and q indicates the number of signed messages.

7 Comparison with Related Works

We compare the Coconut cryptographic constructions
and system with related work in Table 7, along the
dimensions of key properties offered by Coconut—
blindness, unlinkability, aggregability (i.e., whether mul-
tiple authorities are involved in issuing the credential),
threshold aggregation (i.e., whether a credential can be
aggregated using signatures issued by a subset of author-
ities), and signature size (see Sections 2 and 3).

The Waters signature scheme [39] provides the bone
structure of our primitive, and introduces a clever solu-
tion to aggregate multiple attributes into short signatures.
However, the original Water’s signature does not allow
blind issuance or unlinkability, and is not aggregable
since it has not been built for use in a multi-authority
setting. Lu et al. scheme, commonly known as LOSSW
signature scheme [26], is also based on Water’s scheme
and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme,
the aggregate signature is built in turns by each signing
authority; this requires the authorities to communicate
with each other resulting in increased latency and cost.

The BGLS signature [8] scheme is built upon the BLS
signature and is remarkable because of its short signa-
ture size—signatures are composed of only one group
element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing co-
ordination between the signing authorities, and can be
extended to work in a threshold setting [7]. Moreover,
Boneh et al. show how to build verifiably encrypted
signatures [8] which is close to our requirements, but
not suitable for anonymous credentials. The CL Signa-
ture scheme [15] provides the most well-known build-
ing blocks for anonymous credentials protocols. It pro-
vides blind issuance and unlikability through randomiza-
tion; but signatures are not short since their size grows
linearly with the number of signed attributes, and are
not aggregable. Pointcheval et al. [31] present a con-
struction which is the missing piece of the BGLS signa-
ture scheme; it achieves blindness by allowing signatures

on committed values and unlinkability through signature
randomization. However, it only supports sequential ag-
gregation and does not provide threshold aggregation.

We extend these previous works by presenting a short,
aggregable, and randomizable signature scheme; allow-
ing threshold and blind issuance, and a multi-authority
anonymous credentials scheme. Our primitive does not
require sequential aggregation, that is the aggregate op-
eration does not have to be performed by each signer in
turn. Any independent party can aggregate any thresh-
old number of partial signatures into a single aggregate
credential, and verify its validity.

As a final remark, for anonymous credentials in a set-
ting where the signing authorities are also verifiers (i.e.,
without public verifiability), Chasse et al. [17] develop
an efficient protocol. Its ‘GGM’ varient has a similar
structure to Coconut, but forgoes the pairing operation
by using a message authentication code (MACs).

8 Conclusion

Existing selective credential disclosure schemes may be
useful, but do not provide the full set of desired prop-
erties, particularly when it comes to issuing fully func-
tional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. In this pa-
per, we presented Coconut—a novel scheme that sup-
ports distributed threshold issuance, public and private
attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. We provided an overview
of the Coconut system, and the cryptographic primitives
underlying Coconut; an implementation and evaluation
of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain re-
spectively; and three diverse and important application
to anonymous payments, petitions and censorship resis-
tance. The Coconut fills an important gap in the litera-
ture and enables selective disclosure credentials—an im-
portant privacy enhancing technology—to be embedded
into modern transparent computation platforms.

13

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A

to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign$ BlindVerify protocol between each other
or with the execution of PrepareBlindSign$ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a
random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section 5.1 to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

qqq

hhh HHH(((cccmmm)))

sss (((hhh,,,hhhxxx+++mmmyyy)))

(((ggg222,,,ggg
xxx
222,,,ggg

yyy
222)))

(((xxx,,,yyy)))

16

not aggregable
sequentially aggregable
user-side aggregable
number of attributes

2

Introduction

31

• What is Coconut?

Contribution I

Contribution II

Coconut credentials scheme

Coconut smart contract library &
example of applications

2

Introduction

32

• What is Coconut?

Contribution I

Contribution II

Coconut credentials scheme

Coconut smart contract library &
example of applications

2

Introduction

33

• What is Coconut?

Contribution I

Contribution II

Coconut credentials scheme

Coconut smart contract library &
example of applications

34

.1.
System Overview

.4.
Applications.5.

Performance

.2.
Coconut Credentials

Scheme

.3.
Coconut Smart

Contract Library

contribution I

contribution II
Contents

2

• How does Coconut work?

System Overview

35

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

2

• How does Coconut work?

System Overview

36

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

2

• How does Coconut work?

System Overview

37

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

2

• How does Coconut work?

System Overview

38

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

2

• How does Coconut work?

System Overview

39

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

2

• Threshold authorities

System Overview

40

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

nt

Users need to collect
only t shares

2

• Threshold authorities

System Overview

41

request

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

issue

aggregate &
randomize

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

show

Figure 1: Overview of the Coconut general architecture.

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.

This paper makes three key contributions:

• We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2 and 3). The scheme is
an extension and hybrid of the Waters signature
scheme [39], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

• We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section 4). We evaluate their
performance, and cost within those platforms (Sec-
tion 6).

• We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section 5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section 6).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure 1.
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (). Then, each authority
answers with an issue command delivering a partial cre-
dentials (À). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (Ã). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (Õ). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

• Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where t
is the size of the subset of authorities.

• Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

• Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

• Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

• Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As a result, a large number of authorities may be used to

2

n
honest authorities

t

Users need to collect
only t shares

2

• Threshold authorities

System Overview

42

Users need to collect
only (2f+1) shares

honest authorities
shard

2

• Cryptographic primitives

Coconut Credentials Scheme

43

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709–5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt bn128. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345–364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (1979), 612–613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.theguardian.com/world/2013/dec/
02/history-of-5-eyes-explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor-
talk/2016-June/041699.html.

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112–126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114–127.

[40] WOOD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. ”http://gavwood.com/
paper.pdf”, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3:

v Setup(1l): defines the system parameters params
with respect to the security parameter l . These
params are publicly available.

v KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

v Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

v AggregateSign(s0, . . . ,sn�1): aggregates n partial
credentials into one consolidated credential.

v AggregateKey(vk0, . . . ,vkn�1): aggregates the ver-
ification keys of n authorities into a single key.

v Randomize(s): randomizes the credential s .

v Verify(vk,m,s): verifies the validity of credential s
on the attribute m using the verification key vk.

When handling private attributes (Section 3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

v PrepareBlindSign(m) $ BlindSign(sk,cm,c,ps):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (ps) the correctness of the commitment
cm and El-Gamal encryption c of m.

v ShowBlindSign(vk,m) $ BlindVerify(k,n ,s ,pv):
to show possession of a signed attribute s without
revealing it, we follow the standard approach
where the algorithm ShowBlindSign is a proof of
knowledge of the credential; i.e., using the proof pv
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

v AggregateThSign(s1, . . . ,st): aggregates any
subset of t partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3.

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [31] proposed an assumption

based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair s = (h,e) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output s for a new m0 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O
0 that acts ex-

actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O

0 is perfectly equiv-
alent to a signing oracle.

15

initialisation

blind issuance

verify &
break linkability

Setup

KeyGen

AggKey

IssueCred

ProveCred

VerifyCred

2

• From where do coconuts come from?

Coconut Credentials Scheme

44

BLS Signatures PS Signatures

Coconut

2

• From where do coconuts come from?

Coconut Credentials Scheme

45

• What do they look like?

BLS Signatures PS Signatures

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A

to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign$ BlindVerify protocol between each other
or with the execution of PrepareBlindSign$ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a
random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section 5.1 to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

qqq

hhh HHH(((cccmmm)))

sss (((hhh,,,hhhxxx+++mmmyyy)))

(((ggg222,,,ggg
xxx
222,,,ggg

yyy
222)))

(((xxx,,,yyy)))

16

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A

to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign$ BlindVerify protocol between each other
or with the execution of PrepareBlindSign$ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a
random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section 5.1 to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

qqq

hhh HHH(((cccmmm)))

sss (((hhh,,,hhhxxx+++mmmyyy)))

(((ggg222,,,ggg
xxx
222,,,ggg

yyy
222)))

(((xxx,,,yyy)))

16

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A

to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign$ BlindVerify protocol between each other
or with the execution of PrepareBlindSign$ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a
random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section 5.1 to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

qqq

mmm

hhh HHH(((cccmmm)))

sss (((hhh,,,hhhxxx+++mmmyyy)))

(((ggg222,,,ggg
xxx
222,,,ggg

yyy
222)))

(((xxx,,,yyy)))

16

take an attribute:

compute:

signature: & secret key:

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A

to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign$ BlindVerify protocol between each other
or with the execution of PrepareBlindSign$ Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, s0 and s1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature s on the attribute m, one can pick a
random t 2 Fp and randomized this signature as follows:

s 0 = Randomize(s) = (ht ,e t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, s 0 is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof pv.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section 5.1 to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

qqq

mmm

hhh HHH(((cccmmm)))

sss (((hhh,,,hhhxxx+++mmmyyy)))

(((ggg222,,,ggg
xxx
222,,,ggg

yyy
222)))

(((xxx,,,yyy)))

16

Coconut

2

• Communication protocol

Coconut Credentials Scheme

46

user authority verifier

repeat
times

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

A.1 Security of the Malet Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm C knowing only (g2,ga

2) 2 G2
2 and h 2 G1

(where a 2 Fp) to output ha 2 G1.
Then, Pointcheval et al. [30] proposed an assumption

based on the LRSW Assumption [28] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,gx

2,g
y
2) 2 G3

2 where x,y 2 F2
p, an

oracle O(m) on input m 2 Fp chooses a random h 2 G1\1
and outputs the pair � = (h,�) = (h,hx+my); given vk and
unlimited access to O , it is computationally unfeasible to
output � for a new m� 2 Fp that has not been queried to
O .

Finally, we create a modified oracle O � that acts ex-
actly as O but doesn’t generate h at random; it computes
h = H(gm

1) instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle O � is perfectly equiv-
alent to a signing oracle.

A.2 Security of the Malet Anonymous Cre-
dentials Scheme

The following paragraphs argue about the unforgeabil-
ity, unlinkability and blindness of the Malet anonymous
credentials scheme.

Unforgeability. The unforgeability of the Malet
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem 1).
It can be shown that if there is a forger A capable of
forging a credential, then an algorithm C can query A
to break the underlying signature scheme. Intuitively,
C would execute PrepareBlindSign and get a forgery
from A on a hidden attribute m; then uses her private
El-Gamal key to call Unblind on the credential and
output a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign � BlindVerify protocol between each other
or with the execution of PrepareBlindSign � Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, �0 and �1 on
the attributes m0 and m1, respectively; there is no adver-
sary capable to distinguish which one is a signature on
m0 and which one is a signature on m1, since both signa-
ture are randomly distributed over G2

1. More specifically,
considering signature � on the attribute m, one can pick a

random t 2 Fp and randomized this signature as follows:

� � = Randomize(�) = (ht ,� t)

Therefore, we can argue that since t is randomly dis-
tributed in Fp, � � is randomly distributed in G2

1.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof �v.

iii

17

Anonymous submission #9999 to ACM CCS 2017

[28] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249. (2013).

[29] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless Tumbling for
Transaction Privacy. In Proceedings of Privacy Enhancing Technologies.

[30] Andreas Pfitzmann and Marit Köhntopp. 2001. Anonymity, unobservability,
and pseudonymity—a proposal for terminology. In Designing privacy enhancing
technologies. Springer, 1–9.

[31] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In
Cryptographers’ Track at the RSA Conference. Springer, 111–126.

[32] Somindu C Ramanna and Palash Sarkar. 2016. Efficient adaptively secure IBBE
from the SXDH assumption. IEEE Transactions on Information Theory 62, 10
(2016), 5709–5726.

[33] Christian Reitwiessner. 2017. Ethereum Improvement Proposal 196 - Precompiled
contracts for addition and scalar multiplication on the elliptic curve alt_bn128.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md. (2017).

[34] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShuffle: Prac-
tical Decentralized Coin Mixing for Bitcoin. In ESORICS (2) (Lecture Notes in
Computer Science), Vol. 8713. Springer, 345–364.

[35] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[36] The Guardian. 2013. History of 5-Eyes – Explainer. http://www.theguardian.com/

world/2013/dec/02/history-of-5-eyes-explainer. (2013).
[37] The Tor Project. 2016. meek-google suspended for terms of service violations

(how to set up your own). (2016). https://lists.torproject.org/pipermail/tor-talk/
2016-June/041699.html.

[38] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, Accountable Mixes
for Bitcoin. In Financial Cryptography and Data Security, Michael Brenner,
Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 112–126.

[39] Brent Waters. 2005. Efficient Identity-Based Encryption Without Random Ora-
cles.. In Eurocrypt, Vol. 3494. Springer, 114–127.

[40] Gavin Wood. 2016 (visited August 9, 2017). Ethereum: A Secure Decentralised
Generalised Transaction Ledger EIP-150 Revision. "http://gavwood.com/paper.
pdf". (2016 (visited August 9, 2017)).

A SKETCH OF SECURITY PROOFS
This appendix sketches the security proofs of the cryptographic
construction described in Section 3.

Unforgeability. First, the co-CDH problem can be rephrased in
this context as follows: it is computationally unfeasible for an al-
gorithm C knowing only (�2,�a

2) � G
2
2 and h � G1 (where a � Fp)

to output ha � G1. Then, Pointcheval et al. [31] proposed an as-
sumption based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows. Consid-
ering �k = (�2,�x

2 ,�
�
2) � G

3
2 where x ,� � F2

p , an oracle O(m) on
input m � Fp chooses a random h � G1\1 and outputs the pair
� = (h, �) = (h,hx+� ·m); given �k and unlimited access to O, it is
computationally unfeasible to output � for a newm� � Fp that has
not been queried to O.

Finally, we create a modified oracle O� that acts exactly as O but
doesn’t generate h at random; it computes h = H (�s1) instead as
described in Section 3.4. Under the Random Oracle Assumption, the
EUF-CMA security of our scheme follows from the above since the
modified oracle O� is perfectly equivalent to a signing oracle.

Blindness. Blindness ensures that the signer will not learn any
additional information about the attribute m during the execution of
BlindSign. This property is guaranteed by the security properties
of the El-Gamal encryption system since the input of BlindSign
is an El-Gamal encryption of m. Also, the ShowBlindSign al-
gorithm does not reveal any information about m neither by the
zero-knowledge property of the proof �� .

Unlinkability. The unlinkability property means that the verifier
cannot link multiple executions of the ShowSign and BlindVerify

protocol between each other, or with the execution of Prepare-
BlindSign and BlindSign (for a given attribute m). This property is
enabled by the possibility to re-randomize the credential. Intuitively,
given two randomized credentials, �0 and �1 on the attributesm0 and
m1, respectively; there is no adversary capable to distinguish which
one embeds m0 and which one embeds m1, since both credentials
are randomly distributed over G2

1. More specifically, considering a
credential � on the attributem, one can pick a random r � � Fp and
randomize this credential as follows:

� � = Randomize(�) = (hr � , sr �)
Therefore, we can argue that since r � is randomly distributed in Fp ,
� � is randomly distributed in G2

1.

B ETHEREUM TUMBLER
We extend the example of the tumbler application described in Sec-
tion 5.1 to the Ethereum version of the Coconut library, with a few
modifications to reduce the gas costs incurred and to adapt the sys-
tem for Ethereum. Instead of having � (the number of coins) as an
attribute, which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow for a fixed
number of instances of Coconut to be setup for different denomina-
tions for �. The Tumbler has a Deposit method, where users can
deposit Ether into the contract, and then send an issuance request
to authorities on one private attribute: addr | |s, where addr is the
destination address of the merchant, and s is a randomly generated
sequence number (1). It is necessary for addr to be a part of the
attribute because once the attribute is revealed, the credential can be
spent by anyone with knowledge of the attribute (including any peers
monitoring the blockchain for transactions), therefore the credential
must be bounded to a specific recipient address before it is revealed.
This issuance request is signed by the Ethereum address that de-
posited the Ether into the smart contract, as proof that the request
is associated with a valid deposit, and sent to the authorities (2). As
addr and s will be both revealed at the same time when withdrawing
the token, we concatenate these in one attribute to save elliptic curve
operations.

After the authorities issued the credentials to the users (3), they
aggregate them and re-randomize them as usual. The resulting token
can then be passed to the Withdraw function, where the withdrawer
reveals addr and s (4). As usual, the contract maintains a map of s
values associated with tokens that have already been withdrawn to
prevent double-spending. After checking that the token’s credentials
verifies and the it has not already been spent, the contract sends � to
the Ethereum destination address addr (5).

(�,�, c,�s)
(�̃i)

(�,�,�,�v)
t

12

Anonymous submission #9999 to ACM CCS 2017

[28] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249. (2013).

[29] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless Tumbling for
Transaction Privacy. In Proceedings of Privacy Enhancing Technologies.

[30] Andreas Pfitzmann and Marit Köhntopp. 2001. Anonymity, unobservability,
and pseudonymity—a proposal for terminology. In Designing privacy enhancing
technologies. Springer, 1–9.

[31] David Pointcheval and Olivier Sanders. 2016. Short randomizable signatures. In
Cryptographers’ Track at the RSA Conference. Springer, 111–126.

[32] Somindu C Ramanna and Palash Sarkar. 2016. Efficient adaptively secure IBBE
from the SXDH assumption. IEEE Transactions on Information Theory 62, 10
(2016), 5709–5726.

[33] Christian Reitwiessner. 2017. Ethereum Improvement Proposal 196 - Precompiled
contracts for addition and scalar multiplication on the elliptic curve alt_bn128.
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md. (2017).

[34] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. CoinShuffle: Prac-
tical Decentralized Coin Mixing for Bitcoin. In ESORICS (2) (Lecture Notes in
Computer Science), Vol. 8713. Springer, 345–364.

[35] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[36] The Guardian. 2013. History of 5-Eyes – Explainer. http://www.theguardian.com/

world/2013/dec/02/history-of-5-eyes-explainer. (2013).
[37] The Tor Project. 2016. meek-google suspended for terms of service violations

(how to set up your own). (2016). https://lists.torproject.org/pipermail/tor-talk/
2016-June/041699.html.

[38] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, Accountable Mixes
for Bitcoin. In Financial Cryptography and Data Security, Michael Brenner,
Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 112–126.

[39] Brent Waters. 2005. Efficient Identity-Based Encryption Without Random Ora-
cles.. In Eurocrypt, Vol. 3494. Springer, 114–127.

[40] Gavin Wood. 2016 (visited August 9, 2017). Ethereum: A Secure Decentralised
Generalised Transaction Ledger EIP-150 Revision. "http://gavwood.com/paper.
pdf". (2016 (visited August 9, 2017)).

A SKETCH OF SECURITY PROOFS
This appendix sketches the security proofs of the cryptographic
construction described in Section 3.

Unforgeability. First, the co-CDH problem can be rephrased in
this context as follows: it is computationally unfeasible for an al-
gorithm C knowing only (�2,�a

2) � G
2
2 and h � G1 (where a � Fp)

to output ha � G1. Then, Pointcheval et al. [31] proposed an as-
sumption based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows. Consid-
ering �k = (�2,�x

2 ,�
�
2) � G

3
2 where x ,� � F2

p , an oracle O(m) on
input m � Fp chooses a random h � G1\1 and outputs the pair
� = (h, �) = (h,hx+� ·m); given �k and unlimited access to O, it is
computationally unfeasible to output � for a newm� � Fp that has
not been queried to O.

Finally, we create a modified oracle O� that acts exactly as O but
doesn’t generate h at random; it computes h = H (�s1) instead as
described in Section 3.4. Under the Random Oracle Assumption, the
EUF-CMA security of our scheme follows from the above since the
modified oracle O� is perfectly equivalent to a signing oracle.

Blindness. Blindness ensures that the signer will not learn any
additional information about the attribute m during the execution of
BlindSign. This property is guaranteed by the security properties
of the El-Gamal encryption system since the input of BlindSign
is an El-Gamal encryption of m. Also, the ShowBlindSign al-
gorithm does not reveal any information about m neither by the
zero-knowledge property of the proof �� .

Unlinkability. The unlinkability property means that the verifier
cannot link multiple executions of the ShowSign and BlindVerify

protocol between each other, or with the execution of Prepare-
BlindSign and BlindSign (for a given attribute m). This property is
enabled by the possibility to re-randomize the credential. Intuitively,
given two randomized credentials, �0 and �1 on the attributesm0 and
m1, respectively; there is no adversary capable to distinguish which
one embeds m0 and which one embeds m1, since both credentials
are randomly distributed over G2

1. More specifically, considering a
credential � on the attributem, one can pick a random r � � Fp and
randomize this credential as follows:

� � = Randomize(�) = (hr � , sr �)
Therefore, we can argue that since r � is randomly distributed in Fp ,
� � is randomly distributed in G2

1.

B ETHEREUM TUMBLER
We extend the example of the tumbler application described in Sec-
tion 5.1 to the Ethereum version of the Coconut library, with a few
modifications to reduce the gas costs incurred and to adapt the sys-
tem for Ethereum. Instead of having � (the number of coins) as an
attribute, which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow for a fixed
number of instances of Coconut to be setup for different denomina-
tions for �. The Tumbler has a Deposit method, where users can
deposit Ether into the contract, and then send an issuance request
to authorities on one private attribute: addr | |s, where addr is the
destination address of the merchant, and s is a randomly generated
sequence number (1). It is necessary for addr to be a part of the
attribute because once the attribute is revealed, the credential can be
spent by anyone with knowledge of the attribute (including any peers
monitoring the blockchain for transactions), therefore the credential
must be bounded to a specific recipient address before it is revealed.
This issuance request is signed by the Ethereum address that de-
posited the Ether into the smart contract, as proof that the request
is associated with a valid deposit, and sent to the authorities (2). As
addr and s will be both revealed at the same time when withdrawing
the token, we concatenate these in one attribute to save elliptic curve
operations.

After the authorities issued the credentials to the users (3), they
aggregate them and re-randomize them as usual. The resulting token
can then be passed to the Withdraw function, where the withdrawer
reveals addr and s (4). As usual, the contract maintains a map of s
values associated with tokens that have already been withdrawn to
prevent double-spending. After checking that the token’s credentials
verifies and the it has not already been spent, the contract sends � to
the Ethereum destination address addr (5).

(�,�, c,�s)
(�̃i)

(�,�,�,�v)
t

12

Ether into the smart contract, as proof that the request is
associated with a valid deposit, and sent to the authorities (2).
As addr and s will be both revealed at the same time when
withdrawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the users (3),
they aggregate them and re-randomize them as usual. The
resulting token can then be passed to the Withdraw function,
where the withdrawer reveals addr and s (4). As usual, the
contract maintains a map of s values associated with tokens
that have already been withdrawn to prevent double-spending.
After checking that the token’s credentials verifies and the
it has not already been spent, the contract sends v to the
Ethereum destination address addr (5).

(�, �)

(�,�, ��)

15

it has not already been spent, the contract sends v to the
Ethereum destination address addr (5).

(�, ��)

15

Fig. 2: Coconut threshold credentials protocol exchanges.

lead to the same value of h.3 As described in Section III-C,
the blind signature scheme of Pointcheval and Sanders builds
the credentials directly from a commitment of the attribute
and a blinding factor secretly chosen by the authority; this is
unsuitable for issuance of threshold credentials. We circumvent
that problem by introducing the El-Gamal ciphertext c in our
scheme and exploiting its homomorphism, as described above.

Upon reception of c̃, the users decrypt it using their El-
Gamal private key d to recover the partial credentials �i =
(h, hxi+yi·m); this is performed by the Unblind algorithm (À).
Then, the users can call the AggCred algorithm to aggregate
any subset of t partial credentials. This algorithm uses the
Lagrange basis polynomial l which allows to reconstruct the
original v(0) and w(0) through polynomial interpolation;

v(0) =
tX

i=1

v(i)li and w(0) =
tX

i=1

w(i)li

However, this computation happens in the exponent—neither
the authorities nor the users should know the values v(0) and
w(0). One can easily verify the correctness of AggCred of t
partial credentials �i = (hi, si) as below.

s =
tY

i=1

(si)
li =

tY

i=1

�
hxi+yi·m

�li

=
tY

i=1

(hxi)li

tY

i=1

(hyi·m)li =
tY

i=1

h(xili)
tY

i=1

h(yili)·m

= hv(0)+w(0)·m = hx+y·m

Before verification, the verifier collects and aggregates the
verifications keys of the authorities—this process happens only
once and ahead of time. The algorithms ProveCred and
VerifyCred implement verification. First, the users randomize
the credentials by picking a random r0 2 Fp and computing
�0 = (h0, s0) = (hr

0
, sr

0
); then, they compute and ⌫ from

the attribute m, a blinding factor r 2 Fp and the aggregated
verification key:

 = ↵�mgr

2 and ⌫ = (h0)r

Finally, they send ⇥ = (, ⌫, �0, ⇡v) and �0 to the verifier
where ⇡v is a zero-knowledge proof asserting the correctness

3If an adversary A can obtain two credentials �0 and �1 on respectively
m0 = 0 and m1 = 1 with the same value h as follows: �0 =
h
x and �1 = h

x+y ; then A could forge a new credential �2 on m2 = 2:
�2 = (�0)�1

�1�1 = h
x+2y .

of and ⌫; and that the private attribute m embedded
into � satisfies the application-specific predicate �0 (Ã). The
proof ⇡v also ensures that the users actually know m and
that has been built using the correct verification keys
and blinding factors. The pairing verification is similar to
Pointcheval and Sanders [41] and Boneh et al. [12]; expressing
h0 = gr̃

1 | r̃ 2 Fp, the left-hand side of the pairing verification
can be expanded as:

e(h0,) = e(h0, g(x+my+r)
2) = e(g1, g2)

(x+my+r)r̃

and the right-hand side:

e(s0⌫, g2) = e(h0(x+my+r), g2) = e(g1, g2)
(x+my+r)r̃

From where the correctness of VerifyCred follows.

c) Security: The proof system we require is based on
standard sigma protocols to show knowledge of representation
of discrete logarithms, and can be rendended non-interactive
using the Fiat-Shamir heuristic [24] in the random oracle
model. As our signature scheme is derived from the ones due
to Pointcheval and Sanders [41] and BLS [12], we inherit their
assumptions as well; namely, LRSW [36] and XDH [12].

