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The Typical Example
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Cross-Domain Discipline

• Distributed Systems 

• But not like a DB running in my datacenter 

• Adversarial network and Byzantine adversaries 

• Security  

• Both network and systems security 

• Programming Languages 

• Execute the smart contract & ensure determinism 

• Solidity, Move 

• Cryptography 

• Nodes cannot use secrets to execute smart contracts  

• Anonymous credentials, ZK-proofs



Network Security
Challenge #1

Some node are not well-protected in datacenter; 
we can’t rely on beefy machines



Network Security
Challenge #2

Highly dynamic set of nodes



Security Properties

LivenessSafety

Undesirable things never 
happen

Desirable things eventually 
happen



Adversary

• Synchronous: A message sent will be delivered 
before a maximum (known) delay. 

• Asynchronous: A message sent will eventually 
be delivered at an arbitrary time before a 
maximum (unknown) delay. 

• Partial Synchronous: the network is 
asynchronous but after some time it enters a 
period of synchrony. 

•

ChallengesProperties

#1 The Network: Worst possible schedule 

• Theoretical models: Need careful implementation to 
ensure we approximate them, e.g., retransmissions. 

• Memory: Naive implementations use infinite buffers. 
Identify conditions after which retransmissions are 
not necessary and buffers can be freed. 

• Asynchrony means the protocol should maintain 
properties for any re-ordering of message deliveries. 

• Unknown delay means delay should be adaptive to 
ensure robustness.



Adversary

• Correct / honest / good: Will remain live and follow 
the protocol as specified by the designers of the 
system. 

• Byzantine: will deviate arbitrarily from the protocol. 
May respond incorrectly or not at all.

ChallengesProperties

#2 Bad Nodes: Arbitrary behaviour

• Crash & recover:  this is still a correct node with 
very high latency. Need persistence to ensure this 

• Rational: honest validators may have some 
discretion. They may use it to maximise profit



Network Security
Challenge #3

Some nodes are bad, you may be talking with 
someone lying and trying to DoS you



Network Security
Challenge #4

Bad nodes have access to all committee (insider) 
information



Typical Architecture

Mempool / Initial 
Checks Ordering (Sequencial) 

Execution
DB Update & High-

Integrity DSTX
Overlay flooding slow 
and with significant 

redundancy

Seconds latency, 
traditionally low 

throughput

Single core does all 
computations. (eg 

EVM ~300 tps)

Added latency of 
store, blocks, and 

crypto computations

P2P flood  
& Selection on fee

Sequence all 
transactions in 

blocks

Execute each 
transaction (global 

lock)

Update DB, 
indexes, crypto 
(Merkle trees)
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New Architecture
Consensus is not required

Coins, balances, and 
transfers

Inventory management for 
games / metaverse

NFTs creation and 
transfers

Auditable 3rd party 
services not trusted for 

safety
…

Game logic allowing users 
to combine assets



New Architecture
Consensus is required

Increment a publicly-
accessible counter

Collaborative in-game 
assets

Auctions

…

Market places



Consensus only when 
you need to 

New Architecture
The Sui System



New Architecture
Architecture

• Objects that can be mutated by a single entity 

• e.g., My bank account 

• Do not need consensus 

Shared ObjectsOwned Objects

• Objects that can be mutated my multiple entities 

• e.g., A global counter 

• Need consensus



Execute Execute

The Sui System
Architecture

Consistent 
Broadcast Consensus Checkpoints, 

Merkle Trees

Execute Execute

Contains 
shared-objects?

Parallel 
Execution

Certificate without 
consensus

Certificate with 
consensus

Transaction

Agreed sequence 
for audit/sync

yes
no



The Sui System
Transactions

• Unique ID 

• Version number 

• Ownership Information 

• Type (shared, owned)

Objects:



The Sui System
Transactions

Package, 
function

Arguments

Object Inputs 

Gas 
Information

Signature

Coin::Send

Alice’s account

Bob’s account, 
Balance=5

0.001, max=0.005

Transaction’s 
content

• Unique ID 

• Version number 

• Ownership Information 

• Type (shared, owned)

Objects:



The Sui System
Consensus-less Path

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User



Network Security
Challenge #5

Different types of target links: clients-nodes and 
nodes-nodes



The Sui System
Consensus-less Path

Example Transaction

T1 

Inputs: O1, O2, O3 

Output: Mutate O1, Transfer O2, Delete O3, Create O4



The Sui System
Consensus-less Path

Example Transaction

T1 

Inputs: O1, O2, O3 

Output: Mutate O1, Transfer O2, Delete O3, Create O4

e.g., Mutate a 
coin to pay for 

gas

e.g., Transfer 
my warrior to 

friend

e.g., Delete a 
disease caught 
by my warrior

e.g., Be 
rewarded with a 

mystery gift



The Sui System
Consensus-less Path

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User



The Sui System
Consensus-less Path

Step 1: Owned object locks & version exist at validator

We call these “locks”, and are  
initialised to None.

