Remora

Elastic Asynchronous Distributed Execution

Research offsite 2024

Current State

TX —Vu— Consensus Execution

Current State

Tx ﬁ'—u_»'

Throughput bottleneck

Current State

Pilotfish

Machine1

Machine 2
Tx ——> QNEaRn

Consensus

. Machine 3

Pilotfish

Machine 1 01..0j
Machine 2 0j+1..0p
1) Gl e . Admission Consensus '
M B op+1 Ot

Pilotfish

nroughput: Machine 1 01..0;j
Machine 2 0j+1..0p
1) Gl e . Admission Consensus '
M B op+1 o t

Pilotfish

) cency: Machine1 O1..O]
Execution
Machine 2 0j+1..0p
X —— > Consensus Execution '
T | op+1 O t

Execution

1ms 400 ms ??7?ms

Pilotfish

lasticity: s~ Machine 1 0i..0j

Execution

Machine 2
X ——mmm

Consensus Execution

Execution

. Machine 4

Pilotfish

Machine 2
X ——mmm

Consensus Execution

Pilotfish

Machine 1

ymplexity:

Execution

Machine 2
™x ——————>

Consensus Execution

. Machine 3
. Execution

Machine 4

Execution

State of the Art

"hroughput: "hroughput:
Latency: Latency:
Elasticity: ad

~omplexity:

State Replication

Execution

Admission

« Forward the transaction to
« One pre-executor

« Consensus

Pre-Executors

Execute transactions

Compute lookup table with:

« Calls to pre-compiled functions
 Status of cryptographic checks

Forward results and table to primary executor

Lazy update objects state

Consensus

« Seqguence transactions (as usual)

» Forward commits to primary executor

« Merge pre-executor results
. If conflicts, re-execute using lookup table

- Feedback to pre-executor (avoid hot objects)

Primary Executor

Properties

Aroughput: M M A

Properties

) nroughput: Mz ...
Latency: — '

Properties

AoughPUt: M2 ...

atency: _’

asticity:

Properties

Aroughput: Mz ...
atency: — '

Jasticity:
omplexity:

Hard Questions

Pre-Executor Selection

« Every pre-executor has the entire state
- Forward transaction to executor based on
- Total load on the pre-executor
« Target each pre-executor with a subset of the state (best effort)

- Eventually each pre-executor will have a subset of the state in memory / cache

State Update

« Primary executor keeps stats of pre-execution misses

« Push state update when misses exceed a threshold

Multi-Core Execution

Merge Operation

Adopt pre-execution if lookup table contains versioned inputs
Skip authenticators verified by pre-executors
Read from lookup table all dynamic objects

Adopt from lookup table results to pre-compiled functions if in lookup table

Overwhelmed Primary

« Select a subset of the state that is problematic

- Select a free pre-executor
« Give a read lock over that subset of the state to the pre-executor
- Forward all transactions to that pre-executor

» Upon a single (TBD), get back to normal operations

