Sui Lutris: A Blockchain Combining
Broadcast and Consensus

Alberto Sonnino

Byzantine Fault Tolerance

Byzantine Fault Tolerance

Typical Architecture

Sequence all Execute each Update DB,
P2P flood
2 Selection on fee transactions in transaction (global indexes, crypto
blocks lock) (Merkle trees)

Mempool / Initial . (Sequencial) DB Update & High-
Checks Ordering Execution Integrity DS
Overlay flooding slow Single core does all
and with significant computations. (eg
redundancy EVM ~300 tps)
Seconds latency, Added latency of
traditionally low store, blocks, and
throughput crypto computations

Typical Architecture

Sequence all Execute each
transactionsin transaction (global
blocks lock)

Orderin (Sequencial)
9 Execution

Single core does all

computations. (eg
EVM ~300 tps)

Seconds latency,
traditionally low
throughput

New Architecture

Secure Combination

FastPay Narwhal '
Bullshark

The Sui Lutris System

Architecture

Contains
shared-objects?

Transaction Consistent Consensus Checkpoints, g
Broadcast Merkle Trees

Agreed sequence
for audit/sync

Parallel
Execution

Certificate without Certificate with
consensus consensus

New Data Model

Consensus is not required

Coins, balances, and NFTs creation and Game logic allowing users
transfers transfers to combine assets

Auditable 3rd party
services not trusted for
safety

Inventory management for
games / metaverse

New Data Model

Consensus is required®

Increment a publicly-

: Auctions Market places
accessible counter

Collaborative in-game
assets

Consensus only when
you heed to

New Architecture

Architecture

Owned Objects Shared Objects

- Objects that can be mutated by a single entity - Objects that can be mutated my multiple entities
- e.g., My bank account » e.g., A global counter

e Do not heed consensus e Need consensus

Sui Objects

Objects:
- Unique ID

 Version number
« Ownership Information

» Type (shared, owned)

Objects:

« Unique ID .
Transaction’s

« Version number content

« Ownership Information

» Type (shared, owned)

Sui Transaction

Package,
function

Object Inputs

Gas
Information

Coin::Send

Alice’s account

Bob’s account,
Balance=5

0.001, max=0.005

Consensus-less Path

Example Transaction

T1
Inputs: O1 (v10), O2 (v27), O3 (v1001)
Output: Mutate O1, Transfer O2, Delete O3, Create O4

N

N2
N3
N4

User

Consensus-less Path

/o

/a

AN

AN\

V/ZANN

VNN

S\

7\

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

CertT1:

User gather >2/3
signatures into a
certificate and
disseminate it

EffectT1:

User gather >2/3
effect signatures for
finality

N

N2
N3
N4

User

Consensus-less Path

7

VA

N

Send T1:

Disseminate the
transaction

Consensus-less Path

Step 1: Owned object locks & version exist at validator

L1 = (01, 10)

Owner=X : None

We call these “locks”, and are
L2=(02, 27) initialised to None.

Owner=X : None

L3 = (O3, 1001)

Owner=X : None

Consensus-less Path

Step 2: Validator V checks / signs transactions

L1=(O1, 10)
Owner=X : Nene 11

L2 = (02, 27)
Owner=X : Noene T1

L3 = (O3, 1001)

Owner=X : Nene T1

Transaction: T1

Inputs: (O1, 10), (02,
27), (03, 1001)

Move call details

Signature of X

Checks T1 (Validity)

- Well-formed (syntactic)
. Valid Signature from X

- Valid execution function

« Version owned by X

Checks T1 (Broadcast)

- Objects exist and lock is None

« Set lock to T1

N

N2
N3
N4

User

Consensus-less Path

\ /e

AN /s

DN\ .

N\

Echo T1: CertT1:

Nodes check and User gather >2/3
sign T1 signatures into a
certificate and
disseminate it

Consensus-less Path

Step 3: Validator V process certificate

L1=(O1, 10)
Owner=X : Nene 11

L2 = (02, 27)
Owner=X : Noene T1

L3 = (O3, 1001)

Owner=X : Nene T1

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X
Signature (V1, ... V4)

Checks T1 (Validity)

« Again!

