Efficient DAG-Based Consensus
FAB 22

Alberto Sonnino

Byzantine Fault Tolerance

-
—
N—
-
——
N—
-
——
N

-
——
N—
-
—
N

-
—
N
-
——
N—

How to build (really) high performance
blockchains

The goal of this talk

Traditional Designs

Observation

« Monolithic protocol sharing transaction data as part of the consensus

« Optimize overall message complexity of the consensus protocol

Current Designs

Typical leader-based protocols

VYV YV

Current Designs

Typical leader-based protocols

VYV VY YV

tion

e utiliza

Data dissemination is the key

Reaching consensus on metadata is cheap

Narwhal

The workers and the primary

h (Narwhal mempool \
Worker 1
Worker 2
Client |
transactions Primary
|
|
|
Worker n
Yy _ Y.

Narwhal

The workers and the primary

A (Narwhal mempool \

Transactions

> Worker 1

Transactions

> Worker 2

Client

: Primary
transactions

Transactions

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
Transactions Batch
> Worker 2
Client :
: Primary
transactions
|
|
|
Transactions ‘ Batch

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
........................ Digest .
Transactions Batch
> Worker 2
\ 4
Cllent > Prlmary
transactions Digest
| 3
!
|
Digest
Transactions ‘ Batch
> Worker n
y _ Y

Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n

Narwhal

The primary machine

block header

H

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

| Round 1

Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast

Narwhal

The primary machine

' r2 r3 r4 rs

Narwhal

Data Dissemination & Proof of Availability

The workers ship batch of transactions
Many workers to scale out and use resources concurrently

The primary constantly broadcasts the batch digests

Headers at round r contains references to 2f+1 certificates of round r-1

Build a structured DAG of certificates

Tusk

Add common coin & Interpret the DAG

J

&‘
Rk
- \

Tusk

The random coin elects the leader of r-2

N4
w
/’\ﬁ
VX

Tusk

The leader needs f+1 links from round r-1

N4
w
/’\ﬁ
X

Tusk

Nothing is committed and we keep build the DAG

NN NN
et

AN\ /“
m N\

-l
=

Tusk

WX
Tt a

K
»\ﬁ»)
=l

Y

Tusk

t(z:;‘- -~
;

Tusk

Leader L2 has links to leader L1

vn,;wnv
»\ﬁ /

Tusk

Commit all the sub-DAG of the leader
e

r3

Y

RN
N\ X

HotStuff on Steroids

Just by replacing the mempool

4)
Client
transactions
- Y,

HotStuff on Narwhal

Ordered
transactions

Overview
- A 4
Narwhal Certificates
mempool
Partially
Synchronous
Garbage Consensus
collection (HotStuff)
- Yy,
o Y,

HotStuff on Narwhal

Enhanced commit rule

HotStuff on Narwhal

Enhanced commit rule

HotStuff on Narwhal

Enhanced commit rule

NN N
(imie

X ﬁz‘ \
\

Evaluation

How to properly benchmark consensus protocols

Implementation

 Written in Rust

« Networking: Tokio (TCP)
» Storage: RocksDB
» Cryptography: ed25519-dalek

ps://github.com/asonnino/narwhal

Evaluation

Typical mistakes

® Forgo persistent storage

® Do not sanitise messages

™ Local/LAN benchmark + ping

™ Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds

@ Start timer in the batch maker

™ Evaluate latency w/ only the first tx
@ Separate latency and throughput
A Only benchmark happy path

Evaluation

Experimental setup on AWS

Evaluation

Typical mistakes

® Forgo persistent storage

B Do not sanitise messages

& Local/LAN benchmark + ping
& Many nodes on same machine

@ Change parameters across runs

M Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
@ Start timer in the batch maker
™ Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path

Evaluation

Set the benchmark parameters

FFaults: 0 node (s)

Committee size: 10 node(s)

Transaction size: 512 B

Evaluation

Set the benchmark parameters

Faults: 0 node (s) Header size: 1,000 B
Committee size: 10 node (s) Max header delay: 200 ms
Transaction size: 512 B GC depth: 50 round(s)

Sync retry delay: 5,000 ms

Sync retry nodes: 3 node (s)

batch size: 500,000 B
Max batch delay: 200 ms

Evaluation

Typical mistakes

™ Forgo persistent storage ™ Send a single burst of transactions
B Do not sanitise messages B Benchmark for a few seconds

B Local/LAN benchmark + ping @ Start timer in the batch maker

B Many nodes on same machine @ Evaluate latency w/ only the first tx
@ Change parameters across runs @ Separate latency and throughput
@ Set transaction size to zero @ Only benchmark happy path

A Preconfigure nodes with txs

Fixed input rate

For along time
(minutes)

Evaluation

Benchmark clients

Narwhal
mempool

Ordered transac tions

(=)

Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
Change parameters across runs
M Set transaction size to zero

& Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
A Only benchmark happy path