Theorem 1. Assuming LRSW, XDH, and the existence of
random oracles, Coconut is a secure threshold credentials
scheme, meaning it satisfies unforgeability, blindness, and
unlinkability.

A sketch of this proof, based on the security of the underlying
components of Coconut, can be found in Appendix A.

E. Multi-Attribute Credentials

We expand our scheme to embed multiple attributes into
a single credential without increasing its size; this generaliza-
tion follows directly from the Waters signature scheme [50]
and Pointcheval and Sanders [41]. The authorities key pairs
becomes:

sk = (x, y1, . . . , yq) and vk = (g2, g
x

2 , gy1
2 , . . . , g

yq

2)

where q is the number of attributes. The multi-attribute creden-
tial is derived from the commitment cm and the group element
h as below:

cm = go

1

qY

j=1

h
mj

j
and h = H(cm)

and the credential generalizes as follows:

� = (h, hx+
Pq

j=1 mjyj)

Note that the credential’s size does not increase with the
number of attributes or authorities—it is always composed
of two group elements. The security proof of the multi-
attribute scheme relies on a reduction against the single-
attribute scheme and is analog to Pointcheval and Sanders [41].
Moreover, it is also possible to combine public and private
attributes to keep only a subset of the attributes hidden from
the authorities, while revealing some others; the BlindSign
algorithm only verifies the proof ⇡s on the private attributes
(similar to Chase et al. [20]). The full primitives of the multi-
attribute cryptographic scheme are presented in Appendix B.

5

2

• General purpose library

Coconut Smart Contract Library

47

issue

Ledger

request

create

verify

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

contract infocontract info

attributes attributes

credentials
credentials

credentials authorities

Figure 3: The Coconut smart contract library.

Request, Issue, Verify), and is illustrated in Figure 3.
First, a set of authorities call the Create function to
initialize a Coconut instance defining the contract info;
i.e., their verification key, the number of authorities and
the threshold parameter (). The initiator smart contract
can specify a callback contract that needs to be executed
by the user in order to request credentials; e.g., this
callback can be used for authentication. The instance
is public and can be read by the user (À); any user can
request a credential through the Request function by
executing the specified callback contract, and providing
the public and private attributes to include in the creden-
tials (Ã). The public attributes are simply a list of clear
text strings, while the private attributes are encrypted as
described in Section 3.3. Each signing authority mon-
itors the blockchain at all times, looking for credential
requests. If the request appears on the blockchain (i.e.,
a transaction is executed), it means that the callback
has been correctly executed (Õ); each authority issues
a partial credential on the specified attributes by calling
the Issue procedure (Œ). In our implementation, all
partial credentials are in the blockchain; however, these
can also be provided to the user off-chain. Users collect
a threshold number of partial credentials, and aggregate
them to form a full credential (œ). Then, the users
locally randomize the credential. The last function of
the Coconut library contract is Verify that allows the
blockchain—and anyone else—to check the validity of a
given credential (–).

A limitation of this architecture is that it is not ef-
ficient for the authorities to continuously monitor the
blockchain. Section 4.3 explains how to overcome this
limitation by embedding the authorities into the nodes
running the blockchain.

4.2 Ethereum Smart Contract Library
To make Coconut more widely available, we also
implement it in Ethereum—a popular permissionless

smart contract blockchain [40]. The Coconut Ethereum
smart contract library is written in Solidity, a high-
level JavaScript-like language that compiles down to
Ethereum Virtual Machine (EVM) assembly code, and
we released it as open source library4. Ethereum recently
hardcoded a pre-compiled smart contract in the EVM for
performing pairing checks and elliptic curve operations
on the alt bn128 curve [13, 33], for efficient verification
of zkSNARKs. The execution of an Ethereum smart con-
tract has an associated ‘gas cost’, a fee that is paid to
miners for executing a transaction. Gas cost is calculated
based on the operations executed by the contract; i.e.,
the more operations, the higher the gas cost. The pre-
compiled contracts have lower gas costs than equivalent
native Ethereum smart contracts.

We use the pre-compiled contract for performing a
pairing check, in order to implement Coconut verifica-
tion within a smart contract. The Ethereum code only
implements elliptic curve addition and scalar multipli-
cation on G1, whereas Coconut requires operations on
G2 to verify credentials. Therefore, we implement an el-
liptic curve addition and scalar multiplication on G2 as
an Ethereum smart contract library5 written in Solidity.
This is a practical solution for many Coconut applica-
tions, as verifying credentials with one revealed attribute
only requires one addition and one scalar multiplication.
It would not be practical however to verify credentials
with attributes that will not be revealed, as this requires
three G2 multiplications using our elliptic curve imple-
mentation, which would exceed the current Ethereum
block gas limit (8M as of February 2018).

We can however use the Ethereum contract to design
a federated peg for side chains, or a coin tumbler as an
Ethereum smart contract, based on credentials that reveal
one attribute. We go on to describe and implement this
tumbler using the Coconut Chainspace library in Sec-
tion 5.1, however the design for the Ethereum version
differs slightly to avoid the use of attributes that will not
be revealed, which we describe in Appendix C.

The library shares the same functions as the
Chainspace library described in Section 4.1, except for
Request and Issue, as these simply act as a com-
munication channel between users and authorities, so
users can directly communicate with authorities off the
blockchain to request tokens, thus saving significant gas
costs that would be incurred by storing Request and
Issue events on the blockchain. The Verify function
simply verifies tokens against Coconut instances created
by the Create function.

4https://github.com/asonnino/coconut/tree/
master/coconut-ethereum

5https://github.com/musalbas/solidity-
BN256G2

7

2

the Coconut Chainspace library in Section V-A, however the
design for the Ethereum version differs slightly to avoid the
use of attributes that will not be revealed, which we describe
in Appendix C.

The library shares the same functions as the Chainspace
library described in Section IV-A, except for Request and
Issue which are computed off the blockchain to save gas
costs. As Request and Issue functions simply act as a
communication channel between users and authorities, users
can directly communicate with authorities off the blockchain
to request tokens. This saves significant gas costs that would
be incurred by storing these functions on the blockchain.

The Verify function simply verifies tokens against Coconut
instances created by the Create function.

C. Deeper Blockchain Integration

The designs described in Section IV-A and Section IV-B
rely on authorities on-the-side for issuing credentials. In this
section, we present designs that incorporate Coconut authori-
ties within the infrastructure of a number of semi-permissioned
blockchains. This enables the issuance of credentials as a side
effect of the normal system operations, taking no additional
dependency on extra authorities. It remains an open problem
how to embed Coconut into permissionless systems, based on
proof of work or stake. These systems have a highly dynamic
set of nodes maintaining the state of their blockchains, which
cannot readily be mapped into Coconut issuing authorities.

Integration of Coconut into Hyperledger Fabric [16]—a
permissioned blockchain platform—is straightforward. Fabric
contracts run on private sets of computation nodes—and use
the Fabric protocols for cross-contract calls. In this setting,
Coconut issuing authorities can coincide with the Fabric smart
contract authorities. Upon a contract setup, they perform the
setup and key distribution, and then issue partial credentials
when authorized by the contract. For issuing Coconut cre-
dentials, the only secrets maintained are the private issuing
keys; all other operations of the contract can be logged and
publicly verified. Coconut has obvious advantages over using
traditional CL credentials relying on a single authority—as
currently present in the Hyperledger roadmap9. The threshold
trust assumption—namely that integrity and availability is
guaranteed under the corruption of a subset of authorities is
preserved, and prevents forgeries by a single corrupted node.

We can also naturally embed Coconut into sharded scalable
blockchains, as exemplified by Chainspace [3] (which supports
general smart contracts), and Omniledger [33] (which supports
digital tokens). In these systems, transactions are distributed
and executed on ‘shards’ of authorities, whose membership
and public keys are known. Coconut authorities can naturally
coincide with the nodes within a shard—a special transaction
type in Omniledger, or a special object in Chainspace, can
signal to them that issuing a credential is authorized. The
authorities, then issue the partial signature necessary to recon-
struct the Coconut credential, and attach it to the transaction
they are processing anyway. Users can aggregate, re-randomize
and show the credential.

9http://nick-fabric.readthedocs.io/en/latest/idemix.html

buffer

issue

withdraw

Ledger

merchant

authorities

deposit

withdraw

token

pay

issue token

submit token

submit token

receive money

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value ⌫as follows.

⌫ =
�
gk

1

�UUID

Then, they add their vote to the options, append ⌫ to a spent
list L, and build a zero-knowledge proof showing that ⌫ is
build from the same value x of their credentials:

⇡ = PK{(k) : ⌫ =
�
gk

1

�UUID ^ = ↵�k}

Adding ⌫ to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof ⇡ ensures
that ⌫ has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

p
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value � as
follows:

� =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that � is build from the same value k of their credentials:

� = PK{(k) : � =
�

gk
1

�UUID
^ � = �� k}

The petition smart contract checks the proof � and the
credentials, and checks that the vote is fresh by verifying
that � is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding � to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof � ensures that � has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

Fig. 4: The coin tumbler application.

V. APPLICATIONS

In this section, we present three applications that leverage
Coconut to offer improved security and privacy properties—
a coin tumbler (Section V-A), a privacy-preserving petition
system (Section V-B), and a system for censorship-resistant
distribution of proxies (Section V-C). For generality, the ap-
plications assume authorities external to the blockchain, but
these can also be embedded into the blockchain as described
in Section IV-C.

A. Coin Tumbler

We implement a coin tumbler (or mixer) on Chainspace
as depicted in Figure 4. Coin tumbling is a method to mix
cryptocurrency associated with an address visible in a public
ledger with other addresses, to “clean” the coins and ob-
scure the trail back to the coins’ original source address. A
limitation of previous similar schemes [13], [49], [27], [37],
[44], [9], [38] is that they are either centralized (i.e., there
is a central authority that operates the tumbler, which may
go offline), or require users to coordinate with each other.
The Coconut tumbler addresses these issues via a distributed
design (i.e., security relies on a set of multiple authorities
that are collectively trusted to contain at least t honest ones),
and does not require users to coordinate with each other.
Zcash [45] achieves a similar goal; it theoretically hides the
totality of the transaction but at a huge computational cost,
and offers the option to cheaply send transactions in clear.
In practice, the computational overhead of sending hidden
transactions makes it impractical, and only a few users take
advantage of the optional privacy provided by Zcash; as a
result, transactions are easy to de-anonymize [29]. Coconut
provides efficient proofs taking only a few milliseconds (see
Section VI), and makes hidden transactions practical. Trust
assumptions in Zcash are different from Coconut. However,
instead of assuming a threshold number of honest authorities,
Zcash relies on zk-SNARKs which assumes a setup algorithm
executed by a single trusted authority.

7

• Coin tumbler

Applications

48

2

• Privacy-preserving petitions

Applications

49

ask a signature on the public attribute v, and on two pri-
vate attributes: the user’s private key k and a randomly
generated sequence number s (). Note that to prevent
tracing traffic analysis, v should be limited to a specific
set of possible values (similar to cash denominations).
The request is accepted by the blockchain only if the user
deposited v coins to the buffer account (À).

Each authority monitors the blockchain and detects the
request (Ã); and issues a partial credential to the user
(either on chain or off-chain) (Õ). The user aggregates
all partial credentials into a consolidated credential, re-
randomizes it, and submits it as money token to a mer-
chant. First, the user produces a zk-proof of knowledge
of its private key by binding the proof to the merchant’s
address addr; then, the user provides the merchant with
the proof along with the sequence number s and the con-
solidated credential (Œ). The coins can only be spent
with knowledge of the associated sequence number and
by the owner of addr. To accept the above as payment,
the merchant submits the token by showing the signature
and the sequence number to the tumbler contract (œ).
To prevent double spending, the tumbler contract keeps
a record of all the sequence numbers that have already
been shown. Upon showing a fresh (unspent) sequence
number s, the contract verifies that the signature checks
and that s doesn’t already appear in the spent list. Then, it
withdraws v coins from the buffer (–), sends them to be
received by the merchant account determined by addr,
and adds s to the spent list (—). For the sake of simplic-
ity, we keep the transfer value v in clear-text (treated as a
public attribute), but this could be easily hidden by inte-
grating a range proof; this can be efficiently implemented
using the technique developed by Bünz et al. [12].

Security considerations. Coconut provides blind is-
suance which allows the user to obtain a signature on
the sequence number s without the authorities learning
its value. Without blindness, any authority seeing the
user key k could potentially out-speed the user and the
merchant, and spend it—blindness prevents authorities
from stealing the token. Furthermore, Coconut provides
unlinkability between the pay phase () and the sub-
mit phase (Œ) (see Figure 4), and prevents any authority
or third parties from keeping track of the user’s trans-
actions. As a result, a merchant can receive payments
for good/services offered, yet not identify the purchasers.
Finally, this application prevents a single authority from
creating coins to steal all the money in the buffer. The
threshold property of Coconut implies that the adversary
needs to corrupt at least t authorities for this attack to be
possible. This property also prevents a single authority
blocking the issuance of a token—the service is guaran-
teed to be available as long as at least t authorities are
running.

vote

Ledger

petition
creator

citizen

proof of identity

authorities

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

credentials

sign petition

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

7

smart
contract

Ledger

petition
creator

citizen

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

7

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign any
e-petition and e-voting campaign. Successively, any third party
create an instance of the petition contract as shown in ??.

(UUID, owner, verifier, options, scores) (1)

(UUID, owner, vk, (2)
options, scores) (3)

� =
�
gk
1

�UUID
(4)

The UUID parameter uniquely identifies the petition, and
the scores parameter holds the citizen’s votes (initialized to
zero). In the case of a petition the options are only YES
and NO; and the fields owner and verifier respectively hold
the public key of the third party creating the petition and of
authorities issuing the credentials. In order to sign the petition,
the users compute a value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID � � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using
OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

B. System evaluation
Alberto: @Bano, test system on AWS (n authority): client

latency vs t – ask n signatures (and n blind signatures) and
check the time it takes to hear back from t authorities.

VI. COMPARISON WITH RELATED WORKS

Alberto: discuss crypto related works
Alberto: compare results (speed and size) with alternatives

to see why it is cool stuff; not many scheme have actually been

3https://github.com/asonnino/coconut

init

vote

Fig. 5: Overview of the CoCoNut petition architecture.

Similarly to the previous example, a set of authorities in
charge of C runs the Create function of the CoCoNut library.
The parameters n, t are set accordingly, and ref points to a
custom function requiring the user to prove in some ways that
he is a citizen of C. The authorities set q = 1, and are expecting
to issue a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting campaign. Successively, any third
party create an instance of the petition contract as shown in 5.
The UUID parameter uniquely identifies the petition, and the
scores parameter holds the citizen’s votes (initialized to zero).
In the case of a petition the options are only YES and NO; and
the fields owner and vk respectively hold the public key of the
third party creating the petition and of authorities issuing the
credentials. In order to sign the petition, the users compute a
value �as follows.

� =
�
gk
1

�UUID

Then, they add their vote to the options, append � to a spent
list L, and build a zero-knowledge proof showing that � is
build from the same value x of their credentials:

� = PK{(k) : � =
�
gk
1

�UUID ^ � = ��k}

Adding � to L prevent a citizen to vote twice during the same
campaign (prevent double spending), while the proof � ensures
that � has been built from a signed private key k.

C. Mapping authorities to blockchain nodes
Alberto: @George, Describe how the CoCoNut authorities

can also be Chainspace nodes (to make clear the potential
of CoCoNut when deeply related to blockchains), since we
actually built all of this to have credentials in smart contracts.

(scores, �) (1)

V. EVALUATION

A. Primitives evaluation
The signature scheme has been implemented in python

using the two crypo libraries petlib [1] and bplib [2]. The
bilinear pairing works over a Barreto-Naehrig [17] curve, using

Number of measures: 10,000
Operation µ [ms]

�
�2 [ms]

Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

TABLE I: Performances evaluation.

Number of authorities: n, Signature size: 132 [B]
Transaction complexity size [B]
Signature on clear message:
 ask signature O(n) ||m||
À get signature O(n) 132
Ã verify signature O(1) ||m|| + 132

Signature on hidden message:
 ask signature O(n) 516
À get signature O(n) 132
Ã verify signature O(1) 355

TABLE II: Communication complexity and transaction size.

OpenSSL as the arithmetic backend. We have released the code
as an open-source project on GitHub.3.

Table I shows the mean (µ) and standard deviation (
�

�2) of
the execution of each procedure described in section section II.
Each entry is the result of 10,000 measured on an Octa-core
Dell desktop computer, 3.6GHz Intel Xeon. This table shows
that signing is much faster than verifying signatures (about
15 times faster for the scheme working on clear messages,
and 3 time faster for the scheme on hidden messages). Also,
aggregation of keys and signatures are extremely efficient.

Table II shows the communication complexity and the
size of each exchange involved in the signature scheme, as
presented in fig. 1. The complexity is expressed as the number
of signing authorities (n), and ||m|| represents the size of the
message on which the user wish to obtain a signature. Note
that in practice m is the hash of the actual message, and is
therefore set to 32 bytes (for SHA-2). The size of a signature is
132 bytes. The highest transaction size appears when the user
ask a signature on a hidden message. This comes from the fact
that the proof �s associated with the message is approximately
318 bytes; the proof �v is only 157 bytes.

Alberto: Update the above

3https://github.com/asonnino/coconut

Figure 5: Overview of the Malet petition architecture
Bano: Redo this figure as per Bano’s notes, and then
refer to the steps in write-up.

to itself, and use these token to steal all the money
in the buffer. The threshold property of Malet im-
plies that the adversary needs to corrupt at least t
authorities for this attack to happen. This property
also prevents a single authority from taking the user
money and disappear without issuing any token.

 À Ã Õ Œ œ – — �

4.3 Privacy-preserving e-petition and e-
voting

Bano: Clearly name all the entities involved in this use
case. What properties are expected from this scheme?

In this example, we consider the scenario where a
city C wish to issue some long term credentials to their
citizens in order to allow any third party to organize a
privacy-preserving e-petition or e-voting campaign; all
citizens of C are allowed to participate, and should re-
main anonymous, and unlinkable across campaigns. This
system is based on the Malet library contract and a sim-
ple smart contract called petition.

Similarly to the previous example, a set of authorities
in charge of C runs the Create function of the Malet
library. The parameters n, t are set accordingly, and re f
points to a custom function requiring the users to prove
in some ways that they are a citizens of C. The authori-
ties set q = 1 Bano: what is q, and are expecting to issue
a blind and long-term signature on the citizen’s private
key k; this signature acts as the citizen credentials to sign
any e-petition and e-voting Bano: state if this may in-
volve checking some other information e.g. passport off-
band, but then how will blindness be maintained?. Suc-
cessively, any third party creates an instance of the pe-
tition contract as shown in fig. 5. The UUID parameter
uniquely identifies the petition, and the scores parameter
Bano: is this private (can everyone see current scores)?
how are votes with non-binary (yes/no) options repre-
sented? holds the citizen’s votes (initialized to zero). In
the case of a petition the options are only YES and NO;

and the fields owner and vk respectively hold the verifi-
cation key of the third party creating the petition and the
verification key of the authorities issuing the credentials.
In order to sign a petition, the users compute a value n as
follows:

n =
�

gk
1

�UUID

Then, they construct a zero-knowledge proof showing
that n is build from the same value k of their credentials:

p = PK{(k) : n =
�

gk
1

�UUID
^ k = ab k}

The petition smart contract checks the proof p and the
credentials, and checks that the vote is fresh by verifying
that n is not part of a spent list L; if all the checks pass, it
adds the votes of the users to the list of scores and adds
nu to the list L. Adding n to L prevents a citizen to vote
twice during the same campaign (prevent double spend-
ing). Also, the proof p ensures that n has been built from
a signed private key k; this means that the users correctly
executed the callback to prove that they are citizens of C.

Properties brought by Malet. Malet provides a set of
properties that enable the above application when com-
bines.

• Blindness: prevents the authorities from learning
the citizen’s secret key and use it to sign petition
on their behave. Also, it allows the users to vote
anonymously.

• Unlinkability: prevents a party to link citizens’
vote across campaigns. Joining unlinkability with
blindness allows a system where citizens have to go
through the issuance phase only once, and can then
re-use their credentials multiple time while staying
anonymous.

• Threshold: distributing the credentials issuance re-
moves a central authority and prevent a single au-
thority from creating arbitrary credentials to sign
multiple time a petition.

4.4 Censorship-resistant distribution of
proxies

We implement a censorship-resistant system based on
Malet. Proxies are often used to circumvent censorship
when the target IP address has been blocked, but prox-
ies suffer from three limitations. First, proxies tend to
become the target of censorship themselves. For exam-
ple a number of countries block Tor by blacklisting Tor
entry nodes that are publicly known. Second, a censor
can distribute proxies that it controls and pollute the sys-
tem. Third, a censor can pretend to be a user of the

10

create petition happens every
campaign

happens
only once

Figure 5: The petition application.

5.2 Privacy-preserving petition
This application extends the work of Diaz et al. [19]. We
consider the scenario where a city C wishes to issue some
long term credentials to its citizens to enable any third
party to organize a privacy-preserving petition. All cit-
izens of C are allowed to participate, but should remain
anonymous and unlinkable across petitions. This appli-
cation is based on the Coconut library contract and a sim-
ple smart contract called “petition”. There are three types
of parties: a set of signing authorities representing C, a
peition initiator, and the citizens of C. The signing au-
thorities create an instance of the Coconut smart contract
as described in Section 4.1. As shown in Figure 5, the
citizen provides a proof of identity to the authorities ().
The authorities check the citizen’s identity, and issue a
blind and long-term signature on her private key k. This
signature, which the citizen needs to obtain only once,
acts as her long term credential to sign any petition peti-
tion (À).

Any third party can create a petition by creating a new
instance of the petition contract and become the “owner”
of the petition. The petition instance specifies an iden-
tifier s unique to the petition, and the verification key of
the authorities issuing the credentials, as well as any ap-
plication specific parameters (e.g., the options and cur-
rent votes) (Ã). In order to sign a petition, the citizens
compute a value z as follows:

z = (H(s))k

Then they adapt the zero-knowledge proof of the Show-
BlindSign algorithm of Section 3.3 to show that z is
built from the same attribute k in the credential; the peti-
tion contract checks the proof p and the credentials, and
checks that the signature is fresh by verifying that z is
not part of a spent list. If all the checks pass, it adds the
citizens’ signatures to a list of records and adds z to the
spent list to prevents a citizen from signing the same peti-
tion multiple times (prevent double spending) (Õ). Also,

9

2

• What is out there?

Performance

50

The Coconut
cryptographic library

Python & Timing
benchmark &

Smart contract library

https://github.com/asonnino/coconut

Everything is released as open source softwareApplications

Coin tumbler
E-Petition
(CRD proxy distribution)

2

• What is out there?

Performance

51

The Coconut
cryptographic library

Python & Timing
benchmark &

Smart contract library

https://github.com/asonnino/coconut

Everything is released as open source softwareApplications

Coin tumbler
E-Petition
(CRD proxy distribution)

2

• What is out there?

Performance

52

The Coconut
cryptographic library

Python & Timing
benchmark &

Smart contract library

https://github.com/asonnino/coconut

Everything is released as open source softwareApplications

Coin tumbler
E-Petition
(CRD proxy distribution)

2

• What is out there?

Performance

53

The Coconut
cryptographic library

Python & Timing
benchmark &

Smart contract library

https://github.com/asonnino/coconut

Everything is released as open source softwareApplications

Coin tumbler
E-Petition
(CRD proxy distribution)

2

• What is out there?

Performance

54

The Coconut
cryptographic library

Python & Timing
benchmark &

Smart contract library

https://github.com/asonnino/coconut

Everything is released as open source softwareApplications

Coin tumbler
E-Petition
(CRD proxy distribution)

2

• How fast is Coconut?

Performance

55

signing is fast, verifying takes 10ms

verify

sign

Operation µ [ms]
p

�2 [ms]
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
Unblind 0.445 ± 0.002
AggCred 0.454 ± 0.000
ProveCred 1.544 ± 0.001
VerifyCred 10.497 ± 0.002

TABLE I: Execution times for the cryptographic primitives described in
Section III, measured for one private attribute over 10,000 runs. AggCred is
computed assuming two authorities; the other primitives are independent of
the number of authorities.

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]
Signature on one public attribute:
 request credential O(n) 32
À issue credential O(n) 132
Ã verify credential O(1) 162

Signature on one private attribute:
 request credential O(n) 516
À issue credential O(n) 132
Ã verify credential O(1) 355

TABLE II: Communication complexity and transaction size for the Coconut
credentials scheme when signing one public and one private attribute (see
Figure 2 of Section III).

output of the SHA-2 hash function. The size of a credential
is 132 bytes. The highest transaction sizes are to request and
verify credentials embedding a private attribute; this is due
to the proofs ⇡s and ⇡v (see Section III). The proof ⇡s is
approximately 318 bytes and ⇡v is 157 bytes.

c) Client-perceived latency: We evaluate the client-
perceived latency for the Coconut threshold credentials scheme
for authorities deployed on Amazon AWS [4] when issuing
partial credentials on one public and one private attribute. The
client requests a partial credential from 10 authorities, and
latency is defined as the time it waits to receive t-out-of-10
partial signatures. Figure 7 presents measured latency for a
threshold parameter t ranging from 1–10. The dots correspond
to the average latency and the error-bars represent the normal-
ized standard deviation, computed over 100 runs. The client is
located in London while the 10 authorities are geographically
distributed across the world; US East (Ohio), US West (N.
California), Asia Pacific (Mumbai), Asia Pacific (Singapore),
Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central),
EU (Frankfürt), EU (London), and South America (São Paulo).
All machines are running a fresh 64-bit Ubuntu distribution,
the client runs on a large AWS instance and the authorities
run on nano instances.

