Mysticeti

The new core of the Sui blockchain

Alberto Sonnino
Tailoring the Talk

Do you know:

1. How blockchains work (roughly)?
2. What Byzantine Fault Tolerance (BFT) means?
3. What DAG-based consensus are?
4. How Narwhal / Bullshark work (roughly)?
Byzantine Fault Tolerance

> 2/3
Byzantine Fault Tolerance

\[\geq 2f+1 \]

\[3f+1 \]
Partial Synchrony

GST

time
1. make transaction
2. submit transaction
1. make transaction
2. submit transaction
3. sequence and verify
Blockchains

1. make transaction
2. submit transaction
3. sequence and verify
4. store
Keeping the Talk Short

In scope

- Ordering (quorum-based)

Not in scope

- Nodes selection?
- Committee reconfiguration?
- Transactions execution?
- Transactions language?
- Financial incentives?
- etc
Mysticeti

Low-latency DAG consensus with fast commit path
Lamport Diagram

- Message created by node 1
- Message from node 1 to node 2
The Mysticeti DAG
Block Creation

- Round number
- Author
- Payload (transactions)
- Signature
The Mysticeti DAG

Rule 1: Link to $2f+1$ parents

- Total nodes: $3f+1 = 4$
- Quorum: $2f+1 = 3$
The Mysticeti DAG

Rule 2: Every node waits and links to leaders
The Mysticeti DAG
Rule 3: All node run in parallel
Main Ingredient:

All messages embedded in the DAG

- Fewer signatures
- Simpler synchronisation
- Define interpretable patterns on the DAG
- Run multiple protocols on the same DAG
Interpreting DAG Patterns

Certificate

Blame
Two Protocols, One DAG

Mysticeti-C Consensus
- No rounds without leader
- Multiple leaders per round

Mysticeti-FPC Adding Fast Finality
- Interpret BCB on DAG
Mysticeti-C

The consensus protocol
We focus on ordering leaders: L1 L4 L7
• We focus on ordering leaders: L1, L4, L7
• Linearising the sub-DAG is simple
DAG Structure
Practical Implementation
Select only 2 leaders per round
Interpreting DAG Patterns

wave 1

r1 r2 r3

L1

Certificate

propose vote certify

Blame

Reminder
Direct Decision Rule

On each leader starting from highest round:

• **Skip** if $2f+1$ blames

• **Commit** if $2f+1$ certifies

• **Undecided** otherwise
Direct Decision Rule

On each leader starting from highest round:

- **Skip** if \(2f+1\) blames
- **Commit** if \(2f+1\) certifies
- **Undecided** otherwise
Direct Decision Rule

On each leader starting from highest round:

- **Skip** if $2f+1$ blames
- **Commit** if $2f+1$ certifies
- **Undecided** otherwise
Direct Decision Rule

On each leader starting from highest round:

- **Skip** if 2f+1 blames
- **Commit** if 2f+1 certifies
- **Undecided** otherwise
Indirect Decision Rule
1. Find Anchor

- First block with round > r+2 that is **Commit** or **Undecided**.

Anchor wave

- **Commit** or **Undecided**
Indirect Decision Rule

1. Find Anchor
 - First block with round > r+2 that is **Commit** or **Undecided**

2. Certified link
 - **Commit** if
 \[B \leftrightarrow \text{certified link} \leftrightarrow A \]
 - otherwise **Skip**
All Start at Undecided
Ignore Incomplete Waves
Apply Direct Rule

Diagram showing the relationships between different elements labeled 'L1a', 'L1b', 'L2a', 'L2b', 'L3b', 'L4a', and 'L6a' connected by lines, indicating direct rules.
Ignore Missing Leader
Apply Direct Rule

Diagram showing connections between L1a, L1b, L2a, L2b, L3b, L4a, L4b, L5a, L5b, and L6a labeled as r1 to r6.
Apply Direct Rule
Apply Indirect Rule

Undecided
Apply Direct Rule
Apply Direct Rule

Diagram showing relationships between L1a, L1b, L2a, L2b, L5a, L5b, L6a, and r1 to r6.
Apply Direct Rule
Apply Direct Rule
Apply Indirect Rule
Apply Indirect Rule
Apply Direct Rule

