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HotStuff: BFT Consensus in the Lens of Blockchain
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Abstract

We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous
model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the pro-
tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with
communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first par-
tially synchronous BFT replication protocol exhibiting these combined properties. HotStuff is built around a novel
framework that forms a bridge between classical BFT foundations and blockchains. It allows the expression of other
known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStuff over a network with over 100 replicas achieves throughput and latency comparable
to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-
SMaRt).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures
of its components while taking actions critical to the system’s operation. In the context of state machine replication
(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic
replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-
initiated service commands, despite the efforts of f Byzantine replicas. This, in turn, ensures that the n— f non-faulty
replicas will run commands identically and so produce the same response for each command. As is common, we are
concerned here with the partially synchronous communication model [25], whereby a known bound A on message
transmission holds after some unknown global stabilization time (GST). In this model, n > 3f + 1 is required
for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured
deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n = 4 or n = 7, deployed
on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application
to blockchains now demands solutions that can scale to much larger n. In contrast to permissionless blockchains such
as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a fixed set of replicas that
collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permis-
sioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [42] 30]). Additionally,
their deployment to wide-area networks requires setting A to accommodate higher variability in communication
delays.

The scaling challenge. Since the introduction of PBFT [20], the first practical BFT replication solution in the
partial synchrony model, numerous BFT solutions were built around its core two-phase paradigm. The practical
aspect is that a stable leader can drive a consensus decision in just two rounds of message exchanges. The first phase
guarantees proposal uniqueness through the formation of a quorum certificate (QC) consisting of (n — f) votes. The
second phase guarantees that the next leader can convince replicas to vote for a safe proposal.

The algorithm for a new leader to collect information and propose it to replicas—called a view-change—is the
epicenter of replication. Unfortunately, view-change based on the two-phase paradigm is far from simple [38], is
bug-prone [4], and incurs a significant communication penalty for even moderate system sizes. It requires the new
leader to relay information from (n — f) replicas, each reporting its own highest known QC. Even counting just
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Verifying the Hashgraph Consensus Algorithm

Karl Crary

Carnegie Mellon University

Abstract

The Hashgraph consensus algorithm is an algorithm for

asynchronous Byzantine fault tolerance intended for dis-

tributed shared ledgers. Its main distinguishing ct er-

i i achieves consensus without exchanging any extra
es can be determined from

information, so votes
In this paper, we disc

Hashgraph algorithm and its correctness proof using the Coq

proof assistant. The paper is self-contained; it includes a

complete discussion of the algorithm and its correctness ar-

gument in English.

1 Introduction

Byzantine fault-tolerance is the problem of coordinating a
distributed system while some participants may maliciously
break the rules. Often other challenges are also present,
such as unreliable communications. The problem i the

actions are assigned a place in a globally-agreed total order
that is immutable. The latter means that once a transaction
enters the order, no new transaction can enter at an earlier
position.

A distributed shared ledger makes it possible for all par-
ticipants to agree, at any point in the order, on the cur-
rent owner of a digital commodity such as a unit of cryp-
tocurrency. A transaction transferring ownership is valid
if the commodity’s current owner authorizes the transac-
tion. (The authorization mechanism-—presumably using a
digital signature—is beyond the scope of the ledger
Because the order is total, one transaction out of an
has priority. Thus we can show that a commodity
of ownership is uniquely determined. Finally, because the
order is immutable, the chain of ownership cannot change
except by adding new transactions at the end.

Algorithms for antine consensus (under various as-
sumptions) have existed for some time, indeed longer than
the problem has been named [12, 9]. Practical algorithms
are more recent; in 1999, Castro and Liskov [6] gave an algo-
rithm that when installed into the NFS file system slowed it
only 3%. As Byzantine consensus algorithms have become
more practical, they have been tailored to specific applica-
tions. tro and Liskov’s algorithm was designed for fault-
tolerant state machine replication [13] and probably would

not perform well under the workload of a distributed shared
ledger.

However, in the last few years there have arisen
Byzantine fault-tolerance algorithms suitable for distribut
shared ledgers, notably HoneyBadgerBFT [10], BEAT |
and-—the subject of this paper—Hashgraph [2]. Moreover,
the former two each claim to be the first practical asyn-
chronous BFT algorithm (with different standards of prac-
ticality). Hashgraph does not claim to be first, but is also
practical and asynchrono

In parallel with that line of work has been the develop-
ment of distributed shared ledgers based on proof of work,
beginning with Bitcoin [11]. The idea behind proof of work
is to maintain agreement on the ledger by maintaining a list
of blocks of transactions, and to ensure that the list does not
become a tree. To ensure this, the rules state that (1) the
longest branch defines the lis 1d (2) to create a new bl
one must first a mathemat problem that tak
list’s old head as one of its inputs. The problem’s s
is much easier to verify than to obtain, so when one 3
of a new block, one’s ir ve is to restart work from the
new head rather than continue work from the old head.

Bitcoin and some of its cousins are widely used, so in a
certain se
truly perm
cluding F
offer severely limited throughput. Bitcoin is limited to seven

1sactions per ond and has a latency of one hour, while

s BFT competito E é of magnitude

riticized for being

xpended on

blc 1. Finally-—more

to the point of this paper—the theoretical properties of proof
of work are not well understood.

The Hashgraph consens
port high-performance applications of a di

ledger. Like the other BFT

throughput, etc.), but in all configurations published in
Miller, et. al [10] (for HoneyBadgerBFT) and Duan, e
al. [7] (for BEAT), the Hashgraph algorithm equals or e
ceeds the published performance figures [4]. A frequent
cited throughput goal is to equal the V credit-card net-
work. According to s published figures, Hashgraph can
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Abstract

We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous
model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the pro-
tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with
communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first par-
tially synchronous BFT replication protocol exhibiting these combined properties. HotStuff is built around a novel
framework that forms a bridge between classical BFT foundations and blockchains. It allows the expression of other
known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStuff over a network with over 100 replicas achieves throughput and latency comparable
to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-
SMaRt).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures
of its components while taking actions critical to the system’s operation. In the context of state machine replication
(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic
replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-
initiated service commands, despite the efforts of f Byzantine replicas. This, in turn, ensures that the n— f non-faulty
replicas will run commands identically and so produce the same response for each command. As is common, we are
concerned here with the partially synchronous communication model [25], whereby a known bound A on message
transmission holds after some unknown global stabilization time (GST). In this model, n > 3f + 1 is required
for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured
deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n = 4 or n = 7, deployed
on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application
to blockchains now demands solutions that can scale to much larger n. In contrast to permissionless blockchains such
as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a fixed set of replicas that
collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permis-
sioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [42] 30]). Additionally,
their deployment to wide-area networks requires setting A to accommodate higher variability in communication
delays.

The scaling challenge. Since the introduction of PBFT [20], the first practical BFT replication solution in the
partial synchrony model, numerous BFT solutions were built around its core two-phase paradigm. The practical
aspect is that a stable leader can drive a consensus decision in just two rounds of message exchanges. The first phase
guarantees proposal uniqueness through the formation of a quorum certificate (QC) consisting of (n — f) votes. The
second phase guarantees that the next leader can convince replicas to vote for a safe proposal.

