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How to build (really) high performance
blockchains

The goal of this talk



Traditional Designs

Observation

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol



Current Designs

Typical leader-based protocols
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Data dissemination is the key

Reaching consensus on metadata is cheap
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Narwhal

The workers and the primary
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The workers and the primary
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Narwhal

The primary machine

block header
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Narwhal

The primary machine
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Narwhal

Data Dissemination & Proof of Availability

The workers ship batch of transactions
Many workers to scale out and use resources concurrently

The primary constantly broadcasts the batch digests

Headers at round r contains references to 2f+1 certificates of round r-1

Build a structured DAG of certificates






Tusk

Add common coin & Interpret the DAG
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Tusk

The random coin elects the leader of r-2
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Tusk

The leader needs f+1 links from round r-1
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Tusk

Nothing is committed and we keep build the DAG
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Tusk

Leader L2 has links to leader L1
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Tusk

Commit all the sub-DAG of the leader
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HotStuff on Steroids

Just by replacing the mempool
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HotStuff on Narwhal

Enhanced commit rule
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Enhanced commit rule
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Evaluation

How to properly benchmark consensus protocols



Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal



Evaluation

Typical mistakes

® Forgo persistent storage

® Do not sanitise messages

™ Local/LAN benchmark + ping

™ Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds

@ Start timer in the batch maker

™ Evaluate latency w/ only the first tx
@ Separate latency and throughput
A Only benchmark happy path



Evaluation

Experimental setup on AWS




Evaluation

Typical mistakes

® Forgo persistent storage

B Do not sanitise messages

& Local/LAN benchmark + ping
& Many nodes on same machine

@ Change parameters across runs

M Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
@ Start timer in the batch maker
™ Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path



Evaluation

Set the benchmark parameters

FFaults: 0 node (s)

Committee size: 10 node(s)

Transaction size: 512 B



Evaluation

Set the benchmark parameters

Faults: 0 node (s) Header size: 1,000 B
Committee size: 10 node (s) Max header delay: 200 ms
Transaction size: 512 B GC depth: 50 round(s)

Sync retry delay: 5,000 ms

Sync retry nodes: 3 node (s)

batch size: 500,000 B
Max batch delay: 200 ms



Evaluation

Typical mistakes

™ Forgo persistent storage ™ Send a single burst of transactions
B Do not sanitise messages B Benchmark for a few seconds

B Local/LAN benchmark + ping @ Start timer in the batch maker

B Many nodes on same machine @ Evaluate latency w/ only the first tx
@ Change parameters across runs @ Separate latency and throughput
@ Set transaction size to zero @ Only benchmark happy path

A Preconfigure nodes with txs
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Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
# Change parameters across runs
M Set transaction size to zero

& Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
A Only benchmark happy path
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Typical mistake
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Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

® Send a single burst of transactions
& Benchmark for a few seconds
B Start timer in the batch maker
™ Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path
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Evaluation

ch digest -> sample tx id

ch digest -> batch bytes
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Instrument the codebase
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Instrument the codebase
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Compute throughput

bench;start;pime

Evaluation
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Evaluation

Compute latency
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Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
& Start timer in the batch maker
& Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path
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Evaluation
Throughput latency graph
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Throughput latency graph
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Throughput latency graph
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Throughput latency graph
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Throughput latency graph
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Typical mistakes

® Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

& Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path



Evaluation
Throughput latency graph
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Throughput latency graph
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Scalability
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Scalability
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Performance under faults
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Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
# Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
& Only benchmark happy path



Evaluation

Still many caveats

Perfect load balance
Transaction deduplication
Synthetic load

No Byzantine adversary

No network adversary

Only AWS network



Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

- Scalable design, egalitarian resource utilisations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal
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Future Works

Come talk to us!

« Performance under DDoS attack?

- How to implement scalable execution?



alberto@mystenlabs.com

Alberto Sonnino






Worker Iementation

Handle messages Handle clients Handle messages
from our primary transactions from other workers

Receiver Receiver Receiver
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® (hashes and stores (replies to batch
batches) requests)

(requests missing (assembles txs into

batches) batches)

QuorumWaiter
(waits for a quorum to

acks our batch)
Simple Sender Reliable Sender Simple Sender

(to other workers) (to other workers) (to other workers)

H H
Synchronizer Batch Maker } Processor Helper

Processor PrimaryConnector
(hashes and stores (sends batch digests
batches) J to our primary)

CPU ] tokio task
Storage

Network -3 tokio channel

Simple Sender
(to our primary)




Handle messages
from our workers

Receiver
(maintains one TCP
connection per client)

*
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Payload Receiver
(stores the batch
digests)

Signature Service
(signs headers)

Reliable Sender
(to other primaries)

Consensus
(orders certificates)

Legend @

Primary Implementation

Handle messages
from other primaries

Receiver
(maintains one TCP
connection per client)

Core Helper
(handles headers, (replies to batch
votes, certificates) requests)

A

A 4

Header Waiter
Proposer (requests missing
(make new headers) batches and
cenrtificates)

W CPU ] tokio task @ atomic writer Garbage Collector
@® Storage (updates the GC

round)
Network —p  t0Ki0 channel @ atomic reader

o] ) -

Simple Sender
(to other primaries or our workers)

Simple Sender
(to other primaries)

Certificate Waiter
(waits for all the
history of certificates)