As expected, we observe that the further the authorities are
from the client, the higher the latency due to higher response
times; the first authorities to respond are always those situated
in Europe, while Sidney and Tokyo are the latest. Latency
grows linearly, with the exception of a large jump (of about
150 ms) when t increases from 2 to 3—this is due to the
7 remaining authorities being located outside Europe. The
latency overhead between credential requests on public and
private attributes remains constant.

1 2 3 4 5 6 7 8 9 10
Threshold parameter

0

100

200

300

400

500

600

C
lie

nt
 L

at
en

cy
 [m

s]

Public attribute
Private attribute

Fig. 7: Client-perceived latency for Coconut threshold credentials scheme
with geographically distributed authorities, measured for one attribute over
100 runs.

Coconut smart contract library

Operation µ [ms]
p

�2 [ms] size [kB]

Create [g] 0.195 ± 0.065 ⇠ 1.38
Create [c] 12.099 ± 0.471 -
Request [g] 7.094 ± 0.641 ⇠ 3.77
Request [c] 6.605 ± 0.559 -
Issue [g] 4.382 ± 0.654 ⇠ 3.08
Issue [c] 0.024 ± 0.001 -
Verify [g] 5.545 ± 0.859 ⇠ 1.76
Verify [c] 10.814 ± 1.160 -

TABLE III: Timing and transaction size of the Chainspace implementation
of the Coconut smart contract library described in Section IV-A, measured
for two authorities and one private attributes over 10,000 runs. The notation
[g] denotes the execution the procedure and [c] denotes the execution of the
checker.

B. Chainspace Implementation

We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler (Sec-
tion V-A) and the privacy-preserving e-petition (Section V-B)
applications that use this library. As expected, Table III shows
that the most time consuming procedures are the checker of
Create and the checker of Verify; i.e., they call the VerifyCred
primitives which takes about 10 ms (see Table I). Table III
is computed assuming two authorities; the transaction size
of Issue increases by about 132 bytes (i.e., the size of
the credentials) for each extra authority12 while the other
transactions are independent of the number of authorities.

Similarly, the most time consuming procedure of the coin
tumbler (Table IV) application and of the privacy-preserving
e-petition (Table V) are the checker of InitTumbler and the
checker of SignPetition, respectively; these two checkers call
the BlindVerify primitive involving pairing checks. The Pay
procedure of the coin tumbler presents the highest transaction
size as it is composed of two distinct transactions: a coin trans-
fer transaction and a Request transaction from the Coconut

12The Request and Issue procedures are only needed in the case of on-
chain issuance (see Section IV-A).

10

2

Performance

56

• What is the size of the credentials?

No matter how many attributes…

2 Group Elements

No matter how many authorities…

2

• How does Coconut scale?

Performance

57

Signing scales linearly, verifying is constant time

Operation µ [ms]
p

s2 [ms]
Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

Table 1: Execution times for the cryptographic primitives described
in Section 3. Measured over 10,000 runs.

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]
Signature on public attribute:
 request credential O(n) 32
À issue credential O(n) 132
Ã verify credential O(1) 162

Signature on private attribute:
 request credential O(n) 516
À issue credential O(n) 132
Ã verify credential O(1) 355

Table 2: Communication complexity and transaction size for the Co-
conut credentials scheme when signing one public and one private at-
tribute (see Figure 2 of Section 3).

desktop computer, 3.6GHz Intel Xeon. Signing is much
faster than verifying signatures—due to the pairing oper-
ation in the latter; verification takes about 10ms; signing
a public attribute is 15 times faster; and signing a private
attribute is about 3 times faster.

Communication complexity and packets size. Ta-
ble 2 shows the communication complexity and the size
of each exchange involved in the Coconut credentials
scheme, as presented in Figure 2. The communication
complexity is expressed as a function of the number of
signing authorities (n), and the size of each attribute is
limited to 32 bytes as the output of the SHA-2 hash func-
tion. The size of a signature is 132 bytes. The highest
transaction type is a requests for a signature on a private
attribute; this is due to the proofs ps and pv (see Sec-
tion 3). The proof ps is approximately 318 bytes and pv
is 157 bytes.

Client-perceived latency. We evaluate the client-
perceived latency for Coconut threshold credentials
scheme for authorities deployed on Amazon AWS [4]
when issuing partial credentials on one public and one

1 2 3 4 5 6 7 8 9 10
Threshold parameter

0

100

200

300

400

500

600

C
lie

nt
 L

at
en

cy
 [m

s]

Public attribute
Private attribute

Figure 7: Client-perceived latency for Coconut threshold credentials
scheme with geographically distributed authorities.

private attribute. The client requests a partial credential
from 10 authorities, and latency is defined as the time
it waits to receive t-out-of-10 partial signatures. Fig-
ure 7 presents measured latency for a threshold param-
eter t ranging from 1–10. The dots correspond to the av-
erage latency and the error-bars represent the normalized
standard deviation, computed over 100 runs. The client
is located in London while the 10 authorities are geo-
graphically distributed across the world; US East (Ohio),
US West (N. California), Asia Pacific (Mumbai), Asia
Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Tokyo), Canada (Central), EU (Frankfürt), EU (Lon-
don), and South America (São Paulo). All machines are
running a fresh 64-bit Ubuntu distribution, the client runs
on a large AWS instance and the authorities run on nano
instances.

As expected, we observe that the further the author-
ities are from the client, the higher the latency due to
higher response times; the first authorities to respond are
always those situated in Europe, while Sidney and Tokyo
are the latest. Latency grows linearly, with the excep-
tion of a large jump (of about 150 ms) when t increases
from 2 to 3—this is due to the 7 remaining authorities
being located outside Europe. The latency overhead be-
tween credential requests on public and private attributes
remains constant.

6.2 Chainspace Implementation
We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler
(Section 5.1) and the privacy-preserving e-petition (Sec-
tion 5.2) applications that use this library. As expected,
Table 3 shows that the most time consuming procedures
are the checker of Create and the checker of Verify; i.e.,
they call the BlindVerify primitives which takes about 10

11

issue

verify

2

• Did you evaluate it in the real world?

Performance

58

pick 10 locations across the world

server
client

2

• Did you evaluate it in the real world?

Performance

59

client latency VS number of authorities

Operation µ [ms]
p

s2 [ms]
Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

Table 1: Execution times for the cryptographic primitives described
in Section 3. Measured over 10,000 runs.

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]
Signature on public attribute:
 request credential O(n) 32
À issue credential O(n) 132
Ã verify credential O(1) 162

Signature on private attribute:
 request credential O(n) 516
À issue credential O(n) 132
Ã verify credential O(1) 355

Table 2: Communication complexity and transaction size for the Co-
conut credentials scheme when signing one public and one private at-
tribute (see Figure 2 of Section 3).

desktop computer, 3.6GHz Intel Xeon. Signing is much
faster than verifying signatures—due to the pairing oper-
ation in the latter; verification takes about 10ms; signing
a public attribute is 15 times faster; and signing a private
attribute is about 3 times faster.

Communication complexity and packets size. Ta-
ble 2 shows the communication complexity and the size
of each exchange involved in the Coconut credentials
scheme, as presented in Figure 2. The communication
complexity is expressed as a function of the number of
signing authorities (n), and the size of each attribute is
limited to 32 bytes as the output of the SHA-2 hash func-
tion. The size of a signature is 132 bytes. The highest
transaction type is a requests for a signature on a private
attribute; this is due to the proofs ps and pv (see Sec-
tion 3). The proof ps is approximately 318 bytes and pv
is 157 bytes.

Client-perceived latency. We evaluate the client-
perceived latency for Coconut threshold credentials
scheme for authorities deployed on Amazon AWS [4]
when issuing partial credentials on one public and one

1 2 3 4 5 6 7 8 9 10
Threshold parameter

0

100

200

300

400

500

600
C

lie
nt

 L
at

en
cy

 [m
s]

Public attribute
Private attribute

Figure 7: Client-perceived latency for Coconut threshold credentials
scheme with geographically distributed authorities.

private attribute. The client requests a partial credential
from 10 authorities, and latency is defined as the time
it waits to receive t-out-of-10 partial signatures. Fig-
ure 7 presents measured latency for a threshold param-
eter t ranging from 1–10. The dots correspond to the av-
erage latency and the error-bars represent the normalized
standard deviation, computed over 100 runs. The client
is located in London while the 10 authorities are geo-
graphically distributed across the world; US East (Ohio),
US West (N. California), Asia Pacific (Mumbai), Asia
Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Tokyo), Canada (Central), EU (Frankfürt), EU (Lon-
don), and South America (São Paulo). All machines are
running a fresh 64-bit Ubuntu distribution, the client runs
on a large AWS instance and the authorities run on nano
instances.

As expected, we observe that the further the author-
ities are from the client, the higher the latency due to
higher response times; the first authorities to respond are
always those situated in Europe, while Sidney and Tokyo
are the latest. Latency grows linearly, with the excep-
tion of a large jump (of about 150 ms) when t increases
from 2 to 3—this is due to the 7 remaining authorities
being located outside Europe. The latency overhead be-
tween credential requests on public and private attributes
remains constant.

6.2 Chainspace Implementation
We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler
(Section 5.1) and the privacy-preserving e-petition (Sec-
tion 5.2) applications that use this library. As expected,
Table 3 shows that the most time consuming procedures
are the checker of Create and the checker of Verify; i.e.,
they call the BlindVerify primitives which takes about 10

11

2

• Did you evaluate it in the real world?

Performance

60

client latency VS number of authorities

Operation µ [ms]
p

s2 [ms]
Keygen 2.392 ± 0.006
Sign 0.445 ± 0.001
AggregateSign 0.004 ± 0.000
AggregateKeys 0.017 ± 0.000
Randomize 0.545 ± 0.002
Verify 6.714 ± 0.005
PrepareBlindSign 2.633 ± 0.003
BlindSign 3.356 ± 0.002
ShowBlindSign 1.388 ± 0.001
BlindVerify 10.497 ± 0.002
AggregateThSign 0.454 ± 0.000

Table 1: Execution times for the cryptographic primitives described
in Section 3. Measured over 10,000 runs.

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]
Signature on public attribute:
 request credential O(n) 32
À issue credential O(n) 132
Ã verify credential O(1) 162

Signature on private attribute:
 request credential O(n) 516
À issue credential O(n) 132
Ã verify credential O(1) 355

Table 2: Communication complexity and transaction size for the Co-
conut credentials scheme when signing one public and one private at-
tribute (see Figure 2 of Section 3).

desktop computer, 3.6GHz Intel Xeon. Signing is much
faster than verifying signatures—due to the pairing oper-
ation in the latter; verification takes about 10ms; signing
a public attribute is 15 times faster; and signing a private
attribute is about 3 times faster.

Communication complexity and packets size. Ta-
ble 2 shows the communication complexity and the size
of each exchange involved in the Coconut credentials
scheme, as presented in Figure 2. The communication
complexity is expressed as a function of the number of
signing authorities (n), and the size of each attribute is
limited to 32 bytes as the output of the SHA-2 hash func-
tion. The size of a signature is 132 bytes. The highest
transaction type is a requests for a signature on a private
attribute; this is due to the proofs ps and pv (see Sec-
tion 3). The proof ps is approximately 318 bytes and pv
is 157 bytes.

Client-perceived latency. We evaluate the client-
perceived latency for Coconut threshold credentials
scheme for authorities deployed on Amazon AWS [4]
when issuing partial credentials on one public and one

1 2 3 4 5 6 7 8 9 10
Threshold parameter

0

100

200

300

400

500

600
C

lie
nt

 L
at

en
cy

 [m
s]

Public attribute
Private attribute

Figure 7: Client-perceived latency for Coconut threshold credentials
scheme with geographically distributed authorities.

private attribute. The client requests a partial credential
from 10 authorities, and latency is defined as the time
it waits to receive t-out-of-10 partial signatures. Fig-
ure 7 presents measured latency for a threshold param-
eter t ranging from 1–10. The dots correspond to the av-
erage latency and the error-bars represent the normalized
standard deviation, computed over 100 runs. The client
is located in London while the 10 authorities are geo-
graphically distributed across the world; US East (Ohio),
US West (N. California), Asia Pacific (Mumbai), Asia
Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Tokyo), Canada (Central), EU (Frankfürt), EU (Lon-
don), and South America (São Paulo). All machines are
running a fresh 64-bit Ubuntu distribution, the client runs
on a large AWS instance and the authorities run on nano
instances.

As expected, we observe that the further the author-
ities are from the client, the higher the latency due to
higher response times; the first authorities to respond are
always those situated in Europe, while Sidney and Tokyo
are the latest. Latency grows linearly, with the excep-
tion of a large jump (of about 150 ms) when t increases
from 2 to 3—this is due to the 7 remaining authorities
being located outside Europe. The latency overhead be-
tween credential requests on public and private attributes
remains constant.

6.2 Chainspace Implementation
We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler
(Section 5.1) and the privacy-preserving e-petition (Sec-
tion 5.2) applications that use this library. As expected,
Table 3 shows that the most time consuming procedures
are the checker of Create and the checker of Verify; i.e.,
they call the BlindVerify primitives which takes about 10

11

Europe
(close to client)

Tokyo & Sidney

2

What else is in the paper?

61

Full cryptographic
scheme

Smart contract
library evaluation

Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers

Alberto Sonnino
University College London

Mustafa Al-Bassam
University College London

Shehar Bano
University College London

George Danezis
University College London
The Alan Turing Institute

Abstract
We present Coconut, a novel selective disclosure cre-
dential scheme supporting distributed threshold issuance,
public and private attributes, re-randomization, and mul-
tiple unlinkable selective attribute revelations. Coconut
can be used by modern blockchains to ensure confiden-
tiality, authenticity and availability even when a subset of
credential issuing authorities are malicious or offline. We
implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three
applications related to anonymous payments, electronic
petitions, and distribution of proxies for censorship resis-
tance. Coconut uses short and computationally efficient
credentials, and our evaluation shows that most Coconut
cryptographic primitives take just a few milliseconds on
average, with verification taking the longest time (10 mil-
liseconds).

1 Introduction

Selective disclosure credentials [15, 17] allow the is-
suance of a credential to a user, and the subsequent
unlinkable revelation (or ‘showing’) of some of the at-
tributes it encodes to a verifier for the purposes of au-
thentication, authorization or to implement electronic
cash. However, established schemes have shortcomings.
Some entrust a single issuer with the credential signa-
ture key, allowing a malicious issuer to forge any cre-
dential or electronic coin. Other schemes do not provide
the necessary re-randomization or blind issuing proper-
ties necessary to implement modern selective disclosure
credentials. No existing scheme provides all of threshold
distributed issuance, private attributes, re-randomization,
and unlinkable multi-show selective disclosure.

The lack of full-featured selective disclosure cre-
dentials impacts platforms that support ‘smart con-
tracts’, such as Ethereum [40], Hyperledger [14] and
Chainspace [3]. They all share the limitation that ver-

ifiable smart contracts may only perform operations
recorded on a public blockchain. Moreover, the secu-
rity models of these systems generally assume that in-
tegrity should hold in the presence of a threshold number
of dishonest or faulty nodes (Byzantine fault tolerance);
it is desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability).

Issuing credentials through smart contracts would be
very desirable: a smart contract could conditionally issue
user credentials depending on the state of the blockchain,
or attest some claim about a user operating through the
contract—such as their identity, attributes, or even the
balance of their wallet. This is not possible, with cur-
rent selective credential schemes that would either en-
trust a single party as an issuer, or would not provide
appropriate re-randomization, blind issuance and selec-
tive disclosure capabilities (as in the case of threshold
signatures [5]). For example, the Hyperledger system
supports CL credentials [15] through a trusted third party
issuer, illustrating their usefulness, but also their fragility
against the issuer becoming malicious.

Coconut addresses this challenge, and allows a subset
of decentralized mutually distrustful authorities to jointly
issue credentials, on public or private attributes. Those
credentials cannot be forged by users, or any small subset
of potentially corrupt authorities. Credentials can be re-
randomized before selected attributes being shown to a
verifier, protecting privacy even in the case all authorities
and verifiers collude. The Coconut scheme is based on a
threshold issuance signature scheme, that allows partial
claims to be aggregated into a single credential. Mapped
to the context of permissioned and semi-permissioned
blockchains, Coconut allows collections of authorities in
charge of maintaining a blockchain, or a side chain [5]
based on a federated peg, to jointly issue selective dis-
closure credentials.

Coconut uses short and computationally efficient cre-
dentials, and efficient revelation of selected attributes and
verification protocols. Each partial credentials and the

ar
X

iv
:su

bm
it/

21
58

64
4

 [c
s.C

R]
 2

0
Fe

b
20

18

Applications
evaluation and
benchmarking

Coin tumbler, CRD
proxy applications

2

Limitations & Future Works

62

• Would you like to contribute?

Limitation I

Limitation II

Adding and removing authorities is complicated.
Can we do better than re-running the key generation algorithm?

Current key generation algorithms are complex to implement.
Can we design a key generation algorithm for blockchains?

2

Limitations & Future Works

63

• Would you like to contribute?

Limitation I

Limitation II

Adding and removing authorities is complicated.
Can we do better than re-running the key generation algorithm?

Current key generation algorithms are complex to implement.
Can we design a key generation algorithm for blockchains?

2

Limitations & Future Works

64

• What is the next milestone?

A general framework allowing nodes to execute any kind of
threshold cryptography?

2

Conclusion

65

• What did we talk about?

Coconut credentials scheme

Coconut smart contract library &
example of applications

Contribution I

Contribution II

2

Conclusion

66

• Main take-aways

Threshold
issuance

Sweet for
blockchains

Randomizable Multi-use &
unlinkability

2

Alberto Sonnino
alberto.sonnino@ucl.ac.uk

https://sonnino.com

Thank you for your attention
Questions?

This work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and The Alan Turing Institute.

https://github.com/asonnino/coconut

2

The ugly

2

• Issue credentials

How coconuts are made

69

take an attribute:

compute:

credential:

Lagrange polynomial:

compute:

• Aggregate credentials

and

and secret key

= =

li =

0

@
tY

i=1,j 6=i

(0 � j)

1

A

0

@
tY

i=1,j 6=i

(i � j)

1

A
�1

mod p

<latexit sha1_base64="xLiG8rM9CUWhPERNM9Bx3j6IXwo=">AAADoXichVLbbtNAEN3YXEq4NIU3kNCKqJKjppXNAyChSkXwUB5AAdGLFCfWZr2Jt931mt01qmVZ4q/4D974Bn6CcRKV1KlgJNvH55yZ3RnNJBPcWN//1XLcGzdv3d6407577/6Dzc7Ww2Ojck3ZEVVC6dMJMUzwlB1ZbgU7zTQjciLYyeT8ba2ffGPacJV+sUXGRpLMUj7llFigoq3Wj+1wokRsCgmfUlbtK/80kngfz6JgLHECb9XQE1APPXD1GkJo+EySiIPuJX2cjMuLiO8UQIQ0VhbLqpnhgaGPwQHCKi/mRULBptbDYaZVHJV8P+jjMxym7Cvm1dhiz9896+FQ81lie//z8hXvuNwNKhxadmFLqWKAr3HW7OWy0Dz9ul7G9TWrf+ZBWt0iFnWH61KxlC5rNicNp+4Uf9Wo0/X3/HngdRAsQffgzePf3xFCg6jzM4wVzSVLLRXEmGHgZ3ZUEm05FQxmnhuWEXpOZmwIMCWSmVE537AKbwMT46nS8KQWz9nVjJJIU18UnJLYxDS1mrxOG+Z2+mpU8jTLLUvp4qBpLrBVuF5XHHPNqBUFAEI1h7timhBNqIWlbsMQgmbL6+D4+V4A+BNM4wVaxAZ6gp4hDwXoJTpAh2iAjhB1njrvnA/OR7frvncH7ueF1Wktcx6hK+EO/wBf2ijR</latexit><latexit sha1_base64="5eUz9TI3UGia+M2CO6voDlj/d5w=">AAADoXichVLbbtNAEN3YXEq4NIU3kNCKqJKjppXNQ4uEKhXBQ3kABUTaSnFibdabeNNdr/GuUS3LEn/Ff/DGN8AX8MQ4iUrqVDCS7eNzzszujGacCK6N6/5oWPaNm7dub9xp3r13/8Fma+vhiVZZSlmfKqHSszHRTPCY9Q03gp0lKSNyLNjp+Px1pZ9+YanmKv5k8oQNJZnGfMIpMUAFW41v2/5YiVDnEj6FLJtX/mkg8SGeBt5I4gjeqqZHoB474OrUBF/zqSQBB92JujgaFRcB38mB8GmoDJZlPcMBQxeDA4RVXsyL+IJNjIP9JFVhUPBDr4tn2I/ZZ8zLkcGOuzvrYD/l08h0/uflK95RseuV2DfswhRShQBf4qTey2Whefp1vYyqa5b/zIO0qkUsqg7XpXwpXdasTxpO3cn/qkGr7e6588DrwFuC9tGrxz+//vo96wWt736oaCZZbKggWg88NzHDgqSGU8Fg5plmCaHnZMoGAGMimR4W8w0r8TYwIZ6oFJ7Y4Dm7mlEQqauLglMSE+m6VpHXaYPMTF4MCx4nmWExXRw0yQQ2ClfrikOeMmpEDoDQlMNdMY1ISqiBpW7CELx6y+vg5PmeB/gDTGMfLWIDPUHPkIM8dICO0DHqoT6i1lPrjfXOem+37bd2z/64sFqNZc4jdCXswR93aSsh</latexit><latexit sha1_base64="5eUz9TI3UGia+M2CO6voDlj/d5w=">AAADoXichVLbbtNAEN3YXEq4NIU3kNCKqJKjppXNQ4uEKhXBQ3kABUTaSnFibdabeNNdr/GuUS3LEn/Ff/DGN8AX8MQ4iUrqVDCS7eNzzszujGacCK6N6/5oWPaNm7dub9xp3r13/8Fma+vhiVZZSlmfKqHSszHRTPCY9Q03gp0lKSNyLNjp+Px1pZ9+YanmKv5k8oQNJZnGfMIpMUAFW41v2/5YiVDnEj6FLJtX/mkg8SGeBt5I4gjeqqZHoB474OrUBF/zqSQBB92JujgaFRcB38mB8GmoDJZlPcMBQxeDA4RVXsyL+IJNjIP9JFVhUPBDr4tn2I/ZZ8zLkcGOuzvrYD/l08h0/uflK95RseuV2DfswhRShQBf4qTey2Whefp1vYyqa5b/zIO0qkUsqg7XpXwpXdasTxpO3cn/qkGr7e6588DrwFuC9tGrxz+//vo96wWt736oaCZZbKggWg88NzHDgqSGU8Fg5plmCaHnZMoGAGMimR4W8w0r8TYwIZ6oFJ7Y4Dm7mlEQqauLglMSE+m6VpHXaYPMTF4MCx4nmWExXRw0yQQ2ClfrikOeMmpEDoDQlMNdMY1ISqiBpW7CELx6y+vg5PmeB/gDTGMfLWIDPUHPkIM8dICO0DHqoT6i1lPrjfXOem+37bd2z/64sFqNZc4jdCXswR93aSsh</latexit><latexit sha1_base64="elBsIDTeN9UWYDYU++mQS1kwlLY=">AAADoXichVLbbtNAEN3EXEq4NIVHJDQiquSoaWXzAEioUiV4KA+ggEhbKU6szXoTb7vrNd41qmX5u/gP3vgbxmlUUqeCkWwfn3Nmdmc0s1QKYz3vd6vt3Ll77/7Wg87DR4+fbHd3np4YnWeMj5iWOjubUcOlSPjICiv5WZpxqmaSn84u3tf66Q+eGaGTb7ZI+UTRRSLmglGLVLjT+rkbzLSMTKHwU6qqc+OfhQoOYRH6UwUxvnVDj1E9dtHVbwiBEQtFQ4G6Gw8gnpaXodgrkAhYpC2oqpnhomEA6EBhnZfLIoHkc+tCkGY6Cktx6A/gHIKEfwdRTS243v55H4JMLGLb/59XrHmn5b5fQWD5pS2VjhC+g7TZy3WhZfptvUzra1b/zMO0ukWQdYebUrGSrms2J42n7hV/1bDb8w68ZcAm8FegR1YxDLu/gkizXPHEMkmNGfteaiclzaxgkuPMc8NTyi7ogo8RJlRxMymXG1bBLjIRzHWGT2Jhya5nlFSZ+qLoVNTGpqnV5G3aOLfzt5NSJGluecKuDprnEqyGel0hEhlnVhYIKMsE3hVYTDPKLC51B4fgN1veBCevDnzEX7ze0evVOLbIc/KSuMQnb8gROSZDMiKs/aL9of2p/dnpOR+dofP1ytpurXKekRvhjP8ApLsmyw==</latexit>