The algorithm for a new leader to collect information and propose it to replicas—called a view-change—is the
epicenter of replication. Unfortunately, view-change based on the two-phase paradigm is far from simple [38], is
bug-prone [4], and incurs a significant communication penalty for even moderate system sizes. It requires the new
leader to relay information from (n — f) replicas, each reporting its own highest known QC. Even counting just

Libra, 2019

HotStuff

LIinear

Clearly isolated components

HashGraph

Hard to garbage collect

Unclear block synchroniser



State Machine Replication in the Libra
Blockchain

Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Frangois Garillot, Zekun Li,
Dahlia Malkhi, Oded Naor, Dmitri Perelman, Alberto Sonnino*

Abstract. This report presents LibraBFT, a robust and efficient state machine replication system
designed for the Libra Blockchain. LibraBFT is based on HotStuff, a recent protocol that leverages
several decades of scientific advances in Byzantine fault tolerance (BFT) and achieves the strong
scalability and security properties required by internet settings. LibraBFT further refines the HotStuff
protocol to introduce explicit liveness mechanisms and provides a concrete latency analysis. To
drive the integration with the Libra Blockchain, this document provides specifications extracted
from a fully-functional simulator. These specifications include state replication interfaces and a
communication framework for data transfer and state synchronization among participants. Finally,
this report provides a formal safety proof that induces criteria to detect misbehavior of BFT nodes,
coupled with a simple reward and punishment mechanism.

1. Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing
ge, free communications, and a wide range of lower-cost, more convenient services.
y has also enabled more people to access the financial ecosystem. Yet, despite this

progress, access to financial services is still limited for those who need it most.

Blockchains and cryptocurrencies have shown that the latest advances in computer science, cryptog-
raphy, and economics have the potential to create innovation in financial infrastructure, but existing
systems have not yet reached mainstream adoption. As the next step toward this goal, we have de-
signed the Libra Blockchain [1], [2] with the mission to enable a simple global currency and financial
infrastructure that empowers billions of people.

At the heart of this new blockchain is a consensus protocol called LibraBFT — the focus of this report
by which blockchain transactions are ordered and finalized. LibraBFT decentralizes trust among
a set of validators that participate in the consensus protocol. LibraBFT guarantees consensus on the
history of transactions among honest validators and remains safe even if a threshold of participants
are Byzantine (i.e., faulty or corrupt [3]). By embracing the classical approach to Byzantine fault
tolerance, LibraBFT builds on solid and rigorously proven foundations in distributed computing.

Initially, the participating validators will be permitted into the consensus network by an association
consisting of a geographically distributed and diverse set of Founding Members, which are organiza-
tions chosen according to objective membership criteria with a vested interest in bootstrapping the

thors work at Calibra, a subsidiary of Facebook, Inc., and contribute this paper to the Libra Association under
Commons Attribution 4.0 International License. For more information on the Libra ecosystem, please refer
to the Libra white paper [1].
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Abstract

We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous
model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the pro-
tocol to consensus at the pace of actual (vs. maximum) network delay—a property called responsiveness—and with
communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first par-
tially synchronous BFT replication protocol exhibiting these combined properties. HotStuff is built around a novel
framework that forms a bridge between classical BFT foundations and blockchains. It allows the expression of other
known protocols (DLS, PBFT, Tendermint, Casper), and ours, in a common framework.

Our deployment of HotStuff over a network with over 100 replicas achieves throughput and latency comparable
to that of BFT-SMaRt, while enjoying linear communication footprint during leader failover (vs. cubic with BFT-
SMaRt).

1 Introduction

Byzantine fault tolerance (BFT) refers to the ability of a computing system to endure arbitrary (i.e., Byzantine) failures
of its components while taking actions critical to the system’s operation. In the context of state machine replication
(SMR) [35, 47], the system as a whole provides a replicated service whose state is mirrored across n deterministic
replicas. A BFT SMR protocol is used to ensure that non-faulty replicas agree on an order of execution for client-
initiated service commands, despite the efforts of f Byzantine replicas. This, in turn, ensures that the n— f non-faulty
replicas will run commands identically and so produce the same response for each command. As is common, we are
concerned here with the partially synchronous communication model [25], whereby a known bound A on message
transmission holds after some unknown global stabilization time (GST). In this model, n > 3f + 1 is required
for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured
deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was n = 4 or n = 7, deployed
on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application
to blockchains now demands solutions that can scale to much larger n. In contrast to permissionless blockchains such
as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a fixed set of replicas that
collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permis-
sioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [42] 30]). Additionally,
their deployment to wide-area networks requires setting A to accommodate higher variability in communication
delays.

The scaling challenge. Since the introduction of PBFT [20], the first practical BFT replication solution in the
partial synchrony model, numerous BFT solutions were built around its core two-phase paradigm. The practical
aspect is that a stable leader can drive a consensus decision in just two rounds of message exchanges. The first phase
guarantees proposal uniqueness through the formation of a quorum certificate (QC) consisting of (n — f) votes. The
second phase guarantees that the next leader can convince replicas to vote for a safe proposal.

The algorithm for a new leader to collect information and propose it to replicas—called a view-change—is the
epicenter of replication. Unfortunately, view-change based on the two-phase paradigm is far from simple [38], is
bug-prone [4], and incurs a significant communication penalty for even moderate system sizes. It requires the new
leader to relay information from (n — f) replicas, each reporting its own highest known QC. Even counting just
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Narwhal and Tusk: A DAG-based Mempool and
Efficient BFT Consensus

George Danezis
Mysten Labs & UCL

Alberto Sonnino
Mysten Labs

Abstract

We propose separating the task of reliable transaction dissem-
ination from transaction ordering, to enable high-performance
Byzantine fault-tolerant quorum-based consensus. We de-
sign and evaluate a mempool protocol, Narwhal, specializing
in high-throughput reliable dissemination and storage of
causal histories of transactions. Narwhal tolerates an asyn-
chronous network and maintains high performance despite
failures. Narwhal is designed to easily scale-out using multi-
ple workers at each validator, and we demonstrate that there
is no foreseeable limit to the throughput we can achieve.

Composing Narwhal with a partially synchronous consen-
sus protocol (Narwhal-HotStuff) yields significantly better
throughput even in the presence of faults or intermittent loss
of liveness due to asynchrony. However, loss of liveness can
result in higher latency. To achieve overall good performance
when faults occur we design Tusk, a zero-message overhead
asynchronous consensus protocol, to work with Narwhal.
We demonstrate its high performance under a variety of
configurations and faults.

As a summary of results, on a WAN, Narwhal-Hotstuff
achieves over 130,000 tx/sec at less than 2-sec latency com-
pared with 1,800 tx/sec at 1-sec latency for Hotstuff. Ad-
ditional workers increase throughput linearly to 600,000
tx/sec without any latency increase. Tusk achieves 160,000
tx/sec with about 3 seconds latency. Under faults, both proto-
cols maintain high throughput, but Narwhal-HotStuff suffers
from increased latency.

CCS Concepts: » Security and privacy — Distributed
systems security.

Keywords: Consensus protocol, Byzantine Fault Tolerant
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1 Introduction

Byzantine consensus protocols [15, 19, 21] and the state
machine replication paradigm [13] for building reliable dis-
tributed systems have been studied for over 40 years. How-
ever, with the rise in popularity of blockchains there has been
a renewed interest in engineering high-performance con-
sensus protocols. Specifically, to improve on Bitcoin’s [33]
throughput of only 4 tx/sec early works [29] suggested com-
mittee based consensus protocols. For higher throughput
and lower latency committee-based protocols are required,
and are now becoming the norm in proof-of-stake designs.

