Narwhal and Tusk
A DAG-based Mempool and Efficient BFT Consensus

Alberto Sonnino

Acknowledgements

T)
George Lefteris Alexander Alberto
Danezis Kokoris-Kogias Spiegelman Sonnino

Work done at Facebook Novi

Byzantine Fault Tolerance

-
—
N—
-
——
N—
-
——
N

-
——
N—
-
—
N

-
—
N
-
——
N—

How to build (really) high performance
blockchains

The goal of this project

Current Designs

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol

Current Designs

Typical leader-based protocols

VYV YV

Current Designs

Typical leader-based protocols

VYV VY YV

tion

e utiliza

The mempool is the key

Reaching consensus on metadata is cheap

Narwhal

The workers and the primary

h (Narwhal mempool \
Worker 1
Worker 2
Client |
transactions Primary
|
|
|
Worker n
Yy _ Y.

Narwhal

The workers and the primary

A (Narwhal mempool \

Transactions

> Worker 1

Transactions

> Worker 2

Client

: Primary
transactions

Transactions

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
Transactions Batch
> Worker 2
Client :
: Primary
transactions
|
|
|
Transactions ‘ Batch

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
........................ Digest .
Transactions Batch
> Worker 2
\ 4
Cllent > Prlmary
transactions Digest
| 3
!
|
Digest
Transactions ‘ Batch
> Worker n
y _ Y

Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n

Narwhal

The primary machine

block header

H

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

| Round 1

Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast

Narwhal

The primary machine

' r2 r3 r4 rs

Tusk

Add common coin & Interpret the DAG

J

&‘
Rk
- \

Tusk

The random coin elects the leader of r-2

N4
w
/’\ﬁ
VX

Tusk

The leader needs f+1 links from round r-1

N4
w
/’\ﬁ
X

Tusk

Nothing is committed and we keep build the DAG

NN NN
et

AN\ /“
m N\

-l
=

Tusk

WX
Tt a

K
»\ﬁ»)
=l

Y

Tusk

t(z:;‘- -~
;

Tusk

Leader L2 has links to leader L1

vn,;wnv
»\ﬁ /

Tusk

Commit all the sub-DAG of the leader
e

r3

Y

RN
N\ X

HotStuff on Steroids

Just by replacing the mempool

4)
Client
transactions
- Y,

HotStuff on Narwhal

Ordered
transactions

Overview
- A 4
Narwhal Certificates
mempool
Partially
Synchronous
Garbage Consensus
collection (HotStuff)
- Yy,
o Y,

HotStuff on Narwhal

Enhanced commit rule

HotStuff on Narwhal

Enhanced commit rule

HotStuff on Narwhal

Enhanced commit rule

NN N
(imie

X ﬁz‘ \
\

Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal

Evaluation

Experimental setup on AWS

Evaluation
Throughput latency graph

¥ 1 | i |

—$— Tusk, 10 nodes == Narwhal-HS, 10 nodes Batched-HS, 10 nodes == Baseline-HS, 10 nodes
—$- Tusk, 20 nodes == Narwhal-HS, 20 nodes Batched-HS, 20 nodes == Baseline-HS, 20 nodes
-9- Tusk, 50 nodes -9+ Narwhal-HS, 50 nodes Batched-HS, 50 nodes \

o
©
|

a0
2
,=40'
@

i)

©
-

SH Ul
o o
| |

N
©
|

75k 100k
Throughput (tx /s)

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers

\'

600k 1 —§— Tusk, Max latency: 5.0s
—$- Tusk, Max latency: 3.0s

500k 1 —$— Narwhal-HS, Max latency: 5.0s
—$- Narwhal-HS, Max latency: 3.0s

9
N
Ul
o

=
N
o
o

Throughput (MB/s)

 Latency (s)

w
©

=
9
o

N

o
o
o

30
~
P

|
—r’

o
-

. Q.

,‘:
(@)

]
(o]
el

I o

.

=
©

100k 200k 300k 400k 500k 600k |
Throughput (tx /s) |

Workers per validator

Evaluation

Performance under faults

—@— Tusk, 10 nodes (1 faulty)
Tusk, 10 nodes (3 faulty)
Narwhal-HS, 10 nodes (1 faulty)
Narwhal-HS, 10 nodes (3 faulty)
Batched-HS, 10 nodes (1 faulty)
Batched-HS, 10 nodes (3 faulty)
Baseline-HS, 10 nodes (1 faulty)
Baseline-HS, 10 nodes (3 faulty)

N
ok
o

;E
>
- 2 20.0
)
==
©
-

it
U
o

60k 80k
Throughput (tx /s)

Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

» Scalable design, egalitarian resource utilizations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal

alberto@mystenlabs.com

Alberto Sonnino

