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Byzantine Fault Tolerance



The goal of this project

How to build (really) high performance 
blockchains



Current Designs

• Monolithic protocol sharing transaction data as part of the consensus 

• Optimize overall message complexity of the consensus protocol



Current Designs
Typical leader-based protocols
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Reaching consensus on metadata is cheap

The mempool is the key



Narwhal
Dag-based mempool



Narwhal
The workers and the primary

Narwhal mempool
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Narwhal
The primary machine

G1

G2

G3

block header

H

H

H



Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H



Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C



Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1



Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast



Narwhal
The primary machine
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Tusk
Zero-message asynchronous consensus



Tusk
Add common coin & Interpret the DAG

r1 r2 r3



Tusk
The random coin elects the leader of r-2
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Tusk
The leader needs f+1 links from round r-1
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Not enough support !  
(Nothing is committed at this stage)



Tusk
Nothing is committed and we keep build the DAG

L1

r1 r2 r3 r4 r5



Tusk
Elect the leader of r3
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Tusk
Leader L2 has enough support
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Tusk
Leader L2 has links to leader L1
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First commit L1 Then commit L2



Tusk
Commit all the sub-DAG of the leader
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HotStuff on Steroids
Just by replacing the mempool



HotStuff on Narwhal
Overview
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Enhanced commit rule
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HotStuff on Narwhal
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Implementation

• Written in Rust 

• Networking: Tokio (TCP) 

• Storage: RocksDB 

• Cryptography: ed25519-dalek

https://github.com/asonnino/narwhal



Evaluation
Experimental setup on AWS

m5d.8xlarge



Evaluation
Throughput latency graph



Evaluation
Scalability



Evaluation
Performance under faults



Conclusion

• Paper: https://arxiv.org/pdf/2105.11827.pdf 

• Code: https://github.com/asonnino/narwhal

• Separate consensus and data dissemination for high performance 

• Scalable design, egalitarian resource utilizations

Narwhal & Tusk
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