
Scaling distributed ledgers and
privacy-preserving applications

Alberto Sonnino

PhD Defense

A set of nodes

... Some of which are bad

 > X

Blockchains

1. make transaction

Blockchains

2. submit transaction

1. make transaction

Blockchains

2. submit transaction

3. sequence

and verify

1. make transaction

Blockchains

2. submit transaction

3. sequence

and verify

1. make transaction

4. store

Low throughput

High latency

Slow finality

Poor privacy

Overview

Chainspace

FastPay

Coconut

Byzcuit

Overview

Chainspace

FastPay

Chapter 5

AFT'20

Chapter 3 & 4

NDSS'18 & EuroS&P'20

Chapter 6

NDSS'19

Coconut

Byzcuit

Chainspace & Byzcuit
A scalable backbone with integrated privacy support

Chainspace
State sharding

Chainspace

shard 1 shard 2

shard 3

State sharding

Byzcuit
Cross-shard consensus protocol

Privacy by Design

procedure

checker

Privacy by Design

procedure

(make zk-proof)

checker

(verify zk-proof)

High throughput

Low latency

Fast finality

Good privacy

FastPay
A low-latency payment system

What we have so far

Total Latency:
slowest shard during phase 1

+

slowest shard during phase 2

+

all communications

BFT BFT

BFTBFT

client

shard 1

shard 2

Chainspace

Overview
FastPay

Byzcuit

Difference with blockchains

Blockchains FastPay

Byzantine Consensus Byzantine Consistent Broadcast

High throughput

Low latency

Fast finality

Good privacy

Coconut
Privacy-preserving credentials for smart contract applications

Coconut

Overview

Chainspace

FastPay

Byzcuit

Coconut
Anonymous credentials in a blockchain setting

Coconut
Chainspace

Byzcuit

attributes

Coconut
Anonymous credentials in a blockchain setting

Coconut
Chainspace

Byzcuit

attributes

credential

High throughput

Low latency

Fast finality

Good privacy

15. Fraud Proofs: Maximising Light Client Security and Scaling Blockchains with Dishonest
Majorities

Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, Ismail Khoffi, Financial Cryptography and Data
Security (FC), 2021

14. EL PASSO: Privacy-preserving, Asynchronous Single Sign-On

Zhiyi Zhang, Michał Król, Alberto Sonnino, Lixia Zhang, Etienne Rivière, International Symposium
on Privacy Enhancing Technologies (PETs), 2021

13. Twins: White-Glove Approach for BFT Testing

Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, Dahlia
Malkhi, ArXiv Preprint, 2020

12. FastPay: High-Performance Byzantine Fault Tolerant Settlement

Mathieu Baudet, George Danezis, Alberto Sonnino, ACM Conference on Advances in Financial
Technologies (AFT), 2020

11. Replay Attacks and Defenses against Cross-shard Consensus in Sharded Distributed Ledgers

Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, George Danezis, IEEE European Symposium on
Security and Privacy (EuroS&P), 2020

10. PASTRAMI: Privacy-preserving, Auditable, Scalable & Trust-worthy Auctions for Multiple
Items.

Michał Król, Alberto Sonnino, Argyrios G. Tasiopoulos, Ioannis Psaras, Etienne Rivière ACM/IFIP
Middleware, 2020

9. Location, location, location: Revisiting Modeling and Exploitation for Location-based Side
Channel Leakages

Christos Andrikos, Lejla Batina, Lukasz Chmielewski, Liran Lerman, Vasilios Mavroudis, Kostas
Papagiannopoulos, Guilherme Perin, Giorgos Rassias, Alberto Sonnino, Asiacrypt, 2019

8 FMPC: Secure Multiparty Computation from Fourier Series and Parseval’s Identity

Alberto Sonnino, ArXiv Preprint, 2019

7. AStERISK: Auction-based Shared Economy ResolutIon System for blocKchain

Alberto Sonnino, Michał Król, Argyrios Tasiopoulos, Ioannis Psaras, Workshop on
Decentralized IoT Systems and Security (DISS), 2019