m
<latexit sha1_base64="GR64lzioVNBJiP18xZY1s5D5At0=">AAADoXichVJNb9NAEN3YfJTwlcIRCY2IKjlqWtkcAAlVVIJDOYACIm2lOLE260287a7X7K5RLcu/iwsHfgM3fgh31klUglPBSLaf5703O7OaacaZNr7/s+W4167fuLl1q337zt179zvbD461zBWhQyK5VKdTrClnKR0aZjg9zRTFYsrpyfT8dc2ffKFKM5l+MkVGxwLPUzZjBBubirZbX8Op5LEuhP2UomrvrP+TSMABzKNgIiCxb9ngE8seeVbVaxChZnOBI2Z5L+lDMikvIrZb2ERIYmlAVE2HZwV9sIomwRdVQk5nxoMwUzKOSnYQ9OEMwpR+BlZNDHj+3lkPQsXmien9T8vWtJNyL6ggNPTClELGFr6ErDnMZaGF/aphJnWb1T991lbPCLwecZMqVtRlzeZV21N3iz9s1On6+/4iYBMEK9B99c379R0hNIg6P8JYklzQ1BCOtR4FfmbGJVaGEU6rdphrmmFyjud0ZGGKBdXjcrFhFezYTAwzqeyTGlhk1x0lFrpu1CoFNolucnXyKm6Um9mLccnSLDc0JcuDZjkHI6FeV4iZosTwwgJMFLO9AkmwwsTYpW7bSwiaI2+C46f7gcUf/O7hM7SMLfQIPUEeCtBzdIiO0AANEXEeO2+cd857t+u+dQfux6XUaa08D9Ff4Y5+A5pJKaM=</latexit><latexit sha1_base64="0WkKPB8HPp2fyvlhcV2j6CmstSc=">AAADoXichVLLbtNAFJ3YPEp4NIUlEroiquSoD9ksAAlVVIJFWYACIm2lOLEm40k87YzHzIxRLcvfwOewYcUnsOND2DNOohKcCq5k+/iec+7cO7qTjDNtfP9ny3GvXb9xc+NW+/adu/c2O1v3j7XMFaEDIrlUpxOsKWcpHRhmOD3NFMViwunJ5PxVzZ98pkozmX40RUZHAs9SNmUEG5uKtlpfw4nksS6E/ZSiam+v/pNIwAHMomAsILFv2eATyx55VtVrEKFmM4EjZnkv2YVkXF5EbKewiZDE0oComg7PCnbBKpoEn1cJOZ0aD8JMyTgq2UGwC2cQpvQTsGpswPP3znoQKjZLTO9/WraiHZd7QQWhoRemFDK28AVkzWEuC83tVw0zrtus/umztnpG4PWI61SxpC5rNq/anrpT/GGjTtff9+cB6yBYgu7Lb96v71/CXj/q/AhjSXJBU0M41noY+JkZlVgZRjit2mGuaYbJOZ7RoYUpFlSPyvmGVbBtMzFMpbJPamCeXXWUWOi6UasU2CS6ydXJq7hhbqbPRyVLs9zQlCwOmuYcjIR6XSFmihLDCwswUcz2CiTBChNjl7ptLyFojrwOjp/sBxa/97uHT9EiNtBD9Bh5KEDP0CE6Qn00QMR55Lx23jrv3K77xu27HxZSp7X0PEB/hTv8DQ41Krk=</latexit><latexit sha1_base64="0WkKPB8HPp2fyvlhcV2j6CmstSc=">AAADoXichVLLbtNAFJ3YPEp4NIUlEroiquSoD9ksAAlVVIJFWYACIm2lOLEm40k87YzHzIxRLcvfwOewYcUnsOND2DNOohKcCq5k+/iec+7cO7qTjDNtfP9ny3GvXb9xc+NW+/adu/c2O1v3j7XMFaEDIrlUpxOsKWcpHRhmOD3NFMViwunJ5PxVzZ98pkozmX40RUZHAs9SNmUEG5uKtlpfw4nksS6E/ZSiam+v/pNIwAHMomAsILFv2eATyx55VtVrEKFmM4EjZnkv2YVkXF5EbKewiZDE0oComg7PCnbBKpoEn1cJOZ0aD8JMyTgq2UGwC2cQpvQTsGpswPP3znoQKjZLTO9/WraiHZd7QQWhoRemFDK28AVkzWEuC83tVw0zrtus/umztnpG4PWI61SxpC5rNq/anrpT/GGjTtff9+cB6yBYgu7Lb96v71/CXj/q/AhjSXJBU0M41noY+JkZlVgZRjit2mGuaYbJOZ7RoYUpFlSPyvmGVbBtMzFMpbJPamCeXXWUWOi6UasU2CS6ydXJq7hhbqbPRyVLs9zQlCwOmuYcjIR6XSFmihLDCwswUcz2CiTBChNjl7ptLyFojrwOjp/sBxa/97uHT9EiNtBD9Bh5KEDP0CE6Qn00QMR55Lx23jrv3K77xu27HxZSp7X0PEB/hTv8DQ41Krk=</latexit><latexit sha1_base64="4ryeKUD63tlFvrrYSPZtneWrIV4=">AAADoXichVJdb9MwFHUTPkb56uARCV1RTUq1bkp4YEho0iR4GA+ggug2qWkj13Eab3ac2Q5aFOV38T9449/gdNUo6QRXSnJyzznX91p3nnOmje//6jjunbv37m896D589PjJ0972sxMtC0XomEgu1dkca8pZRseGGU7PckWxmHN6Or943/Cn36nSTGbfTJnTqcCLjCWMYGNT0XbnRziXPNalsJ9K1N2d9X8SCTiERRTMBKT2LVt8atljz6oGLSLUbCFwxCzvpUNIZ9VVxHZLmwhJLA2Iuu3wrGAIVtEm+LJKyGliPAhzJeOoYofBEM4hzOglsHpmwPP3zgcQKrZIzeB/WramnVV7QQ2hoVemEjK28B3k7WFuCi3ttw0za9qs/+mztmZG4M2Im1S5om5qtq/anrpb/mGjXt/f95cBmyBYgT5axSjq/QxjSQpBM0M41noS+LmZVlgZRjitu2GhaY7JBV7QiYUZFlRPq+WG1bBjMzEkUtknM7DMrjsqLHTTqFUKbFLd5prkbdykMMnbacWyvDA0I9cHJQUHI6FZV4iZosTw0gJMFLO9AkmxwsTYpe7aSwjaI2+Ck9f7gcVf/P7Rm9V1bKEX6BXyUIAO0BE6RiM0RsR56XxwPjmf3b770R25X6+lTmfleY7+CnfyG8NYJss=</latexit>

cm = gm
1 ho

1
<latexit sha1_base64="XD5qyoKOD0hpCwQRGYXRko5Bw2k=">AAADoXichVLbbtNAEN3YXEq4pSDxgoRGRJUcNa1sHgAJVaoED+UBFBBpK8WJtVlv4m13vWZ3jWpZlvgr/oM3voGfYJ1EJXUqGMn28ZwzszOzM80408b3f7Uc98bNW7e37rTv3rv/4GFn+9GxlrkidEgkl+p0ijXlLKVDwwynp5miWEw5PZmev635k29UaSbTL6bI6FjgecpmjGBjXdF268dOOJU81oWwn1JU7fVfEgk4gHkUTAQk9i2r9hV5Ytkjz6p6DSLUbC5wxCzvJX1IJuVFxHYL6whJLA2IqhnhWUEfrKJJ8EWWkNOZ8SDMlIyjkh0EfTiDMKVfgVUTA56/d9aDULF5Ynr/07I17aTcCyoIDb0wpZCxhW8gazZzmWgRfl0zk7rM6p9xNqzuEXjd4iZVrKjLnM1R21N3i79s1On6+/7CYBMEK9A9fBL8/o4QGkSdn2EsSS5oagjHWo8CPzPjEivDCKf23nNNM0zO8ZyOLEyxoHpcLjasgh3riWEmlX1SAwvvekSJha4LtUqBTaKbXO28jhvlZvZ6XLI0yw1NyfKgWc7BSKjXFWKmKDG8sAATxWytQBKsMDF2qdt2CEGz5U1w/GI/sPiTncZLtLQt9BQ9Rx4K0Ct0iI7QAA0RcZ4575wPzke36753B+7npdRprWIeoyvmjv4AX20ovQ==</latexit><latexit sha1_base64="DuL16rdh/s856f27nvaAwOta06c=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkjViKiSo6aVzQGQUKVKcCgHUKhIWylOrM16HW+76zXeNapl+cgzwXNw4xl4CdZJVFKngpFsf57vm9mZ2ZmmnCntur9aln3r9p27G/fa9x88fLTZ2Xp8omSeETokksvsbIoV5SyhQ800p2dpRrGYcno6vXhb86dfaaaYTD7rIqVjgWcJixjB2riCrdb3HX8qeagKYT6lqNqrvyQQcACzwJsIiM1bVu1r8tiwR45R9RqEr9hM4IAZ3on7EE/Ky4DtFsbhk1BqEFUzwjGCPhhFk+DzLD6nkXbATzMZBiU78PpwDn5CvwCrJhocd++8B37GZrHu/U/LVrSTcs+rwNf0UpdChga+gbTZzFWiefhNzUzqMqt/xpmwukfgdYvrVLGkrnI2R21O3S3+skGn6+67c4N14C1B9/Cp9/vb9o/jQdD56YeS5IImmnCs1MhzUz0ucaYZ4dTce65oiskFntGRgQkWVI3L+YZVsGM8IUQyM0+iYe5djSixUHWhRimwjlWTq503caNcR6/HJUvSXNOELA6Kcg5aQr2uELKMEs0LAzDJmKkVSIwzTLRZ6rYZgtdseR2cvNj3DP5kpvESLWwDPUPPkYM89AodoiM0QENErG3rnfXB+mh37ff2wD5eSK3WMuYJumb26A/xcCnq</latexit><latexit sha1_base64="DuL16rdh/s856f27nvaAwOta06c=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkjViKiSo6aVzQGQUKVKcCgHUKhIWylOrM16HW+76zXeNapl+cgzwXNw4xl4CdZJVFKngpFsf57vm9mZ2ZmmnCntur9aln3r9p27G/fa9x88fLTZ2Xp8omSeETokksvsbIoV5SyhQ800p2dpRrGYcno6vXhb86dfaaaYTD7rIqVjgWcJixjB2riCrdb3HX8qeagKYT6lqNqrvyQQcACzwJsIiM1bVu1r8tiwR45R9RqEr9hM4IAZ3on7EE/Ky4DtFsbhk1BqEFUzwjGCPhhFk+DzLD6nkXbATzMZBiU78PpwDn5CvwCrJhocd++8B37GZrHu/U/LVrSTcs+rwNf0UpdChga+gbTZzFWiefhNzUzqMqt/xpmwukfgdYvrVLGkrnI2R21O3S3+skGn6+67c4N14C1B9/Cp9/vb9o/jQdD56YeS5IImmnCs1MhzUz0ucaYZ4dTce65oiskFntGRgQkWVI3L+YZVsGM8IUQyM0+iYe5djSixUHWhRimwjlWTq503caNcR6/HJUvSXNOELA6Kcg5aQr2uELKMEs0LAzDJmKkVSIwzTLRZ6rYZgtdseR2cvNj3DP5kpvESLWwDPUPPkYM89AodoiM0QENErG3rnfXB+mh37ff2wD5eSK3WMuYJumb26A/xcCnq</latexit><latexit sha1_base64="ZJ0Qq4DbCno68BgACgnScQNaVxE=">AAADoXichVJtb9MwEHYTXkZ5WQcfkdCJalKqdVPCB0BCkybBh/EBVBDdJjVt5Dpu4s2Og+2gRVF+F/+Db/wbnK4aXTrBSUme3PPc+e5885wzbXz/d8dx79y9d3/rQffho8dPtns7T0+0LBShYyK5VGdzrClnGR0bZjg9yxXFYs7p6fzifcOf/qBKM5l9M2VOpwInGVswgo11RTudn7vhXPJYl8J+KlF3139JJOAQkiiYCUjtW9bdG/LUsseeVQ1aRKhZInDELO+lQ0hn1WXE9krrCEksDYi6HeFZwRCsok3wZZaQ04XxIMyVjKOKHQZDOIcwo9+B1TMDnr9/PoBQsSQ1g/9p2Zp2Vu0HNYSGXppKyNjCd5C3m7lOtAy/rZlZU2b9zzgb1vQIvGlxkypX1HXO9qjtqXvlXzbq9f0Df2mwCYIV6KOVjaLerzCWpBA0M4RjrSeBn5tphZVhhFN774WmOSYXOKETCzMsqJ5Wyw2rYdd6YlhIZZ/MwNK7HlFhoZtCrVJgk+o21zhv4yaFWbydVizLC0MzcnXQouBgJDTrCjFTlBheWoCJYrZWIClWmBi71F07hKDd8iY4eXUQWPzF7x+9Xo1jCz1HL5GHAvQGHaFjNEJjRJwXzgfnk/PZ7bsf3ZH79UrqdFYxz9ANcyd/AL+BJss=</latexit>

h = H(cm)
<latexit sha1_base64="PxhWgVd0fBPnEYSymTILcp4x4CI=">AAADoXichVJdb9MwFHUTPkb56kDiBQldUU1KtW5KeAAkNGkSPIwHUEF0m9S0keu4jTc7DraDFkX5K4h/wf/gjX+D01ajSye4UpKTe865vtf2NONMG9//3XLcGzdv3d6607577/6Dh53tR8da5orQIZFcqtMp1pSzlA4NM5yeZopiMeX0ZHr+tuZPvlGlmUy/mCKjY4HnKZsxgo1NRdutnzvhVPJYF8J+SlG1r/yTSMABzKNgIiCxb1m11+nEkkeeFfUavlCzucARs7yX9CGZlBcR2y1sIiSxNCCqpsOzgj5YRZPgiyohpzPjQZgpGUclOwj6cAZhSr8CqyYGPH/vrAehYvPE9P6nZWvaSbkXVBAaemFKIWML30DWHOay0MJ+3TCTus3qnz5rq2cEXo+4SRUr6rJmo1i96m7xl406XX/fXwRsgmAFuodPsu8/EEKDqPMrjCXJBU0N4VjrUeBnZlxiZRjh1J5rrmmGyTme05GFKRZUj8vFDatgx2ZimElln9TAIrvuKLHQdaNWKbBJdJOrk9dxo9zMXo9Llma5oSlZLjTLORgJ9XWFmClKDC8swEQx2yuQBCtMjL3UbbsJQXPkTXD8Yj+w+JPdjZdoGVvoKXqOPBSgV+gQHaEBGiLiPHPeOR+cj27Xfe8O3M9LqdNaeR6jK+GO/gBxYSjP</latexit><latexit sha1_base64="SLdRtiOy1UUUwh+bGMQZfjyNmY0=">AAADoXichVJdb9MwFHUTPkb5WAcSL0joimpSqnVTwgNMQpMmwcN4ABVEt0lNG7mO03iz4xA7aFGU/8ETf4P/wRuCH4PTVqNLJ7hSkpN7zrm+1/Y05Uxp1/3ZsuwbN2/d3rjTvnvv/oPNztbDYyXzjNAhkVxmp1OsKGcJHWqmOT1NM4rFlNOT6fnrmj/5QjPFZPJJFykdCzxLWMQI1iYVbLW+b/tTyUNVCPMpRdW+8k8CAQcwC7yJgNi8ZdVepWNDHjlG1Gv4fMVmAgfM8E7ch3hSXgRspzAJn4RSg6iaDscI+mAUTYLPq/icRtoBP81kGJTswOvDGfgJ/Qysmmhw3N2zHvgZm8W69z8tW9FOyl2vAl/TC10KGRr4CtLmMJeF5vbrhpnUbVb/9BlbPSPwesR1qlhSlzUbxepVd4q/bNDpunvuPGAdeEvQPXycfvv6+9f+IOj88ENJckETTThWauS5qR6XONOMcGrONVc0xeQcz+jIwAQLqsbl/IZVsG0yIUQyM0+iYZ5ddZRYqLpRoxRYx6rJ1cnruFGuo/1xyZI01zQhi4WinIOWUF9XCFlGieaFAZhkzPQKJMYZJtpc6rbZBK858jo4fr7nGfzB7MYLtIgN9AQ9Qw7y0Et0iI7QAA0RsZ5ab6x31nu7a7+1B/bHhdRqLT2P0JWwR38A/K0qtg==</latexit><latexit sha1_base64="SLdRtiOy1UUUwh+bGMQZfjyNmY0=">AAADoXichVJdb9MwFHUTPkb5WAcSL0joimpSqnVTwgNMQpMmwcN4ABVEt0lNG7mO03iz4xA7aFGU/8ETf4P/wRuCH4PTVqNLJ7hSkpN7zrm+1/Y05Uxp1/3ZsuwbN2/d3rjTvnvv/oPNztbDYyXzjNAhkVxmp1OsKGcJHWqmOT1NM4rFlNOT6fnrmj/5QjPFZPJJFykdCzxLWMQI1iYVbLW+b/tTyUNVCPMpRdW+8k8CAQcwC7yJgNi8ZdVepWNDHjlG1Gv4fMVmAgfM8E7ch3hSXgRspzAJn4RSg6iaDscI+mAUTYLPq/icRtoBP81kGJTswOvDGfgJ/Qysmmhw3N2zHvgZm8W69z8tW9FOyl2vAl/TC10KGRr4CtLmMJeF5vbrhpnUbVb/9BlbPSPwesR1qlhSlzUbxepVd4q/bNDpunvuPGAdeEvQPXycfvv6+9f+IOj88ENJckETTThWauS5qR6XONOMcGrONVc0xeQcz+jIwAQLqsbl/IZVsG0yIUQyM0+iYZ5ddZRYqLpRoxRYx6rJ1cnruFGuo/1xyZI01zQhi4WinIOWUF9XCFlGieaFAZhkzPQKJMYZJtpc6rbZBK858jo4fr7nGfzB7MYLtIgN9AQ9Qw7y0Et0iI7QAA0RsZ5ab6x31nu7a7+1B/bHhdRqLT2P0JWwR38A/K0qtg==</latexit><latexit sha1_base64="yH90SHIQfsIkl3xt0Bj2hMrW7I4=">AAADoXichVJdb9MwFHUTPkb5WAePSOiKalKqdVPCAyChSZPgYTyACqLbpKaNXMdNvNlxsB20KMrv4n/wxr/B6arRpRNcKcnJPedc32t7nnOmje//7jjunbv37m896D589PjJdm/n6YmWhSJ0TCSX6myONeUso2PDDKdnuaJYzDk9nV+8b/jTH1RpJrNvpszpVOAkYwtGsLGpaKfzczecSx7rUthPJerujX8SCTiEJApmAlL7lnV3nU4teexZ0aDlCzVLBI6Y5b10COmsuozYXmkTIYmlAVG3HZ4VDMEq2gRfVgk5XRgPwlzJOKrYYTCEcwgz+h1YPTPg+fvnAwgVS1Iz+J+WrWln1X5QQ2jopamEjC18B3l7mOtCS/ttw8yaNut/+qytmRF4M+ImVa6o65qtYs2qe+VfNur1/QN/GbAJghXoo1WMot6vMJakEDQzhGOtJ4Gfm2mFlWGEU3uuhaY5Jhc4oRMLMyyonlbLG1bDrs3EsJDKPpmBZXbdUWGhm0atUmCT6jbXJG/jJoVZvJ1WLMsLQzNytdCi4GAkNNcVYqYoMby0ABPFbK9AUqwwMfZSd+0mBO2RN8HJq4PA4i9+/+j1aju20HP0EnkoQG/QETpGIzRGxHnhfHA+OZ/dvvvRHblfr6ROZ+V5hm6EO/kDuRQmyw==</latexit>

�i = (h, hxi+yi·m)
<latexit sha1_base64="NEojznWI8EAw2wCASKFN5Sdc9XA=">AAADoXichVLbbtNAEN3YXEq4pSDxgoRWRJUcNa1sHgAJVaoED+UBFBBpK8WJtVlv4m13vWZ3jWpZ/hXEX/AfvPE3jJOIpk4FI9k+nnNmdmZ2ppngxvr+75bj3rh56/bWnfbde/cfPOxsPzo2KteUDakSSp9OiWGCp2xouRXsNNOMyKlgJ9PztzV/8o1pw1X6xRYZG0syT/mMU2LBFW23fu6EUyViU0j4lLJqX/mnkcQHeB4FE4kTeKsGnwB75IGqV7XX/aHhc0kiDrSX9HEyKS8ivluAI6SxslhWvUYmDwR9DIomIRZZQsFm1sNhplUclfwg6OMzHKbsK+bVxGLP3zvr4VDzeWJ7/9PyNe2k3AsqHFp2YUupYoBvcNao4DLRIvy6ZiZ1mdU/4yCs7hGLusVNqlhRf3M2Jw2n7haXbNTp+vv+wvAmCFage/gk+/4DITSIOr/CWNFcstRSQYwZBX5mxyXRllPB4PpywzJCz8mcjQCmRDIzLhcbVuEd8MR4pjQ8qcUL73pESaSpCwWlJDYxTa52XseNcjt7PS55muWWpXR50CwX2CpcryuOuWbUigIAoZpDrZgmRBNqYanbMISg2fImOH6xHwD+BNN4iZa2hZ6i58hDAXqFDtERGqAhos4z553zwfnodt337sD9vJQ6rVXMY3TF3NEfbJcozw==</latexit><latexit sha1_base64="2hjyawzBl7BWgbnpyQRTu3h4tnw=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkhoRFTJUdPK5gCVUKVKcCgHUECkrRQn1ma9jrfd9RrvGtWy/B6ceA3egxuCh2GdRDR1KhjJ9uf5vpmdmZ1pypnSrvuzZdk3bt66vXGnfffe/Qebna2Hx0rmGaFDIrnMTqdYUc4SOtRMc3qaZhSLKacn0/PXNX/yhWaKyeSTLlI6FniWsIgRrI0r2Gp93/ankoeqEOZTiqp95Z8EAg5gFngTAbF5ywYfG/bIMape1V71+4rNBA6YoZ24D/GkvAjYTmEcPgmlBlH1GpkcI+iDUTQJPs/icxppB/w0k2FQsgOvD2fgJ/QzsGqiwXF3z3rgZ2wW697/tGxFOyl3vQp8TS90KWRo4CtIGxVcJpqHX9fMpC6z+mecCat7BF63uE4VS+pvzuakzak7xSUbdLrunjs3WAfeEnQPH6ffvv7+tT8IOj/8UJJc0EQTjpUaeW6qxyXONCOcmuvLFU0xOcczOjIwwYKqcTnfsAq2jSeESGbmSTTMvasRJRaqLtQoBdaxanK18zpulOtof1yyJM01TcjioCjnoCXU6wohyyjRvDAAk4yZWoHEOMNEm6VumyF4zZbXwfHzPc/gD2YaL9DCNtAT9Aw5yEMv0SE6QgM0RMR6ar2x3lnv7a791h7YHxdSq7WMeYSumD36A/fjKrY=</latexit><latexit sha1_base64="2hjyawzBl7BWgbnpyQRTu3h4tnw=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkhoRFTJUdPK5gCVUKVKcCgHUECkrRQn1ma9jrfd9RrvGtWy/B6ceA3egxuCh2GdRDR1KhjJ9uf5vpmdmZ1pypnSrvuzZdk3bt66vXGnfffe/Qebna2Hx0rmGaFDIrnMTqdYUc4SOtRMc3qaZhSLKacn0/PXNX/yhWaKyeSTLlI6FniWsIgRrI0r2Gp93/ankoeqEOZTiqp95Z8EAg5gFngTAbF5ywYfG/bIMape1V71+4rNBA6YoZ24D/GkvAjYTmEcPgmlBlH1GpkcI+iDUTQJPs/icxppB/w0k2FQsgOvD2fgJ/QzsGqiwXF3z3rgZ2wW697/tGxFOyl3vQp8TS90KWRo4CtIGxVcJpqHX9fMpC6z+mecCat7BF63uE4VS+pvzuakzak7xSUbdLrunjs3WAfeEnQPH6ffvv7+tT8IOj/8UJJc0EQTjpUaeW6qxyXONCOcmuvLFU0xOcczOjIwwYKqcTnfsAq2jSeESGbmSTTMvasRJRaqLtQoBdaxanK18zpulOtof1yyJM01TcjioCjnoCXU6wohyyjRvDAAk4yZWoHEOMNEm6VumyF4zZbXwfHzPc/gD2YaL9DCNtAT9Aw5yEMv0SE6QgM0RMR6ar2x3lnv7a791h7YHxdSq7WMeYSumD36A/fjKrY=</latexit><latexit sha1_base64="OoiJtr7xqYDXiPYYsdtOWKzI4u4=">AAADoXichVJtb9MwEHYTXkZ5WQcfkdCJalKqdVPCB0BCkybBh/EBVBDdJjVt5Dpu4s2Og+2gRVF+F/+Db/wbnK5iXTrBSUme3PPc+e5885wzbXz/d8dx79y9d3/rQffho8dPtns7T0+0LBShYyK5VGdzrClnGR0bZjg9yxXFYs7p6fzifcOf/qBKM5l9M2VOpwInGVswgo11RTudn7vhXPJYl8J+KlF3b/yTSMAhJFEwE5Dat2zxqWWPPasa1N11f6hZInDELO2lQ0hn1WXE9krrCEksDYh60MrkWcEQrKJN8GWWkNOF8SDMlYyjih0GQziHMKPfgdUzA56/fz6AULEkNYP/admadlbtBzWEhl6aSsjYwneQtyq4TrQMv62ZWVNm/c84G9b0CLxpcZMqV9TfnO1J21P3yms26vX9A39psAmCFeijlY2i3q8wlqQQNDOEY60ngZ+baYWVYYRTe32FpjkmFzihEwszLKieVssNq2HXemJYSGWfzMDSux5RYaGbQq1SYJPqNtc4b+MmhVm8nVYsywtDM3J10KLgYCQ06woxU5QYXlqAiWK2ViApVpgYu9RdO4Sg3fImOHl1EFj8xe8fvV6NYws9Ry+RhwL0Bh2hYzRCY0ScF84H55Pz2e27H92R+/VK6nRWMc/QDXMnfwC0SibL</latexit>