Checks T1 (Broadcast)
« Objects exist (with any lock)

« Certificate signed by quorum

Consensus-less Path

Step 4: Validator V executes / signs effect

L1=(O1, 11)

Owner=X : None

L2 = (02, 28)

Owner=Y : None

L3 =(04,1)

Owner=X : None

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X
Signature (V1, ... V4)

Execute T1

« O1 mutated

» O2 transferred
- O3 deleted

« OA4 created

Consensus-less Path

N 0\
N2

G AN
N4 .\\\

User yi R) N

EffectT1:

User gather >2/3
effect signatures for
finality

Integration with Consensus

N /0\
Ei //.\\ / Consensus \
/NN / N

N4 M
User

Send T1: Echo T1: CertT1: Effect T1:
Disseminate the = Nodes check and User gather >2/3 User gather >2/3
transaction sign T1 signatures into a effect signatures for
certificate and finality

disseminate it

Integration with Consensus

Example Transaction

T2
Inputs: O1 (v10), S2
Output: Mutate O1, Mutate S2, Create O4

Integration with Consensus

N

—

VY

L
User =
Send T1:

Disseminate the
transaction

Integration with Consensus

Step 1: Shared object locks exist at validator

Do not check the version for
12 =(S2, *) shared objects

° L1=(O1, 10)
Owner=X : None

Integration with Consensus

Step 2: Validator V checks / signs transactions

L1=(O1, 10)
Owner=X : Nene 12

L2 = (S2, ¥)

Owner=X

Transaction: T2
Inputs: (O1, 10), (S2, *)
Move call details

Signature of X

Checks T1 (Validity)

- Well-formed (syntactic)
. Valid Signature from X

- Valid execution function

« Version owned by X

Checks T1 (Broadcast)
- Objects exist and lock is None

« Set lock to T1

Integration with Consensus

N1 0\
N2

A\ /

y AN 7

User 4 N

Echo T1: CertT1:

Nodes check and User gather >2/3
sign T1 signatures into a
certificate and
disseminate it

Integration with Consensus

Step 3: After consensus, assign shared objects locks

Integration with Consensus

Step 3: Validator V process certificate

° L1 =(O1, 10)
Owner=X : Nene 12

Transaction: T2
Inputs: (O1, 10), (S2, *)
Move call details

Signature of X

Checks T2 (Validity)

« Again!

Checks T2 (Broadcast)
« Objects exist (with any lock)

« Certificate signed by quorum

Integration with Consensus

Step 4: Validator V Applies / Signs Effect

L1=(O1, 11)

Owner=X : None

L2 = (S2, 4)

L3 =(04,1)

Owner=X : None

Transaction: T2
Inputs: (O1, 10), (S2, *)
Move call details

Signature of X

Execute T1
« O1 mutated
« S2 mutated

« O4 created

Integration with Consensus

N1 \
: N
N4 \\\

User 4 = - N

Effect T1:

User gather >2/3
effect signatures for
finality

Transaction Execution

- First, execute all precedent transactions

« Once there is a certificate, any validator can download Tx and execute

Transaction Execution

/ned-objects ared-objects

Core1 Gore3
COr@ 2 ooy

Always executed in parallel Often executed in parallel

(once they inputs ID/version are known) (Sequentially for each shared object)

The Sui System

Shared objects

Execute

Execute:

Consensus S Execute Multiple tasks execute
(if they can)

Assign locks:

A single task
assigns versions,
e.g., Ov=5 Ow=18

Execute

Transaction Execution

Schedule

cxecute

Single task schedules transactions: Many tasks try to execute transactions:
(Tx1,Sv)->5 (Tx1, Sv) ==db[Sv]
’ = +=1 o o .
(Tx1, Sw) ->17 dbSv] Missing owned-objects
dependency?
(Tx2, Sw)->6 « Tell the client

« Synchronise

« Retry

(Very) Detailed Algorithms
heckpointing
econfiguration
roofs

roduction-readiness Insights

What we didn’t cover

Sui Lutris: A Blockchain Combining Broadcast and Consensus

Sam Blackshear Andrey Chursin George Danezis
Mysten Labs Mysten Labs Mysten Labs &

University College London

Anastasios Kichidis Lefteris Kokoris-Kogias Xun Li
Mysten Labs Mysten Labs & Mysten Labs
IST Autria