Existing approaches to increasing the performance of dis-
tributed ledgers focus on creating lower-cost consensus algo-
rithms culminating with Hotstuff [38], which achieves linear
message complexity in the partially synchronous setting. To
achieve this, Hotstuff leverages a leader who collects, ag-
gregates, and broadcasts the messages of other validators.
However, theoretical message complexity should not be the
only optimization target. More specifically:

o Any (partially-synchronous) protocol that minimizes
overall message number, but relies on a leader to pro-
duce proposals and coordinate consensus, fails to cap-
ture the high load this imposes on the leader who
inevitably becomes a bottleneck.

Message complexity counts the number of metadata
messages (e.g., votes, signatures, hashes) which take
minimal bandwidth compared to the dissemination of
bulk transaction data (blocks). Since blocks are orders
of magnitude larger (10MB) than a typical consensus
message (100B), the asymptotic message complexity
is practically amortized for fixed mid-size committees

(up to ~ 50 nodes).
Additionally, consensus protocols have grouped a lot of
functions into a monolithic protocol. In a typical distributed
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Abstract

We propose separating the task of reliable transaction dissem-
ination from transaction ordering, to enable high-performance
Byzantine fault-tolerant quorum-based consensus. We de-
sign and evaluate a mempool protocol, Narwhal, specializing
in high-throughput reliable dissemination and storage of
causal histories of transactions. Narwhal tolerates an asyn-
chronous network and maintains high performance despite
failures. Narwhal is designed to easily scale-out using multi-
ple workers at each validator, and we demonstrate that there
is no foreseeable limit to the throughput we can achieve.

Composing Narwhal with a partially synchronous consen-
sus protocol (Narwhal-HotStuff) yields significantly better
throughput even in the presence of faults or intermittent loss
of liveness due to asynchrony. However, loss of liveness can
result in higher latency. To achieve overall good performance
when faults occur we design Tusk, a zero-message overhead
asynchronous consensus protocol, to work with Narwhal.
We demonstrate its high performance under a variety of
configurations and faults.

As a summary of results, on a WAN, Narwhal-Hotstuff
achieves over 130,000 tx/sec at less than 2-sec latency com-
pared with 1,800 tx/sec at 1-sec latency for Hotstuff. Ad-
ditional workers increase throughput linearly to 600,000
tx/sec without any latency increase. Tusk achieves 160,000
tx/sec with about 3 seconds latency. Under faults, both proto-
cols maintain high throughput, but Narwhal-HotStuff suffers
from increased latency.
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1 Introduction

Byzantine consensus protocols [15, 19, 21] and the state
machine replication paradigm [13] for building reliable dis-
tributed systems have been studied for over 40 years. How-
ever, with the rise in popularity of blockchains there has been
a renewed interest in engineering high-performance con-
sensus protocols. Specifically, to improve on Bitcoin’s [33]
throughput of only 4 tx/sec early works [29] suggested com-
mittee based consensus protocols. For higher throughput
and lower latency committee-based protocols are required,
and are now becoming the norm in proof-of-stake designs.

Existing approaches to increasing the performance of dis-
tributed ledgers focus on creating lower-cost consensus algo-
rithms culminating with Hotstuff [38], which achieves linear
message complexity in the partially synchronous setting. To
achieve this, Hotstuff leverages a leader who collects, ag-
gregates, and broadcasts the messages of other validators.
However, theoretical message complexity should not be the
only optimization target. More specifically:

o Any (partially-synchronous) protocol that minimizes
overall message number, but relies on a leader to pro-
duce proposals and coordinate consensus, fails to cap-
ture the high load this imposes on the leader who
inevitably becomes a bottleneck.

Message complexity counts the number of metadata
messages (e.g., votes, signatures, hashes) which take
minimal bandwidth compared to the dissemination of
bulk transaction data (blocks). Since blocks are orders
of magnitude larger (10MB) than a typical consensus
message (100B), the asymptotic message complexity
is practically amortized for fixed mid-size committees

(up to ~ 50 nodes).
Additionally, consensus protocols have grouped a lot of
functions into a monolithic protocol. In a typical distributed

Libra, 2021
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All You Need is DAG
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ABSTRACT

We present DAG-Rider, the first asynchronous Byzantine Atomic
Broadcast protocol that achieves optimal resilience, optimal amor-
tized communication complexity, and optimal time complexity.
DAG-Rider is post-quantum safe and ensures that all values pro-
posed by correct processes eventually get delivered. We construct
DAG-Rider in two layers: In the first layer, processes reliably broad-

t their proposals and build a structured Directed Acyclic Graph
(DAG) of the communication among them. In the second layer, pro-
cesses locally observe their DAGs and totally order all proposals
with no extra communication.
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1 INTRODUCTION

The amplified need in scalable geo-replicated Byzantine fault-
tolerant reliability systems has motivated an enormous amount
of study on the Byzantine State Machine Replication (SMR) prob-
lem [17, 31]. Many variants of the problem were defined in recent
years [28, 32, 43] to capture the needs of blockchain systems. To ad-
dress the fairness issues that naturally arise in interorganizational
deployments, we focus on the classic long-lived Byzantine Atomic
Broadcast (BAB) problem [12, 19], which in addition to total order
and progress also guarantees that all proposals by correct processes
are eventually included.

Up until recently, asynchronous protocols for the Byzantine con-
sensus problem [12, 16, 26] have been considered too costly or
complicated to be used in practical SMR solutions. However, two
recent single-shot Byzantine consensus papers, VABA [1] and later
Dumbo [35], presented asynchronous solutions with (1) optimal re-
silience, (2) expected constant time complexity, and (3) optimal qua-
dratic communication and optimal amortized linear communication
complexity (for the latter). In this paper, we follow this recent line
“Oded Naor is grateful to the Technion Hiroshi Fujiwara Cy Security Research

er
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Research.
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of work and present DAG-Rider: the first asynchronous BAB proto-
col with optimal resilience, optimal round complexity, and optimal
amortized communication complexity. In addition, given a perfect
shared coin abstraction, our protocol does not use signatures and
does not rely on asymmetric cryptographic assumptions. Therefore,
when using a deterministic threshold-based coin implementation
with an information theoretical agreement guarantee [13, 34], the
safety properties of our BAB protocol are post-quantum secure.

Overview. We construct DAG-Rider in two layers: a communica-
tion layer and a zero-overhead ordering layer. In the communication
1, processes reliably broadcast their proposals with some meta-
data that help them form a Directed Acyclic Graph (DAG) of the
messages they deliver. That is, the DAG consists of rounds s.t. every
process broadcasts at most one message in every round and every
message has O(n) references to messages in previous rounds, where
n is the total number of processes. The ordering layer does not re-
quire any extra communication. Instead, processes observe their
local DAGs and with the help of a little randomization (one coin
flip per O(n) decisions on values proposed by different processes)
locally order all the delivered messages in their local DAGs.

A nice feature of DAG-Rider is that the propose operation is
simply a single reliable broadcast. The agreement property of the
reliable broadcast ensures that all correct processes eventually see
the same DAG. Moreover, the validity property of the reliable broad-
cast guarantees that all broadcast messages by correct processes are
eventually included in the DAG. As a result, in contrast to the VABA
and Dumbo protocols that retroactively ignore half the protocol
‘messages and commit one value out of O(n) proposals, DAG-Rider
does not waste any of the messages and all proposed values by
correct processes are eventually ordered (i.e., there is no need to
re-propose).

