
Scaling distributed ledgers and 
privacy-preserving applications

Alberto Sonnino

PhD Defense



A set of nodes



... Some of which are bad

 > X



Blockchains

1. make transaction



Blockchains

2. submit transaction

1. make transaction



Blockchains

2. submit transaction

3. sequence  

and verify

1. make transaction



Blockchains

2. submit transaction

3. sequence  

and verify

1. make transaction

4. store



Low throughput 

High latency 

Slow finality 

Poor privacy



Overview

Chainspace

FastPay

Coconut

Byzcuit



Overview

Chainspace

FastPay

Chapter 5 

AFT'20

Chapter 3 & 4 

NDSS'18 & EuroS&P'20

Chapter 6 

NDSS'19

Coconut

Byzcuit



Chainspace & Byzcuit
A scalable backbone with integrated privacy support  
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State sharding



Chainspace

shard 1 shard 2

shard 3

State sharding



Byzcuit
Cross-shard consensus protocol
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FastPay
A low-latency payment system 



What we have so far

Total Latency:  
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Difference with blockchains

Blockchains FastPay

Byzantine Consensus Byzantine Consistent Broadcast
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Coconut
Privacy-preserving credentials for smart contract applications 
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Anonymous credentials in a blockchain setting
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State Sharding



Traditional Sharding



State Sharding
An example transaction
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State Sharding
Only two acceptable final states

Y1 Y2

Y3
Shard 1 Shard 2

Shard 3

X1 X2

Shard 1 Shard 2

Shard 3



Cross-Shard Consensus
How do shards communicate with each other?



EXTRA
S-BAC Attacks



• Does not need to collude with any node 

• Acts as client or passive observer 

• Re-orders network messages (not always needed)

Double spend any object

Attacks



Attack against S-BAC
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Attack against S-BAC
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Attack against S-BAC
Double-spend X1

After attackBefore attack
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What causes these issues?

Issue 1. Input shards cannot associate protocol messages to a 
specific protocol execution. 

Issue 2. Output shards (that are not also input shards) do not 
experience the first phase of the protocol



EXTRA
Atomix Attacks
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Cross-Shard Consensus 
How does it achieve linear scalability?
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Byzcuit



Byzcuit
Fix issue 1

X1, Sx1

Shard 1 Shard 2 Shard 3

X2, Sx2 

Add sequence numbers per object



Byzcuit
Fix issue 2
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X2, Sx2 

Dummy objects for output shards

D3, SD3 
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{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT
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shard 3 BFT

TM

Check 2. Is the sequence number ST 

 ? ST ≥ max{SX1, SX2}

Check 1. Are all inputs active / transaction 
well formed ? 



Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

client
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shard 3

TM

if checks fail: SD3 ← ST + 1

if checks fail: SX2 ← ST + 1

if checks fail: SX1 ← ST + 1
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Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT
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shard 2

shard 3 BFT
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otherwise: lock D3, store (ST, T)

otherwise: lock X2, store (ST, T)

otherwise: lock X1, store (ST, T)
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Byzcuit
{ST, T(x1, x2, d3) → (y1, y2, y3)}

BFT BFT
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if (T, ST),  

inactivate X1, X2, D3 

create Y1, Y2, Y3



Why is Byzcuit secure?

Issue 1. Input shards cannot associate protocol messages to a 
specific protocol execution. 

Issue 2. Output shards (that are not also input shards) do not 
experience the first phase of the protocol

Sequence numbers: 

 act as session ID 

Dummy objects:  

all shards experience the 
first phase of the protocol 
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FastPay
How does it work?
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FastPay
Increasing capacity
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Validity 

No duplication 

Integrity 

Consistency

Byzantine Consistent Broadcast
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FastPay Smart Contract Interface



FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction
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FastPay
From primary infrastructure to FastPay

sender smart contract
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3. verify & update
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From the primary infrastructure to FastPay
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FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. conf

6. redeem transaction

2. verify

5. update

smart contract
7. verify & update