(xi, yi)
<latexit sha1_base64="x9L2IpFsgODQWiYeRBBkTorg8LY=">AAADoXichVLbbtNAEN3YXEq4pSDxgoRWRJUcNa1sHgAJVaoED+UBFBBpK8WJtVlv4m13vWZ3jWpZ/hXEX/AfvPE3jJOopE4FI9k+njNndmZ2ppngxvr+75bj3rh56/bWnfbde/cfPOxsPzo2KteUDakSSp9OiWGCp2xouRXsNNOMyKlgJ9PztzV/8o1pw1X6xRYZG0syT/mMU2LBFW23fu6EUyViU0j4lLJqX/mnkcQHeB4FE4kTeKsGnwB75EFUr0GEhs8liTjwXtLHyaS8iPhuAY6QxspiWYFiXeAB38cQ0MwkFklCwWbWw2GmVRyV/CDo4zMcpuwr5tXEYs/fO+vhUPN5Ynv/i+VrsZNyL6hwaNmFLaWKAb7BWbOXy0QL+XW9TOoyq3/qQFb3iEXd4iZVrKjLnM1Jw6m7xV826nT9fX9heBMEK9A9fJJ9/4EQGkSdX2GsaC5ZaqkgxowCP7PjkmjLqWBwGblhGaHnZM5GAFMimRmXiw2r8A54YjxTGp7U4oV3XVESaepCIVISm5gmVzuv40a5nb0elzzNcstSujxolgtsFa7XFcdcM2pFAYBQzaFWTBOiCbWw1G0YQtBseRMcv9gPAH+CabxES9tCT9Fz5KEAvUKH6AgN0BBR55nzzvngfHS77nt34H5ehjqtleYxumLu6A9iQyjP</latexit><latexit sha1_base64="PNfKW7vSoTWk3BUrQTBKIHpbuk4=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkhoRVTJUdPK5gCVUKVKcCgHUECkrRQn1ma9jrfd9RrvGtWy/B6ceA3egxuCh2GcRCV1KhjJ9uf55pudmZ1pKrg2rvuzZdk3bt66vXGnfffe/Qebna2Hx1rlGWVDqoTKTqdEM8ETNjTcCHaaZozIqWAn0/PXNX/yhWWaq+STKVI2lmSW8IhTYsAVbLW+b/tTJUJdSPiUsmpf+aeBxAd4FngTiWN4qwYfA3vkQFSvQfiazyQJOPBO3MfxpLwI+E4BDp+GymBZgWJV4ADfxxDQzCTmSXzBIuNgP81UGJT8wOvjM+wn7DPm1cRgx90962E/47PY9P4Xy1diJ+WuV2HfsAtTShUCfIXTZi+Xieby63qZ1GVW/9SBrO4Ri7rFdapYUpc5m5OGU3eKv2zQ6bp77tzwOvCWoHv4OP329fev/UHQ+eGHiuaSJYYKovXIc1MzLklmOBUMLiPXLCX0nMzYCGBCJNPjcr5hFd4GT4gjlcGTGDz3ripKInVdKERKYmLd5GrnddwoN9H+uORJmhuW0MVBUS6wUbheVxzyjFEjCgCEZhxqxTQmGaEGlroNQ/CaLa+D4+d7HuAPMI0XaGEb6Al6hhzkoZfoEB2hARoiaj213ljvrPd2135rD+yPi1CrtdQ8QlfMHv0B7Y8qtg==</latexit><latexit sha1_base64="PNfKW7vSoTWk3BUrQTBKIHpbuk4=">AAADoXichVLNbtNAEN7Y/JTw0xQkLkhoRVTJUdPK5gCVUKVKcCgHUECkrRQn1ma9jrfd9RrvGtWy/B6ceA3egxuCh2GcRCV1KhjJ9uf55pudmZ1pKrg2rvuzZdk3bt66vXGnfffe/Qebna2Hx1rlGWVDqoTKTqdEM8ETNjTcCHaaZozIqWAn0/PXNX/yhWWaq+STKVI2lmSW8IhTYsAVbLW+b/tTJUJdSPiUsmpf+aeBxAd4FngTiWN4qwYfA3vkQFSvQfiazyQJOPBO3MfxpLwI+E4BDp+GymBZgWJV4ADfxxDQzCTmSXzBIuNgP81UGJT8wOvjM+wn7DPm1cRgx90962E/47PY9P4Xy1diJ+WuV2HfsAtTShUCfIXTZi+Xieby63qZ1GVW/9SBrO4Ri7rFdapYUpc5m5OGU3eKv2zQ6bp77tzwOvCWoHv4OP329fev/UHQ+eGHiuaSJYYKovXIc1MzLklmOBUMLiPXLCX0nMzYCGBCJNPjcr5hFd4GT4gjlcGTGDz3ripKInVdKERKYmLd5GrnddwoN9H+uORJmhuW0MVBUS6wUbheVxzyjFEjCgCEZhxqxTQmGaEGlroNQ/CaLa+D4+d7HuAPMI0XaGEb6Al6hhzkoZfoEB2hARoiaj213ljvrPd2135rD+yPi1CrtdQ8QlfMHv0B7Y8qtg==</latexit><latexit sha1_base64="bfo38cQlqJFoChTibQDa91NCb0s=">AAADoXichVLbbtNAEN3EXEq4NIVHJDQiquSoaWXzAEioUiV4KA+ggEhbKU6szXoTb7vrNd41qmX5u/gP3vgbxmlUUqeCkWwfz5kzOzM7s1QKYz3vd6vt3Ll77/7Wg87DR4+fbHd3np4YnWeMj5iWOjubUcOlSPjICiv5WZpxqmaSn84u3tf86Q+eGaGTb7ZI+UTRRSLmglGLrnCn9XM3mGkZmULhp1RV58Y/CxUcwiL0pwpifOsGHyN77GJUv0EERiwUDQXybjyAeFpehmKvQEfAIm1BVahYF7jIDwADmpnkMkkg+dy6EKSZjsJSHPoDOIcg4d9BVFMLrrd/3ocgE4vY9v8XK9Zip+W+X0Fg+aUtlY4QvoO02ct1oqX8tl6mdZnVP3Uoq3sEWbe4SRUr6jpnc9J46l7xlw27Pe/AWxpsAn8FemRlw7D7K4g0yxVPLJPUmLHvpXZS0swKJjleRm54StkFXfAxwoQqbiblcsMq2EVPBHOd4ZNYWHrXFSVVpi4UIxW1sWlytfM2bpzb+dtJKZI0tzxhVwfNcwlWQ72uEImMMysLBJRlAmsFFtOMMotL3cEh+M2WN8HJqwMf8Revd/R6NY4t8py8JC7xyRtyRI7JkIwIa79of2h/an92es5HZ+h8vQptt1aaZ+SGOeM/qfYmyw==</latexit>

tY

i=1

(hxi+yi·m)li

<latexit sha1_base64="ZGGBWlLgpEkbAudEfGMhzt8V1k0=">AAADoXichVJdb9MwFHUTPkb56uARCV1RTUq1bkp4ACSYNIk9jAdQQXSr1LSR67iNNzsOtoMWRfld/A/e+Dc4bTXWdBJXSnJyzznXvld3lnGmje//aTnunbv37u88aD989PjJ087uszMtc0XokEgu1WiGNeUspUPDDKejTFEsZpyezy4/1vz5T6o0k+l3U2R0IvAiZXNGsLGpaLf1ay+cSR7rQthPKar2xj+JBBzBIgqmAhL7lg0+seypZ1W9BhFqthA4Ypb3kj4k0/IqYvuFTYQklgZE1XR4VtAHq2gSfFkl5HRuPAgzJeOoZEdBHy4gTOkPYNXUgOcfXPQgVGyRmN7/tOyGdloeBBWEhl6ZUsjYwveQVe2NXq7rLN239TKtb1k1Z7Dhs7a6ReB1h9tUsaauazYnbU/dL/6xUafrH/rLgG0QrEH3+MPJCBBCg6jzO4wlyQVNDeFY63HgZ2ZSYmUY4dR2nGuaYXKJF3RsYYoF1ZNyuWEV7NlMDHOp7JMaWGZvOkosdH1RqxTYJLrJ1cnbuHFu5u8mJUuz3NCUrA6a5xyMhHpdIWaKEsMLCzBRzN4VSIIVJsYuddsOIWi2vA3OXh8GFn+103iDVrGDXqBXyEMBeouO0SkaoCEizkvnxPnsfHG77id34H5bSZ3W2vMcbYQ7/gsxqygD</latexit><latexit sha1_base64="0EkUAbRMRZj+9j0nbEOSBggxgV0=">AAADoXichVJdb9MwFHUTPkb56uARCV1RTUq1bkp4ACSYNIk9jAdQQXSr1LSR67iNNzsOtoMWRfld/A/e+Dc4bTXWdBJXSnJyzznXvld3lnGmje//aTnunbv37u88aD989PjJ087uszMtc0XokEgu1WiGNeUspUPDDKejTFEsZpyezy4/1vz5T6o0k+l3U2R0IvAiZXNGsLGpaLf1ay+cSR7rQthPKar2xj+JBBzBIgqmAhL7lg0+seypZ1W9BhFqthA4Ypb3kj4k0/IqYvuFTYQklgZE1XR4VtAHq2gSfFkl5HRuPAgzJeOoZEdBHy4gTOkPYNXUgOcfXPQgVGyRmN7/tOyGdloeBBWEhl6ZUsjYwveQVe2NXq7rLN239TKtb1k1Z7Dhs7a6ReB1h9tUsaauazYnbU/dL/6xUafrH/rLgG0QrEH3+MPJaG/shoOo8zuMJckFTQ3hWOtx4GdmUmJlGOHUdpxrmmFyiRd0bGGKBdWTcrlhFezZTAxzqeyTGlhmbzpKLHR9UasU2CS6ydXJ27hxbubvJiVLs9zQlKwOmuccjIR6XSFmihLDCwswUczeFUiCFSbGLnXbDiFotrwNzl4fBhZ/tdN4g1axg16gV8hDAXqLjtEpGqAhIs5L58T57Hxxu+4nd+B+W0md1trzHG2EO/4LMO0owg==</latexit><latexit sha1_base64="0EkUAbRMRZj+9j0nbEOSBggxgV0=">AAADoXichVJdb9MwFHUTPkb56uARCV1RTUq1bkp4ACSYNIk9jAdQQXSr1LSR67iNNzsOtoMWRfld/A/e+Dc4bTXWdBJXSnJyzznXvld3lnGmje//aTnunbv37u88aD989PjJ087uszMtc0XokEgu1WiGNeUspUPDDKejTFEsZpyezy4/1vz5T6o0k+l3U2R0IvAiZXNGsLGpaLf1ay+cSR7rQthPKar2xj+JBBzBIgqmAhL7lg0+seypZ1W9BhFqthA4Ypb3kj4k0/IqYvuFTYQklgZE1XR4VtAHq2gSfFkl5HRuPAgzJeOoZEdBHy4gTOkPYNXUgOcfXPQgVGyRmN7/tOyGdloeBBWEhl6ZUsjYwveQVe2NXq7rLN239TKtb1k1Z7Dhs7a6ReB1h9tUsaauazYnbU/dL/6xUafrH/rLgG0QrEH3+MPJaG/shoOo8zuMJckFTQ3hWOtx4GdmUmJlGOHUdpxrmmFyiRd0bGGKBdWTcrlhFezZTAxzqeyTGlhmbzpKLHR9UasU2CS6ydXJ27hxbubvJiVLs9zQlKwOmuccjIR6XSFmihLDCwswUczeFUiCFSbGLnXbDiFotrwNzl4fBhZ/tdN4g1axg16gV8hDAXqLjtEpGqAhIs5L58T57Hxxu+4nd+B+W0md1trzHG2EO/4LMO0owg==</latexit><latexit sha1_base64="6uXzjmjbbSKFbkX+ijjirCxOXAw=">AAADoXichVLbattAEF1LvaTuzWkfC2WoCcjkgtSHtlACgfYhfWhxS50ELFusV2trk12tql2VCKHv6n/0rX/TkWPSWA50QNLRnHNmd4aZZVIY6/t/Oo575+69+1sPug8fPX7ytLf97MToImd8xLTU+dmMGi5FykdWWMnPspxTNZP8dHbxoeFPf/LcCJ1+t2XGJ4ouUjEXjFpMRdudXzvhTMvYlAo/laq7a/8sUnAIiyiYKkjwrVt8guyxh6pBiwiNWCgaCeS9ZA+SaXUZid0SEyGLtQVVtx0eCvYAFW1CLquEks+tB2GW6ziqxGGwB+cQpvwHiHpqwfP3zwcQ5mKR2MH/tOKGdlrtBzWEll/aSukY4XvI6u5aL9d1lu7bepk2t6zbM1jzoa1pEWTT4SZVrqjrmu1J46m75T826vX9A38ZsAmCFeiTVQyj3u8w1qxQPLVMUmPGgZ/ZSUVzK5jk2HFheEbZBV3wMcKUKm4m1XLDatjBTAxzneOTWlhmbzoqqkxzUVQqahPT5prkbdy4sPN3k0qkWWF5yq4OmhcSrIZmXSEWOWdWlggoywXeFVhCc8osLnUXhxC0W94EJ68PAsRf/f7Rm9U4tsgL8op4JCBvyRE5JkMyIsx56Xx0Pjtf3L77yR26366kTmfleU7Wwh3/BYu5Jss=</latexit>

tY

i=1

h(xili)
tY

i=1

h(yili)·m

<latexit sha1_base64="E0xDt6+V+L2meMRdkCIYxCAMoro=">AAADoXichVJdb9MwFHUTPkb5WAePSOiKalKqdVPCAyDBpEnsYTyACqJbpaaNXMdtvNlxsB20KMrv4n/wxr/BaauxpUNcKcnJPedc32vdWcaZNr7/u+W4d+7eu7/1oP3w0eMn252dp6da5orQIZFcqtEMa8pZSoeGGU5HmaJYzDg9m118qPmzH1RpJtNvpsjoROBFyuaMYGNT0U7r5244kzzWhbCfUlTtG/8kEnAIiyiYCkjsWzb4xLInnlX1GkSo2ULgiFneS/qQTMvLiO0VNhGSWBoQVdPhWUEfrKJJ8GWVkNO58SDMlIyjkh0GfTiHMKXfgVVTA56/f96DULFFYnr/07Jr2mm5H1QQGnppSiFjC99B1hzmqtDSftsw07rNqmr/22Zd9YjA6wk3qWJNXZVs3rQ9dK/4y0adrn/gLwM2QbAG3aP3xyNACA2izq8wliQXNDWEY63HgZ+ZSYmVYYRT23muaYbJBV7QsYUpFlRPyuWGVbBrMzHMpbJPamCZve4osdB1o1YpsEl0k6uTt3Hj3MzfTkqWZrmhKVkdNM85GAn1ukLMFCWGFxZgopjtFUiCFSbGLnXbXkLQHHkTnL46CCz+Ym/jNVrFFnqOXiIPBegNOkInaICGiDgvnGPnk/PZ7bof3YH7dSV1WmvPM3Qj3PEfJOAoAw==</latexit><latexit sha1_base64="bI73i4R6bFM++fska6ffK/qQNXI=">AAADoXichVJdb9MwFHUTPkb5WAePSMiimpRq3ZTwAEgwaRJ7GA+gguhWqWkj13Ebb3YcbActivK7+B+88W+4aauxpUNcKcnJPedc32vdWSa4sb7/u+W4d+7eu7/1oP3w0eMn252dp6dG5ZqyIVVC6dGMGCZ4yoaWW8FGmWZEzgQ7m118qPmzH0wbrtJvtsjYRJJFyuecEgupaKf1czecKRGbQsKnlFX7xj+NJD7EiyiYSpzAWzX4BNgTD1S9BhEavpAk4sB7SR8n0/Iy4nsFJEIaK4tl1XR4IOhjUDQJsawSCja3Hg4zreKo5IdBH5/jMGXfMa+mFnv+/nkPh5ovEtv7n5Zf007L/aDCoWWXtpQqBvgOZ81hrgot7bcNM63brKr2v23gqkfEop5wkyrW1FXJ5k3DoXvFXzbqdP0Dfxl4EwRr0D16fzzaHbvhIOr8CmNFc8lSSwUxZhz4mZ2URFtOBYPOc8MyQi/Igo0BpkQyMymXG1bhXcjEeK40PKnFy+x1R0mkqRsFpSQ2MU2uTt7GjXM7fzspeZrllqV0ddA8F9gqXK8rjrlm1IoCAKGaQ6+YJkQTamGp23AJQXPkTXD66iAA/AVu4zVaxRZ6jl4iDwXoDTpCJ2iAhog6L5xj55Pz2e26H92B+3UldVprzzN0I9zxHyQiKMI=</latexit><latexit sha1_base64="bI73i4R6bFM++fska6ffK/qQNXI=">AAADoXichVJdb9MwFHUTPkb5WAePSMiimpRq3ZTwAEgwaRJ7GA+gguhWqWkj13Ebb3YcbActivK7+B+88W+4aauxpUNcKcnJPedc32vdWSa4sb7/u+W4d+7eu7/1oP3w0eMn252dp6dG5ZqyIVVC6dGMGCZ4yoaWW8FGmWZEzgQ7m118qPmzH0wbrtJvtsjYRJJFyuecEgupaKf1czecKRGbQsKnlFX7xj+NJD7EiyiYSpzAWzX4BNgTD1S9BhEavpAk4sB7SR8n0/Iy4nsFJEIaK4tl1XR4IOhjUDQJsawSCja3Hg4zreKo5IdBH5/jMGXfMa+mFnv+/nkPh5ovEtv7n5Zf007L/aDCoWWXtpQqBvgOZ81hrgot7bcNM63brKr2v23gqkfEop5wkyrW1FXJ5k3DoXvFXzbqdP0Dfxl4EwRr0D16fzzaHbvhIOr8CmNFc8lSSwUxZhz4mZ2URFtOBYPOc8MyQi/Igo0BpkQyMymXG1bhXcjEeK40PKnFy+x1R0mkqRsFpSQ2MU2uTt7GjXM7fzspeZrllqV0ddA8F9gqXK8rjrlm1IoCAKGaQ6+YJkQTamGp23AJQXPkTXD66iAA/AVu4zVaxRZ6jl4iDwXoDTpCJ2iAhog6L5xj55Pz2e26H92B+3UldVprzzN0I9zxHyQiKMI=</latexit><latexit sha1_base64="WzD2iwFbWD2rCf5WVnf3F18lgkQ=">AAADoXichVLbbtNAEN3YXEq4NIVHJDQiquSoaWXzAEioUiV4KA+ggOhFihNrs97E2+56jXeNaln+Lv6DN/6GcRqV1iliJNvHc86ZnVnNLJPCWN//3XHcO3fv3d940H346PGTzd7W02Oji5zxI6alzk9n1HApUn5khZX8NMs5VTPJT2bn7xv+5AfPjdDpN1tmfKLoIhVzwajFVLTV+bkdzrSMTanwU6m6e+OfRQr2YREFUwUJvnWLT5A99FA1aBGhEQtFI4G8lwwhmVYXkdgpMRGyWFtQddvhoWAIqGgTclkllHxuPQizXMdRJfaDIZxBmPLvIOqpBc/fPRtAmItFYgf/04pr2mm1G9QQWn5hK6VjhO8gaw9zVWhpv22YadNmXXf/bUNXMyLIZsJ1qlxRVyXbN42H7pR/2ajX9/f8ZcA6CFagT1Yxinq/wlizQvHUMkmNGQd+ZicVza1gkmPnheEZZed0wccIU6q4mVTLDathGzMxzHWOT2phmb3uqKgyTaOoVNQmps01ydu4cWHnbyeVSLPC8pRdHjQvJFgNzbpCLHLOrCwRUJYL7BVYQnPKLC51Fy8haI+8Do5f7QWIv/j9g9er69ggz8lL4pGAvCEH5JCMyBFhzgvng/PJ+ez23Y/uyP16KXU6K88zciPc8R9+7ibL</latexit>

hx+y·m
<latexit sha1_base64="Pe6vn1Olpj92jhKPaILzfLILm0o=">AAADoXichVLLbtNAFJ3YPEp4NIUlEroiquSoD9ksAAlVVIJFWYACIm2lOLEm40k87YzHzIxRLcvfxYYF38COD2HPOIlK41Qwku3je865j9GdZJxp4/u/Wo574+at2xt32nfv3X+w2dl6eKxlrggdEMmlOp1gTTlL6cAww+lppigWE05PJudvav7kK1WayfSzKTI6EniWsikj2NhQtNX6th1OJI91IeynFFV75Z9EAg5gFgVjAYl9ywafWPbIs6pegwg1mwkcMct7yS4k4/IiYjuFDYQklgZE1XR4VrALVtEk+DxLyOnUeBBmSsZRyQ6CXTiDMKVfgFVjA56/d9aDULFZYnr/07Ir2nG5F1QQGnphSiFjC19B1hzmMtHcft0w47rN6p8+a6tnBF6PuE4VS+oyZ9VeuWlbdKf4S0adrr/vzw+sg2AJuq+/e79/IIT6UednGEuSC5oawrHWw8DPzKjEyjDCqS2Wa5phco5ndGhhigXVo3K+YRVs20gMU6nskxqYR686Six03ahVCmwS3eTq4HXcMDfTl6OSpVluaEoWhaY5ByOhXleImaLE8MICTBSzvQJJsMLE2KVu20sImiOvg+Nn+4HFH/3u4XO0OBvoMXqKPBSgF+gQHaE+GiDiPHHeOu+dD27Xfef23U8LqdNaeh6hleMO/wBE6imj</latexit><latexit sha1_base64="pTLxdK80xeCGGUh4PWZZhT67aTs=">AAADoXichVLLbtNAFJ3YPEp4pbBEQldElRz1IZsFIKGKSrAoC1BApK0UJ9ZkPImnnfGYmTGqZfkb+Bw2rPgEdnwIe8ZJVBqngpFsH99zzn2M7iTjTBvf/9Vy3GvXb9zcuNW+fefuvfudzQdHWuaK0AGRXKqTCdaUs5QODDOcnmSKYjHh9Hhy9rrmj79QpZlMP5kioyOBZymbMoKNDUWbrW9b4UTyWBfCfkpRtVf+SSRgH2ZRMBaQ2Lds8IllDz2r6jWIULOZwBGzvJfsQDIuzyO2XdhASGJpQFRNh2cFO2AVTYLPs4ScTo0HYaZkHJVsP9iBUwhT+hlYNTbg+bunPQgVmyWm9z8tu6Qdl7tBBaGh56YUMrbwJWTNYS4Sze1XDTOu26z+6bO2ekbg9YjrVLGkLnJW7ZWbtkW3i79k1On6e/78wDoIlqD76rv3+8fXsNePOj/DWJJc0NQQjrUeBn5mRiVWhhFObbFc0wyTMzyjQwtTLKgelfMNq2DLRmKYSmWf1MA8etlRYqHrRq1SYJPoJlcHr+KGuZm+GJUszXJDU7IoNM05GAn1ukLMFCWGFxZgopjtFUiCFSbGLnXbXkLQHHkdHD3dCyz+4HcPnqHF2UCP0BPkoQA9RwfoEPXRABHnsfPGeee8d7vuW7fvflxIndbS8xCtHHf4B7jHKrk=</latexit><latexit sha1_base64="pTLxdK80xeCGGUh4PWZZhT67aTs=">AAADoXichVLLbtNAFJ3YPEp4pbBEQldElRz1IZsFIKGKSrAoC1BApK0UJ9ZkPImnnfGYmTGqZfkb+Bw2rPgEdnwIe8ZJVBqngpFsH99zzn2M7iTjTBvf/9Vy3GvXb9zcuNW+fefuvfudzQdHWuaK0AGRXKqTCdaUs5QODDOcnmSKYjHh9Hhy9rrmj79QpZlMP5kioyOBZymbMoKNDUWbrW9b4UTyWBfCfkpRtVf+SSRgH2ZRMBaQ2Lds8IllDz2r6jWIULOZwBGzvJfsQDIuzyO2XdhASGJpQFRNh2cFO2AVTYLPs4ScTo0HYaZkHJVsP9iBUwhT+hlYNTbg+bunPQgVmyWm9z8tu6Qdl7tBBaGh56YUMrbwJWTNYS4Sze1XDTOu26z+6bO2ekbg9YjrVLGkLnJW7ZWbtkW3i79k1On6e/78wDoIlqD76rv3+8fXsNePOj/DWJJc0NQQjrUeBn5mRiVWhhFObbFc0wyTMzyjQwtTLKgelfMNq2DLRmKYSmWf1MA8etlRYqHrRq1SYJPoJlcHr+KGuZm+GJUszXJDU7IoNM05GAn1ukLMFCWGFxZgopjtFUiCFSbGLnXbXkLQHHkdHD3dCyz+4HcPnqHF2UCP0BPkoQA9RwfoEPXRABHnsfPGeee8d7vuW7fvflxIndbS8xCtHHf4B7jHKrk=</latexit><latexit sha1_base64="N70X1IygOZ693TxgFH4quMN8IB0=">AAADoXichVJbb9MwFHYTLqNc1sEjEjqimpRq3ZTwAEho0iR4GA+ggug2qWkj13ETb3YcbActivK7+B+88W9wumqs6QRHSvLlfN+56sxzzrTx/d8dx71z9979rQfdh48eP9nu7Tw90bJQhI6J5FKdzbGmnGV0bJjh9CxXFIs5p6fzi/cNf/qDKs1k9s2UOZ0KnGRswQg21hXtdH7uhnPJY10K+6lE3V37J5GAQ0iiYCYgtW/Z4lPLHntWNWgRoWaJwBGzvJcOIZ1VlxHbK60jJLE0IOp2hGcFQ7CKNsGXWUJOF8aDMFcyjip2GAzhHMKMfgdWzwx4/v75AELFktQM/qdlN7Szaj+oITT00lRCxha+g7w9zHWiZfhtw8yaNut/xtmwZkbgzYibVLmirnPW3bVN26J75V8y6vX9A39psAmCFeijlY2i3q8wlqQQNDOEY60ngZ+baYWVYYRTW6zQNMfkAid0YmGGBdXTanlhNexaTwwLqeyTGVh6b0ZUWOimUasU2KS6zTXO27hJYRZvpxXL8sLQjFwVWhQcjITmXCFmihLDSwswUcz2CiTFChNjj7prlxC0R94EJ68OAou/+P2j16t1bKHn6CXyUIDeoCN0jEZojIjzwvngfHI+u333oztyv15Jnc4q5hlaM3fyB235Jss=</latexit>

