

with anonymous credentials

Setting

Setting

Setting

Standard SSO Several limitations

Standard SSO Limitation I - Poor user and RP privacy

Standard SSO Limitation II - Requires IdP availability

Standard SSO Limitation III - Does not work offline

Standard SSO Limitation III - Requires RP registration

Anonymous Credentials

This is not a new idea

Anonymous Credentials Setup phase

Embed many user attributes (eg. email)
Attributes are 'attested' by the IdP
Can only be issued by the IdP

Anonymous Credentials Sign-on phase

- No interaction with the IdP
- Can re-use the credential anonymously
- Can selectively show some attributes •
- Can prove statements about attributes ullet

What we get

Anon. Credentials

- Privacy
- Availability
- RP and user can be offline
- RP do not register with IdP

What's the catch?

Anon. Credentials

- Privacy
- Availability
- RP and user can be offline
- RP do not register with IdP

Standard SSO

Privacy-preserving, Asynchronous Single Sign-On

What is it? It is a system contribution (no new crypto)

Anon. Credentials

What is it? It is a system contribution (no new crypto)

Anon. Credentials with:

- User usability
- Performance

Standard SSO

What is it? It is a system contribution (no new crypto)

Anon. Credentials with:

- User usability
- Performance

• (Optional) Accountability

Standard SSO

Features **User Usability**

- Implemented in C++ using MCL crypto library

User-side client ported to javascript using WebAssembly (Wasm)

Features **User Usability**

- Implemented in C++ using MCL crypto library User-side client ported to javascript using WebAssembly (Wasm)

- Executable footprint: 178KB (including Wasm bin, js glue code) • All user-side operations are handled by Wasm in the browser
- Wasm module cached, marked immutable, sandboxed
- User secrets stored in the browser's password manager
- User state: 600 bytes (3 attributes)

Features Performance

Features Performance

Features Performance

Low-end devices

Operation	Latency [s]	CPU time @ user [s]
EL PASSO Setup	0.72±0.16 (+190%)	0.11±0.001 (+397%)
EL PASSO Sign-on	0.82±0.18 (+125%)	0.18±0.004 (+262%)
OIDC	0.80±0.02 (+45%)	NA
IRMA Setup	30.295±0.39 (+2420%)	29.68±0.27 (+4390%)
IRMA Sign on	34.182±0.49(+2458%)	33.891±0.43 (+3640%)

Features (Optional) Accountability

Decryption authorities

Additional Features More in the paper

- Multi-device support
- 2FA support
- Device theft recovery
- Login as guest

EL PASSO

- Paper: https://arxiv.org/abs/2002.10289

Conclusion

Code: https://github.com/Zhiyi-Zhang/PSSignature

Alberto Sonnino

Construction Anonymous credentials

Setup Phase

PrepareBlindSign $(pk, M_h, \phi) \rightarrow (d, \Lambda, \phi)$

 $\operatorname{Sign}(sk, M_p, \Lambda, \phi) \to \tilde{\sigma}$

 $\mathsf{Unblind}(d,\tilde{\sigma})\to\sigma$

Sign-on Phase

 $\mathsf{Prove}(pk, M_p, M_h, \sigma, \phi') \to (M_p, \Theta, \phi')$

 $\mathsf{Verify}(pk, M_p, \Theta, \phi') \to b$

Construction Setup phase

$\overline{\mathsf{RequestID}}(s) \to \Lambda$ Cred.PrepareBlindSign $(pk, s) \rightarrow (d, \Lambda)$

ProvidelD(*sk*, γ , *info*, *tp*, Λ) $\rightarrow \tilde{\sigma}$ Cred.BlindSign(*sk*, (γ , *tp*, *info*), Λ) $\rightarrow \tilde{\sigma}$

 $\mathsf{Unblind}\mathsf{ID}(d,\tilde{\sigma})\to\sigma$

Cred.Unblind $(d, \tilde{\sigma}) \rightarrow \sigma$

ProvelD(*pk*, σ , γ , *info*, *tp*, *dns*) $\rightarrow (\zeta, \Theta, M_p, \phi', f)$

$\mathsf{ProvelD}(pk,\sigma,\gamma,info,tp,dns) \to (\zeta,\Theta,M_p,\phi',f)$

*info*_p info *info*_h

 $\zeta = \left(H^*(dns)\right)^s$

$\mathsf{ProvelD}(pk,\sigma,\gamma,info,tp,dns) \to (\zeta,\Theta,M_p,\phi',f)$

info_p info *info*_h

 $\zeta = \left(H^*(dns)\right)^s$

 $M_{p} = (info_{p}, tp)$ $M_{h} = (s, \gamma, info_{h})$

$\mathsf{Provel}\mathsf{D}(pk,\sigma,\gamma,info,tp,dns) \to (\Theta,M_p,\phi'(\zeta,f))$

Cred.Prove $(pk, M_p, M_h, \sigma, \phi') \rightarrow (\Theta, M_p, \phi')$ $\phi' = \{\zeta = (H^*(dns))^s \land f(info_h) = 1\}$

 $\zeta = \left(H^*(dns)\right)^s$

 $M_p = (info_p, tp)$ $M_h = (s, \gamma, info_h)$

 $\mathsf{VerifyID}(pk, M_p, \Theta, dns, \phi'(\zeta, f)) \to b$

Cred.Verify $(pk, \Theta, \phi'(\zeta, f)) \rightarrow b'$ $b = (b' = 1 \land tp > now)$ ζ is the user id