
Narwhal and Tusk

Alberto Sonnino

A DAG-based Mempool and Efficient BFT Consensus

Acknowledgements

Alberto
Sonnino

Work done at Facebook Novi

Alexander
Spiegelman

Lefteris
Kokoris-Kogias

George
Danezis

 > 2/3

Byzantine Fault Tolerance

The goal of this project

How to build (really) high performance
blockchains

Current Designs

• Monolithic protocol sharing transaction data as part of the consensus

• Optimize overall message complexity of the consensus protocol

Current Designs
Typical leader-based protocols

Current Designs
Typical leader-based protocols

re
so

ur
ce

 u
til

iz
at

io
n lead

er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

Reaching consensus on metadata is cheap

The mempool is the key

Narwhal
Dag-based mempool

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'

Narwhal
The primary machine

G1

G2

G3

block header

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal
The primary machine

r1 r2 r3 r4 r5

Tusk
Zero-message asynchronous consensus

Tusk
Add common coin & Interpret the DAG

r1 r2 r3

Tusk
The random coin elects the leader of r-2

L1

r1 r2 r3

coin

Tusk
The leader needs f+1 links from round r-1

L1

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

Tusk
Nothing is committed and we keep build the DAG

L1

r1 r2 r3 r4 r5

Tusk
Elect the leader of r3

L1

r1 r2 r3 r4 r5

coin

L2

Tusk
Leader L2 has enough support

L1

r1 r2 r3 r4 r5

L2

Tusk
Leader L2 has links to leader L1

L1

L2

r1 r2 r3 r4 r5

First commit L1 Then commit L2

Tusk
Commit all the sub-DAG of the leader

L1

r1 r2 r3 r4 r5

L2

HotStuff on Steroids
Just by replacing the mempool

HotStuff on Narwhal
Overview

Narwhal
mempool

Client
transactions

State machine
replication
execution

Partially
Synchronous

Consensus
(HotStuff)

Ordered
transactionsCertificates

Garbage
collection

HotStuff on Narwhal
Enhanced commit rule

C1

HotStuff on Narwhal
Enhanced commit rule

C2C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2 C3

C1

Implementation

• Written in Rust

• Networking: Tokio (TCP)

• Storage: RocksDB

• Cryptography: ed25519-dalek

https://github.com/asonnino/narwhal

Evaluation
Experimental setup on AWS

m5d.8xlarge

Evaluation
Throughput latency graph

Evaluation
Scalability

Evaluation
Performance under faults

Conclusion

• Paper: https://arxiv.org/pdf/2105.11827.pdf

• Code: https://github.com/asonnino/narwhal

• Separate consensus and data dissemination for high performance

• Scalable design, egalitarian resource utilizations

Narwhal & Tusk

alberto@mystenlabs.com
Alberto Sonnino