Complexity. We measure time complexity as the asynchronous
time [16] required to commit O(n) values proposed by different
correct processes, and we measure communication complexity by
the number of bits processes send to commit a single value. To
compare DAG-Rider to the state-of-the-art asynchronous Byzan-
tine agreement protocols, we consider SMR implementations that
run an unbounded sequence of the VABA or Dumbo protocols to
independently agree on every slot. To compare apples to apples
in respect to our time complexity definition, we allow VABA and
Dumbo based SMRs to run up to n slots concurrently. Note, how-
ever, that for execution processes must output the slot decisions in
a sequential order (no gaps). Therefore, based on the proof in [6],
the time complexity of VABA and Dumbo based SMRs is O(log(n)).
Table 1 compares DAG-Rider to VABA and Dumbo based SMRs.

Since our protocol uses a reliable broadcast abstraction as a basic
building block, different instantiations yield different comple
For example, if we use the classic Bracha broadcast [11] to propose a
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Narwhal and Tusk: A DAG-based Mempool and
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Abstract

We propose separating the task of reliable transaction dissem-
ination from transaction ordering, to enable high-performance
Byzantine fault-tolerant quorum-based consensus. We de-
sign and evaluate a mempool protocol, Narwhal, specializing
in high-throughput reliable dissemination and storage of
causal histories of transactions. Narwhal tolerates an asyn-
chronous network and maintains high performance despite
failures. Narwhal is designed to easily scale-out using multi-
ple workers at each validator, and we demonstrate that there
is no foreseeable limit to the throughput we can achieve.

Composing Narwhal with a partially synchronous consen-
sus protocol (Narwhal-HotStuff) yields significantly better
throughput even in the presence of faults or intermittent loss
of liveness due to asynchrony. However, loss of liveness can
result in higher latency. To achieve overall good performance
when faults occur we design Tusk, a zero-message overhead
asynchronous consensus protocol, to work with Narwhal.
We demonstrate its high performance under a variety of
configurations and faults.

As a summary of results, on a WAN, Narwhal-Hotstuff
achieves over 130,000 tx/sec at less than 2-sec latency com-
pared with 1,800 tx/sec at 1-sec latency for Hotstuff. Ad-
ditional workers increase throughput linearly to 600,000
tx/sec without any latency increase. Tusk achieves 160,000
tx/sec with about 3 seconds latency. Under faults, both proto-
cols maintain high throughput, but Narwhal-HotStuff suffers
from increased latency.
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systems security.
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1 Introduction
Byzantine consensus protocols [15, 19, 21] and the state
machine replication paradigm [13] for building reliable dis-
tributed systems have been studied for over 40 years. How-
ever, with the rise in popularity of blockchains there has been
a renewed interest in engineering high-performance con-
sensus protocols. Specifically, to improve on Bitcoin’s [33]
throughput of only 4 tx/sec early works [29] suggested com-
mittee based consensus protocols. For higher throughput
and lower latency committee-based protocols are required,
and are now becoming the norm in proof-of-stake designs.
Existing approaches to increasing the performance of dis-
tributed ledgers focus on creating lower-cost consensus algo-
rithms culminating with Hotstuff [38], which achieves linear
message complexity in the partially synchronous setting. To
achieve this, Hotstuff leverages a leader who collects, ag-
gregates, and broadcasts the messages of other validators.
However, theoretical message complexity should not be the
only optimization target. More specifically:
 Any (partially-synchronous) protocol that minimizes
overall message number, but relies on a leader to pro-
duce proposals and coordinate consensus, fails to cap-
ture the high load this imposes on the leader who
inevitably becomes a bottleneck.
Message complexity counts the number of metadata
messages (e.g., votes, signatures, hashes) which take
minimal bandwidth compared to the dissemination of
bulk transaction data (blocks). Since blocks are orders
of magnitude larger (10MB) than a typical consensus
message (100B), the asymptotic message complexity
is practically amortized for fixed mid-size committees
(up to ~ 50 nodes).
Additionally, consensus protocols have grouped a lot of
functions into a monolithic protocol. In a typical distributed
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ABSTRACT

We present BullShark, the first directed acyclic graph (DAG) based
asynchronous Byzantine Atomic Broadcast protocol that is opti-
mized for the common synchronous case. Like previous DAG-based
BFT protocols [19, 25), BullShark requires no extra communication
to achieve consensus on top of building the DAG. That is, parties
can totally order the vertices of the DAG by interpreting their local
view of the DAG edges. Unlike other asynchronous DAG-based
protocols, BullShark provides a practical low latency fast-path that
exploits synchronous periods and deprecates the need for notori-
ously complex view-change mechanisms. BullShark achieves this
while maintaining all the desired properties of its predecessor DAG-
Rider [25]. Namely, it has optimal amortized communication com-
plexity, it provides fairness and asynchronous liveness, and safety
is guaranteed even under a quantum adversary.

In order to show the practicality and simplicity of our approach,
we also introduce a standalone partially synchronous version of
BullShark which we evaluate against the state of the art. The im-
plemented protocol is embarrassingly simple (200 LOC on top of
an existing DAG-based mempool implementation [19]). It is highly
efficient, achieving for example, 125,000 transaction per second
with a 2 seconds latency for a deployment of 50 parties. In the same
setting the state of the art pays a steep 50% latency increase as it
optimizes for asynchrony.
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1 INTRODUCTION

Ordering transactions in a distributed Byza

consensus mechanism has become one of the most timely research
areas in recent years due to the blooming Blockchain use-case.
A recent line of work [8, 19, 21, 25, 33, 40] proposed an elegant
way to separate between the distribution of transactions and the
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logic required to safely order them. The idea is simple. To propose
transactions, parties send them in a way that forms a casual order
among them. That is, messages contain blocks of transactions as
well as references to previously received messages, which together
form a directed acyclic graph (DAG). Interestingly, the structure of
the DAG encodes information that allow parties to totally order
the DAG by locally interpreting their view of it without sending
any extra messages. That is, once we build the DAG, implementing
consensus on top of it requires zero-overhead of communication.

‘The pioneering work of Hashgraph [8] constructed an unstruc-
tured DAG, where each message refers to two previous ones, and
used hashes of messages as local coin flips to totally order the DAG
in asynchronous settings. Aleph [21] later introduced a structured
round-based DAG and encoded a shared randomness in each round
via a threshold signature scheme to achieve constant latency in
expectation. The state of the art is DAG-Rider [25], which is built on
previous ideas. Every round in its DAG has at most n vertices (one
for each party), each of which contains a block of transactions as
well as references (edges) to at least 2f + 1 vertices in the previous
round. Blocks are disseminated via reliable broadcast [11] to avoid
equivocation and an honest party advances to the next round once
it reliably delivers 2f + 1 vertices in the current round. Note that
building the DAG requires honest parties to broadcast vertices even
if they have no transactions to propose. However, the edges of the
DAG encodes the "voting” information that is sufficient to totally
order all the DAG's vertices. So in this sense it is not different from
other BFT protocols in which parties send explicit vote messages,
which contain no transactions as well. Remarkably, by using the
DAG to abstract away the communication layer, the entire edges
interpretation logic of DAG-Rider to totally order the DAG spans
over less than 30 lines of pseudocode.