Diagram showing the relationship between L1a, L1b, L3b, L4a, L4b, L5a, and L6a with r1, r2, r3, r4, r5, and r6.
Apply Indirect Rule
Apply Indirect Rule
Apply Indirect Rule

no certified link

Anchor
Commit Sequence
Take all leaders in order

leaders sequence: L1a L1b L2a L2b L3a L3b L4a L4b
Commit Sequence
Stop at the first Undecided leader

leaders sequence: L1a L1b L2a L2b L3a L3b L4a L4b
Commit Sequence
Remove skipped leaders

leaders sequence: L1a L1b L2a L2b L3a L3b L4a L4b
Commit Sequence
Final leader sequence

leaders sequence: L1b L2a
Commit Sequence

Commit sub-dag

leaders sequence: L1b L2a

output sequence:
Commit Sequence
Commit sub-dag

leaders sequence:

output sequence:
Commit Sequence
Commit sub-dag

leaders sequence: L2a

output sequence: L1b
Commit Sequence
Commit sub-dag

leaders sequence: L2a

output sequence: L1b
Commit Sequence
Commit sub-dag

leaders sequence:

output sequence: L1b 1 2 L2a
Slow Leaders are Annoying

Suffer from them only when under attack or bad network
HammerHead
Compute Reputation Scores
HammerHead
Compute Reputation Scores

node 1: 3
HammerHead
Compute Reputation Scores

node 1: 3 node 2: 4
HammerHead
Compute Reputation Scores

node 1: 3 node 2: 4 node 3: 2
HammerHead
Compute Reputation Scores

node 1: 3 node 2: 4 node 3: 2 node 4: 2
HammerHead
Future Leaders

node 1: 3 node 2: 4 node 3: 2 node 4: 2
Security Intuition
Security Intuition

- At most L_1 or L_1' can have a certificate pattern (quorum intersection)
• At most L_1 or L_1' can have a certificate pattern (quorum intersection)

• If L_1 has $2f+1$ certificate patterns, A always has a certified link to L_1
Security Intuition

• At most L1 or L1′ can have a certificate pattern (quorum intersection)
• If L1 has 2f+1 certificate patterns, A always has a certified link to L1
• After GST, the direct decision rule commits a block
Security Intuition

Leader Timeout:

Wait for 2f+1 parents + 250 ms
Mysticeti-FPC

Adding a fast commit path
Consensus Not Required

Coins, balances, and transfers

NFTs creation and transfers

Game logic allowing users to combine assets

Inventory management for games / metaverse

Auditable 3rd party services not trusted for safety

...
Consensus Required

- Increment a publicly-accessible counter
- Collaborative in-game assets
- Market places
- Auctions
- ...
Object Type

Owned Objects
- Objects that can be mutated by a single entity
- e.g., My bank account
- **Do not need consensus**

Shared Objects
- Objects that can be mutated by multiple entities
- e.g., A global counter
- **Need consensus**
System State

Objects:
- Unique ID
- Version number
- Ownership Information
- Type (shared, owned)
Fast Execution

- owned: Tx1
- shared: Tx2
- owned: Tx3
- shared: Tx4
- shared: Tx5
- owned: Tx6

Diagram:

- L1
- r1

Connections:

- Tx1 to L1
- Tx2 to L1
- Tx3 to L1
- Tx4 to L1
- Tx5 to L1
- Tx6 to L1
Fast Execution

owned: Tx1
shared: Tx2
owned: Tx3
shared: Tx4
shared: Tx5
owned: Tx6
Fast Execution

owned: Tx1
shared: Tx2
owned: Tx3
shared: Tx4
shared: Tx5
owned: Tx6

Certificate
Execute

Tx1
Tx3
Fast Execution

- owned: Tx1
- shared: Tx2
- owned: Tx3
- shared: Tx4
- shared: Tx5
- owned: Tx6

Certificate

Execute

L1
No Finality

- owned: Tx1
- shared: Tx2
- owned: Tx3
- shared: Tx4
- shared: Tx5
- owned: Tx6

Epoch Change

node 4: revert Tx1 and Tx3
Fast Path Finality (1)

owned: Tx1
shared: Tx2
owned: Tx3
shared: Tx4
shared: Tx5
owned: Tx6

2f+1 Certificates
Fast Path Finality (2)

