Coconut: Threshold Issuance Selective Disclosure
Credentials with Applications to Distributed Ledgers

Authors

Alberto Sonnino*
Mustafa Al-Bassam®
Shehar Bano*

Sarah Meiklejohn*
George Danezis*

* University College London

!

V2

PASSPOK)
KOREA
PASSPORT

PQODis f\ M of (
REPUBLIC OF

Privacy-preserving
credentials

s

...without a single issuer

Blockchains

Byzantine No failure

Hard to build Conventional

Expensive Cheap

s B e

oy

S

The Authors

":

Bano Shehar Sarah Meiklejohn George Danezis

11

Challenges in blockchains

K send it to the blockchain \

write the contract anyone can verify

O

_

Challenges in blockchains

Can we issue credentials in this setting?

K send it to the blockchain \

write the contract anyone can verify

O

13

What are we trying to do?

® Issuing credentials through smart contracts

write the contract

... While preserving privacy

14

What are we trying to do?

® Issuing credentials through smart contracts

write the contract

some attributes

... While preserving privacy

15

What are we trying to do?

® Issuing credentials through smart contracts

write the contract

credentials

some attributes

... While preserving privacy

What are we trying to do?

® Issuing credentials through smart contracts

another contract

credentials

... While preserving privacy

17

What are we trying to do?

® The more traditional setting

K store it to a server selective access\

write a program O

4 \.’ ‘@ |
S R — O
N— \

(@
_ J

.. but without any central authority

18

Distributed
settings

What are we trying to do?

® Why is it hard?

~

transactions are
recorded on chain

/

In a decentralised setting

20

What are we trying to do?
® Why is it hard?

FL

J

-

attributes & signing key
should be secret

~

transactions are
recorded on chain

/

In a decentralised setting

21

What are we trying to do?
® Why is it hard?

FL

J

-

attributes & signing key
should be secret

~

transactions are
recorded on chain

/

FR

4)

credentials showing
should be unlinkable

o

In a decentralized setting

22

Introduction

® Which properties do we need?

23

Introduction

® Which properties do we need?

()

Blindness

4

- _J

24

Introduction

® Which properties do we need?

() ("

Blindness

Unlinkability

4

_ _J -

25

Introduction

® Which properties do we need?

() ("

Unlinkability) [Threshold Authority |
o

Blindness

4

_ _J -

_J - J

20

Introduction

® Which properties do we need?

g Blindness N [Unlinkability) [Threshold Authority |
o O o
) Y I
- J L J L D
a)

Authorities Non-
Interactivity

27

Introduction

® Which properties do we need?

g Blindness N [Unlinkability) [Threshold Authority |
o O o
) Y I
- J L J L D
a) a)

Authorities Non-
Interactivity

Efficiency

28

So we built Coconut

29

Introduction

® Related works

Scheme Blindness Unlinkable Aggregable Threshold Signature Size
[39] Waters Signature X X O X 2 Elements
[26] LOSSW Signature X X - X 2 Elements
[8] BGLS Signature X X ® v 1 Element
[15] CL Signature v v O X O(q) Elements
[31] Pointcheval et al. v v = X 2 Elements
Coconut v v ® v 2 Elements

O not aggregable

@ sequentially aggregable
@ user-side aggregable

g number of attributes

30

Introduction

® What is Coconut?

31

Introduction

® What is Coconut?

fContribution I

Coconut credentials scheme

32

Introduction

® What is Coconut?

" Contribution | :
Coconut credentials scheme

- Y

N

: Contribution 1l

Coconut smart contract library & EE EI
example of applications

33

Contents

contribution i

3.
Coconut Smart
Contract Library

A.
System Overview

contribution |

2.
Coconut Credentials
Scheme

4

5 Applications

Performance

34

System Overview

® How does Coconut work?

authorities

35

System Overview

® How does Coconut work?

@ request

authorities

36

System Overview

® How does Coconut work?

@ request
——————

@ issue
— e

authorities

37

System Overview

® How does Coconut work?

@ request

@ issue

€) aggregate &
randomize

authorities

38

System Overview

® How does Coconut work?

@ request

@ issue

€) aggregate &
randomize

show
o authorities

39

System Overview

® Threshold authorities

authorities

40

System Overview

® Threshold authorities

" honest authorities

Users need to collect
only t shares authorities

41

System Overview

® Threshold authorities

--

shard

Users need to collect
only (2f+1) shares

Coconut Credentials Scheme

® Cryptographic primitives

o Setup
initialisation < KeyGen

0:0 AggKey
blind issuance I % IssueCred

verify & < ProveCred

break linkability & VerifyCred

43

Coconut Credentials Scheme

® From where do coconuts come from?

€) Coconut €

[BLS Signatures PS Signatures]

44

Coconut Credentials Scheme

® From where do coconuts come from?