DAG-Rider is an asynchronous Byzantine atomic broadcast (BAB),

which achieves optimal amortized communication complexity (O(n)
per transaction), post quantum safety, and some notion of fairness
(called Validity) that guarantees that every transaction proposed
by an honest party is eventually delivered (ordered). To achieve
optimal amortized communication DAG-Rider combines batching
techniques with an efficient asynchronous verifiable information
dispersal protocol [14] for the reliable broadcast building block. The
protocol is post quantum safe because it does not rely on primitives
that a quantum computer can brake for the safety properties. That
is, a quantum adversary can prevent the protocol progress, but it
cannot violate safety guarantees.

However, although DAG-based protocols have a solid theoreti-
cal foundation, they have multiple gaps before being realistically
deployable in practise. First, they all optimize for the worst case
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ABSTRACT
Despite recent progresses of practical asynchronous Byzantine
fault tolerant (BFT) consensus, the state-of-the-art designs still
suffer from suboptimal performance. Particularly, to obtain maxi-
mum throughput, most existing protocols with guaranteed linear
amortized communication complexity require each participating
node to broadcast a huge batch of transactions, which dramatically
ices laten rse still, the f slowest nodes’ broadcasts might
never be agreed to output and thus can be censored (where f is
the number of faults). Implementable mitigation to the threat ei-
ther uses computationally costly threshold encryption or incurs
communication blow-up by letting the honest nodes to broadcast
redundant transactions, thus causing further efficiency issues.

We present Dumbo-NG, a novel asynchronous BFT consensus
(atomic broadcast) to solve the remaining practical issues. Its techni-
cal core is a non-trivial direct reduction from asynchronous atomic
broadcast to multi-valued validated Byzantine agreement (MVBA)
with quality property (which ensures the MVBA output is from hon-
est nodes with 1/2 probability). Most interestingly, the new protocol
structure empowers completely concurrent execution of transaction
dissemination and asynchronous agreement. This brings about two
benefits: (i) the throughput-latency tension is resolved to approach
peak throughput with minimal increase in latency; (ii) the trans-
actions broadcasted by any honest node can be agreed to output,
thus conquering the censorship threat with no extra cost.

We implement Dumbo-NG with using the current fastest GLL+22
MVBA with quality (NDSS’22) and compare it to the state-of-the-art
asynchronous BFT with guaranteed censorship resilience including
Dumbo (CCS'20) and Speeding-Dumbo (NDSS'22). Along the way,
we apply the techniques from Speeding-Dumbo to DispersedLedger
(NSDI'22) and obtain an improved variant of DispersedLedger called
sDumbo-DL for comprehensive comparison. Extensive experiments
(over up to 64 AWS EC2 nodes across 16 AWS regions) reveal:
Dumbo-NG realizes a peak throughput 4-8x over Dumbo, 2-4x over
Speeding-Dumbo, and 2-3x over sDumbo-DL (for varying scales);
More importantly, Dumbo-NG’s latency, which is lowest among all
tested protocols, can almost remain stable when throughput gro
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1 INTRODUCTION

The huge success of Bitcoin [63) and blockchain [19, 24] leads to an
increasing tendency to lay down the infrastructure of distributed
ledger for mission-critical applications. Such decentralized busi

is envisioned as critical global infrastructure maintained by a set of
mutually distrustful and geologically distributed nodes [11], and
thus calls for consensus protocols that are both secure and efficient
for deployment over the Internet.

Asynchronous BFT for indispensable robustness. The con-
sensus of decentralized infrastructure has to thrive in a highly
ad environment. In particular, when the applications atop
it are critical financial and banking services, some nodes can be well
motivated to collude and launch malicious attacks. Even worse, the
unstable Internet might become part of the attack surface due to net-
work fluctuations, misconfigurations and even network attacks. To
cope with the adversarial deployment environment, asynchronous
Byzantine-fault tolerant (BFT) consensuses [4, 20, 35, 47, 58, 60]
are arguably the most suitable candidates. They can realize high
security-assurance to ensure liveness (as well as safety) despite
an asynchronous adversary that can arbitrarily delay messages. In
contrast, many (partial) synchronous consensus protocols [5, 6, 8,
15, 27, 44, 45, 64, 73] such as PBFT [26] and HotStuff [75] might
sustain the inherent loss of liveness (i.e., generate unbounded com-
munications without making any progress) [36, 60] when unluckily
encountering an asynchronous network adversary.

1.1 Practical obstacles of adopting
asynchronous BFT consensus

Unfortunately, it is fundamentally challenging to realize practical
asynchronous BFT consensus, and none of such protocols was
widely adopted due to serious efficiency concerns. The seminal
FLP “impossibility” [36] proves that no deterministic consensus
exists in the asynchronous network. Since the 1980s, many attempts
[1,12,13,21,25,65,67] aimed at to circumventing the “impossibility”
by randomized protocols, but most of them focused on theoretical
feasibility, and unsurprisingly, several attempts of implementations
(22, 61) had inferior performance.

Until recently, the work of HoneyBadger BFT (HBBFT) demon-
strated the first async FT consensuses that is performant
in the wide-are et hown in Figure 1, HBBFT was
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ABSTRACT

We present BullShark, the first directed acyclic graph (DAG) based
asynchronous Byzantine Atomic Broadcast protocol that is opti-
mized for the common synchronous case. Like previous DAG-based
BFT protocols [19, 25), BullShark requires no extra communication
to achieve consensus on top of building the DAG. That is, parties
can totally order the vertices of the DAG by interpreting their local
view of the DAG edges. Unlike other asynchronous DAG-based
protocols, BullShark provides a practical low latency fast-path that
exploits synchronous periods and deprecates the need for notori-
ously complex view-change mechanisms. BullShark achieves this
while maintaining all the desired properties of its predecessor DAG:
Rider [25]. Namely, it has optimal amortized communication com-
plexity, it provides fairness and asynchronous liveness, and safety
is guaranteed even under a quantum adversary

In order to show the practicality and simplicity of our approach,
we also introduce a standalone partially synchronous version of
BullShark which we evaluate against the state of the art. The im-
plemented protocol is embarrassingly simple (200 LOC on top of
an existing DAG-based mempool implementation [19]). It is highly
efficient, achieving for example, 125,000 transaction per second
with a 2 seconds latency for a deployment of 50 parties. In the same
setting the state of the art pays a steep 50% latency increase as it
optimizes for asynchrony.
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1 INTRODUCTION

Ordering trans:
consensus mechanism has become one of the most timely research
areas in recent years due to the blooming Blockchain use-case.
A recent line of work [8, 19, 21, 25, 33, 40] proposed an elegant
way to separate between the distribution of transactions and the

tions in a distributed Byzantine environment via a
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logic required to safely order them. The idea is simple. To propose
transactions, parties send them in a way that forms a casual order
among them. That is, messages contain blocks of transactions as

well as references to previously received messages, which together

form a directed acyclic graph (DAG). Interestingly, the structure of
the DAG encodes information that allow parties to totally order
the DAG by locally interpreting their view of it without sending

any extra messages. That is, once we build the DAG, implementing

consensus on top of it requires zero-overhead of communication.

