

Master Thesis

Alberto Sonnino

Institut für Technik der Informationsverarbeitung

Directors

Prof. Dr.-Ing. Dr. h. c. J. Becker Prof. Dr.-Ing. E. Sax Prof. Dr. rer. nat. W. Stork **Supervising Tutors** M. Tech G. Shalina Dipl.-Ing. P. Figuli

Institut für Technik der Informationsverarbeitung (ITIV)

Performance Driven Optimizations in FPGA Based QAM Systems

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Introduction and Motivation

- Challenges in the current trend
 - Pursuit of high SNR and high data rate
 - Contribution to reach future terabit's communication
 - FPGAs clocked below 1GHz: need for parallelism

Introduction and Motivation

- My work: performance optimization of QAM transmitter
 - Exploiting parallelism
 - FPGA platform
 - Mixed-domains (time and frequency) approach
- Current state-of-the-art
 - 2012: 128.6 MHz achieved (University of Shanghai, China) [2]
 - Transmitter and receiver
 - On Xilinx Virtex IV
 - 2013: 625.0 MHz achieved (University of Paderborn, Germany) [3]
 - Only transmitter
 - On Xilinx Virtex VI
 - 2015: 750.0 MHz achieved (E2v Semiconductor, UK) [4]
 - Only transmitter and no filter
 - On Xilinx Virtex VI

Introduction and Motivation

Hardware Choice

- FPGA because of great configurability, flexibility and cost
- Growing technology
- Modulation Choice
 - Quadrature Amplitude Modulation (QAM)
 - Allow carrying many bits per symbol
- Filter Choice
 - Avoid Inter Symbol Interferences (ISI)
 - Finite impulse response (FIR)
 - Squared Raised Root Cosine (SRRC)
 - No filter optimizations in this work [5]

Outline

- Introduction and Motivation
- Fundamentals
 - Standard transmission chain
 - Fundamentals of each block
- Concepts & Methodology
 - Strategy
 - Ideal model
- Implementation
 - Implementation of each block
- Experimental Results
 - Achieved precision
 - Achieved performances
- Summary & Further Improvements

Standard Transmission Chain

Focus of this work

- QAM mapper
- Filter
- Modulator

QAM Mapper

- M-QAM formats (M={
- Clusterization in log₂(
- Gray code for hammi
- Rectangular constella
- Large M implies high
- But symbol's misinter

- Modulator
 - Local oscillator delive
 - Multiplication and sut

Re-

Fourier Transform

- Signal's decomposition into an alternative representation
- Discrete Fourier Transform (DFT) sends in the Fourier domain
- Inverse Discrete Fourier Transform (IDFT) takes it back

$$X[k] = \sum_{0}^{N-1} x[n] e^{-2\pi i k n/N} \qquad k \in \mathbb{Z}$$

$$x[n] = \frac{1}{N} \sum_{0}^{N-1} X[k] e^{2\pi i k n/N} \qquad n \in \mathbb{Z}$$

Linear operations have equivalent in Fourier domain
Useful for this work: convolution becomes multiplication

$$\begin{array}{rcl} \mathcal{F}\{f \ast g\} &=& \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} & \qquad f \ast g &=& \mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} \\ &=& G \cdot F & \qquad =& \mathcal{F}^{-1}\{G \cdot F\} \end{array}$$

Filter

9

- Nyquist criteria avoids ISI
- Pulse Shaping Filter to limit the transmission band
- FIR filter: linear phase, inherent stability, no feedback
- Matched filter improves SNR (if only stochastic noises)
- Good compromise: SRRC filter

Concepts & Methodology

Strategy

- Reference MATLAB model
- Identify which part to implement in frequency domain
- Prototype a single channel (non parallel) transmitter
- Optimize for Xilinx Virtex 7
- Generic model with parallelization and scalability

Implemented System

Data Packing

- Parallel inputs/outputs packed into the same bus
- Precision fixed to 16 bits
- Each *data*; is a 16-bit vector