O1

O2

O3

L1 = (O1, 10) 

Sender=X : None

L2 = (O2, 27) 

Sender=X : None

L3 = (O3, 1001) 

Sender=X : None



The Sui System
Consensus-less Path

Step 2: Validator V checks / signs transactions

O1

O2

O3

L1 = (O1, 10) 

Sender=X : None T1

L2 = (O2, 27) 

Sender=X : None T1

L3 = (O3, 1001) 

Sender=X : None T1

Transaction: T1 

Inputs: (O1, 10), (O2, 
27), (O3, 1001) 

Move call details 

Signature of X 

Checks T1 (Validity) 

• Well-formed (syntactic) 

• Valid Signature from X 

• Valid execution function 

• Version owned by X

Checks T1 (Broadcast) 

• Object-version exist Lock was 
set to None



The Sui System
Consensus-less Path

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User



The Sui System
Consensus-less Path

Step 3: Validator V process certificate

O1

O2

O3

L1 = (O1, 10) 

Sender=X : None T1

L2 = (O2, 27) 

Sender=X : None T1

L3 = (O3, 1001) 

Sender=X : None T1

Transaction: T1 

Inputs: (O1, 10), (O2, 
27), (O3, 1001) 

Move call details 

Signature of X 

Signature (V1, … V4) 

Checks T1 (Validity) 

• Again!

Checks T1 (Broadcast) 

• Objects exist (with any lock) 

• Certificate signed by quorum



The Sui System
Consensus-less Path

Step 4: Validator V executes / signs effect

O1

O2

O4

L1 = (O1, 11) 

Sender=X : None

L2 = (O2, 28) 

Sender=Y : None

L3 = (O4, 1) 

Sender=X : None

Transaction: T1 

Inputs: (O1, 10), (O2, 
27), (O3, 1001) 

Move call details 

Signature of X 

Signature (V1, … V4) 

Execute T1 

• O1 mutated 

• O2 transferred 

• O3 deleted 

• O4 created



The Sui System
Consensus-less Path

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User



Quorum Intersection
Why do we need it?

WithoutWith

V1

V2

V3

V4

X

Y

V1

V2

V3

V4

X

Y

Y

X

X

Y



The Sui System

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User

Consensus Path

Consensus



The Sui System
Consensus Path

Example Transaction

T2 

Inputs: O1, S2 

Output: Mutate O1, Mutate S2, Create O4



The Sui System

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User

Consensus Path

Consensus



The Sui System
Consensus Path

Step 1: Shared object locks exist at validator

Do not check the version for 
shared objects

O1

S2

L1 = (O1, 10) 

Sender=X : None

L2 = (S2, *) 

Sender=X



The Sui System
Consensus Path

Step 2: Validator V checks / signs transactions

O1
L1 = (O1, 10) 

Sender=X : None T2 Transaction: T2 

Inputs: (O1, 10), (S2, *) 

Move call details 

Signature of X 

Checks T2 (Validity) 

• Well-formed (syntactic) 

• Valid Signature from X 

• Valid execution function 

• Version owned by X

Checks T2 (Broadcast) 

• Object-version exist 

• Lock is set to None

S2
L2 = (S2, *) 

Sender=X



The Sui System

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T2

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User

Consensus Path

Consensus



The Sui System
Consensus Path

Step 3: After consensus, assign shared objects locks

O1
L1 = (O1, 10) 

Sender=X : None T2 Transaction: T2 

Inputs: (O1, 10), (S2, *) 

Move call details 

Signature of X 

Assign Shared Locks 

• Every node sees the same 
sequence out of consensus 

• So they can all assign the 
same shared object locks

S2
L2 = (S2, 4) 

Sender=X



The Sui System
Consensus-less Path

Step 3: Validator V process certificate

O1
L1 = (O1, 10) 

Sender=X : None T2

Checks T2 (Validity) 

• Again!

Checks T2 (Broadcast) 

• Objects exist (with any lock) 

• Certificate signed by quorum

Transaction: T2 

Inputs: (O1, 10), (S2, *) 

Move call details 

Signature of X 
S2

L2 = (S2, 4) 

Sender=X

Same as before



The Sui System
Consensus-less Path

Step 4: Validator V Applies / Signs Effect

O1

O4

L1 = (O1, 11) 

Sender=X : None

L3 = (O4, 1) 

Sender=X : None

Execute T2 

• O1 mutated 

• O2 mutated 

• O4 created

Transaction: T2 

Inputs: (O1, 10), (S2, *) 

Move call details 

Signature of X 
S2

L2 = (S2, 4) 

Sender=X

Same as before



The Sui System

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User

Consensus Path

Consensus



Why Consensus?

N1

N2
N3
N4

User

Consensus

No single entity to assign version numbers: 
the nodes need to choose it



Network Security
Challenge #6

N1

N2
N3
N4

User

Consensus

If consensus is under DoS, all shared objects 
transactions are stalled



Network Security
Challenge #7

N1

N2
N3
N4

User

Consensus

If any blue link is under DoS, the protocol stalls 
(because we won’t have a quorum)



The Sui System
Transaction Execution

• First, execute all precedent transactions 

• Once there is a certificate, any validator can download Tx and execute 



The Sui System
Transaction Execution

Shared-objectsOwned-objects

Always executed in parallel  

(once they inputs ID/version are known)

Often executed in parallel  

(Sequentially for each shared object)

Ox, 10 Ox, 11

Oy, 65 Oy, 66
Ty

Tx
Core 1

Core 2

Ov, ? Ov, ?+1

Ow, ? Ow, ?+1
Tw

Tv
Core 3

Core 4



Conclusion

• Paper: https://sui.io 

• Code: https://github.com/mystenlabs/sui

• Separate owned and shared objects 

• Only use consensus when you need to 

• Execute in parallel whenever you can

The Sui System
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