
Modern Blockchains for the
Modern Security Engineer

Prof George Danezis
University College London
Mysten Labs, Chief Scientist

ACM CCS Defi Workshop, Salt Lake City, USA
Oct 18, 2024

Brief Introduction

2

George Danezis, Prof of Security and Privacy Engineering

2000 Cambridge
2005 KU Leuven
2007 MSR
2013+ UCL
2018 Chainspace (co-founder)
2019 FB: Libra, Diem, Novi
2021+ Mysten Labs (co-founder): Sui, Walrus

Advisor to Vega Protocol, Nym Technologies, Celestia

Thesis 1 - Traditional blockchains set the vision but lacked in realization - yet even
today set the research agenda.

Thesis 2 - Modern blockchains, in contrast, embody state of the art systems, security
and cryptography components.

Thesis 3 - As systems modern blockchains implement a traditional commercial
security policy framework - familiar to security engineers.

Thesis 4 - Modern blockchains are the best current platform to build open distributed
security systems. Case Study: Walrus.

3

Outline: 4 Theses on Modern Blockchains

What is a
blockchain?

4

A secure decentralized transaction
processing system & database

Security: Consistency, Liveness,
end-to-end verifiability and full auditability

Based on the State Machine Replication
(SMR) paradigm (Lamport, 1978)

State Machine Replication: a reminder

Consistent
Command
Sequence
(Consensus)

Deterministic
Execution

Consistent
State

5

“Traditional” Blockchains, and their properties

Bitcoin (BTC $1.2T) & Ethereum (ETH $0.3T)

High Latency BTC: N x 10 min, ETH: N x 12 sec
Low Throughput BTC: 9 tps, ETH: 50 tps
High Fees BTC: $0.5 /tx, ETH: $1.5 /tx
High energy usage BTC: 167 TWh/year, ETH: now PoS
Probabilistic finality 1 block reorgs are routine, longer occur
Restricted & unsafe exec BTC: very restricted bytecode,

ETH: untyped EVM multi-million $ hacks

Maybe good enough for some use cases: store of value, NFT, Defi.

6

Lots of blockchain system research improves upon Traditional
Blockchains

Lower latency

Off-chain
BFT sidechains
Lightening
State channels

Lower power

Eth DPoS migration

Stronger Finality

BFT based L2s /
side-chains
Finality gadgets

Execution & Safety

Solidity Audits & ML
EVM verification
Parallel execution
Custody & Multisig
Light clients

Increase capacity

Ethereum L2s
Zk rollups
Optimistic rollups
Lightning Network
Plasma
Sharding

Improvements that increase complexity ⇒ reduce assurance or performance

Modern
Blockchains

The Common Architecture: DPoS & BFT & VM & Merkle Trees

8

Transaction
Dissemination

Consensus /
Sequencing

Execution &
State Update

Checkpoints /
ADS

Samples: Sui, Libra / Diem / Aptos, Solana, Cosmos ecosystem

Validation, p2p
dissemination,
mempool.

Or direct
communication

Low-latency,
high-throughput
byzantine fault
tolerant consensus.

Delegated Proof of
Stake determined
committee

Modern VM (Wasm,
Move, eBPF)

Parallel execution of
transactions

State commitment

Database optimized
for reads / RPCs

Command-Query
Responsibility
Segregation

9

Move Programming Model ➡ Object Model

Modules are the unit of Isolation and encapsulation.
Outside code cannot construct / destruct structures, or
directly access attributes.

Structures with key ability define top level objects with
unique IDs. Note the Linear type system.

Public functions may be called from outside the module.

A Programmable Transaction Block is a sequence of calls
to public functions executed atomically.

The context provides access to the authenticated signer
of the transaction.

Public Transfer sends the top level objects to a new owner.

10

A 1:1 Atomic Swap: Shared Objects, Assertions, Generics
Define a generic top level struct that
holds a coin from a creator.

Initialize the swap object, and set the
concrete types A and B at runtime.

Make it shared - now anyone can use
it in transactions.

Assertion, creator only may cancel
swap and get back the coin.

Anyone may do the swap by
providing the creator an owned coin
of the second type with the correct
value.

Atomic transaction execution
ensures atomic swap.

11

Fast Path with Sui Lutris: Finality Before Consensus for Owned objects

Consistent
Broadcast Consensus Execution

Checkpoint

Transactions that take as inputs only owned
object can get finalized before they are
sequenced, after only consistent broadcast.

Total order still
used to build
checkpoints

User
Transaction

Transaction finality: the
transaction will proceed to
execute no matter what.

Execution finality: the given
effects will persist no matter
what.