Narwhal
mempool

Narwhal
mempool

Evaluation

Typical mistake

Propose batch 5 (pointer)

[Tusk j
_ Y,

Load txs from pre-
populated store &
commit

Narwhal
mempool

[Tusk]
_ J

Narwhal
mempool

[Tusk j
_ J

Load txs from pre-
populated store &
commit

Load txs from pre-
populated store &
commit

Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

® Send a single burst of transactions
& Benchmark for a few seconds
B Start timer in the batch maker
™ Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path

send 50k txs

(once)

S

Evaluation

Typical mistake

~

_

Narwhal
mempool

~

Ordered transac tions

o

_/

S=50k/400ms =125k tx/s &

output after

400 ms

;nch_s tart_time

ple tx id -> send time

~

Benchmark
client

~

Evaluation

Narwhal mempool

. .
--

. o

e .

Instrument the codebase

Ordered transactions

Evaluation

ch digest -> sample tx id

ch digest -> batch bytes

~

Benchmark
client

~

Narv nal mempool

. .
--

. o

e .

Instrument the codebase

Ordered transactions

Evaluation

Instrument the codebase

-k digest -> batch digest

4 Narwhal mempool A
r \
Benchmark ioBatch G
_ I
........... \ A
T ——— c Proposer
£
\ Ordered transactions
Tusk J >

Evaluation

Instrument the codebase

4 Narwhal mempool A
r \
Benchmark ioBatch G
_ I
........... \ A
T ——— c Proposer
£
\ Ordered transactions
Tusk J >

- J ~k digest -> commit time

Compute throughput

bench;start;pime

Evaluation

sample tx i1d -> send time

o 3

Narwhal mempool

[Benchmark J——’ Batch Maker """ " Proposer """

client

_

. *

0. *

batch digest -> sample tx id
batch digest -> batch bytes

» block digest -> commit time

block digest -> batch digest

,J._time = las t_commi t_time - bench_s tart_time

n

»
|

= total bytes / total time

BPS / transaction size

bench;start;ﬁime

Evaluation

Compute latency

-
sample tx id -> send time Narwhal mempool
Seel h
[ene mark J——> Batch Maker i------ »: Proposer i------ *[Tusk
client : : ; 5 J
N

batch digest -> sample tx id
batch digest -> batch bytes

ples

tency

average (samples)

» block digest -> commit time

block digest -> batch digest

commit time - send time

Evaluation

Typical mistakes

™ Forgo persistent storage

B Do not sanitise messages

@ Local/LAN benchmark + ping

® Many nodes on same machine
@ Change parameters across runs
@ Set transaction size to zero

A Preconfigure nodes with txs

™ Send a single burst of transactions
B Benchmark for a few seconds
& Start timer in the batch maker
& Evaluate latency w/ only the first tx

& Separate latency and throughput
A Only benchmark happy path

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

Evaluation
Throughput latency graph

0

—$— Tusk, 10 nodes

N
o
|

o
©
|

. Change only
Input rate

o
©
|

30
3
Q4.0
)
i)
©
e

W
o
|

N
©
|

75k 100k L
Throughput (tx /s) :

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

75k 100k

Throughput (tx /s) ‘

—
)]
r

>
—
-
(<)
ofad
©
ol

W P o o N ©
o o o o o Q |
]]]]] ke

N
©
|

Evaluation
Throughput latency graph

—$— Tusk, 10 nodes

Longer |
benchmarks

75k 100k

Throughput (tx /s) ‘

Evaluation
Throughput latency graph

0

—$— Tusk, 10 nodes

N
o
|

o
©
|

o
©
|

30
2
Q4.0
)
i)
©
e

W
o
|

N
©
|

Braking point!

75k 100k 125k 150k 175k |
Throughput (tx /s) ‘

Evaluation

Typical mistakes

® Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

& Many nodes on same machine
@ Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

@ Separate latency and throughput
A Only benchmark happy path

Evaluation
Throughput latency graph

¥ 1 | i |

—$— Tusk, 10 nodes == Narwhal-HS, 10 nodes Batched-HS, 10 nodes == Baseline-HS, 10 nodes
—$- Tusk, 20 nodes == Narwhal-HS, 20 nodes Batched-HS, 20 nodes == Baseline-HS, 20 nodes
-9- Tusk, 50 nodes -9+ Narwhal-HS, 50 nodes Batched-HS, 50 nodes \

o
©
|

a0
2
,=40'
@

i)

©
-

SH Ul
o o
| |

N
©
|

75k 100k
Throughput (tx /s)

Evaluation
Throughput latency graph

¥ Lr \ ¥ || 7 I |

-, | -
_— —$— Tusk, 10 nodes —®— Narwhal-HS, 10 nodes —{— Batched-HS, 10 nodes == Baseline-HS, 10 nodes
A~ -~ Tusk, 20 nodes == Narwhal-HS, 20 nodes =@~ Batched-HS, 20 nodes == Baseline-HS, 20 nodes *
-®- Tusk, 50 nodes -9- Narwhal-HS, 50 nodes -4- Batched-HS, 50 nodes :

K | \

.