‘The pioneering work of Hashgraph [8] constructed an unstruc-
tured DAG, where each message refers to two previous ones, and
used hashes of messages as local coin flips to totally order the DAG
in asynchronous settings. Aleph [21] later introduced a structured
round-based DAG and encoded a shared randomness in each round
via a threshold signature scheme to achieve constant latency in
expectation. The state of the art is DAG-Rider [25], which is built on
previous ideas. Every round in its DAG has at most n vertices (one
for each party), each of which contains a block of transactions as
well as references (edges) to at least 2f + 1 vertices in the previous
round. Blocks are disseminated via reliable broadcast [11] to avoid
equivocation and an honest party advances to the next round once
it reliably delivers 2f + 1 vertices in the current round. Note that
building the DAG requires honest parties to broadcast vertices even
if they have no transactions to propose. However, the edges of the
DAG encodes the "voting” information that is sufficient to totally
order all the DAG's vertices. So in this sense it is not different from
other BFT protocols in which parties send explicit vote messages,
which contain no transactions as well. Remarkably, by using the
DAG to abstract away the communication layer, the entire edges
interpretation logic of DAG-Rider to totally order the DAG spans
over less than 30 lines of pseudocode.

DAG-Rider is an asynchronous Byzantine atomic broadcast (BAB),
which achieves optimal amortized communication complexity (O(n)
per transaction), post quantum safety, and some notion of fairness
(called Validity) that guarantees that every transaction proposed
by an honest party is eventually delivered (ordered). To achieve
optimal amortized communication DAG-Rider combines batching
techniques with an efficient asynchronous verifiable information
dispersal protocol [14] for the reliable broadcast building block. The
protocol is post quantum safe because it does not rely on primitives
that a quantum computer can brake for the safety properties. That
is, a quantum adversary can prevent the protocol progress, but it
cannot violate safety guarantees.

However, although DAG-based protocols have a solid theoreti-
cal foundation, they have multiple gaps before being realistically
deployable in practise. First, they all optimize for the worst case
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Research Lessons
Questions Learned
1. Network model? 1. Modularisation is a design strategy
2. BFT testing? 2. Tasks-threads allocation
3. Consensus-exec interface? 3. Benchmark early

4. Codesignh with mem. and storage

5. Core is hard, consensus is easy
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How Libra Was Killed.

| never shared this publicly before, but since @pmarca opened the
floodgates on @joerogan’s pod, it feels appropriate to shed more light on
this.

As a reminder, Libra (then Diem) was an advanced, high-performance,
payments-centric blockchain paired with a stablecoin that we built with
my team at @Meta. It would’ve solved global payments at scale. Prior to
announcing the project, we spent months briefing key regulators in DC
and abroad. We then announced the project in June 2019 alongside 28
companies. Two weeks later, | was called to testify in front of both the
Senate Banking Committee and the House Financial Services
Committee, which was the starting point of two years of nonstop work
and changes to appease lawmakers and regulators.

By spring of 2021 (yes they slow played us at every step), we had
addressed every last possible regulatory concern across financial crime,
money laundering, consumer protection, reserve management, buffers,
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Over a year for mainnet
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Research
Questions

Network model?

BFT testing?

. Consensus-exec interface?

. Storage architecture?

1.
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Learned

Modularisation is a design strategy
Tasks-threads allocation

Benchmark early

. Codesign with mem. and storage

Core is hard, consensus is easy

Epoch change is not an add-on
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- Latency was too high
« Crash faults were the predominant faults

» Building Bullshark was still too complex
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Abstract Historically, the prevailing belief has been that reducing

The Narwhal system is a state-of-the-art Byzantine fault- ~ communication complexity was the key to unlocking high
performance, leading to the pursuit of protocols with lin

tolerant scalable architecture that involves constructing a

directed acyclic graph (DAG) of messages among a set of val- ear communication. }{owever. this did not resul.l in drastic
idators in a Blockchain network. Bullshark is a zero-overhead ~ enough improvements in the throughput, falling significantly
consensus protocol on top of the Narwhal’s DAG that can short of the current blockchain network targets. For example,
order over 100k transactions per second. Unfortunately, the ~ the state-of-the-art Hotstuff [46] protocol in this line of work
only achieves a throughput of 3500 TPS [3].
to the DAG construction, increasing the latency compared to A recent breakthrough, however, stemmed from the real-
the state-of-the-art leader-based BFT consensus protocols. ization that data dissemination is the primary bottleneck for
We introduce Shoal, a protocol-agnostic framework for en- ~ leader-based protocols, and it can benefit from paralleliza-
hancing Narwhal-based consensus. By incorporating leader tion [-l,. 17,37, 45)]. The Narwhal system [17] separated data
reputation and pipelining support for the first time, Shoal dissemination from the core consensus logic and proposed
an architecture where all validators simultaneously dissemi-
properties of the DAG construction and the leader reputa- nate data, while the consensus component order‘s a smaller
tion mechanism enables the elimination of timeouts in all amount of metadata. A notable advantage of this architec-
but extremely uncommon scenarios in practice, a property ture is that not only it delivers impressive throughput on

we name “prevalent responsiveness" (it strictly subsumes a single machine, but also naturally supports scaling out
each blockchain validator by adding more machines. The

property for BFT protocols). Narwhal paper [17] evaluated the system in a geo-replicated
We integrated Shoal instantiated with Bullshark, the fastest ~ environment with 50 validators and reported a throughput
existing Narwhal-based consensus protocol, in an open-source  ©f 160,000 TPS with one machine per validator, which further

Blockchain project and provide experimental evaluations ~ increased to 600,000 TPS with 10 machines per validator.
These numbers are more in line with the ambitions of
free executions, and up-to 80% reduction in executions with modern blgckchﬂn systems. (?or?sequemly. Na{ whal has
failures against the vanilla Bullshark implementation. garnered significant traction within the community, result-
ing in its deployment in Sui [44] and ongoing development

high throughput of Bullshark comes with a latency price due

significantly reduces latency. Moreover, the combination of

the established and often desired “optimistic responsivenes

demonstrating up to 40% latency reduction in the failure-

o
N
S
N
E;
=
~
=
Q
A
%)
&
Q
>
o0
w
S
o
<
\©
-
o
N

CCS Concepts: - Security and privacy — Distributed  in Aptos [39] and Celo [40).

1V:

Keywords: Consensus Protocol, Byzantine Fault Tolerance

ACM Reference Format:
Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li.
2023. Shoal: Improving DAG-BFT Latency And Robustness .

19,

d

1 Introduction and each vertex links to n—

approximately 10 transactions per second (TPS), the proof-  yiew-synchronization,

of-stake committee-based blockchains [38-41, 43, 44] are During periods of network asynchrony, each validator
now engaged in a race to deliver a scalable BFT system with may observe a slightly different portion of the DAG at any

the utmost throughput and minimal latency.