1 ½ round trip
protocol secure in
full asynchrony

Sui Lutris: A Blockchain Combining Broadcast and Consensus. Blackshear, Sam ; Chursin, Andrey ; Danezis, George ; Kichidis, Anastasios ; Kokoris-Kogias,
Lefteris ; Li, Xun ; Logan, Mark ; Menon, Ashok ; Nowacki, Todd ; Sonnino, Alberto ; Williams, Brandon ; Zhang, Lu. ACM CCS 2024

Fully Parallel Fully Parallel

12

Fast Consensus with the Mysticeti DAG

All Validators make blocks in rounds

Contain transactions and backlinks to ⅔ previous blocks

A block at r may have a skip or cert pattern at r+2

Define decision blocks

If ⅔ r+2 blocks have a pattern for block at r, decide!

Otherwise continue, and decide later.

Symmetric network utilization.

One network primitive to optimize: broadcast sync.

Assumption: ⅔ stake correct & partial synchrony.

Mysticeti: Reaching the Limits of Latency with Uncertified DAGs. Babel, Kushal ; Chursin, Andrey ; Danezis, George ; Kichidis, Anastasios ; Kokoris-Kogias,
Lefteris ; Koshy, Arun ; Sonnino, Alberto ; Tian, Mingwei. NDSS 2025.

13

Laboratory Performance - Mysticeti alone

Current Demand
for blockchains

Key insight: separating data dissemination from agreement on
metadata using a worker primary architecture leads to practically
limitless throughput at the cost of 1 round trip of latency.

Narwhal and Tusk: a DAG-based mempool and efficient BFT consensus. George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman.
EuroSys 2022: 34-50

14

Lutris & Mysticeti Latency in Production - 106 nodes, mainnet

15

Flexible Authentication & ZKLogin

zkLogin: Privacy-Preserving Blockchain Authentication with Existing Credentials. Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lindstrøm,
Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, Joy Wang. ACM CCS 2024

Table Stakes Authentication & Cryptography ZKLogin Authentication

Basic Signature Schemes

Ed25519, ECDSA Secp256k1 & Secp256r1

Native Multi-signature

Define up to 10 public keys, weight and threshold

Valid if the weight of all signatures exceeds threshold

Can mix & match schemes

Move Crypto: BLS12381, Groth16 Verifier, SHA256,
SHA3-256, blake2b256, keccak256

Generate an Ephemeral key pair

Generate a JSON Web Token (JWT)

Request the user’s unique salt or use PIN

Generate a zk proof

Sign transaction with ephemeral key, and authorize key with
the zkproof

Result: can authorize on-chain action using OAuth

16

Demo: Receive Sui Tokens via QR Code + Gmail/Twitch login

17

Again…

18

Secure Time, Native Randomness, Fresh nonces

Real time clock Native Secure Randomness

Mysticeti blocks contain time

All blocks include ⅔ previous blocks,
and their time

All committed blocks have ⅔
subsequent blocks (cert)

Bounds checks prevent Byzantine
validators from going too slow or too
fast

Move: Clock shared object is updated
with the commit block time

Each epoch validators run a DKG

For each round validators reveal shares
of a BLS signature on the round number

This is guaranteed to be fresh and not
guessable

Move: functions may read the round
randomness from a randomness shared
object

Fresh nonces

All Sui object IDs are guaranteed to be
fresh

This is done via cryptographic hashing
and lamport timestamps

Move: may request fresh identifiers,
and use them to identify Capabilities or
other actions

19

Secure Capability Authorization and Programming with Types

Updating contracts controlled by capability.

Regulated coin operations controlled by Capability.

Ownership checked at system level.

Capability pattern supported through the linear type system: by default cannot create, clone, copy, or drop objects.

Only through well defined module functions.

Having an object of a type can denote authorization to act on it.

20

Distributed Execution with Pilotfish

Pilotfish: Distributed Transaction Execution for Lazy Blockchains. Kniep, Quentin ; Kokoris-Kogias, Lefteris ; Sonnino, Alberto ; Zablotchi, Igor ; Zhang, Nuda.
arXiv:2401.16292

Today: Leverage parallel execution of transactions on
independent objects

Tomorrow: distributed execution!

The big picture

22

Great technical pieces.

A modern blockchain as a
whole system?

Modern Blockchains:

Low-latency
High-throughput
Cheap fees
Built in flexible auth (AAA)
Great security services: random, time, nonce
Great built-in crypto
Safe, expressive languages

Best choice if you need consensus
Best choice if you need consistent broadcast
Great if you need isolated VM
Great if you want parallel execution
Great if you want to re-use SSO

23

The Clark-Wilson (CW) commercial security policy framework (1987)

Commercial security needed a
framework focused on authenticity,
integrity and audit.

In contrast with Orange book MLS.

Policy framework mapping controls
to a transaction processing system.