S
o
|

e
©
|

;0
-
2 4.0 -
- @
)
©
el

.
o
|

A
©
|

75k 100k
Throughput (tx /s)

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers

o

B

 Latency (s)

w
©

N
o

=
©

100k 200k 300k 400k 500k 600k |
Throughput (tx /s) i

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers

i & rmi

100k 200k 300k 400k 500k 600k |
Throughput (tx /s) i

Evaluation
Scalability

—&— Tusk, 4 workers —&— Narwhal-HS, 4 workers
—$- Tusk, 7 workers —$- Narwhal-HS, 7 workers
-®- Tusk, 10 workers -4®- Narwhal-HS, 10 workers lt

600k 1 —§— Tusk, Max latency: 5.0s
—$- Tusk, Max latency: 3.0s

500k 1 —$— Narwhal-HS, Max latency: 5.0s
—$- Narwhal-HS, Max latency: 3.0s

i & rmi

N N

o U

o o
Throughput (MB/s)

=
9
o

=
o
o

30
NN
P
|
—r’
o
-
. Q.
,‘:
(@)
]
(o]
el
I o
.

100k 200k 300k 400k
Throughput (tx /s)

6
Workers per validator

Evaluation

Performance under faults

—@— Tusk, 10 nodes (1 faulty)
Tusk, 10 nodes (3 faulty)
Narwhal-HS, 10 nodes (1 faulty)
Narwhal-HS, 10 nodes (3 faulty)
Batched-HS, 10 nodes (1 faulty)
Batched-HS, 10 nodes (3 faulty)
Baseline-HS, 10 nodes (1 faulty)
Baseline-HS, 10 nodes (3 faulty)

N
ok
o

;E
>
- 2 20.0
)
==
©
-

it
U
o

60k 80k
Throughput (tx /s)

Evaluation

Typical mistakes

B Forgo persistent storage

™ Do not sanitise messages

@ Local/LAN benchmark + ping

M Many nodes on same machine
Change parameters across runs
M Set transaction size to zero

M Preconfigure nodes with txs

B Send a single burst of transactions
® Benchmark for a few seconds
@ Start timer in the batch maker
M Evaluate latency w/ only the first tx

M Separate latency and throughput
& Only benchmark happy path

Evaluation

Still many caveats

Perfect load balance
Transaction deduplication
Synthetic load

No Byzantine adversary

No network adversary

Only AWS network

Conclusion

arwhal & Tusk

« Separate consensus and data dissemination for high performance

- Scalable design, egalitarian resource utilisations

- Paper: https://arxiv.org/pdf/2105.11827.pdf

» Code: https://github.com/asonnino/narwhal

Acknowledgements

T)
George Lefteris Alexander Alberto
Danezis Kokoris-Kogias Spiegelman Sonnino

Work done at Facebook Novi

Future Works

Come talk to us!

« Performance under DDoS attack?

- How to implement scalable execution?

alberto@mystenlabs.com

Alberto Sonnino

Worker Iementation

Handle messages Handle clients Handle messages
from our primary transactions from other workers

Receiver Receiver Receiver
(maintains one TCP (maintains one TCP (maintains one TCP
connection per client) connection per client) connection per client)

- ~
’ .
- ’ -~
’ ' .
- ’ ~
” .
- ’ ~
- ' .
- ' ~
- .
- ’ -~
- L -

® (hashes and stores (replies to batch
batches) requests)

(requests missing (assembles txs into

batches) batches)

QuorumWaiter
(waits for a quorum to

acks our batch)
Simple Sender Reliable Sender Simple Sender

(to other workers) (to other workers) (to other workers)

H H
Synchronizer Batch Maker } Processor Helper

Processor PrimaryConnector
(hashes and stores (sends batch digests
batches) J to our primary)

CPU] tokio task
Storage

Network -3 tokio channel

Simple Sender
(to our primary)

Handle messages
from our workers

Receiver
(maintains one TCP
connection per client)

*
IN IN -

Payload Receiver
(stores the batch
digests)

Signature Service
(signs headers)

Reliable Sender
(to other primaries)

Consensus
(orders certificates)

Legend @

Primary Implementation

Handle messages
from other primaries

Receiver
(maintains one TCP
connection per client)

Core Helper
(handles headers, (replies to batch
votes, certificates) requests)

A

A 4

Header Waiter
Proposer (requests missing
(make new headers) batches and
cenrtificates)

W CPU] tokio task @ atomic writer Garbage Collector
@® Storage (updates the GC

round)
Network —p t0Ki0 channel @ atomic reader

o]) -

Simple Sender
(to other primaries or our workers)

Simple Sender
(to other primaries)

Certificate Waiter
(waits for all the
history of certificates)