Techniques

systems security. Developing a production-ready reliable distributed system
is challenging, and integrating intricate consensus protocols
only adds to the difficulty. Narwhal addresses this issue by
abstracting away networking from the consensus protocol. It
constructs a non-equivocating round-based directed acyclic
graph (DAG), a concept initially introduced by Aleph [21]. In
this design, each validator contributes one vertex per round,
vertices in the preceding round.
Byzantine fault tolerant (BFT) systems, including consensus Each vertex is disseminated via an efficient reliable broadcast
protocols [13, 23, 24, 29] and state machine replication (7, iplementation, ensuring that malicious validators cannot
10, 26, 42, 46], have been a topic of research for over four distribute different vertices to different validators within the
decades as a means of constructing reliable distributed sys- same round. With networking abstraction separated from
tems. Recently, the advent of Blockchains has underscored the details of consensus, the DAG can be constructed without
the significance of high performance. While Bitcoin handles contending with complex mechanisms like view-change or

Sailfish: Towards Improving the Latency of DAG-based BFT

Nibesh Shrestha Rohan Shrothrium
n.shrestha@supraoracles.com  rohan@kurulab:
Supra Research Kuru Labs

Abstract—Directed Acyclic Graph (DAG) based BFT protocols
balance consensus efforts across different parties and maintain
high throughput even when some designated parties fail. How-
ever, existing DAG-based BFT protocols exhibit long latency to
commit decisions, primarily because they have a leader every
2 or more “rounds”. Recent works, such as Shoal (FC’23) and
Mysticeti, have deemed supporting a leader vertex in each
round particularly difficult, if not impossible. Consequently,
even under honest leaders, these protocols require high la-
tency (or communication complexity) to commit the proposal
submitted by the leader (leader vertex) and additional latency
to commit other proposals (non-leader vertices).

In this work, we present Sailfish, the first DAG-based BFT
that supports a leader vertex in each round. Under honest
leaders, Sailfish maintains a commit latency of one reliable
broadcast (RBC) round plus 15 to commit the leader vertex
(where § is the actual transmission latency of a message) and
only an additional RBC round to commit non-leader vertices.
We also extend Sailfish to Multi-leader Sailfish, which facili
tates multiple leaders within a single round and commits all
leader vertices in a round with a latency of one RBC round plus
14. Our experimental evaluation demonstrates that our proto-
cols introduce significantly lower latency overhead compared
to existing DAG-based protocols, with similar throughput.

1. Introduction

Byzantine fault-tolerant state machine replication (BFT
SMR) protocols form the core underpinning for blockchains.
At a high level, a BFT-SMR enables a group of n parties to
agree on a sequence of values, even if a bound of up to f
of these parties is Byzantine (arbitrarily malicious). Owing
to the need for efficient blockchains in practice, there has
been a lot of recent progress in improving the key efficiency
metrics namely, latency, communication complexity, and
throughput under various network conditions. Assuming the
network is partially synchronous, existing SMR protocols
can commit with a latency overhead of 3§ (where § rep-
resents the actual network delay) [11], [12], [22] and also
achieve linear communication complexity [37], [51] under
optimistic conditions (such as an honest leader).

Most of these protocol designs rely on a designated
leader who is the party responsible for proposing transac-
tions and driving the protocol forward while other parties

Aniket Kate Kartik Nayak
aniket @purdue.com kartik@cs.duke.edu

Purdue University / Supra Research Duke Univers

agree on the proposed values and ensure that the leader
keeps making progress. From an efficiency standpoint, this
approach results in two key drawbacks. First, there is an
uneven scheduling of work among the parties. While the
leader is sending a proposal, the other parties’ processors
and their network are not used, leading to uneven resource
usage across parties. Second, in typical leader-based pro-
tocols progress stops if the leader fails and until it
replaced. Several techniques proposed in the literature can
potentially mitigate these concerns. These include the use of
erasure coding techniques [2], [41] or the data availability
committees [26], [27], [49] to disseminate the data more
efficiently.

Recently, a novel approach known as DAG-based BFT
has emerged (5], (18], [28], [33), [34), [46], [47]. These
protocols enable all participating parties to propose in paral-
lel, maximizing bandwidth utilization and ensuring equitable
distribution of workload. Additionally, because each party
is responsible for disseminating its own transactions, the
protocol continues to progress in constructing the DAG
even if a party fails during a round. Consequently, these
protocols have demonstrated improved throughput compared
to their leader-based counterparts under moderate network
sizes [19], [46]. However, existing DAG-based protocols
incur a high latency compared to their “leader-heavy” coun-
terparts [12], [22], [30], [37], [51). Is high latency inherent
for such DAG-based protocols? Addressing this question is
the key goal of this paper.

All existing DAG-based protocols progress in rounds. In
each round, every party can create a potential DAG vertex
containing transactions, with edges pointing to vertices from
previous rounds. These protocols rely on committing a des-
ignated “leader vertex” and order other non-leader vertices
in the DAG. Therefore, the frequency with which leaders are
designated and how fast the leader vertices are committed
directly influences the commit latency.

Supporting a leader vertex in each round. State-of-the-
art protocols designate leaders once every two or more
rounds, and in fact, deem supporting a leader vertex in
each round particularly difficult. In their words, Shoal [45]
writes, “Our attempts to solve the problem by delving into
the inner workings of the protocol and exploring complex
quorum intersection ordering rules have not been frui

Intuitively, this is because ... ”. Similarly, Mysticeti [4]

- Many leaders per round

- Leaders every round

« Uncertified DAG
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1 Introduction

The problem of ordering transactions in a permissioned Byzantine distributed system, also
known as Byzantine Atomic Broadcast (BAB), has been investigated for four decades [30], and
in the last decade, has attracted renewed attention due to the emergence of cryptocurrencies.

Recently, a line of works [4, 14, 20, 33, 21, 27] suggests ordering transactions using a
distributed Directed Acyclic Graph (DAG) structure, in which each vertex contains a block
of transactions as well as references to previously sent vertices. The DAG is distributively
Vhile building the
DAG structure, each miner also totally orders the vertices in its DAG locally. That is,
as the DAG is being constructed, a consensus on its ordering emerges without additional
communication among the miners.

The two state-of-the-art protocols in this context are DAG-Rider [21] and Bullshark [33].

constructed from messages of miners running the consensus protocol.

DAG-Rider works in the asynchronous setting, in which the adversary controls the finite delay
on message delivery between miners, and Bullshark works in the Eventual Synchrony (ES)
model, in which eventually all messages between correct miners are delivered within a known
time-bound.
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MYSTICETI: Reaching the Latency Limits with
Uncertified DAGs
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Arun Koshyi, Alberto Sonnino*?, Mingwei Tiant
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Abstract—We introduce MYSTICETI-C, the first DAG-based
Byzantine consensus protocol to achieve the lower bounds of
latency of 3 message rounds. Since MYSTICETI-C is built over
DAGs it also achieves high resource efficiency and censorship
resistance. MYSTICETI-C achieves this latency improvement by
avoiding explicit certification of the DAG blocks and by proposing
a novel commit rule such that every block can be committed
without delays, resulting in optimal latency in the steady state
and under crash failures. We further extend MYSTICETI-C
to MYSTICETI-FPC, which incorporates a fast commit path
that achieves even lower latency for transferring assets. Unlike
prior fast commit path protocols, MYSTICETI-FPC minimizes
the number of signatures and messages by weaving the fast
path transactions into the DAG. This frees up resources, which
subsequently result in better performance. We prove the safety
and liveness in a Byzantine context. We evaluate both MYSTICETI
protocols and compare them with state-of-the-art consensus and
fast path protocols to demonstrate their low latency and resource
efficiency, as well as their more graceful degradation under crash
failures. MYSTICETI-C is the first Byzantine consensus protocol
to achieve WAN latency of 0.5s for consensus commit while
simultaneously maintaining state-of-the-art throughput of over
200k TPS. Finally, we report on integrating MYSTICETI-C as
the consensus protocol into the Sui blockchain [67], resulting in
over 4x latency reduction.