2

• Prove credentials

How coconuts are made

70

• Verify credentials

 = ↵�mgr
2

<latexit sha1_base64="JYnstFrGSVrMvyejxBC+2EnKqk0=">AAAEEXichVNNb9MwGPYSPkb5WAcSFy4W07RU66ZkB0BClSZx2XFIdJvUNJHjuI1XOw62gxZFkfgFXPgrXDiAEFdu3PgN/AmcrJrWtIClJE/e53ns931tRxmjSrvurzXLvnHz1u31O5279+4/2OhuPjxRIpeYDLFgQp5FSBFGUzLUVDNylkmCeMTIaTR7VfOn74hUVKRvdJGRMUfTlE4oRtqEwk1rZ9uPBItVwc2n5FVn4R+HHA7gNPQCDhPzFi0+MeyRY1S9FuErOuUopIZ3kj5MgvIipLuFCfg4Fhryqu1wjKAPjaJNsGYWn5GJdqCfSRGHJR14fXgO/ZS8hbQKNHTcvfMe9CWdJrr3Py29pg3KPa+CviYXuuQiNvAlzNrFXE3U2FcVE9RpVv/0GVtdI2R1ictUMaeu5my32qy6W/yNlSv7v9O0P5D9JmmnlXVP1puw4JqhLEMDH7EsQX5ENDL7Pg0PAlmF3S13320GXAbeHGwdPvZ+vwcAHIfdn34scM5JqjFDSo08N9PjEklNMSNm3VyRDOEZmpKRgSniRI3L5kRXcNtEYjgR0jyphk30uqNEXNU5GyVHOlFtrg6u4ka5nrwYlzTNck1SfLnQJGdQC1hfDxhTSbBmhQEIS2pyhThBEmFtLlHHNMFrl7wMTg72PYNfm248A5djHTwBT4EDPPAcHIIjcAyGAFsfrE/WF+ur/dH+bH+zv19KrbW55xFYGPaPP56fVF8=</latexit><latexit sha1_base64="B9LXE1wbCaozyvmgCwkLnKQShSQ=">AAAEEXichVNNb9MwGPYSPkb56kDigoQspmmp1k3JDoCEKk3isuNAdJvUNJHjuIlXOw6OgxZFOXLlwl/hAAcQ4sqNG7+BP4GTVtOaFrCU5Mn7PI/9vq/tIGU0U7b9a80wr1y9dn39Rufmrdt37nY37h1nIpeYDLFgQp4GKCOMJmSoqGLkNJUE8YCRk2D6ouZP3hKZUZG8VkVKxhxFCZ1QjJQO+RvG9pYbCBZmBdefkledhX/scziAke94HMb6LVp8rNlDS6t6LcLNaMSRTzVvxX0Ye+W5T3cKHXBxKBTkVdthaUEfakWbYM0sLiMTZUE3lSL0Szpw+vAMugl5A2nlKWjZu2c96Eoaxar3Py29pPXKXaeCriLnquQi1PA5TNvFXEzU2FcV49VpVv/0aVtdI2R1ictUMacu5my3Wq+6U/yNlSv7v92035P9JmmrlXVP1puw4JqiNEUDF7E0Rm5AFNL7Hvn7nqz87qa9ZzcDLgNnDjYPHji/3z369OrI7/50Q4FzThKFGcqykWOnalwiqShmRK+bZyRFeIoiMtIwQZxk47I50RXc0pEQToTUT6JgE73sKBHP6py1kiMVZ22uDq7iRrmaPBuXNElzRRI8W2iSM6gErK8HDKkkWLFCA4Ql1blCHCOJsNKXqKOb4LRLXgbH+3uOxi91N56A2VgHD8FjYAEHPAUH4BAcgSHAxnvjo/HF+Gp+MD+b38zvM6mxNvfcBwvD/PEHMLFVjA==</latexit><latexit sha1_base64="B9LXE1wbCaozyvmgCwkLnKQShSQ=">AAAEEXichVNNb9MwGPYSPkb56kDigoQspmmp1k3JDoCEKk3isuNAdJvUNJHjuIlXOw6OgxZFOXLlwl/hAAcQ4sqNG7+BP4GTVtOaFrCU5Mn7PI/9vq/tIGU0U7b9a80wr1y9dn39Rufmrdt37nY37h1nIpeYDLFgQp4GKCOMJmSoqGLkNJUE8YCRk2D6ouZP3hKZUZG8VkVKxhxFCZ1QjJQO+RvG9pYbCBZmBdefkledhX/scziAke94HMb6LVp8rNlDS6t6LcLNaMSRTzVvxX0Ye+W5T3cKHXBxKBTkVdthaUEfakWbYM0sLiMTZUE3lSL0Szpw+vAMugl5A2nlKWjZu2c96Eoaxar3Py29pPXKXaeCriLnquQi1PA5TNvFXEzU2FcV49VpVv/0aVtdI2R1ictUMacu5my3Wq+6U/yNlSv7v92035P9JmmrlXVP1puw4JqiNEUDF7E0Rm5AFNL7Hvn7nqz87qa9ZzcDLgNnDjYPHji/3z369OrI7/50Q4FzThKFGcqykWOnalwiqShmRK+bZyRFeIoiMtIwQZxk47I50RXc0pEQToTUT6JgE73sKBHP6py1kiMVZ22uDq7iRrmaPBuXNElzRRI8W2iSM6gErK8HDKkkWLFCA4Ql1blCHCOJsNKXqKOb4LRLXgbH+3uOxi91N56A2VgHD8FjYAEHPAUH4BAcgSHAxnvjo/HF+Gp+MD+b38zvM6mxNvfcBwvD/PEHMLFVjA==</latexit><latexit sha1_base64="Ne4bKXsihiS9+9fLm5lJGHzQP3k=">AAAEEXichVNNb9MwGPYSPkb56uDIxaKalmrdlOwASKjSJC47Doluk5omchw38WrHwXbQoih/gQt/hQsHEOLKjRv/BierpjUdYCnJk/d5Hvt9X9tRzqjSrvt7w7Jv3b5zd/Ne7/6Dh48e97eenChRSEwmWDAhzyKkCKMZmWiqGTnLJUE8YuQ0Wrxp+NMPRCoqsne6zMmMoySjc4qRNqFwy9rZ9iPBYlVy86l43Vv5xyGHY5iEXsBhat6iw6eGPXKMatghfEUTjkJqeCcdwTSoLkK6W5qAj2OhIa+7DscIRtAougRrZ/EZmWsH+rkUcVjRsTeC59DPyHtI60BDx907H0Jf0iTVw/9p6TVtUO15NfQ1udAVF7GBr2HeLeZqotZ+UzFBk2b9T5+xNTVC1pS4TpVL6mrObqvNqrvl31h5Y/932vYHctQm7XSyHspmE1ZcC5TnaOwjlqfIj4hGZt+T8CCQddgfuPtuO+A68JZgAJbjOOz/8mOBC04yjRlSauq5uZ5VSGqKGTHrForkCC9QQqYGZogTNavaE13DbROJ4VxI82QattHrjgpx1eRslBzpVHW5JngTNy30/NWsolleaJLhy4XmBYNawOZ6wJhKgjUrDUBYUpMrxCmSCGtziXqmCV635HVwcrDvGfzWHRy+WLZjEzwDz4EDPPASHIIjcAwmAFsfrc/WV+ub/cn+Yn+3f1xKrY2l5ylYGfbPP/6zUm0=</latexit>

r
<latexit sha1_base64="A8WH99ZCfxA6GKAlL/FSzhRIAo4=">AAAEJnichVNNb9NAEN06fJTw0RSOXFZEVR01reweAAkiKnHpsUikrRTH1nq9sbfZtc16g2pZ/jVc+BEcuHLhUIQQN/4Ed8ZOVTVOgJFsP897Mzszu+ungmfasn6uGa0bN2/dXr/Tvnvv/oONzubD4yyZKcqGNBGJOvVJxgSP2VBzLdhpqhiRvmAn/vR1xZ+8ZyrjSfxW5ykbSxLGfMIp0eDyNo2XW46fiCDLJXwKWbYX/qkn8QCHnu1KHME7afARsIcmqHoNwsl4KInHgTejPo7c4tzjOzk4HBokGsuyGWGCoI9B0SREncURbKJN7KQqCbyCD+w+PsNOzN5hXroam9buWQ87ioeR7v1Py69p3WLXLrGj2bkuZBIAfIHTZjNXierwVc24VZnlP+MgrOoRi6rFZSq/pK5yNkcNq+7kf2PV9soN2K7n71Z0vwZmo/IeMDDwhVTNTFOSpmTgEJFGxPGZJnAYQm/fVaXX6Vp7Vm14GdiXoPvqk/n7M0LoyOtcOEFCZ5LFmgqSZSPbSvW4IEpzKhjUMctYSuiUhGwEMCaSZeOiPuYl3gJPgCeJgifWuPZejyiIzKqaQSmJjrImVzlXcaOZnjwfFzxOZ5rFdL7QZCawTnB1Z3DAFaNa5AAIVRxqxTQiilANN6sNQ7CbLS+D4/09G/Abq3vwFM1tHT1GT5CJbPQMHaBDdISGiBofjC/GhfGt9bH1tfW99WMuNdYuYx6hBWv9+gPaA12w</latexit><latexit sha1_base64="/9gl1G6ziqBEW+PHOUZMv8LoBdI=">AAAEJnichVPNbtNAEHZtfkr4S+HIZUVU1VHTyu4BkCCiEpcei0TaSnFsrdcbe5td26zXqJblZ+AhuPAQnLhx4VCEEDdegjtjp6oaJ8BItj/P983szOyun3KWKcv6uaYb167fuLl+q3P7zt1797sbD46yJJeEjkjCE3ni44xyFtORYorTk1RSLHxOj/3Zq5o/fkdlxpL4jSpSOhE4jNmUEazA5W3oLzYdP+FBVgj4lKLqLPwTT6AhCj3bFSiCd9LiI2APTFD1W4STsVBgjwFvRgMUueWZx7YLcDgkSBQSVTvCBMEAgaJN8CaLw+lUmchJZRJ4JRvaA3SKnJi+RaxyFTKtndM+ciQLI9X/n5Zd0brljl0hR9EzVYokAPgcpe1mLhM14auacesyq3/GQVjdI+J1i8tUcUFd5myPGlbdLv7Gyq2VG7DVzN+t6UEDzFblfWBg4Aup2plmOE3x0ME8jbDjU4XhMITenisrr9uzdq3G0DKwL0Dv5Sfz9+f3Tv/Q6547QUJyQWNFOM6ysW2lalJiqRjhFOrIM5piMsMhHQOMsaDZpGyOeYU2wROgaSLhiRVqvFcjSiyyumZQCqyirM3VzlXcOFfTZ5OSxWmuaEzmC01zjlSC6juDAiYpUbwAgIlkUCsiEZaYKLhZHRiC3W55GRzt7dqAX1u9/Sfa3Na1R9pjzdRs7am2rx1oh9pII/oH/Yt+rn8zPhpfje/Gj7lUX7uIeagtmPHrD03vXsY=</latexit><latexit sha1_base64="/9gl1G6ziqBEW+PHOUZMv8LoBdI=">AAAEJnichVPNbtNAEHZtfkr4S+HIZUVU1VHTyu4BkCCiEpcei0TaSnFsrdcbe5td26zXqJblZ+AhuPAQnLhx4VCEEDdegjtjp6oaJ8BItj/P983szOyun3KWKcv6uaYb167fuLl+q3P7zt1797sbD46yJJeEjkjCE3ni44xyFtORYorTk1RSLHxOj/3Zq5o/fkdlxpL4jSpSOhE4jNmUEazA5W3oLzYdP+FBVgj4lKLqLPwTT6AhCj3bFSiCd9LiI2APTFD1W4STsVBgjwFvRgMUueWZx7YLcDgkSBQSVTvCBMEAgaJN8CaLw+lUmchJZRJ4JRvaA3SKnJi+RaxyFTKtndM+ciQLI9X/n5Zd0brljl0hR9EzVYokAPgcpe1mLhM14auacesyq3/GQVjdI+J1i8tUcUFd5myPGlbdLv7Gyq2VG7DVzN+t6UEDzFblfWBg4Aup2plmOE3x0ME8jbDjU4XhMITenisrr9uzdq3G0DKwL0Dv5Sfz9+f3Tv/Q6547QUJyQWNFOM6ysW2lalJiqRjhFOrIM5piMsMhHQOMsaDZpGyOeYU2wROgaSLhiRVqvFcjSiyyumZQCqyirM3VzlXcOFfTZ5OSxWmuaEzmC01zjlSC6juDAiYpUbwAgIlkUCsiEZaYKLhZHRiC3W55GRzt7dqAX1u9/Sfa3Na1R9pjzdRs7am2rx1oh9pII/oH/Yt+rn8zPhpfje/Gj7lUX7uIeagtmPHrD03vXsY=</latexit><latexit sha1_base64="Squ6tmXt6M/cXCXXba2LLOOHtzQ=">AAAEJnichVNNb9NAEHVtPkr4aApHLiuiqo6aVnYPgASRKnHpsUikrRTH1nq9ibfZtc3uGtWy/Gu48Fe4cChCiBs/hbEbVY0TYCTbz/PezM7M7oYZZ0o7zq8N07pz9979zQedh48eP9nqbj89VWkuCR2RlKfyPMSKcpbQkWaa0/NMUixCTs/C+buaP/tEpWJp8kEXGZ0IPEvYlBGswRVsm293vDDlkSoEfEpRdZb+SSDQEM0C1xcohnfa4mNgj21Q9VuEp9hM4IABb8cDFPvlZcD2CnB4JEo1ElU7wgbBAIGiTfAmi8fpVNvIy2QaBSUbugN0gbyEfkSs8jWynf2LPvIkm8W6/z8tu6X1y323Qp6ml7oUaQTwDcrazdwkasLXNePXZVb/jIOwukfE6xZXqWJB3eRsjxpW3Sv+xsrdtRuw28zfr+lBA+xW5X1gYOBLqdqZ5jjL8NDDPIuxF1KN4TDMgkNfVkG35xw4jaFV4C5Az1jYSdC98qKU5IImmnCs1Nh1Mj0psdSMcAp15IpmmMzxjI4BJlhQNSmbY16hHfBEaJpKeBKNGu/tiBILVdcMSoF1rNpc7VzHjXM9fT0pWZLlmibkeqFpzpFOUX1nUMQkJZoXADCRDGpFJMYSEw03qwNDcNstr4LTwwMX8Hund/RyMY5N47nxwrAN13hlHBnHxokxMoj52fxqXpnfrS/WN+uH9fNaam4sYp4ZS2b9/gMDIVrY</latexit>

(g2,↵,�)
<latexit sha1_base64="oSMIuVwBnBs5wr73hOdOhG0cP9Y=">AAAEiHichVNbb9MwFPbaDEa5dSDxwovFNDVVuymZgIFQpQle9jgkdpGaJnIct/FqJ8Fx0Koof2XiN/HGv+EkraY1KWDJyZfzfef4XGI/ETzVlvV7q9U2th883HnUefzk6bPn3d0XF2mcKcrOaSxideWTlAkesXPNtWBXiWJE+oJd+vMvJX/5g6mUx9E3vUjYRJJZxKecEg0mb7d1u+/4sQjShYRXLovO2jf1JB7hmWe7EofwjGt8COypCap+jXBSPpPE48Cb4RCHbn7j8cECDA4NYo1lUfcwQTDEoKgTooriCDbVJnYSFQdezkf2EF9jJ2LfMS9cjU3r4LqPHcVnoe7/T8vvad38wC6wo9mNzmUcAPyEk3oxd4Eq903FuGWaxT/9wK2sEYuyxCa1WFF3MeuthlMHi7+xqrdxAL2q/25JDytg1jLvAwMNXxvEzDsaOkQkIRk6PtOkMalSALtqQ7FEELIxUVVPaU6ShIyWoavI8FeV3g1hlI3MsNcHwuvuWYdWtXAT2Cuwd/Iquf2JEDrzur+cIKaZZJGmgqTp2LYSPcmJ0pwKBpVmKUsInZMZGwOMiGTpJK8uUoH3wRLgaaxgRxpX1vseOZFpmSMoJdFhWudK4yZunOnph0nOoyTTLKLLg6aZwDrG5a3EAVeMarEAQKjikCumIVGEari7HWiCXS+5CS6ODm3AX6Eb79Fy7aDX6A0ykY2O0Qk6RWfoHNH2dnvQftt+Z3QMyzg2Pi6lra2Vz0u0tozPfwAs93rM</latexit><latexit sha1_base64="AI7BcKk5WjNXD5+WkIORcemBcwM=">AAAEiHichVNdb9MwFM3WDEb5WAcSL7xYTFNTNZuSCdgQqjTByx6HRLdJTRM5jpt4tZPgOGhVlP/B034Ubwh+DDdpNa1pAUtOTu459/p+xH7KWaYs6+fGZkvfevBw+1H78ZOnz3Y6u88vsiSXhA5JwhN55eOMchbToWKK06tUUix8Ti/96aeKv/xGZcaS+IuapXQscBizCSNYgcnb3bzdd/yEB9lMwKsQZXvpm3gCDVDo2a5AETyTBh8Be2aAqtcgnIyFAnsMeCMyUeQWNx7rz8DgkCBRSJRNDwMEJgJFk+B1FIfTiTKQk8ok8Ao2sE10jZyYfkWsdBUyrIPrHnIkCyPV+5+W3dO6xYFdIkfRG1WIJAD4AaXNYu4C1e7rinGrNMt/+oFbVSPiVYmr1GxB3cVsthpO7c/+xsru2gF06/67FW3WwGhk3gMGGr40iNA7Mh3M0wibjk8VXplUJYBdt6GcIwi5MlHZTGmK0xQP5qHryPBXVd4rwjgfGFG3B4TX2bMOrXqhVWAvwN7py/T2++9fJ+de54cTJCQXNFaE4ywb2VaqxgWWihFOodI8oykmUxzSEcAYC5qNi/oilWgfLAGaJBJ2rFBtve9RYJFVOYJSYBVlTa4yruNGuZqcjAsWp7miMZkfNMk5UgmqbiUKmKRE8RkATCSDXBGJsMREwd1tQxPsZsmr4OLo0Ab8GbrxTpuvbe2V9lozNFs71k61M+1cG2qktdXqt9603upt3dKP9fdz6ebGwueFtrT0j38AuEN8sw==</latexit><latexit sha1_base64="AI7BcKk5WjNXD5+WkIORcemBcwM=">AAAEiHichVNdb9MwFM3WDEb5WAcSL7xYTFNTNZuSCdgQqjTByx6HRLdJTRM5jpt4tZPgOGhVlP/B034Ubwh+DDdpNa1pAUtOTu459/p+xH7KWaYs6+fGZkvfevBw+1H78ZOnz3Y6u88vsiSXhA5JwhN55eOMchbToWKK06tUUix8Ti/96aeKv/xGZcaS+IuapXQscBizCSNYgcnb3bzdd/yEB9lMwKsQZXvpm3gCDVDo2a5AETyTBh8Be2aAqtcgnIyFAnsMeCMyUeQWNx7rz8DgkCBRSJRNDwMEJgJFk+B1FIfTiTKQk8ok8Ao2sE10jZyYfkWsdBUyrIPrHnIkCyPV+5+W3dO6xYFdIkfRG1WIJAD4AaXNYu4C1e7rinGrNMt/+oFbVSPiVYmr1GxB3cVsthpO7c/+xsru2gF06/67FW3WwGhk3gMGGr40iNA7Mh3M0wibjk8VXplUJYBdt6GcIwi5MlHZTGmK0xQP5qHryPBXVd4rwjgfGFG3B4TX2bMOrXqhVWAvwN7py/T2++9fJ+de54cTJCQXNFaE4ywb2VaqxgWWihFOodI8oykmUxzSEcAYC5qNi/oilWgfLAGaJBJ2rFBtve9RYJFVOYJSYBVlTa4yruNGuZqcjAsWp7miMZkfNMk5UgmqbiUKmKRE8RkATCSDXBGJsMREwd1tQxPsZsmr4OLo0Ab8GbrxTpuvbe2V9lozNFs71k61M+1cG2qktdXqt9603upt3dKP9fdz6ebGwueFtrT0j38AuEN8sw==</latexit><latexit sha1_base64="PNqbpRn4EPdVLLl6PPndalErELA=">AAAEiHichVNbb5swFKYJ3brs0nR73Iu1qApRaAXVtm6aIlXbSx87ab1IISBjHHBjAzNmKkL8lf2ove3f7ECiqiHZZsnwcb7vHJ8L9lPOMmVZv3c6XX330eO9J72nz56/2O8fvLzKklwSekkSnsgbH2eUs5heKqY4vUklxcLn9NpffKn56x9UZiyJv6kipTOBw5jNGcEKTN5B5+eh4yc8yAoBr1JUvbVv4gk0QaFnuwJF8ExafATsuQGqUYtwMhYK7DHgjchEkVveeWxcgMEhQaKQqNoeBghMBIo2wZsoDqdzZSAnlUnglWxim+gWOTH9jljlKmRYR7cj5EgWRmr0Py17oHXLI7tCjqJ3qhRJAPATStvF3Adq3LcV49ZpVv/0A7e6RsTrEjepYkXdx2y3Gk4dF39j5XDrAIZN/92aNhtgtDIfAQMNXxtE6J2YDuZphE3HpwpvTKoWwG7aUC0RhNyYqGyntMBpiifL0E1k+Ktq7w1hnE+MaDgCwusPrGOrWWgT2Csw0Fbrwuv/coKE5ILGinCcZVPbStWsxFIxwilUmmc0xWSBQzoFGGNBs1nZXKQKHYIlQPNEwo4VaqwPPUossjpHUAqsoqzN1cZt3DRX8w+zksVprmhMlgfNc45UgupbiQImKVG8AICJZJArIhGWmCi4uz1ogt0ueRNcnRzbgL9ag7P3q3bsaa+1N5qh2dqpdqadaxfapUa6u91x9233nd7TLf1U/7iUdnZWPq+0taV//gN0qnjI</latexit>

