
Digital Identity
with anonymous credentials



Setting

User

IdP RP



Setting

User

IdP RP



Setting

User

IdP RP



Standard SSO
Several limitations



Standard SSO
Limitation I - Poor user and RP privacy

User

IdP RP



Standard SSO
Limitation II - Requires IdP availability

User

IdP RP



Standard SSO
Limitation III - Does not work offline

User

IdP RP



Standard SSO
Limitation III - Requires RP registration

IdP RP

RP
RP

RP



This is not a new idea

Anonymous Credentials



Anonymous Credentials
Setup phase

User

IdP
• Embed many user attributes (eg. email)


• Attributes are 'attested' by the IdP


• Can only be issued by the IdP



Anonymous Credentials
Sign-on phase

User

RP
• No interaction with the IdP


• Can re-use the credential anonymously


• Can selectively show some attributes


• Can prove statements about attributes



• Privacy


• Availability


• RP and user can be offline


• RP do not register with IdP

What we get

Anon. Credentials



What's the catch?

Anon. Credentials Standard SSO

• User usability


• Performance

• Privacy


• Availability


• RP and user can be offline


• RP do not register with IdP



EL PASSO
Privacy-preserving, Asynchronous Single Sign-On



What is it?
It is a system contribution (no new crypto)

Anon. Credentials



• User usability


• Performance

What is it?
It is a system contribution (no new crypto)

} Standard SSO

Anon. Credentials
with:



What is it?

• (Optional) Accountability

It is a system contribution (no new crypto)

Anon. Credentials
with:

• User usability


• Performance } Standard SSO



Features
User Usability

• Implemented in C++ using MCL crypto library


• User-side client ported to javascript using WebAssembly (Wasm)



Features
User Usability

• Implemented in C++ using MCL crypto library


• User-side client ported to javascript using WebAssembly (Wasm)

• Executable footprint: 178KB (including Wasm bin, js glue code)


• All user-side operations are handled by Wasm in the browser


• Wasm module cached, marked immutable, sandboxed


• User secrets stored in the browser's password manager


• User state: 600 bytes (3 attributes)



Features
Performance

Figure 3: User-perceived operation latencies.

Figure 4: Breakdown of the execution time of computational
phases in EL PASSO and IRMA.

regular sign-on.
The breakdown of computational operations in Figure 4

allows identifying the CPU time required by the different
phases (note that network latencies are not shown in the break-
down). In contrast, EL PASSO requires little CPU time from
the IdP, and only during the setup phase. Overall, computa-
tional costs are slightly higher for EL PASSO, but they are
also more decentralized, impacting mostly users and RPs. A
similar breakdown can be observed for IRMA. However, the
combined execution time is 100x higher for the setup phase
and 39x higher for the sign-on phase.

The amount of payload exchanged, shown in Figure 5, is
reasonable. The largest payload is the sign-on request from
the client to the RP and is 0.5 KB in size. We conclude this
first set of experiments with a positive answer to our two first
questions: EL PASSO latencies and cost compare favorably
to those of OIDC and would allow for deployment as an alter-
native SSO solution with negligible impact on performance or
costs for users and operators of online services. Furthermore,
EL PASSO significantly reduces the user-perceived latency
and computational time in comparison to a similar scheme
based on anonymous credentials.

Performance on low-power devices. As the previous exper-

Figure 5: Payload size of messages exchanged in EL PASSO,
for credentials with 3 attributes (first two lines are for the
request of the public key of the IdP by the RP).

Operation Latency [s] CPU time @ user [s]

EL PASSO Setup 0.72±0.16 (+190%) 0.11±0.001 (+397%)
EL PASSO Sign-on 0.82±0.18 (+125%) 0.18±0.004 (+262%)
OIDC 0.80±0.02 (+45%) NA
IRMA Setup 30.295±0.39 (+2420%) 29.68±0.27 (+4390%)
IRMA Sign on 34.182±0.49(+2458%) 33.891±0.43 (+3640%)

Table 2: EL PASSO performance using a Raspberry PI for
single and multi (M) device scenario, relative to results using
a laptop from Figures 3 and 4.

iment has shown, EL PASSO requires computation and there-
fore CPU time at the user side. We evaluate in this experiment
whether these costs are acceptable for using it on low-power
devices, such as mobile phones, tablets, or connected appli-
ances. Our setup is the same as with the previous experiment,
but using the RPI device instead of the laptop.

Table 2 compares the perceived latency using the RPI to
those in Figure 3, and the total CPU time at the user side,
compared to Figure 4. We can observe that the CPU cost for
the setup phase almost quadruples, yet remains low at 110 ms.
For the sign-on phase, the cost is multiplied by 4, primarily
due to the lower performance of cryptographic operations
on the ARM CPU. Yet again, the overall CPU time remains
within acceptable boundaries at less than 200 ms and 220 ms
when adding a new device to an account. The overall latency
is impacted by both this increase in CPU time (except for
OIDC), and the performance of the browser running on the
RPI (including for OIDC). All operations succeed in a rea-
sonable time, the longest being the sign-on taking a second
on average, only slightly higher than OIDC compared to the
previous experiment. In contrast, more complex IRMA op-
erations experience significant execution time increase and
result in Setup and Sign-on phase finishing in more than 30s.
This allows us to answer positively to our second question:
The performance and costs of EL PASSO make it adequate
as a solution for SSO, even when users are equipped with
low-power or mobile devices.