- **owned:** Tx1, Tx3, Tx6
- **shared:** Tx2, Tx4, Tx5

Diagram with nodes labeled L1 and L2 connected by edges, leading to a consensus and commit of certificate.
Mixed-Objects Transactions

- owned: Tx1
- shared: Tx2
- owned: Tx3
- shared: Tx4
- mixed: Tx5
- owned: Tx6
Mixed-Objects Transactions

owned: Tx1
shared: Tx2
owned: Tx3
shared: Tx4
mixed: Tx5
owned: Tx6

Commit
Tx2
Tx4
Mixed-Objects Transactions

- owned: Tx1
- shared: Tx2
- owned: Tx3
- shared: Tx4
- mixed: Tx5
- owned: Tx6

Certificate

Execute

L1
Mixed-Objects Transactions

owned: Tx1
shared: Tx2
owned: Tx3
shared: Tx4
mixed: Tx5
owned: Tx6

consensus

2f+1 Certificates

Commit

Tx5

L1

r1

r2

r3

L2
Mixed-Objects Transactions

L1

L2

lock owned objects

commit the lock on owned objects
Summary

Mysticeti

- A single message type
- Interpret patterns on the DAG

- **Code**: https://github.com/mystenlabs/mysticeti
EXTRA

Preliminary Benchmarks
Implementation

- Written in Rust
- Networking: Tokio (TCP)
- Storage: custom WAL
- Cryptography: ed25519-consensus

https://github.com/mystenlabs/mysticeti
Implementation

- Synchronous core
- One Tokio task per peer (limiting resource usage)
- DTE simulator

https://github.com/mystenlabs/mysticeti
Evaluation
Experimental setup on AWS

m5d.8xlarge
Preliminary Results

- Mysticeti-C - 10 nodes
- Mysticeti-C - 19 nodes
- bullshark - 10 nodes
- bullshark - 20 nodes

The graph shows the latency (s) against throughput (tx/s) for different systems and configurations. The x-axis represents throughput ranging from 0 to 400k tx/s, while the y-axis represents latency ranging from 0 to 4.0 seconds. The data points indicate varying performance across different conditions, with Mysticeti-C showing lower latency at higher throughputs compared to bullshark.
Engineering Benchmarks

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Committee</th>
<th>P50</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bullshark</td>
<td>137</td>
<td>2.89 s</td>
<td>4.60 s</td>
</tr>
<tr>
<td>Mysticeti</td>
<td>137</td>
<td>650 ms</td>
<td>975 ms</td>
</tr>
</tbody>
</table>

We run it at max load for 24h 👍
EXTRA

Narwhal vs Mysticeti
Narwhal vs Mysticeti

Narwhal

Mysticeti

Round 1

header
certificate

Round 1

Block
Main Challenge
Possible equivocations
Main Challenge
Possible equivocations (even with $2f+1$ support)
Decision Rules
Upon interpreting the DAG...

Bullshark

• A leader is **Commit** or not
• Either directly or indirectly (recursion)

Mysticeti

• A leader is **Commit**, **Skip**, or **Undecided**
• Either directly or indirectly (recursion)
Quorum-Based Consensus

Linear-Chain

- Low latency
- Fragile to faults
- Complex leader-change

DAG-Based

- High latency
- Robust against faults
- No/Simple leader-change
Linear-Chain Consensus
Rough overview
Linear-Chain Consensus
Rough overview
Linear-Chain Consensus
Rough overview
Linear-Chain Consensus

Rough overview

- The leader does all the work
Linear-Chain Consensus

Rough overview

- The leader does all the work
- Complex leader-change
Linear-Chain Consensus
Rough overview

• The leader does all the work
• Complex leader-change
DAG-Based Consensus
Rough overview

r1 r2 r3 r4 r5
DAG-Based Consensus
Rough overview
DAG-Based Consensus

Rough overview
DAG-Based Consensus
Rough overview