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State Replication

Execution




Admission

« Forward the transaction to
« One pre-executor

« Consensus




Pre-Executors

Execute transactions

Compute lookup table with:

« Calls to pre-compiled functions
 Status of cryptographic checks

Forward results and table to primary executor

Lazy update objects state



Consensus

« Seqguence transactions (as usual)

» Forward commits to primary executor




« Merge pre-executor results
. If conflicts, re-execute using lookup table

- Feedback to pre-executor (avoid hot objects)

Primary Executor
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Hard Questions




Pre-Executor Selection

« Every pre-executor has the entire state
- Forward transaction to executor based on
- Total load on the pre-executor
« Target each pre-executor with a subset of the state (best effort)

- Eventually each pre-executor will have a subset of the state in memory / cache



State Update

« Primary executor keeps stats of pre-execution misses

« Push state update when misses exceed a threshold



Multi-Core Execution




Merge Operation

Adopt pre-execution if lookup table contains versioned inputs
Skip authenticators verified by pre-executors
Read from lookup table all dynamic objects

Adopt from lookup table results to pre-compiled functions if in lookup table



Overwhelmed Primary

« Select a subset of the state that is problematic

- Select a free pre-executor
« Give a read lock over that subset of the state to the pre-executor
- Forward all transactions to that pre-executor

» Upon a single (TBD), get back to normal operations



