
Modern Blockchains

Alberto Sonnino

Broadcast and Execution

Byzantine Fault Tolerance

Byzantine Fault Tolerance

 > 2/3

Blockchains

1. make transaction

Blockchains

2. submit transaction

1. make transaction

Blockchains

2. submit transaction

3. sequence

and verify

1. make transaction

Blockchains

2. submit transaction

3. sequence

and verify

1. make transaction

4. store and

execute

The Typical Example

2.

3. Payment

authorised?

1.
Send 5 coins to

Bob

Send 5 coins to
Bob

4. store and

execute

Cross-Domain Discipline

• Distributed Systems

• But not like a DB running in my datacenter

• Adversarial network and Byzantine adversaries

• Security

• Both network and systems security

• Programming Languages

• Execute the smart contract & ensure determinism

• Solidity, Move

• Cryptography

• Nodes cannot use secrets to execute smart contracts

• Anonymous credentials, ZK-proofs

Network Security
Challenge #1

Some node are not well-protected in datacenter;
we can’t rely on beefy machines

Network Security
Challenge #2

Highly dynamic set of nodes

Security Properties

LivenessSafety

Undesirable things never
happen

Desirable things eventually
happen

Adversary

• Synchronous: A message sent will be delivered
before a maximum (known) delay.

• Asynchronous: A message sent will eventually
be delivered at an arbitrary time before a
maximum (unknown) delay.

• Partial Synchronous: the network is
asynchronous but after some time it enters a
period of synchrony.

•

ChallengesProperties

#1 The Network: Worst possible schedule

• Theoretical models: Need careful implementation to
ensure we approximate them, e.g., retransmissions.

• Memory: Naive implementations use infinite buffers.
Identify conditions after which retransmissions are
not necessary and buffers can be freed.

• Asynchrony means the protocol should maintain
properties for any re-ordering of message deliveries.

• Unknown delay means delay should be adaptive to
ensure robustness.

Adversary

• Correct / honest / good: Will remain live and follow
the protocol as specified by the designers of the
system.

• Byzantine: will deviate arbitrarily from the protocol.
May respond incorrectly or not at all.

ChallengesProperties

#2 Bad Nodes: Arbitrary behaviour

• Crash & recover: this is still a correct node with
very high latency. Need persistence to ensure this

• Rational: honest validators may have some
discretion. They may use it to maximise profit

Network Security
Challenge #3

Some nodes are bad, you may be talking with
someone lying and trying to DoS you

Network Security
Challenge #4

Bad nodes have access to all committee (insider)
information

Typical Architecture

Mempool / Initial
Checks Ordering (Sequencial)

Execution
DB Update & High-

Integrity DSTX
Overlay flooding slow
and with significant

redundancy

Seconds latency,
traditionally low

throughput

Single core does all
computations. (eg

EVM ~300 tps)

Added latency of
store, blocks, and

crypto computations

P2P flood
& Selection on fee

Sequence all
transactions in

blocks

Execute each
transaction (global

lock)

Update DB,
indexes, crypto
(Merkle trees)

Typical Architecture

Mempool / Initial
Checks Ordering (Sequencial)

Execution
DB Update & High-

Integrity DS

Overlay flooding slow
and with significant

redundancy

Seconds latency,
traditionally low

throughput

Single core does all
computations. (eg

EVM ~300 tps)

Added latency of
store, blocks, and

crypto computations

P2P flood
& Selection on fee

Sequence all
transactions in

blocks

Execute each
transaction (global

lock)

Update DB,
indexes, crypto
(Merkle trees)

New Architecture
Consensus is not required

Coins, balances, and
transfers

Inventory management for
games / metaverse

NFTs creation and
transfers

Auditable 3rd party
services not trusted for

safety
…

Game logic allowing users
to combine assets

New Architecture
Consensus is required

Increment a publicly-
accessible counter

Collaborative in-game
assets

Auctions

…

Market places

Consensus only when
you need to

New Architecture
The Sui System

New Architecture
Architecture

• Objects that can be mutated by a single entity

• e.g., My bank account

• Do not need consensus

Shared ObjectsOwned Objects

• Objects that can be mutated my multiple entities

• e.g., A global counter

• Need consensus

Execute Execute

The Sui System
Architecture

Consistent
Broadcast Consensus Checkpoints,

Merkle Trees

Execute Execute

Contains
shared-objects?

Parallel
Execution

Certificate without
consensus

Certificate with
consensus

Transaction

Agreed sequence
for audit/sync

yes
no

The Sui System
Transactions

• Unique ID

• Version number

• Ownership Information

• Type (shared, owned)

Objects:

The Sui System
Transactions

Package,
function

Arguments

Object Inputs

Gas
Information

Signature

Coin::Send

Alice’s account

Bob’s account,
Balance=5

0.001, max=0.005

Transaction’s
content

• Unique ID

• Version number

• Ownership Information

• Type (shared, owned)

Objects:

The Sui System
Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Network Security
Challenge #5

Different types of target links: clients-nodes and
nodes-nodes

The Sui System
Consensus-less Path

Example Transaction

T1

Inputs: O1, O2, O3

Output: Mutate O1, Transfer O2, Delete O3, Create O4

The Sui System
Consensus-less Path

Example Transaction

T1

Inputs: O1, O2, O3

Output: Mutate O1, Transfer O2, Delete O3, Create O4

e.g., Mutate a
coin to pay for

gas

e.g., Transfer
my warrior to

friend

e.g., Delete a
disease caught
by my warrior

e.g., Be
rewarded with a

mystery gift

The Sui System
Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

The Sui System
Consensus-less Path

Step 1: Owned object locks & version exist at validator

We call these “locks”, and are
initialised to None.

