
The Evolution of Sui
From Academic Paper to Mainnet

2019 2024

HotStuff

HotStuff + Mempool

Bullshark,

Mysticeti

Libra, 2019

HotStuff HashGraph

?

Libra, 2019

• Linear

• Clearly isolated components

HotStuff

HashGraph

• Hard to garbage collect

• Unclear block synchroniser

The first 6 months…

• The LibraBFT/DiemBFT pacemaker

• Codesign the pacemaker with the rest

SMR in the Libra Blockchain

1. Network model?

Research
Questions

1. Modularisation is a design strategy

Lessons
Learned

HotStuf
Typical leader-based protocols

Naive Implementation
Uneven resource utilisation

re
so

ur
ce

 u
til

iz
at

io
n lead

er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

lead
er

1. Network model?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

Lessons
Learned

Leader-Driven Consensus
Fragility to faults and asynchrony

Fragility to faults and asynchrony
Leader-Driven Consensus

Performance
La

te
nc

y
(s

)

0

2

4

6

8

Throughput (tx/s)

0 30k 60k 90k 120k

Naive-HS

Performance
La

te
nc

y
(s

)

0

5

10

15

20

25

30

35

40

Throughput (tx/s)

0 3k 30k 60k 90k 120k

Naive-HS (faults) Naive-HS

1. Network model?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

Lessons
Learned

Libra, 2019

• Linear

• Clearly isolated components

HotStuff (naive mempool)

• Uneven resource utilisation

• Fragile to faults and asynchrony

• Unspecified components (pacemaker)

Libra, 2021

• Quadratic but even resource utilisation

• Separation between consensus and data
dissemination

Narwhal

Narwhal

G1

G2

G3

block

B

B

B

Narwhal

block certificate

V

V

V

G1

G2

G3

B

B

B

Narwhal

block certificate

V

V

V

C

C

G1

G2

G3

B

B

B

C

C

Narwhal

block certificate

V

V

V

C

C

G1

G2

G3

B

B

B

C

C

Round 1

Narwhal

block certificate

V

V

V

C

C

G1

G2

G3

B

B

B

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal

r1 r2 r3 r4 r5

1. Network model?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

Lessons
Learned

HotStuff on Narwhal
Enhanced commit rule

C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2

C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2

C1

Faulty HotStuff Leader!

Blocks may still be ‘saved'

HotStuff on Narwhal
Enhanced commit rule

C2

C2 C3

C1

HotStuff on Narwhal
Enhanced commit rule

C2

C2 C3

C1

Performance
La

te
nc

y
(s

)

0

2

4

6

8

Throughput (tx/s)

0 30k 60k 90k 120k 130k 150k

Naive-HS Narwhal-HS

Performance
La

te
nc

y
(s

)

0

5

10

15

20

25

30

35

40

Throughput (tx/s)

0 3k 30k 60k 90k 120k

Naive-HS (faults) Narwhal-HS (faults)

Performance
La

te
nc

y
(s

)

0

5

10

15

20

25

30

35

40

Throughput (tx/s)

0 3k 30k 60k 90k 120k

Naive-HS (faults) Narwhal-HS (faults)

visa+mastercard

Libra, 2021

• Quadratic but even resource utilisation

• Separation between consensus and data
dissemination

Narwhal

• High engineering complexity

1. Network model?

2. BFT testing?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

Lessons
Learned

TuskDagRider Bullshark

• Hard to make efficient

• 99% of the code

Data Dissemination Consensus

• Error prone

• Isolated, easy to maintain

Dumbo-NG

…

TuskDagRider Bullshark

• Hard to make eff

• 99% of the code

Data Dissemination Consensus

• Error prone

• Isolated, easy to maintain

Dumbo-NG

…

Performance
La

te
nc

y
(s

)

0

2

4

6

8

Throughput (tx/s)