€) Coconut €
[BLS Signatures PS Signatures]

® What do they look like?

take an attribute: m
compute: h <+ H(cp)

signature: © + (h,h*™) & secret key: (x,y)

45

Coconut Credentials Scheme

® Communication protocol

user authority; verifier

O (A, 9)

repeat,
[times

D (o)

® (0,9

46

Coconut Smart Contract Library

® General purpose library

@ contractinfo ! . @ contract info
; create |¢—
é)
v © attributes . @ attributes ©
J —>1 request ; >
®
A T
4_‘ : @ credentials '
. issue [
4 @® credentials : 5 ‘ © ‘
q y
@ credentials : _ 5 authorities
—»| verify :
Ledger

Applications

® Coin tumbler

authorities

l@ issue token Al

. O pay 5 .
ﬂ —>1 issue
: @I deposit

@ submit token buffer

v (7] ‘withdraw

W ® submit token .
merchan’cJ< E withdraw

@ receive money:

48

Applications

® Privacy-preserving petitions

N
roof of identit
\ Op y
citizen @ credentials authorities happens
< L only once
/
O sign petition E
: y .
petition] €@ create petition !) E happens every
creator J vote : campaign
Ledger /

49

Performance

® What is out there?

50

Performance

® What is out there?

()

The Coconut
cryptographic library

Python & Timing
benchmark

51

Performance

® What is out there?

() ()
The COC_Onl_Jt Smart contract library
cryptographic library
Python & Timing
benchmark .

52

Performance

® What is out there?

() ()
The COC_Onl_Jt Smart contract library
cryptographic library
Python & Timing
benchmark o
()
Applications
Coin tumbler
E-Petition
(CRD proxy distribution)
-),

53

Performance

® What is out there?

: The Coconut A
cryptographic library
Python & Timing
benchmark
_ W,
()
Applications

Coin tumbler

E-Petition

(CRD proxy distribution)
_ W,

()
Smart contract library
& ‘
_ W,
~

Everything is released as open source software

https://github.com/asonnino/coconut

)

54

Performance

® How fast is Coconut?

Operation ([ms] vV o? [ms]
PrepareBIlindSign 2.633 + 0.003
sign | BlindSign 3.356 + 0.002
Unblind 0.445 + 0.002
AggCred 0.454 4 0.000
ProveCred 1.544 + 0.001
verify | VerifyCred 10.497 -+ 0.002

signing is fast, verifying takes 10ms

55

Performance

® What is the size of the credentials?
a)

2 Group Elements

No matter how many attributes...

No matter how many authorities...

56

Performance

® How does Coconut scale?

Number of authorities: n, Signature size: 132 bytes
Transaction complexity size [B]

Signature on public attribute:

O request credential O(n) 32
@ issue credential O(n) 132
® verify credential O(1) 162
Signature on private attribute:
issue | @ request credential O(n) 516
@ issue credential O(n) 132
verify | © verify credential O(1) 355

Signing scales linearly, verifying is constant time

57

Performance

® Did you evaluate it in the real world?

® server
@ client

pick 10 locations across the world

58

Performance

® Did you evaluate it in the real world?

600 /#
—F— Public attribute -
— -}— - Private attribute

500

400

Client Latency [ms]
&
o

N

o

o
I

100

Threshold parameter

client latency VS number of authorities

59

Performance

® Did you evaluate it in the real world?
Tokyo & Sidney

600
—F— Public attribute
— -}— - Private attribute
500
400

Client Latency [ms]
&
o

N

o

o
I

Europe
(close to client)

4 5 6 7 8 9 10
Threshold parameter

client latency VS number of authorities

60

What else is in the paper?

Full cryptographic
scheme

Smart contract
library evaluation

Coin tumbler, CRD
proxy applications

Applications
evaluation and
benchmarking

submit/2158644 [cs.CR] 20 Feb 2018

ArXiv

(

C

Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers

Alberto Sonnino Mustafa Al-Bassam Shehar Bano
University College London University College London University College London

George Danezis
University College London
The Alan Turing Institute

Abstract

‘We present Coconut, a novel selective disclosure cre-
dential scheme supporting distributed threshold issuance,
public and private attributes, re-randomization, and mul-
tiple unlinkable selective attribute revelations. Coconut
can be used by modern blockchains to ensure confiden-
tiality, authenticity and availability even when a subset of
credential issuing authorities are malicious or offline. We
implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three
applications related to anonymous payments, electronic
petitions, and distribution of proxies for censorship resis-
tance. Coconut uses short and computationally efficient
credentials, and our evaluation shows that most Coconut
cryptographic primitives take just a few milliseconds on
average, with verification taking the longest time (10 mil-
liseconds).