Specifications

Latency	17 cycles				
Parameters	Ν	# of parallel inputs			-
	FORMAT	QAM format	in		tvalid
Inputs	clk	Clock		Transmitter	
	reset	Reset	<u>clock</u>		
	in	Cluseterd stream	reset	N	out
Outputs	tvalid	Validity flag		FORMAT	
	out	Output data			

Characteristics

- Input width: (FORMAT x N)
- Output width: 16N
- Uses 2N² complex multipliers, 4N²-2N adder and 4N multipliers

QAM Mapper

- Three parameters (N, W, FORMAT): number of inputs, bus width, QAM format
- 8-QAM, 16-QAM, 32-QAM, 64-QAM support
- Each format implemented in a separated Verilog file
- Generates only the circuit for the desired format

DFT & IDFT

- One parameter (N) : number of inputs
- No parallel DFT / IDFT Xilinx IP cores available yet
- Each one uses N² complex multipliers and 2N(N-1) adders
- Rescaling of 2¹⁷ to fit the 16-bit bus

Filter

- One parameter (N) : number of inputs
- Frequency domain: simple multiplication with filter coefficients
- Uses 2N multipliers
- Rescaling of 2¹⁶ to fit the 16-bit bus

Modulator

- One parameter (N) : number of inputs
- Uses 2N multipliers and N adders (configured in subtracter mode)
- Rescaling of 2¹⁶ to fit the 16-bit bus

Fourier QAM Modulator (FQM) Utility

Experimental Results

Test Conditions

- N = 16, 100 Hz carriers
- Different configurations for Adders and Multipliers cores
- All supported QAM formats

Design Precision

Less than 1% error respect to MATLAB !

Experimental Results

Final Result

Adders using the fabric and Multipliers using DSP Slices

Effective speed of 16 x 62.5 = 1 GHz (instead of 750 MHz [3])

Throughput per modulation formats:

·			
	8 - QAM	:	3*16*62.5 = 3Gb/s
	16 - QAM	:	4*16*62.5=4Gb/s
	32 - QAM	:	5*16*62.5 = 5Gb/s
	64 - QAM	:	6*16*62.5 = 6Gb/s

Summary & Further Improvements

Topic

- Performance optimization of QAM transmitter
- Exploiting parallelism using a mixed-domain approach
- Achieved during this term
 - Familiarization with Xilinx tools
 - Understanding of the underlying physical concepts
 - MATLAB simulation and prototyping a single-cannel transmitter
 - Build and optimize the parallel design
 - Scalable generic model
- Further improvements
 - Implement FFT instead of DFT (or wait for next Xilinx release)
 - Reduce the DSP utilization to allow N = 32
 - Support additional modulation formats

Bibliography

- [1] The End of Moore's Law? Why It Matters
 - TIMnovate, Prof. S. Maital
 - https://timnovate.wordpress.com/2015/01/23/the-end-of-moores-law-why-it-matters/
- [2] FPGA Implementation of High-throughput Complex Adaptive Equalizer for QAM Receiver
 - Siqiang MA, Yong'en CHEN
 - Tongji University, Shanghai, China
 - **2012**
- [3] The Influence of Laser Phase noise on Carrier Phase Estimation of a Real-Time 16-QAM Transmission with FPGA Based Coherent Receiver
 - A. Al-Bermania, C. Wördehoffb, O. Jana, K. Puntsria, M. F. Panhwara, U. Rückert b, R. Noéa
 - University of Paderborn, Paderborn, Germany
 - 2013

Bibliography

- [4] A high speed transmission system using QAM and direct conversion with high bandwidth converters
 - Marc Stackler, Andrew Gloascott-Johnes, NicolasChantier
 - E2v Semiconductors
 - 2015
- [5] Parametric Design Space Exploration for Optimizing QAM Based Highspeed Communication
 - S. Percy George Ford, P. Figuli and J. Becker
 - IEEE/CIC International Conference on Communications in China
 - **2015**

Thank you for your attention !