Mark Logan Ashok Menon Todd Nowacki
Mysten Labs Mysten Labs Mysten Labs

Alberto Sonnino Brandon Williams Lu Zhang
Mysten Labs & Mysten Labs Mysten Labs

University College London

Abstract

Sur LuTnis is the first production-grade smart-contract platform
that leverages consensusless agreement to achieve sub-second fi-
nality. Unlike prior work, Sut LuTRis integrates seamlessly consen-
susless agreement with a high-throughput consensus protocol to
not compromise expressiveness or throughput and is able to run
perpetually without restarts. This feat is especially delicate during
reconfiguration events, where the system needs to preserve the
safety of the consensusless path without compromising the long-
term liveness of potentially misconfigured clients. Sur LUTR1S com-

bined with the Move programming language enables safe execution
of smart-contracts that expose objects as a first-class resource.

1 Introduction

Traditional blockchains totally order transactions across replicated
miners or validators to mitigate “double-spending” attacks, i.e., a
user trying to use the same coin in two different transactions. It
is well known that total ordering requires consensus. In recent
years, however, systems based on consistent [4] and reliable [20]
broadcasts have been proposed instead. These rely on objects (e.g.,
a coin) being controlled by a single authorization path (e.g., a single
signer or a multi-sig mechanism), responsible for the liveness of
transactions. This concept has been used to design asynchronous,
and lightweight alternatives to traditional blockchains for decen-
tralized payments [4, 5, 13]. We call these systems consensus-less
as they do not require full consensus of atomic broadcast channels.
Yet, so far they have not been used in a production blockchain.

On the one hand, consensus-based protocols allow for general-
purpose smart contracts. But come at the cost of using more com-
plex consensus protocols with higher latency. On the other hand,
consensus-less protocols are simpler to implement and have low
latency. But typically support a restricted set of operations, and
deploying them in a dynamic environment is challenging as they do
not readily support state checkpoints and validator reconfiguration.
Supporting these functions is vital for the health of a long-lived
production system.

We present Sut LUTRIS, a system that combines the consensus-
less and consensus-based approaches to provide the best of both

worlds when processing transactions in a replicated Byzantine
setting. Sur LUTRIS uses a consistent broadcast protocol between
validators to ensure the safety of common operations on assets
owned by a single owner, ensuring lower latency as compared to
consensus. It only relies on consensus for the safety of complex
smart contracts operating on shared-ownership objects, as well as
to support network maintenance operations such as defining check-
points and reconfiguration. It is maintained by a permissionless set
of validators that play the same role as miners in other blockchains.

Sur Lutnis has been designed for and adopted as the core system
behind the Sui blockchain. As of May 2, 2023, its latest testnet is
operated by 97 geo-distributed heterogeneous validators and pro-
cesses over 251 million certificates a day over 775 epoch changes
using the Sut LuTRris protocols. It stores over 810 million objects
defined by over 86,000 Move packages. For this reason we present
in the paper details that go beyond merely illustrating core compo-
nents.

Challenges. Designing Su1 LuTRis requires tackling 3 key issues:
Firstly, a high-throughput system such as Sur LuTRis requires a
checkpoint protocol in order to archive parts of its history and re-
duce the memory footprint and bootstrap cost of new participants.
Checkpointing however is not as simple as in classic blockchains
since we do not have total ordering guarantees for all transactions.
Instead, Sur LUTRIs proposes an after-the-fact checkpointing proto-
col that eventually generates a cannonical sequence of transactions
and certificates, without delaying execution and transaction finality.
Secondly, consensus-less protocols typically provide low latency
at the cost of usability. A misconfigured client (e.g., underestimating
the gas fee or crash-recovering) risks deadlocking its account. We
consider this an unacceptable compromise for production systems.
We develop Sur LuTris such that client bugs only affect the liveness
of a single epoch, and provide rigorous proofs to support it.
Finally, the last challenge to solve is the dynamic participation
of validators in a permissionless system. The lack of total ordering
makes the solution non-trivial as different validators may stop pro-
cessing transactions at different points compromising the liveness
of the system. Additional challenges stem from the non-starvation

Conclusion

> Sul Lutris System

» Separate owned and shared objects
« Only use consensus when you need to

« Execute in parallel whenever you can

- Paper: https://sonnino.com/papers/sui-lutris.pdf

» Code: https://github.com/mystenlabs/sui

alberto@mystenlabs.com