(g2, g
xi
2 , gyi

2)
<latexit sha1_base64="XzuY9ggpmoZWbusRy/j/mhJl0RY=">AAAEiHichVPNbtNAEN42LpTw0xQOHLisqKo4SlrZFVAQilTBpccikbZSnFib9cbeZtc26zWqZflVEM/EjSfgyCswdqKqtQOstPbn+b6ZnZn1zGLBE21ZPzc2W8bWvfvbD9oPHz1+stPZfXqeRKmibEQjEanLGUmY4CEbaa4Fu4wVI3Im2MVs8bHkL74ylfAo/KyzmE0k8UM+55RoMLm7m9/2nVkkvCST8Mpl0b7zTV2Jh9h37anEATyjGh8Ae2qCqlcjnIT7krgceDMY4GCaX7u8n4HBoV6ksSzqHiYIBhgUdUJUURzB5trETqwiz8350B7gK+yE7AvmxVRj0zq46mFHcT/Qvf9p+S3tND+wC+xodq1zGXkA3+O4XsxNoMp9XTHTMs3in37gVtaIRVlik8pW1E3Meqvh1H72N1Z1115At+r/tKQHFTBrmfeAadyE7x4NHCLigAycGdMEBA0edtWGYokgZCOOqqe0IHFMhsvIVWD4q0rvhjBMh2bQ7QHhdvasQ6tauAnsFdg7ef7r93eE0Jnb+eF4EU0lCzUVJEnGthXrSU6U5lQwKCRNWEzogvhsDDAkkiWTvBqkAu+DxcPzSMEONa6stz1yIpMyR1BKooOkzpXGddw41fO3k5yHcapZSJcHzVOBdYTLqcQeV4xqkQEgVHHIFdOAKEI1zG4bmmDXS26C86NDG/An6MYbtFzb6AV6iUxko2N0gk7RGRoh2tpq9VuvWq+NtmEZx8a7pXRzY+XzDN1Zxoc/NXB7lQ==</latexit><latexit sha1_base64="AtZqiLhHvKdOmX2Mu9OcBe2EC90=">AAAEiHichVPBbtNAEHUTF0qANoUDBy4rqiqOmlR2BRSEIlVw6bFIpK0Ux9ZmvYm32bXN7ho1svwp8BF8Cje+gCO/wNiJqtYOsNLaz/PezM7MeiYJZ0rb9s+NRtPcvHd/60Hr4aPH2zvt3SfnKk4loUMS81heTrCinEV0qJnm9DKRFIsJpxeT+YeCv/hCpWJx9EkvEjoWeBaxKSNYg8nfbXzbdycxD9RCwCsTeevON/EFGqCZ73gChfCMK3wI7KkFqm6FcBWbCewz4K2wh0Ivu/bZwQIMLglijURe9bBA0EOgqBK8jOJyOtUWchMZB37GBk4PXSE3op8Ryz2NLLt/1UWuZLNQd/+nZbe0XtZ3cuRqeq0zEQcA36GkWsxNoNJ9XTFekWb+Tz9wK2pEvCixTi1W1E3Maqvh1IPF31jZWXsBnbL/XkH3SmBVMu8CU7uJmX/UczFPQtxzJ1RjENR42GUb8iWCkLU4sprSHCcJHiwjl4Hhryq8a8IoHVhhpwuE396zD+1yoTpwVmDv5Nmv31+/97fP/PYPN4hJKmikCcdKjRw70eMMS80Ip1BIqmiCyRzP6AhghAVV46wcpBztgyVA01jCjjQqrbc9MixUkSMoBdahqnKFcR03SvX0zThjUZJqGpHlQdOUIx2jYipRwCQlmi8AYCIZ5IpIiCUmGma3BU1wqiXXwfnRoQP4I3TjtbFcW8Zz44VhGY5xbJwYp8aZMTRIc7N50HzZfGW2TNs8Nt8upY2Nlc9T484y3/8Bbrl8fw==</latexit><latexit sha1_base64="AtZqiLhHvKdOmX2Mu9OcBe2EC90=">AAAEiHichVPBbtNAEHUTF0qANoUDBy4rqiqOmlR2BRSEIlVw6bFIpK0Ux9ZmvYm32bXN7ho1svwp8BF8Cje+gCO/wNiJqtYOsNLaz/PezM7MeiYJZ0rb9s+NRtPcvHd/60Hr4aPH2zvt3SfnKk4loUMS81heTrCinEV0qJnm9DKRFIsJpxeT+YeCv/hCpWJx9EkvEjoWeBaxKSNYg8nfbXzbdycxD9RCwCsTeevON/EFGqCZ73gChfCMK3wI7KkFqm6FcBWbCewz4K2wh0Ivu/bZwQIMLglijURe9bBA0EOgqBK8jOJyOtUWchMZB37GBk4PXSE3op8Ryz2NLLt/1UWuZLNQd/+nZbe0XtZ3cuRqeq0zEQcA36GkWsxNoNJ9XTFekWb+Tz9wK2pEvCixTi1W1E3Maqvh1IPF31jZWXsBnbL/XkH3SmBVMu8CU7uJmX/UczFPQtxzJ1RjENR42GUb8iWCkLU4sprSHCcJHiwjl4Hhryq8a8IoHVhhpwuE396zD+1yoTpwVmDv5Nmv31+/97fP/PYPN4hJKmikCcdKjRw70eMMS80Ip1BIqmiCyRzP6AhghAVV46wcpBztgyVA01jCjjQqrbc9MixUkSMoBdahqnKFcR03SvX0zThjUZJqGpHlQdOUIx2jYipRwCQlmi8AYCIZ5IpIiCUmGma3BU1wqiXXwfnRoQP4I3TjtbFcW8Zz44VhGY5xbJwYp8aZMTRIc7N50HzZfGW2TNs8Nt8upY2Nlc9T484y3/8Bbrl8fw==</latexit><latexit sha1_base64="RNKlbz3JAOzu7G2Oc/AaFVV+ynY=">AAAEiHichVPfb5swEKYJ3brsR9PtcS/WoipESSuotnXTFKnaXvrYSUtbKQRkjANubGDGTEWIf2V/1N723+wgUdVCtlkyfNz33fnuzHkJZ6kyzd87na6+++jx3pPe02fPX+z3D15epnEmCZ2RmMfy2sMp5SyiM8UUp9eJpFh4nF55qy8Vf/WDypTF0TeVJ3QhcBCxJSNYgck96Pw8tL2Y+2ku4FWIsvfgm7gCTVHgWo5AITzjBh8Ce26AatQg7JQFArsMeCOcoNApbl02zsFgEz9WSJRNDwMEEwSKJsHrKDanS2UgO5Gx7xZsak3QDbIj+h2x0lHIMI9uRsiWLAjV6H9adk/rFEdWiWxFb1UhYh/gJ5Q0i7kLVLtvK8ap0iz/6QduVY2IVyW2qXxD3cVsthpOHed/Y+Vw6wUM6/47FT2pgdHIfARM6yYC92RiY56EeGJ7VGEQtHjYdRvKNYKQrTiymdIKJwmeriPXgeGvqrxbwiibGuFwBITbH5jHZr1QG1gbMNA268Lt/7L9mGSCRopwnKZzy0zUosBSMcIpFJKlNMFkhQM6BxhhQdNFUQ9SiQ7B4qNlLGFHCtXW+x4FFmmVIygFVmHa5CrjNm6eqeWHRcGiJFM0IuuDlhlHKkbVVCKfSUoUzwFgIhnkikiIJSYKZrcHTbCaJbfB5cmxBfirOTh7v2nHnvZae6MZmqWdamfauXahzTTS3e2Ou2+77/Sebuqn+se1tLOz8XmlPVj65z9tunjI</latexit>

pick at random: and compute and

public key: =

�0 = (h0, s0)
<latexit sha1_base64="I62r53zEAi+7OxusckjsqGVJW4U=">AAAE+HichVRNb9QwEHW7C5QC/QCJCxeLqtqsmlabHgAJrVSJS49Foh9Ssxs5jjdx105C7KAuUX4JEuoBhLjyU7jxbxgnbdUmW7DkZDLvzcybcRI/FVzpweDPwmKne+/+g6WHy48eP1lZXVt/eqSSPKPskCYiyU58opjgMTvUXAt2kmaMSF+wY3/6zuDHn1imeBJ/0LOUjSQJYz7hlGhweeudlU3XT0SgZhJuhSyXbz1TT+IhDj1nLHEE16SBR4DuW8DqNwBX8VASjwNuRTaOxsW5x7dm4HBpkGgsy2aEBQQbA6MJiCqLK9hEW9hNsyTwCj50bHyG3Zh9xLwca2wNts/62M14GOn+/7j8BndcbDsldjU714VMAjDf4rTZzHWiKnxeM2Mjs/xnHISZHrEwLbah2SV0nbM5aqi6NbsLtUJv13aJSCNiuz7TpDVeQ4BdaS9rC0q2jiHrzT3JXnWQYwPbV53cnEAfgFaqZqYpSVMyrFVWIuGtMkJaxDgfWlGvb4A5Ugxmq16zHHN9Hl5prGsZT39YA9ZdqqGaGUfFLb21jcHOoFq4bTiXxsbe8/TrBULowFv77QYJzSWLNRVEqVNnkOpRQTLNqWCgP1csJXRKQnYKZkwkU6Oi+nBLvAmeAE+SDHasceW9GVEQqUx3wJRER6qJGec87DTXkzejgsdprllM60KTXGCdYPMXwAHPGNViBgahGQetmEYkI1TDv2IZhuA0W24bR7s7DtjvYRqvUL2W0Av0ElnIQa/RHtpHB+gQ0U7e+dL51vne/dy96P7o/qypiwuXMc/QrdX99RdUl6V4</latexit><latexit sha1_base64="0WXhtm/ji3pLRc9+yPN13iJNqhg=">AAAE+HichVTPa9RAFE67q9aqdavgxctgKZulaUl60IIsFLz0WMH+gGY3TCazyXRnkpiZSNeQ/0MQxIMiXv1TvIn+Mb5J2tImWx2Y5OV933vve2+S+ClnUtn2r4XFTvfW7TtLd5fv3X+w8rC3+uhQJnlG6AFJeJId+1hSzmJ6oJji9DjNKBY+p0f+9JXGj97RTLIkfqNmKR0JHMZswghW4PJWOyvrrp/wQM4E3ApRLl97Jp5AQxR6zligCK5JA48A3TOBNWgArmShwB4D3IwsFI2LM49tzMDhkiBRSJTNCBMIFgJGE+BVFpfTiTKRm2ZJ4BVs6FjoFLkxfYtYOVbItDdPB8jNWBipwf+47Ap3XGw6JXIVPVOFSAIwX6K02cxloip8XjNjLbP8ZxyE6R4R1y22odk5dJmzOWqoujG7CTVDb9tyMU8jbLk+Vbg1Xk2AXWkvawtKto4h6889yX51kGMNWxedXJ3AAIBWqmamKU5TPKxVViLhrdJCWsQ4H5pRf6CBOVI0Zsl+sxx1fRZeaKxrac9gWAPmTaqhmh5HxS293pq9ZVcLtQ3n3FjbfZJ++vDn986+1/vpBgnJBY0V4VjKE8dO1ajAmWKEU9CfS5piMsUhPQEzxoLKUVF9uCVaB0+AJkkGO1ao8l6NKLCQujtgCqwi2cS0cx52kqvJzqhgcZorGpO60CTnSCVI/wVQwDJKFJ+BgUnGQCsiEc4wUfCvWIYhOM2W28bh9pYD9muYxnOjXkvGU+OZYRqO8cLYNfaMfePAIJ2887HzpfO1+777ufut+72mLi6cxzw2rq3uj7/f46df</latexit><latexit sha1_base64="0WXhtm/ji3pLRc9+yPN13iJNqhg=">AAAE+HichVTPa9RAFE67q9aqdavgxctgKZulaUl60IIsFLz0WMH+gGY3TCazyXRnkpiZSNeQ/0MQxIMiXv1TvIn+Mb5J2tImWx2Y5OV933vve2+S+ClnUtn2r4XFTvfW7TtLd5fv3X+w8rC3+uhQJnlG6AFJeJId+1hSzmJ6oJji9DjNKBY+p0f+9JXGj97RTLIkfqNmKR0JHMZswghW4PJWOyvrrp/wQM4E3ApRLl97Jp5AQxR6zligCK5JA48A3TOBNWgArmShwB4D3IwsFI2LM49tzMDhkiBRSJTNCBMIFgJGE+BVFpfTiTKRm2ZJ4BVs6FjoFLkxfYtYOVbItDdPB8jNWBipwf+47Ap3XGw6JXIVPVOFSAIwX6K02cxloip8XjNjLbP8ZxyE6R4R1y22odk5dJmzOWqoujG7CTVDb9tyMU8jbLk+Vbg1Xk2AXWkvawtKto4h6889yX51kGMNWxedXJ3AAIBWqmamKU5TPKxVViLhrdJCWsQ4H5pRf6CBOVI0Zsl+sxx1fRZeaKxrac9gWAPmTaqhmh5HxS293pq9ZVcLtQ3n3FjbfZJ++vDn986+1/vpBgnJBY0V4VjKE8dO1ajAmWKEU9CfS5piMsUhPQEzxoLKUVF9uCVaB0+AJkkGO1ao8l6NKLCQujtgCqwi2cS0cx52kqvJzqhgcZorGpO60CTnSCVI/wVQwDJKFJ+BgUnGQCsiEc4wUfCvWIYhOM2W28bh9pYD9muYxnOjXkvGU+OZYRqO8cLYNfaMfePAIJ2887HzpfO1+777ufut+72mLi6cxzw2rq3uj7/f46df</latexit><latexit sha1_base64="ZLPDoVPTFtnvSoaem+gkZWoU7Mw=">AAAE+HichVTBbtNAEHWbACVASeHIZUVUxVHdyu4BkFCkSlx6LBJpK9WJtV5v7G12beNdowbLX8KFAwhx5VO48TfMOmmV2imstPZ43puZN7O2/ZQzqWz7z8Zmq33v/oOth51Hj59sP+3uPDuVSZ4ROiIJT7JzH0vKWUxHiilOz9OMYuFzeubP3mn87BPNJEviD2qe0rHAYcymjGAFLm+ntb3r+gkP5FzArRBl59Yz8QQaotBzJgJFcE1qeATosQmsQQ1wJQsF9hjgZmShaFJceWxvDg6XBIlCoqxHmECwEDDqAK+yuJxOlYncNEsCr2BDx0KXyI3pR8TKiUKmvX85QG7GwkgN/sdlK9xJse+UyFX0ShUiCcB8i9J6MzeJqvB1zUy0zPKfcRCme0Rct9iE5kvoJmd91FB1b34XaobeoeVinkbYcn2qcGO8mgC70l4uLCjZOIasv/Yk+9VBTjRsXXeyOoEBAI1U9UwznKZ4uFBZiYS3SgtpEON8aEb9gQbWSNGYJfv1ctT1WXitcVFLewbDBWDepRqq6XFU3NLr9uwDu1qoaThLo2cs14nX/e0GCckFjRXhWMoLx07VuMCZYoRT0J9LmmIywyG9ADPGgspxUX24JdoFT4CmSQY7VqjyrkYUWEjdHTAFVpGsY9q5DrvI1fTNuGBxmisak0Whac6RSpD+C6CAZZQoPgcDk4yBVkQinGGi4F/RgSE49ZabxunhgQP2e7t39Go5ji3jhfHSMA3HeG0cGcfGiTEySCtvfWl9a31vf25/bf9o/1xQNzeWMc+NW6v96y+cSqN0</latexit>

verify:

parse:

e
�
h0,

�
= e

�
s0⌫, g2

�
<latexit sha1_base64="WzbRy/ToruG+qHA9XqEOQMGaCSQ=">AAAFMHichVTdatRAFJ52V631r9VLLxwsZbM0LZteqCALBUF6WcH+QLMbJpPZZLozScxMpEvIO/gi3vgoeqOgiLc+hWeStWyTVgeSnJzvOz/fmWT8VHClB4NvS8ud7o2bt1Zur965e+/+g7X1h0cqyTPKDmkikuzEJ4oJHrNDzbVgJ2nGiPQFO/anrwx+/J5liifxWz1L2UiSMOYTTokGl7feeb3p+okI1EzCo5Dl6qV36kk8xKHnjCWO4J408AjQfQtY/QbgKh5K4nHArcjG0bg49/jWDBwuDRKNZdmMsIBgY2A0AVFlcQWbaAu7aZYEXsGHjo3PsBuzd5iXY42twfZZH7sZDyPd/x+XL3DHxbZTYlezc13IJADzJU6bYi4SVeFXiRmbNst/xkGY0YiFkdiGZnPoImdz1FB1a3YdaoXeru0SkUbEdn2mSWu8hgBX1XtZW1CytQ1Z78qd7FUbOTaw/VfJ4gT6ALRSNTNNSZqSYd1l1SR8VaaRFjHOh1bU67eBuhcD2qoH9RZB5vo8NEhdx7z1h7VT9SCl0Vw5G0nncbW2dqx1ndpLKb21jcHOoFq4bThzY2PvyfADRggdeGuf3SChuWSxpoIodeoMUj0qSKY5FQyU5YqlhE5JyE7BjIlkalRUP3yJN8ET4EmSwRVrXHkXIwoilVEHTEl0pJqYcV6FneZ68mJU8DjNNYtpXWiSC6wTbE4PHPCMUS1mYBCacegV04hkhGo4Y1ZhCE5Tcts42t1xwH4D03iG6rWCHqOnyEIOeo720D46QIeIdj52vnS+d350P3W/dn92f9XU5aV5zCN0aXV//wEQS7qs</latexit><latexit sha1_base64="HbRPUkf+9SxPMcQl2OKruTtHa4s=">AAAFMHichVTdatRAFE67q9b6063eCF44WMpmaVo2vVBBFgqC9LKC2xaa3TCZzCbTziQxM5EuIe8g+Bze+Ch6o6CIV4JP4ZlkLbtJqwNJTs73nZ/vTDJewplU/f7XpeVW+9r1Gys3V2/dvnN3rbN+71DGWUrokMQ8To89LClnER0qpjg9TlKKhcfpkXf2QuNHb2kqWRy9VtOEjgQOIjZhBCtwueutl5uOF3NfTgU8clGsLrwTV6ABClx7LFAI97iGh4Dum8Dq1QBHskBglwFuhhYKx/m5y7am4HCIHyskinqECQQLAaMO8DKLw+lEmchJ0th3czawLXSKnIi+QawYK2T2t097yElZEKre/7hsjjvOt+0COYqeq1zEPpjPUVIXc5GoDL9MzFi3WfwzDsK0RsS1xCY0nUEXOeujhqpb06tQM3B3LQfzJMSW41GFG+PVBLjK3ovKgpKNbUi7l+5kt9zIsYatv0rmJ9ADoJGqnukMJwkeVF2WTcJXpRtpEKNsYIbdXhOoetGgJbtQbx6kjscCjVR19FtvUDllF1JqzaWzlnQWV2lrxppXqV1I6XY2+jv9cqGmYc+Mjb1Hg3cPfh29P3A7nxw/JpmgkSIcS3li9xM1ynGqGOEUlGWSJpic4YCegBlhQeUoL3/4Am2Cx0eTOIUrUqj0zkfkWEitDpgCq1DWMe28DDvJ1OTZKGdRkikakarQJONIxUifHshnKSWKT8HAJGXQKyIhTjFRcMaswhDsuuSmcbi7Y4P9CqbxxKjWivHQeGyYhm08NfaMfePAGBqk9aH1ufWt9b39sf2l/aP9s6IuL81i7hsLq/37D3MzvHU=</latexit><latexit sha1_base64="HbRPUkf+9SxPMcQl2OKruTtHa4s=">AAAFMHichVTdatRAFE67q9b6063eCF44WMpmaVo2vVBBFgqC9LKC2xaa3TCZzCbTziQxM5EuIe8g+Bze+Ch6o6CIV4JP4ZlkLbtJqwNJTs73nZ/vTDJewplU/f7XpeVW+9r1Gys3V2/dvnN3rbN+71DGWUrokMQ8To89LClnER0qpjg9TlKKhcfpkXf2QuNHb2kqWRy9VtOEjgQOIjZhBCtwueutl5uOF3NfTgU8clGsLrwTV6ABClx7LFAI97iGh4Dum8Dq1QBHskBglwFuhhYKx/m5y7am4HCIHyskinqECQQLAaMO8DKLw+lEmchJ0th3czawLXSKnIi+QawYK2T2t097yElZEKre/7hsjjvOt+0COYqeq1zEPpjPUVIXc5GoDL9MzFi3WfwzDsK0RsS1xCY0nUEXOeujhqpb06tQM3B3LQfzJMSW41GFG+PVBLjK3ovKgpKNbUi7l+5kt9zIsYatv0rmJ9ADoJGqnukMJwkeVF2WTcJXpRtpEKNsYIbdXhOoetGgJbtQbx6kjscCjVR19FtvUDllF1JqzaWzlnQWV2lrxppXqV1I6XY2+jv9cqGmYc+Mjb1Hg3cPfh29P3A7nxw/JpmgkSIcS3li9xM1ynGqGOEUlGWSJpic4YCegBlhQeUoL3/4Am2Cx0eTOIUrUqj0zkfkWEitDpgCq1DWMe28DDvJ1OTZKGdRkikakarQJONIxUifHshnKSWKT8HAJGXQKyIhTjFRcMaswhDsuuSmcbi7Y4P9CqbxxKjWivHQeGyYhm08NfaMfePAGBqk9aH1ufWt9b39sf2l/aP9s6IuL81i7hsLq/37D3MzvHU=</latexit><latexit sha1_base64="6fUPDLygwJOmidKqMv1Cnr55Ai0=">AAAFMHichVRda9RAFE27q9b1a6uPvgyWslmalqQPKshCQZA+VnDbQrMbJpPZZLozScxMpEvIT/LFn6IvCor46q/wTrKWbdLqQJKbe879OHeS8VPOpLLtb2vrne6t23c27vbu3X/w8FF/8/GxTPKM0DFJeJKd+lhSzmI6VkxxeppmFAuf0xN//lrjJx9oJlkSv1OLlE4EDmM2YwQrcHmbnTfbrp/wQC4EPApR9q68E0+gEQo9ZypQBPekgUeAHprAGjYAV7JQYI8BbkYWiqbFhcd2FuBwSZAoJMpmhAkECwGjCfAqi8vpTJnITbMk8Ao2cix0jtyYvkesnCpk2rvnQ+RmLIzU8H9ctsKdFrtOiVxFL1QhkgDMVyhtirlMVIVfJ2aq2yz/GQdhWiPiWmIbWiyhy5zNUUPVncVNqBl6+5aLeRphy/Wpwq3xagJcVe9lbUHJ1jZkg2t3clBt5FTD1l8lqxMYAtBK1cw0x2mKR3WXVZPwVelGWsQ4H5nRYNgG6l40aMkB1FsFqeuzUCN1Hf02HNVOOYCUWnPlbCRdxtXa2rHmTWqvpPT6W/aeXS3UNpylsWUs15HX/+wGCckFjRXhWMozx07VpMCZYoRTUJZLmmIyxyE9AzPGgspJUf3wJdoGT4BmSQZXrFDlXY0osJBaHTAFVpFsYtp5HXaWq9nLScHiNFc0JnWhWc6RSpA+PVDAMkoUX4CBScagV0QinGGi4IzpwRCcpuS2cby/54D91t46eL4cx4bx1HhmmIZjvDAOjEPjyBgbpPOx86XzvfOj+6n7tfuz+6umrq8tY54YV1b39x9Pprlg</latexit>

e
�
hr0

, gx+y·m+r
2

�
= e

�
(h(xi+yi·m)r0

)(hr0
)r, g2

�
<latexit sha1_base64="Wc5B3s4W7ZZ/tCEwPMRR8g7o7N0=">AAAFl3icjVTbbtQwEHXbXSjl0i3wgnjAoqo2q02rTR8AgVZUKkJ9bCV6kZrdyHG8iVvnQuygRlH+gR/hZ3jjbxgnS9UmW8CSk8mcOTNzxpHdRHCpRqNfS8srne69+6sP1h4+evxkvbfx9ETGWUrZMY1FnJ65RDLBI3asuBLsLEkZCV3BTt3LfY2ffmOp5HH0ReUJm4TEj/iMU6LA5Wys/Niy3Vh4Mg/hVYTl2q1v6oR4jH3HmoY4gGfcwANADwyIGjQAW3I/JA4H3AhMHEyLK4cPc3DY1IsVDssmw4AAE0NEExBVFluwmTKwnaSx5xR8bJn4AtsR+4p5OVXYGG1fDLCdcj9Qg3/F8hux02LbKrGt2JUqwtgD8wNOmmKuE1X0RWKmus3yrzygaY1YaIltKJ9D1zmbo4aqw/wu1PCdXdMmIgmIabtMkdZ4dQDsqveytqBk6xjS/sKT7FcHOdWw+UfJzQkMAGilama6JElCxnWXVZPwV+lGWoFRNjaC/qAN1L1o0JT9Zj1mu9zXUF1Ifw3GtVP2IacWXTkX82pxba5xl9zbKe/MWA99mM+pw7T8r+xzOgzBxNdVnN7maGdULdw2rLmxufdq/B0jhA6d3k/bi2kWskhRQaQ8t0aJmhQkVZwKBl1nkiWEXhKfnYMZkZDJSVHdKyXeAo+HZ3EKO1K48t5kFCSUWjFEhkQFsolp5yLsPFOzd5OCR0mmWETrQrNMYBVjfUlhj6eMKpGDQWjKoVdMA5ISquAqW4MhWE3JbeNkd8cC+wim8QbVaxW9RK+RgSz0Fu2hA3SIjhHtPO+87+x3PnVfdD92P3cP6tDlpTnnGbq1uke/AZ0C2Yc=</latexit><latexit sha1_base64="HX55Hj5GOS+/QktwKA5fyobUw2Y=">AAAFl3icjVTbbtQwEE3bXSjl1gIPIB6wqKrNatNq0wdAoBWVilAfW4lepGY3chxv4tZOQuygRlH+AYnv4Gd44wv4DcbJUrXJFrDkZDJnzsyccWQv4Uyq4fDnwuJSp3vr9vKdlbv37j94uLr26EjGWUroIYl5nJ54WFLOInqomOL0JEkpFh6nx975rsaPv9BUsjj6pPKEjgUOIjZlBCtwuWtL3zccL+a+zAW8ClGuXPsmrkAjFLj2RKAQnnEDDwHdMyGq3wAcyQKBXQa4GVoonBQXLhvk4HCIHyskyibDhAALQUQT4FUWh9OpMpGTpLHvFmxkW+gMORH9jFg5Ucgcbp71kZOyIFT9f8WyK7GTYtMukaPohSpE7IP5DiVNMZeJKvo8MRPdZvlXHtC0RsS1xDaUz6DLnM1RQ9VBfhNqBu625WCehNhyPKpwa7w6AHbVe1lbULJ1DGlv7kn2qoOcaNj6o+TqBPoAtFI1M53jJMGjusuqSfirdCOtwCgbmWGv3wbqXjRoyV6zHnU8FmioLqS/+qPaKXuQU4uunPN5tbg217xJ7vWUN2ashz7IZ9RBWv5X9hkdhmChyyru6vpwa1gt1DbsmbG+82L09emv42/77uoPx49JJmikCMdSntrDRI0LnCpGOIWuM0kTTM5xQE/BjLCgclxU90qJNsDjo2mcwo4UqrxXGQUWUiuGSIFVKJuYds7DTjM1fTMuWJRkikakLjTNOFIx0pcU8llKieI5GJikDHpFJMQpJgqushUYgt2U3DaOtrdssA9gGq+Mei0bz42XhmnYxmtjx9gz9o1Dg3SedN52djsfus+677sfu3t16OLCjPPYuLa6B78B/+rbUA==</latexit><latexit sha1_base64="HX55Hj5GOS+/QktwKA5fyobUw2Y=">AAAFl3icjVTbbtQwEE3bXSjl1gIPIB6wqKrNatNq0wdAoBWVilAfW4lepGY3chxv4tZOQuygRlH+AYnv4Gd44wv4DcbJUrXJFrDkZDJnzsyccWQv4Uyq4fDnwuJSp3vr9vKdlbv37j94uLr26EjGWUroIYl5nJ54WFLOInqomOL0JEkpFh6nx975rsaPv9BUsjj6pPKEjgUOIjZlBCtwuWtL3zccL+a+zAW8ClGuXPsmrkAjFLj2RKAQnnEDDwHdMyGq3wAcyQKBXQa4GVoonBQXLhvk4HCIHyskyibDhAALQUQT4FUWh9OpMpGTpLHvFmxkW+gMORH9jFg5Ucgcbp71kZOyIFT9f8WyK7GTYtMukaPohSpE7IP5DiVNMZeJKvo8MRPdZvlXHtC0RsS1xDaUz6DLnM1RQ9VBfhNqBu625WCehNhyPKpwa7w6AHbVe1lbULJ1DGlv7kn2qoOcaNj6o+TqBPoAtFI1M53jJMGjusuqSfirdCOtwCgbmWGv3wbqXjRoyV6zHnU8FmioLqS/+qPaKXuQU4uunPN5tbg217xJ7vWUN2ashz7IZ9RBWv5X9hkdhmChyyru6vpwa1gt1DbsmbG+82L09emv42/77uoPx49JJmikCMdSntrDRI0LnCpGOIWuM0kTTM5xQE/BjLCgclxU90qJNsDjo2mcwo4UqrxXGQUWUiuGSIFVKJuYds7DTjM1fTMuWJRkikakLjTNOFIx0pcU8llKieI5GJikDHpFJMQpJgqushUYgt2U3DaOtrdssA9gGq+Mei0bz42XhmnYxmtjx9gz9o1Dg3SedN52djsfus+677sfu3t16OLCjPPYuLa6B78B/+rbUA==</latexit><latexit sha1_base64="HHPTy/NMOb9lN6NIQ+emjT+hOdY=">AAAFl3icjVTbbtQwEE3bXSjLpS3wgnixqKrNatMq6QMg0IpKRaiPrUQvUrMbOY43cetciB3UKMon8TO88TeMk7Bqky1gyclkzpyZOePIbsKZkKb5a2V1rdd/8HD90eDxk6fPNja3np+JOEsJPSUxj9MLFwvKWURPJZOcXiQpxaHL6bl7fajw8+80FSyOvso8odMQ+xGbM4IluJyttR87thtzT+QhvIqwHNz5Jk6IJsh3rFmIAnjGLTwA9EiHqFELsAXzQ+wwwPXAQMGsuHHYOAeHTbxYorBsM3QIMBBEtAFeZbE5nUsd2Ukae07BJpaBrpAd0W+IlTOJdHP3aoTslPmBHP0rlt2KnRW7VolsSW9kEcYemB9R0hazSFTRl4mZqTbLv/KApjQiriR2obyBFjnbo4aq4/w+VPedfcPGPAmwYbtU4s54VQDsqveytqBk5xjS4dKTHFYHOVOw8UfJ7QmMAOikame6xkmCJ3WXVZPwV6lGOoFRNtGD4agL1L0o0BDDdj1qu8xXUF1IfY0mtVMMIacSXTmX82pxXa5+n9y7Ke/NWA99nDfUcVr+V/aGDkMw0KKKs7lt7pnVQl3DaoxtrVnHzuZP24tJFtJIEo6FuLTMRE4LnEpGOIWuM0ETTK6xTy/BjHBIxbSo7pUS7YDHQ/M4hR1JVHlvMwocCqUYIkMsA9HGlHMZdpnJ+ftpwaIkkzQidaF5xpGMkbqkkMdSSiTPwcAkZdArIgFOMZFwlQ1gCFZbctc429+zwD4xtw/eNuNY115rbzRds7R32oF2pB1rpxrpvex96B32Pvdf9T/1v/SP6tDVlYbzQruz+ie/Adxd2Ds=</latexit>