I. INTRODUCTION

Several recent blockchains, such as Sui [67], [12], have
adopted consensus protocols based on certified directed acyclic
graphs (DAG) of blocks [25], [55], [56], [34], [30], [70], [52],
[58], [44]). By design, these consensus protocols scale well
in terms of throughput, with a performance of 100k tx/s of
raw transactions and are robust against faults and network

hrony [33], [25]. This, however, comes at a high latency
of around 2-3 seconds, which can hinder user experience and
prevent low-latency applications.

MYSTICETI-C: the power of uncertified DAGs Certified
DAGs [34], [25], where each vertex is delivered through
consistent broadcast [14], have high latency for three main
reasons: (1) the certification process requires multiple round-
trips to broadcast each block between validators, get signa-
tures, and re-broadcast certificates. This leads to higher latency
than traditional consensus protocols [31], [64], [15]; (2) blocks
commit on a “per-wave” basis, which means that only once
every two rounds (for Bullshark [55]) there is a chance to

1 blocks. Finally, (3) since all certified blocks need to

PSO consensus latency

Fig. latency of a major blockchain switching from Bullshark (1900ms)
to MYSTICETI-C (390ms) consensus on 106 independently run validators

be signed by a supermajority of validators, signature generation
and verification consume a large amount of CPU on each
validator, which grows with the number of validators [42],
[16). This burden is particularly heavy for a crash-recovered
validator that typically needs to verify thousands of signatures
when trying to catch up with the rest. Although at a first glance,
certification seems to have the benefit that in adversarial cases
nodes can advance the DAG without needing to synchronize
the full-history, production experience of deploying Bullshark
shows that this benefit is negated when needing to execute the
committed transactions. As a result, the certification benefits
only Byzantine Atomic Broadacst protocols but not i d for
the common case of powering a State Machine Replication
system (e.g., a blockchain).

This comes in stark contrast to the early protocols for BFT
consensus, such as PBFT [15], which requires only 3 message
delays to commit a proposal (instead of the 6 in Bullshark)
and facilitates the pipeline of proposals to commit one block
every round [38]. They, however, require a high number of
authenticated messages to coordinate, which consumes a lot
of resources and results in low throughput. Additionally, they
are fragile to faults and implementation mistakes due to their
complexity, especially the view-change sub-protocols.

This work presents MYSTICETI, a family of DAG-based
protocols allowing to safely commit distributed transactions in
a Byzantine setting that focuses on low-latency and low-CPU
operation, achieving the best of both worlds. MYSTICETI-C is
a consensus protocol based on a threshold logical clock [29]

that commits every block as early as it can be

STICETI-C solves all of the above challenges as

s the first safe DAG-based consensus protocol that does

not require explicit certificates, committing blocks within the
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Abstract—We introduce MYSTICETI-C, the first DAG-based
Byzantine consensus protocol to achieve the lower bounds of
latency of 3 message rounds. Since MYSTICETI-C is built over
DAGs it also achieves high resource efficiency and censorship
resistance. MYSTICETI-C achieves this latency improvement by
avoiding explicit certification of the DAG blocks and by proposing
a novel commit rule such that every block can be committed
without delays, resulting in optimal latency in the steady state
and under crash failures. We further extend MYSTICETI-C
to MYSTICETI-FPC, which incorporates a fast commit path
that achieves even lower latency for transferring assets. Unlike
prior fast commit path protocols, MYSTICETI-FPC minimizes
the number of signatures and messages by weaving the fast
path transactions into the DAG. This frees up resources, which
subsequently result in better performance. We prove the safety
and liveness in a Byzantine context. We evaluate both MYSTICETI
protocols and compare them with state-of-the-art consensus and
fast path protocols to demonstrate their low latency and resource
efficiency, as well as their more graceful degradation under crash
failures. MYSTICETI-C is the first Byzantine consensus protocol
to achieve WAN latency of 0.5s for consensus commit while
simultaneously maintaining state-of-the-art throughput of over
200k TPS. Finally, we report on integrating MYSTICETI-C as
the consensus protocol into the Sui blockchain [67], resulting in
over 4x latency reduction.

L. INTRODUCTION

Several recent blockchains, such as Sui [67], [12], have
adopted consensus protocols based on certified directed acyclic
graphs (DAG) of blocks [25], [55], [56], [34], [30], [70], [52],
[58], [44]). By design, these consensus protocols scale well
in terms of throughput, with a performance of 100k tx/s of
raw transactions and are robust against faults and network
asynchrony [33], [25]. This, however, comes at a high latency
of around 2-3 seconds, which can hinder user experience and
prevent low-latency applications.

MYSTICETI-C: the power of uncertified DAGs Certified
DAGs [34], [25], where each vertex is delivered through
consistent broadcast [14], have high latency for three main
reasons: (1) the certification process requires multiple round-
trips to broadcast each block between validators, get signa-
tures, and re-broadcast certificates. This leads to higher latency
than traditional consensus protocols [31], [64], [15]; (2) blocks
commit on a “per-wave” basis, which means that only once
every two rounds (for Bullshark [55]) there is a chance to
commit. Hence, some blocks have to wait for the wave to
finish increasing the latency of transactions

block. This phenomenon is si i

of 2f + 1 blocks. Finally, (3) since all certified blocks need to

Fig. latency of a major blockchain switching from Bullshark (1900ms)
to MYSTICETI-C (390ms) consensus on 106 independently run validators

be signed by a supermajority of validators, signature generation
and verification consume a large amount of CPU on each
validator, which grows with the number of validators [42],
[16). This burden is particularly heavy for a crash-recovered
validator that typically needs to verify thousands of signatures
when trying to catch up with the rest. Although at a first glance,
certification seems to have the benefit that in adversarial cases
nodes can advance the DAG without needing to synchronize
the full-history, production experience of deploying Bullshark
shows that this benefit is negated when needing to execute the
committed transactions. As a result, the certification benefits
only Byzantine Atomic Broadacst protocols but not if used for
the common case of powering a State Machine Replication
system (e.g., a blockchain).

This comes in stark contrast to the early protocols for BFT
consensus, such as PBFT [15], which requires only 3 message
delays to commit a proposal (instead of the 6 in Bullshark)
and facilitates the pipeline of proposals to commit one block
every round [38]. They, however, require a high number of
authenticated messages to coordinate, which consumes a lot
of resources and results in low throughput. Additionally, they
are fragile to faults and implementation mistakes due to their
complexity, especially the view-change sub-protocols.

This work presents MYSTICETI, a family of DAG-based
protocols allowing to safely commit distributed transactions in
a Byzantine setting that focuses on low-latency and low-CPU
operation, achieving the best of both worlds. MYSTICETI-C is
a consensus protocol based on a threshold logical clock [29]
DAG of blocks, that commits every block as early as it can be
decided. MYSTICETI-C solves all of the above challenges as
(1) it is the first safe DAG-based consensus protocol that does
not require explicit certificates, committing blocks within the
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Implementation

 Written in Rust

« Networking: Tokio (TCP)
« Storage: custom WAL
» Cryptography: ed25519-consensus

ns://github.com/mystenlabs/mysticeti



Implementation

« Synchronous core
» One Tokio task per peer (limiting resource usage)

« DTE simulator
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Experimental setup on AWS
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Key Limitations

» Block Synchroniser
- Parallelise block creation and synchronisation

» Rigid DAG structure?



