
Sui Lutris: A Blockchain Combining
Broadcast and Consensus

Alberto Sonnino

Byzantine Fault Tolerance

Byzantine Fault Tolerance

 > 2/3

Typical Architecture

Mempool / Initial
Checks Ordering (Sequencial)

Execution
DB Update & High-

Integrity DSTX
Overlay flooding slow
and with significant

redundancy

Seconds latency,
traditionally low

throughput

Single core does all
computations. (eg

EVM ~300 tps)

Added latency of
store, blocks, and

crypto computations

P2P flood
& Selection on fee

Sequence all
transactions in

blocks

Execute each
transaction (global

lock)

Update DB,
indexes, crypto
(Merkle trees)

Typical Architecture

Mempool / Initial
Checks Ordering (Sequencial)

Execution
DB Update & High-

Integrity DS

Overlay f
f

Seconds latency,
traditionally low

throughput

Single core does all
computations. (eg

EVM ~300 tps)

Added latency of
store, blocks, and

crypto computations

P2P f

Sequence all
transactions in

blocks

Execute each
transaction (global

lock)

Update DB,
indexes, crypto
(Merkle trees)

FastPay

New Architecture
Secure Combination

Narwhal+ =
Bullshark

Execute Execute

The Sui Lutris System
Architecture

Consistent
Broadcast Consensus Checkpoints,

Merkle Trees

Execute Execute

Contains
shared-objects?

Parallel
Execution

Certificate without
consensus

Certificate with
consensus

Transaction

Agreed sequence
for audit/sync

New Data Model
Consensus is not required

Coins, balances, and
transfers

Inventory management for
games / metaverse

NFTs creation and
transfers

Auditable 3rd party
services not trusted for

safety
…

Game logic allowing users
to combine assets

New Data Model
Consensus is required*

Increment a publicly-
accessible counter

Collaborative in-game
assets

Auctions

…

Market places

Consensus only when
you need to

New Architecture
Architecture

• Objects that can be mutated by a single entity

• e.g., My bank account

• Do not need consensus

Shared ObjectsOwned Objects

• Objects that can be mutated my multiple entities

• e.g., A global counter

• Need consensus

Sui Objects

• Unique ID

• Version number

• Ownership Information

• Type (shared, owned)

Objects:

Sui Transaction

Package,
function

Arguments

Object Inputs

Gas
Information

Signature

Coin::Send

Alice’s account

Bob’s account,
Balance=5

0.001, max=0.005

Transaction’s
content

• Unique ID

• Version number

• Ownership Information

• Type (shared, owned)

Objects:

Consensus-less Path

Example Transaction

T1

Inputs: O1 (v10), O2 (v27), O3 (v1001)

Output: Mutate O1, Transfer O2, Delete O3, Create O4

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certif

Effect T1:

User gather >2/3
effect signatures for

f

N1

N2
N3
N4

User

Consensus-less Path

Step 1: Owned object locks & version exist at validator

We call these “locks”, and are
initialised to None.

O1

O2

O3

L1 = (O1, 10)

Owner=X : None

L2 = (O2, 27)

Owner=X : None

L3 = (O3, 1001)

Owner=X : None

Consensus-less Path

Step 2: Validator V checks / signs transactions

O1

O2

O3

L1 = (O1, 10)

Owner=X : None T1

L2 = (O2, 27)

Owner=X : None T1

L3 = (O3, 1001)

Owner=X : None T1

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Checks T1 (Validity)

• Well-formed (syntactic)

• Valid Signature from X

• Valid execution function

• Version owned by X

Checks T1 (Broadcast)

• Objects exist and lock is None

• Set lock to T1

Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

f

N1

N2
N3
N4

User

Consensus-less Path

Step 3: Validator V process certificate

O1

O2

O3

L1 = (O1, 10)

Owner=X : None T1

L2 = (O2, 27)

Owner=X : None T1

L3 = (O3, 1001)

Owner=X : None T1

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Signature (V1, … V4)

Checks T1 (Validity)

• Again!