Scalability in the number of attributes. We investigate the
impact of the number of attributes embedded in user creden-
tials on the computational cost of EL PASSO. The two first

10



Features
Performance

Figure 3: User-perceived operation latencies.

Figure 4: Breakdown of the execution time of computational
phases in EL PASSO and IRMA.

regular sign-on.
The breakdown of computational operations in Figure 4

allows identifying the CPU time required by the different
phases (note that network latencies are not shown in the break-
down). In contrast, EL PASSO requires little CPU time from
the IdP, and only during the setup phase. Overall, computa-
tional costs are slightly higher for EL PASSO, but they are
also more decentralized, impacting mostly users and RPs. A
similar breakdown can be observed for IRMA. However, the
combined execution time is 100x higher for the setup phase
and 39x higher for the sign-on phase.

The amount of payload exchanged, shown in Figure 5, is
reasonable. The largest payload is the sign-on request from
the client to the RP and is 0.5 KB in size. We conclude this
first set of experiments with a positive answer to our two first
questions: EL PASSO latencies and cost compare favorably
to those of OIDC and would allow for deployment as an alter-
native SSO solution with negligible impact on performance or
costs for users and operators of online services. Furthermore,
EL PASSO significantly reduces the user-perceived latency
and computational time in comparison to a similar scheme
based on anonymous credentials.

Performance on low-power devices. As the previous exper-

Figure 5: Payload size of messages exchanged in EL PASSO,
for credentials with 3 attributes (first two lines are for the
request of the public key of the IdP by the RP).

Operation Latency [s] CPU time @ user [s]

EL PASSO Setup 0.72±0.16 (+190%) 0.11±0.001 (+397%)
EL PASSO Sign-on 0.82±0.18 (+125%) 0.18±0.004 (+262%)
OIDC 0.80±0.02 (+45%) NA
IRMA Setup 30.295±0.39 (+2420%) 29.68±0.27 (+4390%)
IRMA Sign on 34.182±0.49(+2458%) 33.891±0.43 (+3640%)

Table 2: EL PASSO performance using a Raspberry PI for
single and multi (M) device scenario, relative to results using
a laptop from Figures 3 and 4.

iment has shown, EL PASSO requires computation and there-
fore CPU time at the user side. We evaluate in this experiment
whether these costs are acceptable for using it on low-power
devices, such as mobile phones, tablets, or connected appli-
ances. Our setup is the same as with the previous experiment,
but using the RPI device instead of the laptop.

Table 2 compares the perceived latency using the RPI to
those in Figure 3, and the total CPU time at the user side,
compared to Figure 4. We can observe that the CPU cost for
the setup phase almost quadruples, yet remains low at 110 ms.
For the sign-on phase, the cost is multiplied by 4, primarily
due to the lower performance of cryptographic operations
on the ARM CPU. Yet again, the overall CPU time remains
within acceptable boundaries at less than 200 ms and 220 ms
when adding a new device to an account. The overall latency
is impacted by both this increase in CPU time (except for
OIDC), and the performance of the browser running on the
RPI (including for OIDC). All operations succeed in a rea-
sonable time, the longest being the sign-on taking a second
on average, only slightly higher than OIDC compared to the
previous experiment. In contrast, more complex IRMA op-
erations experience significant execution time increase and
result in Setup and Sign-on phase finishing in more than 30s.
This allows us to answer positively to our second question:
The performance and costs of EL PASSO make it adequate
as a solution for SSO, even when users are equipped with
low-power or mobile devices.

Scalability in the number of attributes. We investigate the
impact of the number of attributes embedded in user creden-
tials on the computational cost of EL PASSO. The two first

10

PS Signatures

CL Signatures



Features
PerformanceFigure 3: User-perceived operation latencies.

Figure 4: Breakdown of the execution time of computational
phases in EL PASSO and IRMA.

regular sign-on.
The breakdown of computational operations in Figure 4

allows identifying the CPU time required by the different
phases (note that network latencies are not shown in the break-
down). In contrast, EL PASSO requires little CPU time from
the IdP, and only during the setup phase. Overall, computa-
tional costs are slightly higher for EL PASSO, but they are
also more decentralized, impacting mostly users and RPs. A
similar breakdown can be observed for IRMA. However, the
combined execution time is 100x higher for the setup phase
and 39x higher for the sign-on phase.

The amount of payload exchanged, shown in Figure 5, is
reasonable. The largest payload is the sign-on request from
the client to the RP and is 0.5 KB in size. We conclude this
first set of experiments with a positive answer to our two first
questions: EL PASSO latencies and cost compare favorably
to those of OIDC and would allow for deployment as an alter-
native SSO solution with negligible impact on performance or
costs for users and operators of online services. Furthermore,
EL PASSO significantly reduces the user-perceived latency
and computational time in comparison to a similar scheme
based on anonymous credentials.