6. SybilQuorum: Open Distributed Ledgers Through Trust Networks

Alberto Sonnino, George Danezis, ArXiv Preprint, 2019

5. Proof-of-Prestige: A Useful Work Reward System for Unverifiable Tasks

Michał Król, Alberto Sonnino, Mustafa Al-Bassam, Argyrios Tasiopoulos, Ioannis Psaras,
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2019

4. Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to
Distributed Ledgers

Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, George Danezis,
Proceedings of the Network and Distributed System Security Symposium (NDSS), 2019

3. SoK: Consensus in the Age of Blockchains

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah
Meiklejohn, George Danezis, ACM Conference on Advances in Financial Technologies (AFT),
2019

2. Airtnt: Fair Exchange Payment for Outsourced Secure Enclave Computations

Mustafa Al-Bassam, Alberto Sonnino, Michał Król, Ioannis Psaras, ArXiv preprint, 2018

1. Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, George Danezis,
Proceedings of the Network and Distributed System Security Symposium (NDSS), 2018

http://sonnino.com/papers/fraudproofs.pdf
http://sonnino.com/papers/fraudproofs.pdf
http://sonnino.com/papers/fraudproofs.pdf
http://sonnino.com/papers/elpasso.pdf
http://sonnino.com/papers/twins.pdf
http://sonnino.com/papers/fastpay.pdf
http://sonnino.com/papers/byzcuit.pdf
http://sonnino.com/papers/pastrami.pdf
http://sonnino.com/papers/pastrami.pdf
http://sonnino.com/papers/pastrami.pdf
http://sonnino.com/papers/location.pdf
http://sonnino.com/papers/location.pdf
http://sonnino.com/papers/location.pdf
http://sonnino.com/papers/fmpc.pdf
http://sonnino.com/papers/asterisk.pdf
http://sonnino.com/papers/sybilquorum.pdf
http://sonnino.com/papers/pop.pdf
http://sonnino.com/papers/coconut.pdf
http://sonnino.com/papers/coconut.pdf
http://sonnino.com/papers/coconut.pdf
http://sonnino.com/papers/sok-consensus.pdf
http://sonnino.com/papers/airtnt.pdf
http://sonnino.com/papers/chainspace.pdf

EXTRA
State Sharding

Traditional Sharding

State Sharding
An example transaction

X1 X2

T(x1, x2) → (y1, y2, y3)

Shard 1 Shard 2 Shard 3

State Sharding
An example transaction

X1 X2Y1 Y2 Y3

T(x1, x2) → (y1, y2, y3)

Shard 1 Shard 2 Shard 3

State Sharding
Only two acceptable final states

Y1 Y2

Y3
Shard 1 Shard 2

Shard 3

X1 X2

Shard 1 Shard 2

Shard 3

Cross-Shard Consensus
How do shards communicate with each other?

EXTRA
S-BAC Attacks

• Does not need to collude with any node

• Acts as client or passive observer

• Re-orders network messages (not always needed)

Double spend any object

Attacks

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)
10

5

4

101

Double-spend X1

Attack against S-BAC

T′￼(x̃1 , x2) → (y1, y2, y3)
10

5

4

101

Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)
Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)

lock X2

Double-spend X1

Attack against S-BAC

BFT

BFT

c

s1

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

from shard 1
pre-accept(T)

Attack against S-BAC

T(x1, x2) → (y1, y2, y3)

BFT

BFT

c

s1

s2

s3

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

T′￼(x̃1 , x2) → (y1, y2, y3)

lock X2

pre-accept(T')

pre-abort(T')

Double-spend X1

abort(T)

pre-accept(T)

pre-abort(T)

BFT

BFT

abort(T')

unlock X2

from shard 1
pre-accept(T)

Attack against S-BAC

T*(x1) → (y*)

Double-spend X1

BFT

client

shard 1

10

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

attacker

pre-accept(T)

pre-abort(T)

5

BFT

BFT

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3

attacker

pre-accept(T)

pre-abort(T)

pre-accept(T)

5

Attack against S-BAC
Double-spend X1

T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3

attacker

BFT

pre-accept(T)

pre-abort(T)

pre-accept(T)

4

10

5

Attack against S-BAC
Double-spend X1

After attackBefore attack

4

10

Y2

Y3

10
Y*

5
X2

10
X1

What causes these issues?