0 30k 60k 90k 120k 130k 150k

Naive-HS Narwhal-HS Bullshark

1. Network model?

2. BFT testing?

3. Consensus-exec interface?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

5. Core is hard, consensus is easy

Lessons
Learned

By that time…

By that time…

Sui

Aptos

Linera

…

Sui, 2022

• Lack of checkpoints

• Lack of epoch-change

• Lack of crash-recovery

Over a year for mainnet

1. Network model?

2. BFT testing?

3. Consensus-exec interface?

4. Storage architecture?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

5. Core is hard, consensus is easy

6. Epoch change is not an add-on

Lessons
Learned

Sui, 2023

• Latency was too high

• Crash faults were the predominant faults

• Building Bullshark was still too complex

SailfishShoal CM

…
• Many leaders per round

• Leaders every round

• Uncertified DAG

Techniques

Mysticeti

Shoal/shoal++ Sailfish/BBCA CM/Mysticeti

• Low latency

• Easier synchroniser

• Leverage existing code

• Lowest latency

• Graceful crash faults

• Simpler, less CPU

• Lower latency

• Easy synchroniser

• Flexible

Certified DAG Uncertified DAG

Discussion

1. Network model?

2. BFT testing?

3. Consensus-exec interface?

4. Storage architecture?

5. Block synchroniser?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

5. Core is hard, consensus is easy

6. Epoch change is not an add-on

Lessons
Learned

SailfShoal CM

…
• Many leaders per round

• Leaders every round

• Uncertif

Techniques

Mysticeti

Uncertified DAG

• Round number

• Author

• Payload (transactions)

• Signature

r1 r2

Uncertified DAG

L2

L3

r1 r2 r3 r4 r5

L6

r6 r7

L1

L4

L7

Uncertified DAG

L1b

L2b

L2a

L3b

L3a

L5a

r1 r2 r3 r4 r5

L6a

L6b

r6

L7b

r7

L1a

L4b

L7a

r1 r2 r3

L1

Interpreting DAG Patterns

Certificate

Blame

Performance
La

te
nc

y
(s

)

0

2

4

6

8

Throughput (tx/s)

0 30k 60k 90k 120k 130k 150k 200k 300k 400k

Naive-HS Narwhal-HS Bullshark Mysticeti

1. Network model?

2. BFT testing?

3. Consensus-exec interface?

4. Storage architecture?

5. Block synchroniser?

6. Realistic benchmarks?

7. Efficient reads?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads allocation

3. Benchmark early

4. Codesign with mem. and storage

5. Core is hard, consensus is easy

6. Epoch change is not an add-on

Lessons
Learned

The Sui Mainnet

The Roadmap

2019

naive consensus

2020-2021

mempool ❤consensus

2022-2023

Fold into DAG

2024

Remove overhead

EXTRA:
Research in Industry

Projects Roadmap

Projects Roadmap

Eng challenges
New

research
question?

Eng challenges
New

research
question?

Can we solve
it ourself?

yes

no

Eng challenges
New

research
question?

General research
question

Can we solve
it ourself?

Pay someone else

yes

no
no

yes

Research Gifts

(please keep it short)

Eng challenges
New

research
question?

General research
question

Can we solve
it ourself?

Pay someone else

Research paper

yes

no
no

yes

Eng challenges
New

research
question?

General research
question

Can we solve
it ourself?

Pay someone else

Research paper Research
implementation

yes

no
no

yes

Eng challenges
New

research
question?

General research
question

Can we solve
it ourself?

Pay someone else

Research paper Research
implementation

Handover to
engineering

yes

no
no

yes

Eng challenges
New

research
question?

General research
question

Can we solve
it ourself?

Pay someone else

Research paper Research
implementation

Handover to
engineering Follow up

yes

no
no

yes

1. Network model?

2. BFT testing?

3. Consensus-exec interface?

4. Storage architecture?

5. Block synchroniser?

6. Realistic benchmarks?

7. Efficient reads?

Research
Questions

1. Modularisation is a design strategy

2. Tasks-threads relationship

3. Benchmark early

4. Codesign with mem. and storage

5. Core is hard, consensus is easy

6. Epoch change is not an add-on

7. Writing papers to explore designs

Lessons
Learned

EXTRA:
Benchmarks

Implementation

• Written in Rust

• Networking: Tokio (TCP)

• Storage: custom WAL

• Cryptography: ed25519-consensus

https://github.com/mystenlabs/mysticeti

Implementation

• Synchronous core

• One Tokio task per peer (limiting resource usage)

• DTE simulator

https://github.com/mystenlabs/mysticeti

Evaluation
Experimental setup on AWS

m5d.8xlarge

Prototype Benchmarks

�
�� 	��� 	
��
���

�� ���� �
�� ����
�����������������

���

	��

��

���

���

��
��
��

��
��
�

������������������

������������������

��������

�����������

��������

�����������

��������������������

��������������������

����������	�����������

����������	�����������

Prototype Benchmarks

�
�� 	��� 	
��
���

�� ���� �
�� ����
�����������������

���

��

	��

	�

��

��
��
��

��
��
�

	���

��
������������� 	���

��
������������� 	���

��
��������������

Mysticeti
Key Limitations

• Block Synchroniser	 •	 	 ⁃	

• Parallelise block creation and synchronisation

• Rigid DAG structure?