Performance on low-power devices. As the previous exper-

Figure 5: Payload size of messages exchanged in EL PASSO,
for credentials with 3 attributes (first two lines are for the
request of the public key of the IdP by the RP).

Operation Latency [s] CPU time @ user [s]

EL PASSO Setup 0.72±0.16 (+190%) 0.11±0.001 (+397%)
EL PASSO Sign-on 0.82±0.18 (+125%) 0.18±0.004 (+262%)
OIDC 0.80±0.02 (+45%) NA
IRMA Setup 30.295±0.39 (+2420%) 29.68±0.27 (+4390%)
IRMA Sign on 34.182±0.49(+2458%) 33.891±0.43 (+3640%)

Table 2: EL PASSO performance using a Raspberry PI for
single and multi (M) device scenario, relative to results using
a laptop from Figures 3 and 4.

iment has shown, EL PASSO requires computation and there-
fore CPU time at the user side. We evaluate in this experiment
whether these costs are acceptable for using it on low-power
devices, such as mobile phones, tablets, or connected appli-
ances. Our setup is the same as with the previous experiment,
but using the RPI device instead of the laptop.

Table 2 compares the perceived latency using the RPI to
those in Figure 3, and the total CPU time at the user side,
compared to Figure 4. We can observe that the CPU cost for
the setup phase almost quadruples, yet remains low at 110 ms.
For the sign-on phase, the cost is multiplied by 4, primarily
due to the lower performance of cryptographic operations
on the ARM CPU. Yet again, the overall CPU time remains
within acceptable boundaries at less than 200 ms and 220 ms
when adding a new device to an account. The overall latency
is impacted by both this increase in CPU time (except for
OIDC), and the performance of the browser running on the
RPI (including for OIDC). All operations succeed in a rea-
sonable time, the longest being the sign-on taking a second
on average, only slightly higher than OIDC compared to the
previous experiment. In contrast, more complex IRMA op-
erations experience significant execution time increase and
result in Setup and Sign-on phase finishing in more than 30s.
This allows us to answer positively to our second question:
The performance and costs of EL PASSO make it adequate
as a solution for SSO, even when users are equipped with
low-power or mobile devices.

Scalability in the number of attributes. We investigate the
impact of the number of attributes embedded in user creden-
tials on the computational cost of EL PASSO. The two first

10

Low-end devices



Features
(Optional) Accountability

IdP

RP
Decryption authorities



Additional Features
More in the paper

• Multi-device support


• 2FA support


• Device theft recovery


• Login as guest



Conclusion

• Paper: https://arxiv.org/abs/2002.10289

• Code: https://github.com/Zhiyi-Zhang/PSSignature

EL PASSO



asonnino@fb.com
Alberto Sonnino



EXTRA



Construction
Anonymous credentials

PrepareBlindSign(pk, Mh, ϕ) → (d, Λ, ϕ)

Sign(sk, Mp, Λ, ϕ) → σ̃

Unblind(d, σ̃) → σ

Prove(pk, Mp, Mh, σ, ϕ′￼) → (Mp, Θ, ϕ′￼)

Verify(pk, Mp, Θ, ϕ′￼) → b

Setup Phase Sign-on Phase



Construction
Setup phase

RequestID(s) → Λ

Cred.PrepareBlindSign(pk, s) → (d, Λ)

ProvideID(sk, γ, info, tp, Λ) → σ̃

Cred.BlindSign(sk, (γ, tp, info), Λ) → σ̃

UnblindID(d, σ̃) → σ

Cred.Unblind(d, σ̃) → σ



Construction
Sign-on phase (prove Id)

ProveID(pk, σ, γ, info, tp, dns) → (ζ, Θ, Mp, ϕ′￼, f )

info
infop

infoh



Construction
Sign-on phase (prove Id)

ProveID(pk, σ, γ, info, tp, dns) → (ζ, Θ, Mp, ϕ′￼, f )

info
infop

infoh

ζ = (H*(dns))s



Construction
Sign-on phase (prove Id)

ProveID(pk, σ, γ, info, tp, dns) → (ζ, Θ, Mp, ϕ′￼, f )

info
infop

infoh

ζ = (H*(dns))s
Mp = (infop, tp)

Mh = (s, γ, infoh)



Construction
Sign-on phase (prove Id)

ProveID(pk, σ, γ, info, tp, dns) → (Θ, Mp, ϕ′￼(ζ, f ))

info
infop

infoh

ζ = (H*(dns))s

ϕ′￼ = {ζ = (H*(dns))s ∧ f(infoh) = 1}

Mp = (infop, tp)

Mh = (s, γ, infoh)

Cred.Prove(pk, Mp, Mh, σ, ϕ′￼) → (Θ, Mp, ϕ′￼)



Construction
Sign-on phase (verify Id)

VerifyID(pk, Mp, Θ, dns, ϕ′￼(ζ, f )) → b

Cred.Verify(pk, Θ, ϕ′￼(ζ, f )) → b′￼

b = (b′￼ = 1 ∧ tp > now)

ζ is the user id