Issue 1. Input shards cannot associate protocol messages to a
specific protocol execution.

Issue 2. Output shards (that are not also input shards) do not
experience the first phase of the protocol

EXTRA
Atomix Attacks

S-BAC
T(x1, x2) → (y1, y2, y3)

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

client

shard 1

shard 2

shard 3

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3
lock X1, X2

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3
pre-accept(T)

pre-accept(T)

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

shard 3
delete X1, X2 ; create Y1, Y2

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3

create Y3

accept(T)

S-BAC
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3
phase 1 phase 2

Atomix
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3
inactivate X1, X2

Atomix
T(x1, x2) → (y1, y2, y3)

BFT

BFT

client

shard 1

shard 2

shard 3

pre-accept(T)

pre-accept(T)

Atomix
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3

accept(T)

Atomix
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3

create Y3

create Y2

create Y1

Atomix
T(x1, x2) → (y1, y2, y3)

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3
phase 1 phase 2

Cross-Shard Consensus
How does it achieve linear scalability?

BFT BFT

BFTBFT

c

s1

BFT

s2

s3

BFT BFT

BFTBFT

s4

BFT

s5

s6

EXTRA
Byzcuit

Byzcuit
Fix issue 1

X1, Sx1

Shard 1 Shard 2 Shard 3

X2, Sx2

Add sequence numbers per object

Byzcuit
Fix issue 2

X1, Sx1

Shard 1 Shard 2 Shard 3

X2, Sx2

Dummy objects for output shards

D3, SD3

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT

BFT

client

shard 1

shard 2

shard 3 BFT

TM

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT

BFT

client

shard 1

shard 2

shard 3 BFT

TM

Check 2. Is the sequence number ST

 ? ST ≥ max{SX1, SX2}

Check 1. Are all inputs active / transaction
well formed ?

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

client

shard 1

shard 2

shard 3

TM

if checks fail: SD3 ← ST + 1

if checks fail: SX2 ← ST + 1

if checks fail: SX1 ← ST + 1

BFT

BFT

BFT

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT

BFT

client

shard 1

shard 2

shard 3 BFT

TM

otherwise: lock D3, store (ST, T)

otherwise: lock X2, store (ST, T)

otherwise: lock X1, store (ST, T)

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3 BFT

TM

pre-accept(T, ST)

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3 BFT

TM

accept(T, ST)

Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT BFT

BFTBFT

client

shard 1

shard 2

BFTshard 3 BFT

TM

if (T, ST),

inactivate X1, X2, D3

create Y1, Y2, Y3

Why is Byzcuit secure?

Issue 1. Input shards cannot associate protocol messages to a
specific protocol execution.

Issue 2. Output shards (that are not also input shards) do not
experience the first phase of the protocol

Sequence numbers:

 act as session ID

Dummy objects:

all shards experience the
first phase of the protocol

EXTRA
FastPay Transfer

FastPay
How does it work?

sender

recipient

FastPay
How does it work?

sender

recipient

1. transfer order

FastPay
How does it work?

sender

recipient

1. transfer order
2. verify

FastPay
How does it work?

sender

recipient

3. signed transfer order

2. verify
1. transfer order

FastPay
How does it work?

sender

recipient

3. signed transfer order

4. confirmation order

5. confirmation order 6. confirmation order

2. verify
1. transfer order

FastPay
How does it work?

sender

recipient

1. transfer order

3. signed transfer order

4. conf

5. conf 6. conf

2. verify

7. update

FastPay
Increasing capacity

s

r

1.

3.

4.

5. 6.

2.

7.

7.
7.s

r

s

r

s

r

Validity

No duplication

Integrity

Consistency

Byzantine Consistent Broadcast

EXTRA
FastPay Smart Contract Interface

FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction

FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction

2. synchronization order

FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction

2. synchronization order

3. verify & update

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

smart contract

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order
2. verify

smart contract

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

2. verify

smart contract

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. confirmation order

2. verify

smart contract

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. conf

2. verify

5. update

smart contract

FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. conf

6. redeem transaction

2. verify

5. update

smart contract
7. verify & update

