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Byzantine Fault Tolerance
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How to build (really) high performance
blockchains

The goal of this project



Current Designs

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol



Current Designs

Typical leader-based protocols
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Current Designs

Typical leader-based protocols
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The mempool is the key

Reaching consensus on metadata is cheap






Narwhal

The workers and the primary
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Narwhal

The workers and the primary
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Narwhal

The workers and the primary
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Narwhal

The workers and the primary
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Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n




Narwhal

The primary machine

block header
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Narwhal

The primary machine

block header certificate
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The primary machine

block header certificate




Narwhal

The primary machine

block header certificate

| Round 1




Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast




Narwhal

The primary machine

' r2 r3 r4 rs







Tusk

Add common coin & Interpret the DAG
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Tusk

The random coin elects the leader of r-2
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Tusk

The leader needs f+1 links from round r-1
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Tusk

Nothing is committed and we keep build the DAG
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Tusk

Leader L2 has links to leader L1
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Tusk

Commit all the sub-DAG of the leader
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HotStuff on Steroids

Just by replacing the mempool
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HotStuff on Narwhal

Enhanced commit rule




HotStuff on Narwhal

Enhanced commit rule




HotStuff on Narwhal

Enhanced commit rule
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Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal



Evaluation

Experimental setup on AWS




Evaluation
Throughput latency graph
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Evaluation
Scalability
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Evaluation

Performance under faults

—@— Tusk, 10 nodes (1 faulty)
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Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

» Scalable design, egalitarian resource utilizations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal
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