Key thesis: Modern Blockchains
provide the most high-assurance,
performant, ergonomic and
featureful platform for
implementing a CW policy.

24

External
data
sanitized

Full nodes audit
validity of all objects

Live objects

Certified
chain history

Public
functions in
transactions All transaction

logged in history

Owned objects only accessed by owners;
shared according to contract.

External
args

All transitions according to
contract, that implements
auth. + integrity

All transaction senders
authenticated

Changes subject to
contract + Upgrade cap

25

Level of Assurance Provided

Quorum Unconditional Validity - based on security of sender signatures.

Safety under ⅔ correct quorum & asynchrony, ie. Byzantine Fault Tolerance.

Liveness under partial synchrony.

Actuals:

- End-to-end audit trail based on public verifiability + cryptographic authentication.

- 100x+ geo-distributed fully replicated execution. Real-time.

- 500x+ real time validity verification and further replication. Real-time & audit.

Compare with Traditional Trusted Computing Base (TCB) = a computer with an administrator & some backup computer.

26

Modern Blockchains from a Security Engineer’s Perspective

Define security policy through smart contract Get for free

Objects / Structures: define Constrained Data Items (CDI).

Public functions: define security policy for the application.

Transformation Procedures (TP) sanitize UDI to CDI.

Transformation Procedures (TP) mutate CDI to CDI.

Define access control for shared state CDI + TP.

Define rules to change access control, subject to policy.

Smart contracts are a security policy language and
blockchains the systems that run and enforce it as a CW
policy.

- Authentication + Authorization (owned objects)
- Secure + private SSO integration.
- Audit log CDI.
- All TP in tamper evident history + certified.
- All CDI transitions follow policy.
- High throughput, Low-latency, cheap
- Open system: economics, DoS protection.
- Security services: randomness, time, crypto functions.

Secure composition via using common system.

Objects (CDI) and TPs from one realm can be securely
composed by other modules to construct complex

interoperable secure application.

Case Study: Walrus
Decentralized
Storage

Decentralized Storage, in the past

The Classical Era The Traditional Blockchain Era

28

Centralized Systems

Unstructured peer-to-peer systems

Distributed Hash Tables

Bittorrent

No transactional semantics

No erasure coding - requires coordination

IPFS

Filecoin

Arweave

Build a traditional blockchain and storage

Full-replication

Protocol Outline

29

Walrus: Decentralized Storage in the Era of Modern Blockchains

Usage of Modern Blockchain

Committee of Storage Nodes in epochs

Write
1. Erasure code blob, derive Blob ID and size.
2. Buy storage and register blob ID on chain.
3. Upload shares on all storage nodes.
4. Get signatures if shares valid.
5. Make ⅔ Proof of Availability certificate.
6. Certify the Blob ID on blockchain.

Point of Availability
Read:

7. Read Blob ID from ⅓ of storage nodes.
8. Reconstruct Blob + Check Blob ID.

Manage the storage node committee in epochs.
Delegated proof of stake mechanism.

Manage the assignments of shares to storage nodes.

Manage the price and amount of free space.

Get payments for buying empty storage.
Secondary storage market.

Register & Certify Blobs = Prove Availability.

Extend & Delete Blobs if authorized.

Report Invalid Blob encodings.

Manage deny list for compliance.

Coordinate epoch change, ready and done.

A secure decentralized consistent core.
See https://docs.walrus.site/

What open distributed infrastructures do you want to build?

Distributed things we do not have …

30

The Cookbook

Secure cryptographic election as a Service.

Private Information Retrieval as a Service

Multi-Party Computation as a service

Prover farms as a Service

Public-Key Infrastructures & Certificate Transparency &
Routing table maintenance.

ORAM Services.

Define governance as smart contract on Modern
Blockchain: payments, control, resources, consistent core.

Off-chain infrastructure uses Modern Blockchain events to
update local state machines.

Do meta-data management on-chain, crypto protocol
off-chain.

…

$$$.

In conclusion

In conclusion: the old ways, and the new ways

32

There was a time when Security engineers:
- Would build own cipher
- Would design own authentication protocol
- Would design own channel encryption
- Would implement own authorization framework
- Or write your own database?

Bad idea: specialized tasks, that are best done by small expert teams with high assurance and re-used by all.

Modern Blockchains: Same dynamic for high-integrity public applications.
- Security Engineers that wanted to build a secure public app involving transactions would start from scratch.
- There is however no way to compete with starting with a modern blockchain.

Added benefit: composability - no matter how good a standalone secure app is, it is hard to make it work with others.
Added benefit: naturally open and networked - perfect for coordinating other decentralized systems.

Key challenge: integrate confidentiality policies, without sacrificing benefits.