Checks T1 (Broadcast)

• Objects exist (with any lock)

• Certificate signed by quorum

Consensus-less Path

Step 4: Validator V executes / signs effect

O1

O2

O4

L1 = (O1, 11)

Owner=X : None

L2 = (O2, 28)

Owner=Y : None

L3 = (O4, 1)

Owner=X : None

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Signature (V1, … V4)

Execute T1

• O1 mutated

• O2 transferred

• O3 deleted

• O4 created

Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certif

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus-less Path

Integration with Consensus

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus

Example Transaction

T2

Inputs: O1 (v10), S2

Output: Mutate O1, Mutate S2, Create O4

Integration with Consensus

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certif

Effect T1:

User gather >2/3
effect signatures for

f

N1

N2
N3
N4

User

Consensus

Integration with Consensus

Step 1: Shared object locks exist at validator

Do not check the version for
shared objects

O1

S2

L1 = (O1, 10)

Owner=X : None

L2 = (S2, *)

Integration with Consensus

Step 2: Validator V checks / signs transactions

O1
L1 = (O1, 10)

Owner=X : None T2 Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X

Checks T1 (Validity)

• Well-formed (syntactic)

• Valid Signature from X

• Valid execution function

• Version owned by X

Checks T1 (Broadcast)

• Objects exist and lock is None

• Set lock to T1

S2
L2 = (S2, *)

Owner=X

Integration with Consensus
Same as before

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

f

N1

N2
N3
N4

User

Consensus

Integration with Consensus

Step 3: After consensus, assign shared objects locks

O1
L1 = (O1, 10)

Owner=X : None T2 Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X

Assign Shared Locks

• Every node sees the same
sequence out of consensus

• So they can all assign the
same shared object locks

S2

Integration with Consensus

L2 = (S2, 4)

Step 3: Validator V process certificate

O1
L1 = (O1, 10)

Owner=X : None T2

Checks T2 (Validity)

• Again!

Checks T2 (Broadcast)

• Objects exist (with any lock)

• Certificate signed by quorum

Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X
S2

Integration with Consensus
Same as before

L2 = (S2, 4)

Step 4: Validator V Applies / Signs Effect

O1

O4

L1 = (O1, 11)

Owner=X : None

L3 = (O4, 1)

Owner=X : None

Execute T1

• O1 mutated

• S2 mutated

• O4 created

Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X
S2

Integration with Consensus
Same as before

L2 = (S2, 4)

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certif

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus

Integration with Consensus

Transaction Execution

• First, execute all precedent transactions

• Once there is a certificate, any validator can download Tx and execute

Shared-objectsOwned-objects

Always executed in parallel

(once they inputs ID/version are known)

Often executed in parallel

(Sequentially for each shared object)

Ox, 10 Ox, 11

Oy, 65 Oy, 66
Ty

Tx
Core 1

Core 2

Sv, ? Sv, ?+1

Sw, ? Sw, ?+1
Tw

Tv
Core 3

Core 4

Transaction Execution

The Sui System
Shared objects

Assign locks:

A single task
assigns versions,
e.g., Ov=5 Ow=18

Consensus

Execute

Execute

Execute

Execute:

Multiple tasks execute
(if they can)

Single task schedules transactions:

(Tx1, Sv) -> 5

(Tx1, Sw) -> 17

…

(Tx2, Sw) -> 6

ExecuteSchedule

Many tasks try to execute transactions:

(Tx1, Sv) == db[Sv]

db[Sv] += 1
Missing owned-objects

dependency?

• Tell the client

• Synchronise

• Retry

Transaction Execution

• (Very) Detailed Algorithms

• Checkpointing

• Reconfiguration

• Proofs

• Production-readiness Insights

• …

What we didn’t cover

Conclusion

• Paper: https://sonnino.com/papers/sui-lutris.pdf

• Code: https://github.com/mystenlabs/sui

• Separate owned and shared objects

• Only use consensus when you need to

• Execute in parallel whenever you can

The Sui Lutris System

alberto@mystenlabs.com