1 Introduction

Selective disclosure credentials [15, 17] allow the is-
suance of a credential to a user, and the subsequent
unlinkable revelation (or ‘showing’) of some of the at-
tributes it encodes to a verifier for the purposes of au-
thentication, authorization or to implement electronic
cash. However, established schemes have shortcomings.
Some entrust a single issuer with the credential signa-
ture key, allowing a malicious issuer to forge any cre-
dential or electronic coin. Other schemes do not provide
the necessary re-randomization or blind issuing proper-
ties necessary to implement modern selective disclosure
credentials. No existing scheme provides all of threshold
distributed issuance, private attributes, re-randomization,
and unlinkable multi-show selective disclosure.

The lack of full-featured selective disclosure cre-
dentials impacts platforms that support ‘smart con-
tracts’, such as Ethereum [40], Hyperledger [14] and
Chainspace [3]. They all share the limitation that ver-

ifiable smart contracts may only perform operations
recorded on a public blockchain. Moreover, the secu-
rity models of these systems generally assume that in-
tegrity should hold in the presence of a threshold number
of dishonest or faulty nodes (Byzantine fault tolerance);
it is desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability).

Issuing credentials through smart contracts would be
very desirable: a smart contract could conditionally issue
user credentials depending on the state of the blockchain,
or attest some claim about a user operating through the
contract—such as their identity, attributes, or even the
balance of their wallet. This is not possible, with cur-
rent selective credential schemes that would either en-
trust a single party as an issuer, or would not provide
appropriate re-randomization, blind issuance and selec-
tive disclosure capabilities (as in the case of threshold
signatures [5]). For example, the Hyperledger system
supports CL credentials [15] through a trusted third party
issuer, illustrating their usefulness, but also their fragility
against the issuer becoming malicious.

Coconut addresses this challenge, and allows a subset
of decentralized mutually distrustful authorities to jointly
issue credentials, on public or private attributes. Those
credentials cannot be forged by users, or any small subset
of potentially corrupt authorities. Credentials can be re-
randomized before selected attributes being shown to a
verifier, protecting privacy even in the case all authorities
and verifiers collude. The Coconut scheme is based on a
threshold issuance signature scheme, that allows partial
claims to be aggregated into a single credential. Mapped
to the context of permissioned and semi-permissioned
blockchains, Coconut allows collections of authorities in
charge of maintaining a blockchain, or a side chain [5]
based on a federated peg, to jointly issue selective dis-
closure credentials.

Coconut uses short and computationally efficient cre-
dentials, and efficient revelation of selected attributes and
verification protocols. Each partial credentials and the

Limitations & Future Works

® Would you like to contribute?

" Limitation |

Adding and removing authorities is complicated.
Can we do better than re-running the key generation algorithm?

62

Limitations & Future Works

® Would you like to contribute?

(¢ = ex _as)
Limitation |
Adding and removing authorities is complicated.
Can we do better than re-running the key generation algorithm?
- y,
N

" Limitation II

Current key generation algorithms are complex to implement.
Can we design a key generation algorithm for blockchains?

63

Limitations & Future Works

® What is the next milestone?

A general framework allowing nodes to execute any kind of
threshold cryptography?

64

Conclusion

® What did we talk about?

" Contribution | :
Coconut credentials scheme

- Y

N

: Contribution 1l

Coconut smart contract library & EE EI
example of applications

65

Conclusion

® Main take-aways

()

Sweet for
blockchains

Threshold
iIssuance

Multi-use &

Randomizable unlinkability

. % y
-

66

Thank you for your attention
Questions?

Alberto Sonnino
alberto.sonnino@ucl.ac.uk
https://sonnino.com

(0 DU COSERE A U D . com/asonnino/coconut)

THE ALAN
EPSRC decode TURING
Engineering and Physical Sciences [] INST'TUTE

is work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and The Alan Turing Institute

The ugly

How coconuts are made

® Issue credentials

take an attribute: M
compute: ¢, =g,y h] and h = H(c)

credential: o; = (h, R TY"™) andsecretkey (i, y:)

® Aggregate credentials

Lagrange polynomial: I; = (H (O—j)) (H (i—j)) mod p

i=1,j£ i=1,j£i

t t t
compute: H(hwrl-yi'm)lq: _ H h(@ils) H p(yili)-m pr+y-m

69

How coconuts are made

® Prove credentials

public key: (g2,0,8) = (92,95%,95°)
pick at random: ¢’ andcompute o’ = (hr',h(“”i"‘yi'm)r’)

pick atrandom: T andcompute K =aB™gy and v = (h")"

® Verify credentials

parse: o’ = (h/,s’)
verify: e(h’,k) = e(s'v, g2)

e(hr,, g:28_|_ym—|—’r') — e((h(mi+yi-m)r’)(hr/)r, 92)

70