O1

O2

O3

L1 = (O1, 10)

Sender=X : None

L2 = (O2, 27)

Sender=X : None

L3 = (O3, 1001)

Sender=X : None

The Sui System
Consensus-less Path

Step 2: Validator V checks / signs transactions

O1

O2

O3

L1 = (O1, 10)

Sender=X : None T1

L2 = (O2, 27)

Sender=X : None T1

L3 = (O3, 1001)

Sender=X : None T1

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Checks T1 (Validity)

• Well-formed (syntactic)

• Valid Signature from X

• Valid execution function

• Version owned by X

Checks T1 (Broadcast)

• Object-version exist Lock was
set to None

The Sui System
Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

The Sui System
Consensus-less Path

Step 3: Validator V process certificate

O1

O2

O3

L1 = (O1, 10)

Sender=X : None T1

L2 = (O2, 27)

Sender=X : None T1

L3 = (O3, 1001)

Sender=X : None T1

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Signature (V1, … V4)

Checks T1 (Validity)

• Again!

Checks T1 (Broadcast)

• Objects exist (with any lock)

• Certificate signed by quorum

The Sui System
Consensus-less Path

Step 4: Validator V executes / signs effect

O1

O2

O4

L1 = (O1, 11)

Sender=X : None

L2 = (O2, 28)

Sender=Y : None

L3 = (O4, 1)

Sender=X : None

Transaction: T1

Inputs: (O1, 10), (O2,
27), (O3, 1001)

Move call details

Signature of X

Signature (V1, … V4)

Execute T1

• O1 mutated

• O2 transferred

• O3 deleted

• O4 created

The Sui System
Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Quorum Intersection
Why do we need it?

WithoutWith

V1

V2

V3

V4

X

Y

V1

V2

V3

V4

X

Y

Y

X

X

Y

The Sui System

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus Path

Consensus

The Sui System
Consensus Path

Example Transaction

T2

Inputs: O1, S2

Output: Mutate O1, Mutate S2, Create O4

The Sui System

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus Path

Consensus

The Sui System
Consensus Path

Step 1: Shared object locks exist at validator

Do not check the version for
shared objects

O1

S2

L1 = (O1, 10)

Sender=X : None

L2 = (S2, *)

Sender=X

The Sui System
Consensus Path

Step 2: Validator V checks / signs transactions

O1
L1 = (O1, 10)

Sender=X : None T2 Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X

Checks T2 (Validity)

• Well-formed (syntactic)

• Valid Signature from X

• Valid execution function

• Version owned by X

Checks T2 (Broadcast)

• Object-version exist

• Lock is set to None

S2
L2 = (S2, *)

Sender=X

The Sui System

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T2

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus Path

Consensus

The Sui System
Consensus Path

Step 3: After consensus, assign shared objects locks

O1
L1 = (O1, 10)

Sender=X : None T2 Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X

Assign Shared Locks

• Every node sees the same
sequence out of consensus

• So they can all assign the
same shared object locks

S2
L2 = (S2, 4)

Sender=X

The Sui System
Consensus-less Path

Step 3: Validator V process certificate

O1
L1 = (O1, 10)

Sender=X : None T2

Checks T2 (Validity)

• Again!

Checks T2 (Broadcast)

• Objects exist (with any lock)

• Certificate signed by quorum

Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X
S2

L2 = (S2, 4)

Sender=X

Same as before

The Sui System
Consensus-less Path

Step 4: Validator V Applies / Signs Effect

O1

O4

L1 = (O1, 11)

Sender=X : None

L3 = (O4, 1)

Sender=X : None

Execute T2

• O1 mutated

• O2 mutated

• O4 created

Transaction: T2

Inputs: (O1, 10), (S2, *)

Move call details

Signature of X
S2

L2 = (S2, 4)

Sender=X

Same as before

The Sui System

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

Consensus Path

Consensus

Why Consensus?

N1

N2
N3
N4

User

Consensus

No single entity to assign version numbers:
the nodes need to choose it

Network Security
Challenge #6

N1

N2
N3
N4

User

Consensus

If consensus is under DoS, all shared objects
transactions are stalled

Network Security
Challenge #7

N1

N2
N3
N4

User

Consensus

If any blue link is under DoS, the protocol stalls
(because we won’t have a quorum)

The Sui System
Transaction Execution

• First, execute all precedent transactions

• Once there is a certificate, any validator can download Tx and execute

The Sui System
Transaction Execution

Shared-objectsOwned-objects

Always executed in parallel

(once they inputs ID/version are known)

Often executed in parallel

(Sequentially for each shared object)

Ox, 10 Ox, 11

Oy, 65 Oy, 66
Ty

Tx
Core 1

Core 2

Ov, ? Ov, ?+1

Ow, ? Ow, ?+1
Tw

Tv
Core 3

Core 4

Conclusion

• Paper: https://sui.io

• Code: https://github.com/mystenlabs/sui

• Separate owned and shared objects

• Only use consensus when you need to

• Execute in parallel whenever you can

The Sui System

alberto@mystenlabs.com