⌫ = (hr0
)r

<latexit sha1_base64="qsDVxuEMzihdLCJlFCICNbYG2vU=">AAAFSHichVTLbtNAFJ02KZTwaAsSGzYjqiqO4lZxF4CEIlVi02WRSFupjq3xeGJPO37gGaNaln8F8TNsWLLjG9iwACF2XNuhpHYKI419fc+5j3PHGicWXKrR6MvKaqe7duv2+p3e3Xv3H2xsbj08llGaUDahkYiSU4dIJnjIJoorwU7jhJHAEezEuXhV4ifvWCJ5FL5RWcymAfFCPuOUKHDZWx1rx3Qi4cosgFceFL1r39QO8Bh7tmEF2Idn1MB9QA81YA0agCm5FxCbA675Ovat/NLmwwwcJnUjhYOiGaEBQcfAaAKiymIKNlMaNuMkcu2cjw0dn2MzZG8xLyyFtdHu+QCbCfd8Nfgfly9wrXzXKLCp2KXKg8gF8yWOm2KuElXhy8RYZZvFP+MgrNSIRSmxDWVz6Cpnc9RQdZjdhGqeva+bRMQ+0U2HKdIab0mAXfVe1BaUbB1D0l96kv3qIK0S1v8oWZzAAIBWqmamCxLHZFx3WTUJf1XZCBCv8cJ0PK81sFpJ6naA0Ndlv1mSmQ73SqiuVX4NxrVT9iFvqbtyLo+r9dVTGmZzacOkWMyj3aT+b8s6vipjb26P9kbVwm3DmBvbB4/j9x8QQkf25mfTjWgasFBRQaQ8M0axmuYkUZwKBoNKJYsJvSAeOwMzJAGT07y6CAq8Ax4Xz6IEdqhw5V2MyEkgS8XADIjyZRMrncuws1TNXkxzHsapYiGtC81SgVWEy1sFuzxhVIkMDEITDr1i6pOEUAV3Tw+GYDQlt43j/T0D7NcwjWeoXuvoCXqKNGSg5+gAHaIjNEG087HztfO986P7qfut+7P7q6aursxjHqFra231NxVcw6c=</latexit><latexit sha1_base64="gOE7SMs2lsUUD28eelehMRWbUYs=">AAAFSHichVTLbtQwFE07Uyjl1YLEho1FVU1Gk1aTLqASGqkSmy6LRB9SM4kcx5O44zywHdQoyn+w4m/YsGSH4A/YsAAhdtwkQ5kmU7Dk5Oaecx/nOrKbcCbVcPhpabnTXblxc/XW2u07d+/dX994cCzjVBB6RGIei1MXS8pZRI8UU5yeJoLi0OX0xJ2+KPGTN1RIFkevVJbQcYj9iE0YwQpczkbH3rLcmHsyC+GVh8XalW/ihGiEfMe0QxTAM27gAaAHOrD6DcCSzA+xwwDXAwMFdn7hsEEGDot4sUJh0YzQgWAgYDQBXmWxOJ0oHVmJiD0nZyPTQOfIiuhrxApbIX24fd5HlmB+oPr/47I5rp1vmwWyFL1QeRh7YD5HSVPMZaIqfJEYu2yz+GcchJUaES8ltqFsBl3mbI4aqg6y61Ddd3YNC/MkwIblUoVb4y0JsKvei9qCkq1jEL2FJ9mrDtIuYeOPkvkJ9AFopWpmmuIkwaO6y6pJ+KvKRoB4hRelo1mtvt1KUrcDhJ4he82S1HKZX0J1rfKrP6qdsgd5S92Vc3Fcra+e0iCbSRuIYj6Pfp36vy0b6LKMs7453BlWC7UNc2Zs7j9K3r398nnv0Fn/aHkxSUMaKcKxlGfmMFHjHAvFCKcwqFTSBJMp9ukZmBEOqRzn1UVQoC3weGgSC9iRQpV3PiLHoSwVAzPEKpBNrHQuws5SNdkb5yxKUkUjUheapBypGJW3CvKYoETxDAxMBINeEQmwwETB3bMGQzCbktvG8e6OCfZLmMZTrV6r2mPtiaZrpvZM29cOtEPtSCOd952vne+dH90P3W/dn91fNXV5aRbzULuyVpZ/A6CoxY4=</latexit><latexit sha1_base64="gOE7SMs2lsUUD28eelehMRWbUYs=">AAAFSHichVTLbtQwFE07Uyjl1YLEho1FVU1Gk1aTLqASGqkSmy6LRB9SM4kcx5O44zywHdQoyn+w4m/YsGSH4A/YsAAhdtwkQ5kmU7Dk5Oaecx/nOrKbcCbVcPhpabnTXblxc/XW2u07d+/dX994cCzjVBB6RGIei1MXS8pZRI8UU5yeJoLi0OX0xJ2+KPGTN1RIFkevVJbQcYj9iE0YwQpczkbH3rLcmHsyC+GVh8XalW/ihGiEfMe0QxTAM27gAaAHOrD6DcCSzA+xwwDXAwMFdn7hsEEGDot4sUJh0YzQgWAgYDQBXmWxOJ0oHVmJiD0nZyPTQOfIiuhrxApbIX24fd5HlmB+oPr/47I5rp1vmwWyFL1QeRh7YD5HSVPMZaIqfJEYu2yz+GcchJUaES8ltqFsBl3mbI4aqg6y61Ddd3YNC/MkwIblUoVb4y0JsKvei9qCkq1jEL2FJ9mrDtIuYeOPkvkJ9AFopWpmmuIkwaO6y6pJ+KvKRoB4hRelo1mtvt1KUrcDhJ4he82S1HKZX0J1rfKrP6qdsgd5S92Vc3Fcra+e0iCbSRuIYj6Pfp36vy0b6LKMs7453BlWC7UNc2Zs7j9K3r398nnv0Fn/aHkxSUMaKcKxlGfmMFHjHAvFCKcwqFTSBJMp9ukZmBEOqRzn1UVQoC3weGgSC9iRQpV3PiLHoSwVAzPEKpBNrHQuws5SNdkb5yxKUkUjUheapBypGJW3CvKYoETxDAxMBINeEQmwwETB3bMGQzCbktvG8e6OCfZLmMZTrV6r2mPtiaZrpvZM29cOtEPtSCOd952vne+dH90P3W/dn91fNXV5aRbzULuyVpZ/A6CoxY4=</latexit><latexit sha1_base64="n5PTYwwdfDC7e4hvxOWrZbaaOVU=">AAAFSHichVTLbtQwFE07Uyjl1cKSjUVVTUaTVkkXgIRGqsSmyyLRh9RMIsfxJG6dB7GDGkX5PDYs2fENbFiAEDuuk1CmyRQsObm559zHuY7spZwJaZpfVlYHw7U7d9fvbdx/8PDR482tJyciyTNCj0nCk+zMw4JyFtNjySSnZ2lGceRxeupdvlH46QeaCZbE72SR0lmEg5jNGcESXO7WwNmxvYT7oojgVUbVxo1v4kZoigLXciIUwjPp4CGghzqwxh3AFiyIsMsA10MDhU555bJJAQ6b+IlEUdWN0IFgIGB0AV5nsTmdSx3ZaZb4bsmmloEukB3T94hVjkS6uXsxRnbGglCO/8dlC1yn3LUqZEt6Jcso8cF8jdKumOtEdfgyMY5qs/pnHIQpjYgriX2oaKHrnN1RQ9VJcRuqB+6+YWOehtiwPSpxb7yKALvuvWosKNk7hmy09CRH9UE6Cjb+KFmcwBiAXqpupkucpnjadFk3CX+VagSIN3hxPm1rjZ1ekqYdIIwMMeqWpLbHAgU1tdTXeNo4xQjyKt21c3lco6+Z0qRopU2yajGPfpv6vy0b6LqMu7lt7pn1Qn3Dao1trV1H7uZn209IHtFYEo6FOLfMVM5KnElGOIVB5YKmmFzigJ6DGeOIillZXwQV2gGPj+ZJBjuWqPYuRpQ4EkoxMCMsQ9HFlHMZdp7L+atZyeI0lzQmTaF5zpFMkLpVkM8ySiQvwMAkY9ArIiHOMJFw92zAEKyu5L5xsr9ngf3W3D540Y5jXXumPdd0zdJeagfaoXakHWtk8HHwdfB98GP4afht+HP4q6GurrQxT7Uba231N10PwaM=</latexit>

pick at random: and computer0
<latexit sha1_base64="E0XD/gy9SPwp7lWq3msyF4Kjrm8=">AAAEFnichZPPb9MwFMe9hB+j/FgHRy4W1bRU66ZkB0BCFZO47Dgkuk1qmshx3MSrnQTbQYui/BVc+FeQEEIgxBVx4w/hjpNWU5dWYCnJN+/znv3esx1kjEpl2783DPPGzVu3N+907t67/2Cru/3wVKa5wGSEU5aK8wBJwmhCRooqRs4zQRAPGDkLZq9qfvaOCEnT5I0qMjLhKErolGKktMnfNgY7bpCyUBZcf0peda79Y5/DIYx8x+Mw1u+0xWNNjy3t1W8BV9KII59qbsUDGHvlpU/3Cm1wcZgqyKt2hKUdBlB7tAFrZnEZmSoLuplIQ7+kQ2cAL6CbkLeQVp6Clr1/0YeuoFGs+v/zpUu+XrnvVNBV5FKVPA21fAGzdjFXEzXh64rx6jSrf8bpsLpGyOoSV1GxQFdztlutV90rlugyFLtr+7/btN+r8aARVivxviYrWzdDWYaGLmJZjNyAKKQ3P/IPPVH53Z59YDcDrgpnIXovP1l/vgAATvzuLzdMcc5JojBDUo4dO1OTEglFMSO6hlySDOEZishYywRxIidlc6wruKMtIZymQj+Jgo11OaJEXNY5a0+OVCzbrDauY+NcTZ9PSppkuSIJni80zRlUKazvCAypIFixQguEBdW5QhwjgbDSN6mjm+C0S14Vp4cHjtav7d7RUzAfm+AxeAIs4IBn4AgcgxMwAth4b3w0vhrfzA/mZ/O7+WPuamwsYh6Ba8P8+RePXFbk</latexit><latexit sha1_base64="oFDKAEUJPxyZFiaH9dGlBV19jRU=">AAAEFnichZPPb9MwFMezhB+j/OrgyMWimpZq3ZTsAEioYhKXHYdEt0lNEzmOm3i142A7aFGUv4EDF/4VJMRhCHFF3PhDuOOk1dSlFVhK8s37vGe/92yHGSVSOc7vDdO6cfPW7c07nbv37j942N16dCJ5LhAeIU65OAuhxJSkeKSIovgsExiykOLTcPa65qfvsZCEp29VkeEJg3FKpgRBpU3BljnY9kJOI1kw/SlZ1bn2jwIGhiAOXJ+BRL95iyeaHtnaq98CniQxgwHR3E4GIPHLi4DsFtrgoYgrwKp2hK0dBkB7tAFtZvEoniobeJngUVCSoTsA58BL8TtAKl8B29k77wNPkDhR/f/5kiVfv9xzK+ApfKFKxiMtX4KsXczVRE34umL8Os3qn3E6rK4R0LrEVVQs0NWc7VbrVXeLJboMxc7a/u807fdrPGiE3Uq8r8nK1s1glsGhB2mWQC/ECurNj4MDX1RBt+fsO80Aq8JdiN6rL/afyw9e/zjo/vIijnKGU4UolHLsOpmalFAogijWNeQSZxDNYIzHWqaQYTkpm2NdgW1ticCUC/2kCjTW5YgSMlnnrD0ZVIlss9q4jo1zNX0xKUma5QqnaL7QNKdAcVDfERARgZGihRYQCaJzBSiBAiKlb1JHN8Ftl7wqTg72Xa3fOL3DZ8Z8bBpPjKeGbbjGc+PQODKOjZGBzI/mZ/PS/GZ9sr5a360fc1dzYxHz2Lg2rJ9/AQNIV/o=</latexit><latexit sha1_base64="oFDKAEUJPxyZFiaH9dGlBV19jRU=">AAAEFnichZPPb9MwFMezhB+j/OrgyMWimpZq3ZTsAEioYhKXHYdEt0lNEzmOm3i142A7aFGUv4EDF/4VJMRhCHFF3PhDuOOk1dSlFVhK8s37vGe/92yHGSVSOc7vDdO6cfPW7c07nbv37j942N16dCJ5LhAeIU65OAuhxJSkeKSIovgsExiykOLTcPa65qfvsZCEp29VkeEJg3FKpgRBpU3BljnY9kJOI1kw/SlZ1bn2jwIGhiAOXJ+BRL95iyeaHtnaq98CniQxgwHR3E4GIPHLi4DsFtrgoYgrwKp2hK0dBkB7tAFtZvEoniobeJngUVCSoTsA58BL8TtAKl8B29k77wNPkDhR/f/5kiVfv9xzK+ApfKFKxiMtX4KsXczVRE34umL8Os3qn3E6rK4R0LrEVVQs0NWc7VbrVXeLJboMxc7a/u807fdrPGiE3Uq8r8nK1s1glsGhB2mWQC/ECurNj4MDX1RBt+fsO80Aq8JdiN6rL/afyw9e/zjo/vIijnKGU4UolHLsOpmalFAogijWNeQSZxDNYIzHWqaQYTkpm2NdgW1ticCUC/2kCjTW5YgSMlnnrD0ZVIlss9q4jo1zNX0xKUma5QqnaL7QNKdAcVDfERARgZGihRYQCaJzBSiBAiKlb1JHN8Ftl7wqTg72Xa3fOL3DZ8Z8bBpPjKeGbbjGc+PQODKOjZGBzI/mZ/PS/GZ9sr5a360fc1dzYxHz2Lg2rJ9/AQNIV/o=</latexit><latexit sha1_base64="ljjxiQxOgeebqMWq1JQUmCySJa4=">AAAEFnichZPPb9MwFMe9hB+j/FgHRy4W1bRU66ZkB0BClSZx2XFIdJu0NJHjuIlXOw62gxZF+Su48K9w4QBCXBE3/hucrJq6tAJLSb55n/fs957tKGdUadf9s2HZd+7eu7/5oPfw0eMnW/3tp6dKFBKTCRZMyPMIKcJoRiaaakbOc0kQjxg5i+ZvG372kUhFRfZelzmZcpRkdEYx0sYUblujHT8SLFYlN5+K171b/zjkcAyT0As4TM1bdHhq6LFjvIYd4CuacBRSw510BNOgugrpXmkMPo6FhrzuRjjGYQSNRxewdhafkZl2oJ9LEYcVHXsjeAn9jHyAtA40dNz9yyH0JU1SPfyfL13yDap9r4a+Jle64iI28g3Mu8XcTNSGrysmaNKs/xlnwpoaIWtKXEXlAt3M2W21WXWvXKLLUO6u7f9u2/6gwaNWOJ3Eh4asbN0c5Tka+4jlKfIjopHZ/CQ8DGQd9gfugdsOuCq8hRiAxTgJ+7/9WOCCk0xjhpS68NxcTyskNcWMmBoKRXKE5yghF0ZmiBM1rdpjXcMdY4nhTEjzZBq21uWICnHV5Gw8OdKp6rLGuI5dFHr2elrRLC80yfD1QrOCQS1gc0dgTCXBmpVGICypyRXiFEmEtblJPdMEr1vyqjg9PPCMfucOjl4u2rEJnoMXwAEeeAWOwDE4AROArU/WF+ub9d3+bH+1f9g/r12tjUXMM3Br2L/+ArhrVAw=</latexit>

�0 = (hr0
, h(xi+yi·m)r0

)
<latexit sha1_base64="34Xx/RQM8d1UM9h7YweKEBbE9+g=">AAAE1nichVTNbtNAEN4mAUr4aQoSFy4rqiqO6lZxD4CEIlXi0mMRpI0UJ9Z6vbG32bWNvUa1LHMAIa48AeKZuPEOPARjO1Sp3cJKa8/O983sfLNe26HgsRoOf2202p1bt+9s3u3eu//g4VZv+9FpHCQRZWMaiCCa2CRmgvtsrLgSbBJGjEhbsDN7+brAzz6wKOaB/06lIZtJ4vp8wSlR4LK2W793TTsQTpxKeGUy715ZU0viEXYtYy6xB8+ghnuAHmvAGtQAM+auJBYHXPN07M2zC4vvpeAwqRMoLPN6hAYEHQOjDogyiynYQmnYDKPAsTI+MnR8jk2fvcc8nyusDffPB9iMuOupwf+4fI07z/aNHJuKXahMBg6Yr3BYF3OZqAy/Tsy8KDP/ZxyEFRqxKCQ2oXQFXeastxp23UtvQjXXOtRNIkKP6KbNFGm0tyDALGvPKwu2bBxD1M+7zYPsl+c4L1D9r5D1BgwAaGSqd2NJwpCMqiLLGuGjKupoEP1kpHn9QQNgps1dQPQqVbEajCqndlNRkKwQW3Jzq7czPBiWAzcNY2XsHD0Jv/9ACJ1YvZ+mE9BEMl9RQeJ4agxDNctIpDgVDDqVxCwkdElcNgXTJ5LFs6y8ljneBY+DF0EE01e49K5HZETGhTJgSqK8uI4VzuuwaaIWL2cZ98NEMZ9WGy0SgVWAizuOHR4xqkQKBqERh1ox9UhEqII/QReaYNQlN43TwwMD7DfQjeeoGpvoKXqGNGSgF+gIHaMTNEa0/badtj+1P3cmnY+dL52vFbW1sYp5jK6Mzrc/RGOZKg==</latexit><latexit sha1_base64="hnt0hn2zoYK8frKAR0R39eMExds=">AAAE1nichVTPb5RAFKbdVev6a6uJFy8Tm2Yhpc3SgzYxmzTx0mONbrvJspBhmIXpzgDCYEoIHjTGq0dP/lHejP4J/hE+YG220OokA2/e970373vD4EScJXI4/LG23uneuHlr43bvzt179x/0Nx+eJGEaEzomIQ/jiYMTyllAx5JJTidRTLFwOD11Fi9L/PQdjRMWBm9kFtGZwF7A5oxgCS57c/33tumE3E0yAa9cFL1La2ILNEKebVgC+fAMG7gP6JEKLK0BmAnzBLYZ4KqvI9/Kz222k4HDJG4okSiaESoQdASMJsCrLCanc6kiM4pD187ZyNDRGTID+haxwpJIHe6eaciMmedL7X9ctsK18l2jQKak5zIXoQvmCxQ1xVwkqsKvEmOVZRb/jIOwUiPipcQ2lC2hi5zNVsOuO9l1qOrZ+7qJeeRj3XSoxK32lgSYVe1FbcGWrWOIB0WvfZCD6hytEtX/ClltgAZAK1OzGwscRXhUF1nVCB9VWUeLGKQj1R9oLYCaDvMA0etU5Uob1U71uqIgWSm24hZ2f2u4N6wGahvG0tg6fBx9+/rr58Gx3f9uuiFJBQ0k4ThJpsYwkrMcx5IRTqFTaUIjTBbYo1MwAyxoMsura1mgbfC4aB7GMAOJKu9qRI5FUioDpsDST5pY6bwKm6ZyfjDLWRClkgak3mieciRDVN5x5LKYEskzMDCJGdSKiI9jTCT8CXrQBKMpuW2c7O8ZYL+CbjxT6rGhPFGeKqpiKM+VQ+VIOVbGCum87mSdD52P3Un3ffdT93NNXV9bxjxSLo3ulz/Pr5sR</latexit><latexit sha1_base64="hnt0hn2zoYK8frKAR0R39eMExds=">AAAE1nichVTPb5RAFKbdVev6a6uJFy8Tm2Yhpc3SgzYxmzTx0mONbrvJspBhmIXpzgDCYEoIHjTGq0dP/lHejP4J/hE+YG220OokA2/e970373vD4EScJXI4/LG23uneuHlr43bvzt179x/0Nx+eJGEaEzomIQ/jiYMTyllAx5JJTidRTLFwOD11Fi9L/PQdjRMWBm9kFtGZwF7A5oxgCS57c/33tumE3E0yAa9cFL1La2ILNEKebVgC+fAMG7gP6JEKLK0BmAnzBLYZ4KqvI9/Kz222k4HDJG4okSiaESoQdASMJsCrLCanc6kiM4pD187ZyNDRGTID+haxwpJIHe6eaciMmedL7X9ctsK18l2jQKak5zIXoQvmCxQ1xVwkqsKvEmOVZRb/jIOwUiPipcQ2lC2hi5zNVsOuO9l1qOrZ+7qJeeRj3XSoxK32lgSYVe1FbcGWrWOIB0WvfZCD6hytEtX/ClltgAZAK1OzGwscRXhUF1nVCB9VWUeLGKQj1R9oLYCaDvMA0etU5Uob1U71uqIgWSm24hZ2f2u4N6wGahvG0tg6fBx9+/rr58Gx3f9uuiFJBQ0k4ThJpsYwkrMcx5IRTqFTaUIjTBbYo1MwAyxoMsura1mgbfC4aB7GMAOJKu9qRI5FUioDpsDST5pY6bwKm6ZyfjDLWRClkgak3mieciRDVN5x5LKYEskzMDCJGdSKiI9jTCT8CXrQBKMpuW2c7O8ZYL+CbjxT6rGhPFGeKqpiKM+VQ+VIOVbGCum87mSdD52P3Un3ffdT93NNXV9bxjxSLo3ulz/Pr5sR</latexit><latexit sha1_base64="lvBebb2K1gge5qf++dlWS1/7O7Q=">AAAE1nichVTPb5RAFKZd1Lr+2urRy8RNs2xKG+hBTcwmTbz0WKPbbrIsZBhmYbozgDCYEoIHjfHq3+bN/8E/wgeszRZanWTgzfu+9+Z9bxjcmLNUGsavre2eeufuvZ37/QcPHz1+Mth9epZGWULolEQ8SmYuTilnIZ1KJjmdxQnFwuX03F29rfDzTzRJWRR+kHlMFwL7IVsygiW4nN3t33uWG3EvzQW8ClH2r62JI9AE+Y5pCxTAM2rhAaAnGrDGLcBKmS+wwwDXAh0FdnHpsP0cHBbxIolE2Y7QgKAjYLQBXmexOF1KDVlxEnlOwSamji6QFdKPiJW2RJpxcDFGVsL8QI7/x2UbXLs4MEtkSXopCxF5YL5BcVvMVaI6/CYxdlVm+c84CKs0Il5J7EL5GrrK2W417Lqf34ZqvnOkW5jHAdYtl0rcaW9FgFnXXjYWbNk5hmRU9rsHOarP0a5Q/a+QzQaMAehkandjheMYT5oi6xrho6rq6BDDbKIFo3EHoJbLfED0JlW1Gk8ap3ZbUZCsEltzS2cwNA6NeqCuYa6NobIep87gp+VFJBM0lITjNJ2bRiwXBU4kI5xCp7KUxpissE/nYIZY0HRR1NeyRHvg8dAySmCGEtXezYgCi7RSBkyBZZC2scp5EzbP5PL1omBhnEkakmajZcaRjFB1x5HHEkokz8HAJGFQKyIBTjCR8CfoQxPMtuSucXZ0aIL9zhgev1y3Y0d5rrxQNMVUXinHyolyqkwV0nvfy3tfel/VmfpZ/aZ+b6jbW+uYZ8q1of74A4wWlyY=</latexit>

